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ABSTRACT
The human gut microbiome impacts host health through metabolite production, nota
bly short-chain fatty acids (SCFAs) derived from digestion-resistant carbohydrates 
(DRCs). While DRC supplementation offers a means to modulate the microbiome ther
apeutically, its effectiveness is often limited by the microbial community’s complexity 
and individual variability in microbiome functionality. We utilized genome-scale meta
bolic models (GEMs) from the AGORA collection to provide a system-level overview of 
the metabolic capabilities of human gut microbes in terms of carbohydrate trophic 
networks and propose improved therapeutic interventions, based on microbial commu
nity design. Our study inferred the capability of AGORA strains to consume carbohy
drates of varying structural complexities – including DRCs – and to produce metabolites 
amenable to cross-feeding, such as SCFAs. The resulting functional database indicated 
that DRC-degrading abilities are rare among gut microbes, suggesting that the presence 
or absence of specific taxa can determine the success of DRC-based interventions. 
Additionally, we found that metabolite production profiles exceed family-level variation, 
highlighting the limitations in predicting intervention outcomes based on gut microbial 
composition assessed at higher taxonomic levels. In response to these findings, we 
integrate reverse ecology principles, network analysis and GEM community modeling 
to guide the design of minimal yet resilient microbial communities to better guarantee 
intervention response (purpose-based communities). As a proof of principle, we pre
dicted a purpose-based community designed to enhance butyrate production when 
used in conjunction with DRC supplementation that displays resilience under nutritional 
stress, such as amino acid restriction. We further seeded the identified purpose-based 
community into modeled human microbiomes previously demonstrated to accurately 
predict SCFA production profiles. The analysis confirmed that such intervention signifi
cantly promotes butyrate production across samples, with those that presented 
a comparatively lower butyrate production pre-intervention displaying the largest 
increase in butyrate production after seeding. Our work highlights the potential of 
combining GEMs with community design to infer effective microbiome interventions, 
ultimately leading to improved health outcomes.
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Introduction

The human gut microbiome plays a pivotal role in health and disease,1–3 including through the production 
of metabolites with biological effects on the host. Evidence consistently suggests that this microbial 
community is strongly influenced by the host diet, particularly through the intake of digestion-resistant 
carbohydrates (DRCs).4–11 This offers the opportunity of modulating the microbial community to alter host 
health outcomes, such as via DRC supplementation, or with microbes that ferment these substrates.12–15 

However, the effectiveness of such interventions is hindered by the inherent complexity of microbial 
communities and the variable functional capacity of microbiomes across individuals.7,16–19
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While further efforts are needed to fully grasp human gut microbiome dynamics, and therefore 
successful microbiome modulations, broad principles have been established. For example, evidence 
supports the existence of trophic networks in this microbial community, where specific commensals 
can degrade DRCs (primary degraders), enabling other microbes access to less complex carbohy
drates (secondary degraders).20–22 It is also understood that gut commensals can adapt their 
metabolism to changes in substrate availability, and thus a microbe’s role as a primary or secondary 
degrader may change accordingly.9 Moreover, characteristics common to the gut environment, 
including both high rates of substrate availability and intense competition for resources, favor 
partial degradation of nutrients and accumulation of intermediate metabolites, such as formate, 
which can then be cross-fed to alternative populations in the community23,24 or made available to 
the host. Short-chain fatty acids (SCFAs), some of the most abundant metabolites produced by 
human gut microbes, mostly through DRC fermentation, are associated with health promoting 
effects.4,25–27 Meanwhile, other metabolites such as hydrogen sulfide (H2S), are generally consid
ered detrimental to health.8–11 These principles underscore the need for a systems-level under
standing of how nutritional inputs impact metabolic outputs in the human gut microbiome for the 
design of successful interventions.

Despite the popularity of probiotics, currently available formulations often yield inconsistent and 
limited results.28–30 This inconsistency is largely due to the complex and competitive nature of the 
gut microbial ecosystem, where introduced strains struggle to establish themselves and exert sig
nificant functional impact.28,29 Single strains may also lack the necessary metabolic breadth to 
degrade diverse DRCs or produce sufficient beneficial metabolites, such as SCFAs. Therefore, there 
is a growing recognition that effective interventions may require the introduction of a tailored 
community of microbes that can work synergistically to degrade DRCs and produce health- 
promoting metabolites.31,32

To achieve this comprehensive view and to overcome the challenges of studying this complex ecosystem 
in vivo, researchers have increasingly turned to computational approaches. Genome-scale models (GEMs) 
have gained momentum in the field to address such challenges.11,31,33–35 GEMs are computational inte
grative platforms that allow the amalgamation of different data types (e.g., omics and empirical) to build and 
refine the metabolic network encoded in genomes. In doing so, GEMs reconcile genetic traits at the cellular 
level, offering insight into what is metabolically feasible for a given strain.36–38 GEMs can be modeled in 
isolation or as a consortium, in nutritional conditions that mimic those encountered in the human gut, 
while tracing intracellular fluxes and intercellular metabolic exchanges, providing mechanistic insights that 
would be complicated to attain through alternative methods. The resulting predictions also have the 
potential to inform the design of minimal, resilient microbial consortia,39–41 and optimal concurrent dietary 
supplementation, for microbiome-targeted intervention strategies (purpose-based communities). Well- 
curated GEMs are of particular importance in performing such modeling as they better capture species- 
specific functional capabilities and potential metabolic interactions. In this regard, AGORA, a collection of 
818 highly curated GEMs of cultured and un-cultured gut microbes, has been widely applied to study the 
human gut microbial community and has been validated against human data.31,42–45

Leveraging GEMs, this study, previously made available as a preprint,46 first aims to provide 
a system-level overview of the metabolic capabilities of human gut microbes in terms of nutritional 
inputs and metabolic outputs in carbohydrate trophic networks. To do this, we comprehensively 
characterized the metabolic capabilities of gut commensal AGORA GEMs to a) consume carbohydrates 
from various levels of structural complexity, including DRCs; and b) produce metabolites that can be 
cross-fed, notably SCFAs. We also aimed to demonstrate the potential of GEMs for the design of 
a purpose-based community that is optimized for SCFA production in the context of the human gut 
microbial community. We show that a resulting proof of principle community is predicted to be 
resilient to stressors such as amino acid limitation, and enhance butyrate production in modeled 
human microbiomes.31 Finally, flux inspection highlights functional characteristics in modeled micro
biomes with potential implications for intervention response. While our findings are predictive and 
based on computational modeling, our work highlights the potential of GEMs for understanding the 
metabolic potential of microbial communities, and inform the design of targeted microbiome interven
tions in the context of the human gut microbiome.
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Methods

Computational resources

The GEMs employed for this project were obtained from www.vmh.life.,47 and are part of the without 
mucins version of AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) version 
1.03.42 This version is the latest release available at the time of analysis on the Virtual Metabolic Human 
database, which includes curated versions of the original AGORA GEMs. The without mucins database was 
selected based on our specific focus on dietary-derived molecules. Importantly, the media utilized for both 
single-GEM simulations45 and MCMMs47 have been previously defined and do not include mucin-derived 
glycans in their composition. GEMs of strains Clostridium sporogenes ATCC 15,579 and Lactobacillus 
helveticus DPC 4571 were excluded from this analysis due to inconsistencies, as outlined previously.45

Metabolite flux for each GEM was modeled using Flux Balance Analysis (FBA) and the constraint-based 
reconstruction and analysis (COBRA) toolbox for the Python coding language COBRApy.48 FBA is 
a mathematical optimization approach that maximizes an objective function based on upper and lower 
bounds imposed on reaction fluxes (constraints). In FBA, multiple-flux distributions (solutions) can achieve 
the same optimal objective value. We applied FBA to optimize growth in terms of biomass generation in 
grams of dry weight per hour (gDW/h) based on nutrient fluxes (equivalent to specific growth rate (µ) when 
the biomass flux is normalized to 1 gDW of biomass). COBRApy further allows a) inspection of individual 
metabolic reactions and metabolite consumption and synthesis and b) seamless addition or removal of 
specific molecules to growth media.

Community modeling was performed using MICOM,39 a python package for modeling individual GEMs 
in a community context. Fluxes were derived from utilizing the cooperative_tradeoff method, which 
optimizes the community metabolic network for maximum community and individual member growth. 
Parsimonious FBA (pFBA) was used to model community fluxes, a variation of traditional FBA, which aims 
to minimize the total sum of predicted fluxes that contribute to an optimal objective function, reducing the 
solution space by selecting the least-costly metabolic route, which is highly desirable during community 
modeling. MICOM cooperative_tradeoff simulations were performed with a tradeoff value of 0.99, to 
further constrain the solution space. COBRApy and MICOM simulations were performed with an academic 
license for the Gurobi solver40 on a personal computer.

Nutrient utilisation inference

To determine which nutrients each strain can utilize, we developed a COBRApy-based script that system
atically tests the ability of GEMs to grow on specific nutrients and produce metabolites. Previously, we 
introduced GEMNAST (GEMs Metabolic and Nutritional Assessment), a Python-based algorithm that 
samples metabolic capabilities of a predetermined set of GEMs qualitatively, based on combinatorial media 
modifications.45 GEMNAST (https://github.com/jmol0917/GEMNAST_0.2) was devised as a high- 
throughput pipeline to identify auxotrophies and prototrophies in GEMs. For this study, GEMNAST was 
extended to assess nutrient utilization and metabolite export capabilities on individual GEMs.

Nutrient utilisation capabilities

A COBRApy-based python script was developed to identify molecules individual GEMs can utilize as 
nutrients (Figure S1 in Supplementary file 1), where each GEM is simulated in base media enriched with the 
potential nutrient, and constrained to utilize the added molecule, if possible. The main output of this 
pipeline is a Boolean table with strains as rows and test molecules as columns. If the model produces 
biomass above a predetermined threshold and consumes the molecule, confirmed by flux inspection, 
a positive outcome is recorded.1 If both conditions are not met, a negative outcome is assigned instead (0).

Metabolite export capabilities following nutrient utilisation

We developed a pipeline to identify which metabolites can be exported by GEMs when utilizing 
specific nutrients, helping to infer cross-feeding potential among microbes in a community. We 
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designed a script that enables a predetermined set of compounds to be assessed (Figure S2, 
Supplementary file 1). In this pipeline, each GEM is simulated in base media enriched with the 
potential nutrient, and constrained to i) utilize the added molecule and ii) to export (after 
producing) the metabolite in question, if possible. If these two conditions are fulfilled (confirmed 
by flux inspection) and the model produced biomass above a determined threshold, a positive 
outcome1 is recorded in a Boolean table where the represented strains are recorded in rows and 
combinations of one molecule and one metabolite in columns. If every condition is not met, 
a negative outcome is assigned instead (0). It is important to note that this analysis does not 
trace the specific metabolic pathways leading from nutrient uptake to metabolite export. Therefore, 
while it confirms the capability to produce a metabolite during nutrient utilization, it does not 
guarantee that the metabolite is directly derived from that nutrient.

Growth media for single-strain modelling

The previously reported Universally Defined Media (UDM, Table S1),45 which was designed to 
guarantee the growth of every GEM in AGORA, was modified for the purposes of this study. To 
accurately assess carbohydrate utilization capabilities, we modified the UDM by removing potential 
confounders (e.g., simple sugars) that could serve as alternative carbon sources, resulting in 
a carbohydrate-free UDM (cfUDM, Table S1). Following established conventions and prior litera
ture for cases where experimentally validated rates are limited or unavailable and the aim is to test 
a qualitative property,38 exchange reactions other than the tested carbohydrate were set to non- 
limiting bounds (± 1000), while the tested carbohydrate was added at a concentration of 10 mmol/ 
gDW/h.

Meaningful growth

To determine a strain’s capacity to grow in media, an extremely conservative threshold of 0.09 h¯1 growth 
rate (8 hours doubling time) was established on the basis that any microbe growing at a lower rate would 
present relatively low probabilities of surviving in the human gut, where transit times average just over 
24 hours, but can be shorter than 14 hours in some individuals.41 This threshold represents a theoretical 
minimum growth rate for gut survival as less than two replication cycles would not guarantee permanence 
in the human colon.49

Carbohydrate utilisation and metabolite export experimental design

We selected 55 carbohydrates relevant to DRCs based on the VMH database,47 where AGORA GEMs are 
housed,42 and literature reports. These were categorized by structural complexity into monosaccharides, 
oligosaccharides, and polysaccharides. Additionally, 11 metabolites were identified from the same sources 
for the second part of this analysis, focused on a subset of metabolites particularly relevant to fermentation 
of microbial-accessible carbohydrates and production of short-chain fatty acids.50 The names of these 66 
molecules can be found in Table S2.

Following our customized GEMNAST script, we sampled the carbohydrate utilization capabilities 
of 816 strains represented in AGORA (input a) based on the 55 carbohydrates (input c) and 
cfUDM as base media (input b). Each molecule was individually added to cfUDM, and molecule 
utilization and growth were assessed (Figure S3). Results from this analysis are shown in 
Supplementary file 2.1, 2.2 and 2.3 for monosaccharides, oligosaccharides and polysaccharides, 
respectively.

The GEMNAST script we developed to assess metabolite export was applied to identify which of the 11 
selected metabolites (input d) AGORA strains (input a) can export while utilizing each monosaccharide 
from Table S2 (input c), with cfUDM (input b) as base media (Figure S4). Results of this part of our analysis 
can be found in Supplementary file 2.4.
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Classification of AGORA strains into topo-physiological categories

AGORA strains were divided into groupings (Supplementary file 2.5) based on their relationship with 
the host (pathogens, pathobionts) and their more prevalent anatomical site (upper GIT, large bowel, 
skin). This process was done manually with reference to the literature and relevant databases.51–54

Phylogeny assignment

Taxonomy IDs of 590 large bowel AGORA strains were retrieved from the Virtual Metabolic Human 
database47 and were used to assemble a.phy file using NCBI’s online taxonomy browser55 (Supplementary 
file 5) to retrieve updated phylogenetic details for such strains and families relevant for our analyses.

Principal component analysis (PCA)

We used PCA for dimensionality reduction to visualize high-dimensional metabolic profiles. PCA was 
applied to the Boolean tables that resulted from the analysis of each category of molecules to project 
individual strains into two-dimensional space based on their carbohydrate degradation and metabolite 
production profiles. This allowed us to assess the extent to which strains from prevalent large bowel families 
clustered according to their functional capabilities.

Before applying PCA, each Boolean matrix was standardized using scikit-learn’s StandardScaler. The 
PCA transformation was then performed using the PCA module from scikit-learn. PCA identifies ortho
gonal axes that capture the greatest variance in the data, enabling comparison of patterns across functional 
profiles.56

Heatmaps, boxplots and networks for results visualisation

Seaborn,57 a Python library for data visualization, based on matplotlib,58 was used to generate heatmaps and 
boxplots derived from the carbohydrate utilization and metabolite production datasets and correlation 
matrices in the purpose-based community. Matplotlib was used to generate stacked bar charts.58 

Cytoscape59 was used to generate interactions between members of the purpose-based community.

Flux network analysis

To identify strains in the 151-strain community that are more likely to establish a resilient purpose-based 
community, we performed a network analysis based on predicted nutritional exchanges from community 
modeling. Every modeled molecule was included in this analysis. First, we calculated total in- and out- 
degree edges (predicted imported or exported metabolites) for every strain in this community. We then 
utilized this metric to identify a) hub strains, those with a high imports and exports sum ( >6.7, fourth 
decile); and b) strains with a balanced export:import ratio (exports/imports = 0.9–1.1), to prevent the 
inclusion of “cheaters,” i.e., organisms that are low exporters.

Percent change in butyrate production rates

To report the difference in butyrate production rates between two modeled communities or different 
nutritional contexts, we rely on Equation 1 to calculate percent changes.

Equation 1 Percentage Change 

PC ¼
CV � OV

OV
� 100 

Where PC is the percent change, OV is the original value; in this case, the predicted rate for butyrate 
production in our purpose-based 6-strain community in cfUDM supplemented with inulin. CV is the 
compared value, which corresponds to alternative butyrate production rates. Absolute predicted values can 
be found in the corresponding sections of Supplementary file 2 as part of community modeling fluxes.
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Seeding a purpose-based GEMs community in predefined species-level human gut microbiome-derived 
MCMMs

We reproduced the microbial community-scale metabolic models (MCMMs) derived from human 
participant fecal samples from Quinn-Bohmann et al., Study A to D,31 based on the publicly available 
data and code associated with the study. These MCMMs were selected because they were benchmarked 
against experimental SCFA production data and shown to accurately predict metabolic responses to dietary 
fiber supplementation in human gut microbiomes. This provides a realistic and validated platform for 
simulating intervention outcomes. Briefly, species (study A, C and D) and genus-level (Study B) taxonomy 
and abundances, inferred from 16S rRNA gene amplicon sequencing, were utilized to build MCMMs from 
AGORA 1.03 GEMs. When repeat data was available (studies A and B), it was modeled as independent 
MCMMs. This resulted in 53 original MCMMs (study A (n = 6), B (n = 29), C (n = 9) and D (n = 9)), which 
were modeled in standard European diet47 supplemented with 10 mmol/gDW/h of inulin (fiber interven
tion). Our purpose-based community (strain-level GEMs) was then seeded into the original MCMMs at an 
overall abundance of 5% and then modeled in the inulin supplemented European diet (fiber + module 
intervention). This process was performed utilizing MICOM’s multi-sample build and grow workflows with 
a tradeoff parameter of 0.7, derived from MICOM’s cooperative_tradeoff analysis,39 which recommends the 
use of the highest parameter value that allows 90% or more of the taxa in a MCMM to grow. Simulated 
inulin supplementation and purpose-based community relative abundance seeding values are the same 
utilized by Quinn-Bohmann et al. Fluxes that corresponded to different samples from the same participant 
were then averaged for later analysis. This resulted in a final total of 30 MCMMs (studies A (n = 2), B (n =  
10), C (n = 9) and D (n = 9)).

A tradeoff parameter of 0.7 constrains MCMMs to grow at a 70% maximum community growth rate, 
which can translate into a higher number of individual GEMs simulating non-zero growth rates. However, 
this also translates into a larger solution space, where metabolite production rates can vary widely. To 
address this, we further simulated MCMMs with butyrate production as the objective function, while 
constraining individual GEM growth to the growth rates obtained in the unconstrained grow workflow, 
which predicts the theoretical maximum butyrate-production a given MCMM can achieve. Resulting 
growth rates and predicted fluxes were then divided by a factor of 10 to account for fecal microenvironment 
dilution,31 while preventing numerical instability during modeling, as reported previously.11

Results

In silico culturing with a stratified carbohydrate dimension to characterize metabolic capabilities

DRCs, commonly termed dietary fiber, are not digested in the human small intestine and therefore pass into 
the large bowel. Not all DRCs can be utilized by gut microbes, but those that can be metabolized 
(microbiota-accessible carbohydrates) represent key carbon and energy sources for microbes in the large 
bowel. Comprehensive in silico characterization of the functional traits of AGORA strains in the carbohy
drate nutritional dimension requires an equally comprehensive representation of this group of molecules. 
To adequately represent the structural complexity within carbohydrates, relevant to the human gut micro
biota, we designated three categories based on their chemical structure. Each of these categories was 
populated with compounds from a list of nutrient requirements used for the curation of AGORA 
GEMs,47 totaling 55 compounds (Table S2, Supplementary file 1):

● Polysaccharides (25 compounds): carbohydrates with over ten monosaccharides in their structure.
● Oligosaccharides (14 compounds): molecules composed of two to ten monosaccharides.
● Monosaccharides (16 compounds): single sugar units that cannot be further broken down by 

hydrolysis.

To characterize carbohydrate utilization by AGORA strains, we extended our GEMNAST pipeline,45 which 
facilitates inference of metabolic traits encoded in GEMs (Methods). To infer if a strain is capable of 
utilizing a given carbohydrate, its GEM counterpart should predict that the strain can ‘grow’ (produce 
biomass) above a predetermined threshold while utilizing the molecule. Using this pipeline, each AGORA 
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strain was modeled for ‘growth’ in each of the 55 selected carbohydrates, totaling 53,040 in silico cultures 
(Supplementary files 2.1 to 2.3).

Genome-scale metabolic modeling also allows inference of metabolites, products of microbial 
metabolism that can accumulate in the environment from nutrient foraging. Leveraging this func
tionality, we aimed to qualitatively infer intermediate and terminal metabolites that can be produced 
and exported when large bowel strains utilize specific monosaccharides, due to their importance as 
cross-feeding currency and means of interaction with the host. The literature suggests that both 
terminal metabolites (e.g., SCFAs) and even intermediate metabolites can drive metabolic interactions 
in the human gut24 and other microbial systems.60 To obtain a more comprehensive trophic network 
perspective, and given that different metabolic strategies may lead to the production of alternative 
metabolites,18,24,61 we relied on modeling constraints to ‘induce’ individual GEMs to export a given 
metabolite while utilizing a monosaccharide, if metabolically feasible. This provides insight into 
whether it is possible for a strain’s metabolic network to adopt such a metabolic phenotype in the 
given nutrient conditions. A total of 11 metabolites (four intermediate and seven terminal, Table S2) 
were selected for this analysis based on AGORA curation data and literature reports,42 focused on 
a subset of metabolites particularly relevant to fermentation of microbial-accessible carbohydrates and 
production of short-chain fatty acids.50 This resulted in 105,248 in silico cultures (Supplementary 
file 2.4).

The focus of our analysis is the human large intestinal microbial community, as this is a key target for 
interventions. Although AGORA comprises GEMs of strains that have been identified in, and/or can 
inhabit the human large intestine, we focused our analysis on taxa that could be considered stable colonizers 
of the large bowel, excluding for example, oral taxa and known pathogens (Supplementary file 2.5). 
Comparison of the carbohydrate utilization capabilities between large bowel strains and other groups of 
strains from AGORA can be found in Table S3 and Figure S5.

Primary degraders as determinants of intervention success

We analyzed the distribution of carbohydrate utilization capabilities in strains from the large bowel 
to better understand their predisposition to different ecological roles. At a broad level, we found 
that carbohydrate utilization capabilities are increasingly rare at higher levels of nutritional com
plexity. For large bowel strains, 173 out of 598 (28.93%) could utilize one or more polysaccharides, 
a proportion that progressively increased for less complex groups of molecules (Figure 1a-c). This 
suggests that a larger portion of large bowel microbiota are predisposed to occupy secondary 
degrader roles, and that fewer strains possess the functional traits needed for a primary degrader 
role.

Of the strains that could utilize polysaccharides (n = 173) about half can only consume one of the 
25 polysaccharides we analyzed (Figure 1a). Panels B and c in Figure 1 show that the opposite occurs 
in less complex carbohydrate dimensions, where most of the strains can consume more than five 
nutrients in each category. When focusing on bacterial families that are both prevalent in the human 
gut and in AGORA (Figure 1d), we find a similar trend, as the median percentage of polysaccharides 
that can be used by each strain within these families is low or zero. The presence of outliers suggests 
that polysaccharide degradation capabilities are the exception, not the rule, among common gut 
commensals. Notably, we evidenced strain-level differences in polysaccharide utilization capabilities 
in, for example, Eubacterium rectale, Clostridium symbiosum and Bifidobacterium breve strains. The 
opposite occurs in less complex dimensions, where strains can consistently consume from 20% to 
over 60% of carbohydrates in the oligo- and monosaccharide groups across each of the bacterial 
families.

The implication of these findings for nutrition and DRC-based interventions is that the successful 
incorporation of a polysaccharide (and its derivatives) into trophic networks might depend on very select 
microbial strains. If such strains are missing from a given individual’s microbiome, a given DRC is less likely 
to result in modulation of the microbiota or downstream health outcomes. On the other hand, once 
a supplemented DRC has been broken into its less complex constituents, it is likely that such derivatives 
will be accessible to a wider portion of community members.
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Metabolite production profiles in the human gut exceed AGORA phylogeny

A second part of our analysis focuses on the fermentation/SCFA related metabolic profiles large bowel 
strains can produce when utilizing the range of monosaccharides considered in our assessment. Our results 
showed that the majority of large bowel strains (542 of 598 tested) can adopt metabolic states that allow 
them to grow above a minimum threshold while producing and exporting at least one of the 11 metabolites. 
Of these strains, the vast majority (n = 530) presented a qualitative metabolite production profile that 
remained consistent irrespective of which monosaccharide was available in the medium (Supplementary file 
2.6). The production profile represents a set of viable metabolic options each strain may use, noting that not 
all metabolites will be produced simultaneously. However, we identified 129 unique sets of metabolite 
combinations in total, far exceeding the family level variation represented in AGORA strains.42 Many 
metabolic profiles were unique to a particular strain, and only 29 metabolite production profiles were shared 
among more than four strains. The largest groups of strains sharing the same metabolite profile ranged from 
48 to 20 members (Figure 2a). The specific metabolites each group of strains can degrade is shown in 
Figure 2b. Notably, most of these groups are composed of members of the same family. Overall, our analysis 
predicts that on average 316 strains can produce each of the tested metabolites, however only 82 of the large 
bowel strains tested can produce butyrate, considered a key SCFA for intestinal health,62–64 in the tested 
environment (Figure S6 in Supplementary file 1).

Interestingly, despite this variation across AGORA strains, our results suggest that the fermentation/ 
SCFA metabolite production profiles are relatively conserved among members of prevalent gut families, as 
displayed in Figure 2c where discrete clusters with members of the same family can be observed. In 
comparison, carbohydrate utilization profiles show less clustering by family in the monosaccharide and 
oligosaccharide dimensions (Figure 2d,e), while most strains capable of utilizing polysaccharides cluster 

Figure 1. Carbohydrate utilisation capabilities of stable large bowel colonisers in AGORA. (a-c) percentage of strains inferred 
to utilise a given number of carbohydrates within molecular structure categories. A lower number of strains are inferred to 
utilise molecules within a group as structural complexity increases based on the percentage of strains that utilise zero 
compounds in that group of molecules. (d) boxplot showing average proportion of assessed nutrients from each structural 
category that can be utilised by strains within each bacterial family. Family median is shown in bold.
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closely together regardless of their taxonomy, due to their capability to degrade a low number of select 
compounds in this category (Figure S5).

Overall, these results suggest a decoupling between functional capabilities and microbial phylogeny in 
terms of carbohydrate trophic networks. This further highlights the limitations in attempting to design 
DRC-related interventions, or predict intervention outcomes, based on gut microbial composition assessed 
at higher taxonomic levels.

Design of an inulin-degrading butyrate-producing community

Applying the functional data that we have generated, we aimed to provide grounding principles to 
rationally design a microbial purpose-based community to increase metabolite production from 
a selected DRC. We propose communities at the center of such interventions should be a) feasible – 
with a realistic number of members; b) resilient – members should be capable of covering others 
auxotrophies through cross-feeding during changing nutritional conditions in the gut; and c) func
tion-guided – members should actively contribute to the target metabolite production process, while 
avoiding detrimental outputs (e.g., hydrogen sulfide production). We define feasible communities as 
those with 4 up to approximately 30 members, according to existing defined microbial communities 
in the context of human gut microbiome interventions.65 Based on these characteristics, we aimed to 
design a minimal community of gut commensals that can enable the production of butyrate from the 
degradation of inulin (Figure 3a). Inulin is a commonly used and broadly studied 
polysaccharide,61,66,67 while butyrate has been extensively described as a metabolite with a positive 
impact on gut health.62,68 

Figure 2. Carbohydrate utilisation and metabolite production profiles among prominent human gut microbiome families 
represented in AGORA. (a) number of GEMs sharing unique metabolite production profiles (shown only if >4 strains). (b) 
stacked bar chart showing metabolite composition of each profile shown in A. (c–f) PCA of strain-level capabilities showing 
(c) metabolite production, (d) monosaccharide utilisation, (e) oligosaccharide utilisation, and (f) polysaccharide utilisation. 
Axes denote first and second principal components with variance explained. Colors in a, c-f represent taxonomic family.
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We start the consortia design process by using single-strain carbohydrate utilization data generated in the 
analyses above, identifying every large bowel strain capable of participating in the inulin-to-butyrate trophic 
network (Figure 3 step 1 and diagram A; function-guided selection). Based on the metabolic reactions 
AGORA GEMs can perform, inulin is broken into 29 units of fructose and one unit of glucose or into 25 
units of fructose and one unit of kestopentaose, a fructose-oligosaccharide (FOS), which when degraded 
produces four units of fructose and one unit of glucose. Therefore, we initially selected strains that were 
identified as inulin and kestopentaose degraders. Additionally, strains capable of generating butyrate from 
the utilization of glucose and/or fructose were included. This resulted in an initial selection of 151 strains 
(Table 1). In doing so, a total of seven different phenotypes were identified, from specialists (e.g., inulin or 
FOS degraders, or butyrate producers) to generalists, defined here as strains predicted to perform both 
substrate degradation and butyrate production, and therefore capable of contributing across multiple levels 
of the trophic network.

To continue with the community refinement process, we modeled the community resulting from the 151 
selected strains (Figure 3, step 2, Supplementary file 2.7), utilizing MICOM, a Python package for the 
modeling of GEMs as microbial communities.39 The media utilized for modeling was our universal growth 

Figure 3. Steps for the design of an inulin-degrading, butyrate-producing microbial community. We rely on reverse ecology- 
derived functional data (step 1 and diagram (a), microbial community modelling (steps 2 and 4) and network analysis (step 
3 and diagram (b) to identify ideal candidates for the implementation of a rational intervention.

Table 1. Predicted functional roles in members of a function-guided 151-strain community. Functional characterisation of 
AGORA GEMs (single-strain modelling) revealed that 151 strains presented desirable traits to implement this hypothetical 
intervention, which are grouped by phenotype. Conversely, community modelling of this group of strains identified that not 
all members presented the traits predicted during single-strain modelling (retained phenotype: number of strains that 
retained the predicted function during community modelling). Additionally, specific strains across every relevant phenotype 
displayed adverse functional traits during community modelling: butyrate consumption and hydrogen sulphide (H2S) 
production.

Single strain modelling Community modelling

Phenotype groups Total number of strains Retained phenotype Butyrate consumers H2S producers

Butyrate producers (from glucose and/or fructose) 60 42 6 11
FOS degraders 24 9 0 4
Inulin degraders 33 33 2 8
Inulin-FOS degraders 16 16 1 5
FOS degraders & butyrate producers 8 4 1 3
Inulin degraders & butyrate producers 6 6 0 1
Inulin-FOS degraders & butyrate producers (generalists) 4 3 0 0
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media (cfUDM) supplemented with inulin. While predictions showed that every strain grew in this context, 
results revealed that 10 strains consumed butyrate and that 32 produced hydrogen sulfide (H2S, Table 1), 
a metabolite associated with detrimental impacts on gut health.11,69 Furthermore, traits predicted in single- 
strain simulations did not always translate to the community setting.

We then performed a flux network analysis, based on the nutritional exchanges predicted in the 
modeling of the 151 identified strains, to identify those more likely to contribute to a resilient community 
(Supplementary file 2.8). We calculated total in- and out-degree edges (shared metabolites imported or 
exported) within the network to identify hub strains, those that are highly interconnected and likely to 
contribute to community resilience in the tested nutritional context (cfUDM + inulin).70 We additionally 
identified strains with a balanced export: import ratio (exports/imports ≈1) to prevent the addition of 
‘cheaters,’ strains that take advantage of nutrients available in the media but do not reciprocate accordingly 
(high imports/low exports). This is supported by the literature, which reports that cheating may contribute 
to community instability.71 A total of 13 strains were identified to fulfil our network analysis criteria, which 
were subsequently modeled as a community to assess their ecological roles (Figure 3, step 4; final filter). 
Community modeling showed that two potential butyrate producers were not predicted to do so in this 
context, and five strains consumed butyrate and/or produced H2S (Supplementary file 2.9). Exclusion of 
these strains resulted in a purpose-based, six-strain community (Figure 3, step 5).

The resultant community consisted of a primary degrader of inulin (Prevotella intermedia 17), four 
secondary degraders that can produce butyrate (Clostridium sordellii ATCC 9714, Clostridium sp. SY8519, 
Ruminococcaceae bacterium D16 and Peptostreptococcus anaerobius DSM 2949) and a generalist (Roseburia 
intestinalis L1–82). Modelling of our 6-strain purpose-based community (Supplementary file 2.10) con
firmed the ecological roles of each strain while also predicting a butyrate production rate (mmol/gDW/h) 
30% higher than what was predicted for the initial 151-strain selection. A higher inulin-to-butyrate 
conversion efficiency was also reported, as the 6-strain community produced 20 mmol of butyrate per 
mmol of inulin degraded (Supplementary file 2.10), while the 151-strain community produced 11 mmol of 
butyrate per mmol of inulin degraded (Supplementary file 2.7).

Testing resilience in a minimal, purpose-based community

To test the resilience in the predicted purpose-based community, we modeled it in media deprived of 
proteinogenic amino acids (Figure 4, Supplementary file 2.11). Predictions reported that every strain could 
grow, supported by complementary prototrophies. Figure 4a shows that Peptostreptococcus anaerobius DSM 
2949 plays a central role in this nutritional environment as the sole contributor of five amino acids in the 
restricted media. While every predicted butyrate producer adopts a butyrate consuming phenotype in this 
extreme scenario, butyrate is still produced albeit at a lower conversion efficiency (6 mmol of butyrate 
produced per mmol of inulin consumed) compared to the amino acid replete media.

We additionally tested network resilience by adopting a knock-one-out approach to model the commu
nity in the absence of each strain. Importantly, no strain was essential under standard conditions (cfUDM +  
inulin, Supplementary file 2.12). The overall community also showed resilience to missing one of five of its 
members under conditions of proteinogenic amino acid restriction (Figure 4b-f, Supplementary file 2.13). 
Yet, supporting the role of Peptostreptococcus anaerobius DSM 2949, it was shown that none of the other 
five strains were able to grow in amino acid restricted media in the absence of this strain. Together, these 
results highlight how modeling can inform the design of a resilient community, but also to infer vulner
abilities within the community.

To further support the rationale behind our network analysis selection criteria, we designed a community 
with a similar structure, however using six strains that did not fit our criteria; four butyrate producers 
(Anaerofustis stercorihominis DSM 17,244, Odoribacter splanchnicus DSM 20,712, Alcaligenes faecalis subsp. 
Faecalis NCIB 8687 and Butyricimonas synergistica DSM 23,225) with the lowest export/import score 
among the butyrate producing ecological role in our sample. Meanwhile, the selected inulin degrader 
(Prevotella intermedia ATCC 25,611) and a generalist (Roseburia inulinivorans DSM 16,841) also did not 
meet our requirements regarding reciprocation within a network, and these examples were selected due to 
their close phylogenetic relationship with the two primary degraders in the original 6-strain community 
(Figure 3b, poor metabolic contribution to the community). Community modeling in standard media 
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showed that only two strains produce butyrate in this context (one butyrate producer and the community 
generalist) while one adopts a butyrate consuming phenotype (Supplementary file 2.14). Community 
butyrate production rate was predicted at a percent change of 60.6% lower than our original 6-strain 
purpose-based community, while only 13 mmol of butyrate was produced per mmol of inulin degraded. In 
testing the resilience of this network to amino acid limitation, we found that the community had no 
resilience for methionine restriction, as the amino acid was inferred to be essential for five of the strains. The 
sixth additional strain (Alcaligenes faecalis subsp. Faecalis NCIB 8687) whilst not a methionine prototroph, 
requires alanine from external sources while also relying on primary degraders for access to simpler 
carbohydrates (Supplementary file 2.15 and 2.16). These findings suggest that the criteria we have devised 
to identify key members within a complex community can effectively guide the design process for resilient, 
minimal communities.

A purpose-based community predicted to improve butyrate production in MCMMs

To infer the potential benefits of the identified purpose-based community using validated MCMMs that 
replicate individualized SCFA production responses to dietary inputs, we introduced the 6-member 
community into 30 previously constructed microbial community-scale metabolic models (MCMMs). 
These were derived from human gut microbiome profiles, as described in Quinn-Bohmann et al.31 and 
included 20 species-level and 10 genus-level MCMMs that were shown to accurately predict personalized 
SCFA production when modeled in standard European diet31 and to positively respond to inulin supple
mentation. Here, we modeled the impact of seeding these MCMMs with our purpose-based community at 
5% relative abundance, under conditions of inulin supplementation (10 mmol/gDW/h), and predicted 
maximum butyrate production as the outcome (Supplementary file 4).

Predicted maximum butyrate when the MCMMs were supplemented with inulin and the pur
pose-based community (inulin + module intervention) was found to be higher in most of the 
predicted MCMMs, as compared to inulin supplementation alone (inulin intervention). The 
Wilcoxon signed-rank test (Supplementary file 2.17) revealed that this difference was statistically 
significant (p < 0.001, median: 2 mmol/gDW/h, Figure 5a). To interpret the results, we defined 

Figure 4. Community resilience in amino acid limitation. (a) modelling of our final inulin-to-butyrate 6-strain community in 
amino acid restricted media shows that members can cover auxotrophies for the rest of the community while also 
presenting a degree of functional redundancy. During a knock-one-out analysis (b to f) we identified that the community 
is resilient to the absence of individual member strains, other than peptostreptococcus anaerobius DSM 2949 (knockout not 
shown). The knocked-out strain is shown blank/white in panels b to f. Metabolic fluxes for each knock out condition are 
shown in Supplementary file 3.
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responders as MCMMs in which butyrate production increased by ≥0.1 mmol/gDW/h in the inulin  
+ module intervention relative to inulin alone. Conversely, non-responders were defined as 
MCMMs with < 0.1 mmol/gDW/h increase in butyrate. Notably, these non-responding communities 
already exhibited the highest baseline butyrate production during the inulin-only intervention 
(Figure 5A), suggesting a potential saturation effect, where communities already optimized for 
butyrate production exhibit limited capacity for further enhancement. Similarly, responders with 
lower initial butyrate levels displayed the largest increase in butyrate production in the inulin +  
module intervention. We found that the average number of inulin degraders in native MCMMs 

Figure 5. Predicted butyrate and correlative relationship of members of the purpose-based community in modelled 
MCMMs. (a) scatterplot showing the relationship between baseline butyrate production (y-axis) and the predicted increase 
in butyrate production after the inulin + module intervention (x-axis) across MCMMs. Non-responders (butyrate increment 
<0.1 mmol/gDW/h) are shown in grey; responders in green. b, d) Pearson correlation heatmaps of strain biomass values for 
the six community members across MCMMs in responders (b) and non-responders (d). Positive correlations are shown in red 
and negative correlations in blue. The coloured sidebars along rows and columns indicate strain identity, corresponding to 
the taxonomic legend. (c, e) network diagrams showing pairwise correlations among the six strains in responders (c) and 
non-responders (e). Edge colour and thickness indicate correlation strength and direction positive correlations are shown in 
red and negative correlations in blue, as above. Ellipses outline correlated sub-modules inferred from network structure. The 
coloured nodes indicate strain identity, corresponding to the taxonomic legend.
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(before seeding with the purpose-based community) was lower in responders than non-responders 
(11.3 versus 12.3 for species-level MCMMs and 5.2 versus 4.6 in genus-level MCMMs).

The biomass of three members of the purpose-based community (Ruminococcaceae bacterium D16 
(butyrate producer), Clostridium sp. SY8519 (butyrate producer) and R. intestinalis L1–82 (generalist)) was 
strongly correlated in the MCMMs of responders (PCC > 0.9) while being weakly correlated with the 
biomass of P. intermedia 17 (PCC: 0.21–0.25, Figure 5b-c). The similarities in growth patterns between 
such strains suggest module-like interdependences. Meanwhile, co-abundances in the non-responding 
MCMMs suggest that the strains from the purpose-based community form instead two sub-modules, 
with Clostridium sp. SY8519 correlated with C. sordellii ATCC 9714 and P. anaerobius DSM 2949 
(Figure 5d-e). Notably, MCMM fluxes predict that none of the strains from our minimal community 
produce hydrogen sulfide in any of the samples we modeled.

To better understand the correlative relationship of Clostridium sp. SY8519 based on intervention 
success, we inspected the fluxes from the corresponding GEM in responder and non-responder MCMMs 
(Supplementary file 4). We found that Clostridium sp. SY8519 is a glutamine consumer in responder 
MCMMs. In contrast, Clostridium sp. SY8519 is predicted to export the amino acid in seven of the eight 
non-responders. Additionally, butyrate production by Clostridium sp. SY8519 in non-responder MCMMs is 
reduced by a factor of 4 mmol/h (on average, corrected for strain biomass) compared to responders.

Discussion

Here, we leverage genome-scale modeling to characterize 816 strains, with the potential to occur in the 
human gut, in terms of their capabilities to utilize a representative group of carbohydrates and the 
metabolites that can result from this process. Our analysis highlights that DRC utilization in the gut is an 
uncommon phenomenon, and a capability that is species, or in some cases, strain-specific. This is coherent, 
as complex polysaccharide utilization often requires coordinated synthesis of a range of carbohydrate-active 
enzymes,72–74 demanding high resource and energy investment.75 This capability may stem from a long- 
standing evolutionary relationship with the host and its diet, as polysaccharide utilization seems to be 
a highly specialized trait that provides crucial leverage to select commensals over other organisms.76–78 Yet 
DRCs are considered key carbon and energy sources for microbes in the larger bowel.26 This implies that 
DRC utilizers act as energy gatekeepers for the microbial community in the large intestine. Additionally, our 
findings suggest that metabolite production profiles are highly varied across different strains, as most of the 
identified metabolite production profiles were shared by four or fewer strains. Hence, community metabolic 
outputs will be sensitive to both the availability of DRCs and microbiome composition, at the species/strain 
level. While an opportunity to modulate the human gut microbiome exists, this inherent complexity 
complicates intervention response.

Current technologies allow for the design of microbial communities, which might represent more 
effective alternatives to native microbiome modulation through fiber supplementation or the use of 
conventional probiotics. This process can be informed by GEMs modeling. As a proof of principle, we 
inferred functional traits from AGORA GEMs, and by combining community modeling and network 
analysis, devised a minimal, resilient microbial community capable of butyrate production from inulin 
degradation. Our study finds that butyrate production, a key metabolite for colonocyte health,63,64 is 
a comparatively uncommon capability among human gut strains represented in AGORA. This further 
underscores the need to support fiber supplementation with a rationally designed consortia including 
butyrate producers, that can better guarantee the delivery of intended metabolic outputs.

The framework we propose for the design of purpose-based communities is replicable, traceable and, 
together with the carbohydrate utilization dataset we have generated as part of this study, it can be applied 
for alternative metabolic objectives, and informed by iterative experimental validation. A similar approach 
could aim to explore different media conditions or strain combinations that additionally minimize the 
production of metabolites with potential negative impacts. For example, excess succinate, which has been 
linked to local inflammation when produced to high levels.79,80 Alternative nutritional dimensions, such as 
cofactor requirements, should also be accounted for in the design of resilient microbial communities.45 

Ultimately, experimental validation of our findings is needed to confirm the predicted metabolic interac
tions and intervention outcomes. Until such validation is conducted, the results should be interpreted as 
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model-derived hypotheses that highlight plausible associations and functional design principles. However, 
isolating and culturing human gut microbiome commensals remains challenging. Community design 
efforts focused on previously cultured strains, which also incorporate modeling approaches such as we 
have described, will result in a more directed exploration of the combinatorial space.

The resulting purpose-based community described here is based on a hierarchical structure, where its 
members have distinct metabolic roles, aiming to contribute to a shared functional output and to commu
nity resilience. This is based on the findings of our carbohydrate utilization assessment of individual 
AGORA strains, that highlight the determinant role primary degraders have initiating DRC breakdown. 
In addition, strains can adopt different metabolic strategies, that lead to the production and export of 
alternative metabolites, even when carbon sources remain unchanged. Therefore, our proposed community 
encompasses two inulin degraders and four butyrate producers. Members of the purpose-based community 
are also predicted to be capable of metabolic burden distribution in amino acid restricted conditions. 
Substantial literature underscores functional redundancy, metabolic synergy and distribution of metabolic 
burden as key characteristics in stable microbial communities.81–84 Yet, the community we design is shown 
to rely on P. anaerobius DSM 2949 to cover a number of amino acid auxotrophies, which is not necessarily 
a desirable trait from a resilience perspective; therefore, the addition of an extra member to distribute this 
burden might be beneficial. Nevertheless, it is likely that increasing the number of total community 
members exponentially increases its complexity and, hence, should be carefully considered.

Seeding the minimal community into 30 MCMMs, validated for their accuracy in predicting SCFA 
production,31 and supplemented with inulin, led to a significant increase in predicted butyrate production 
(2 mmol/gDW/h) in approximately 75% of cases. There were also eight non-responding MCMMs identified. 
Our results suggest that the communities that would benefit the most from this type of intervention (inulin +  
module) are the ones that present lower butyrate-production levels at baseline (inulin-only intervention). This 
effect has been reported before across microbiomes and in ecological theory.85–87 Further, it is possible that 
“non-responders” are presenting a saturation effect, instead of failing to respond. Therefore, these micro
biomes may simply have little functional room for improvement. We also identify compositional differences 
between responding and non-responding MCMMs. While we do not identify a correlation between interven
tion response and the biomass of inulin degraders in the purpose-based community (R. intestinalis L1–82 and 
P. intermedia 17), we do find that non-responders have a higher number of inulin degraders on average, than 
responders. It is possible that a limited number of niches for primary degraders exist and that the introduction 
of additional competitors negates any beneficial effects. A preliminary analysis of the 30 MCMMs showed 
them to positively respond to inulin supplementation alone. This aligns with the findings by Quinn-Bohmann 
et al., where only 16 MCMMs are reported as non-responders to a high-fiber diet from a sample of 3,129.31

The purpose-based community displayed cohesive dynamics when modeled in isolation. Yet, when 
modeled as part of pre-designed MCMMs, it was predicted to display two configurations composed of sub- 
modules. Additionally, the correlative relationship of Clostridium sp. SY8519 was found to vary with 
intervention response. Flux analysis suggests that glutamine cross-feeding may partially explain such 
configurations and intervention responsiveness, as glutamine production in Clostridium sp. SY8519 was 
also associated with reduced butyrate production by this species in non-responders. Interestingly, glutamine 
supplementation has been shown to impact gut microbiome composition in humans and animal 
models.88,89 Overall, these findings highlight the challenges of introducing a defined community into the 
highly diverse human gut microbiome. Additional mechanisms that better explain this response and the 
decoupling of C. sordellii ATCC 9714 and P. anaerobius DSM 2949 remain to be investigated in future 
studies. Yet, these predicted dynamics suggest that a lower number of secondary degraders can lead to more 
concise outcomes. The results also highlight the potential importance of designing individualized interven
tions. The ability to reach such a detailed level of system inspection highlights the value of GEMs-based 
approaches for hypothesis generation and the study of complex biological systems.

Nevertheless, GEMs still face limitations. For example, it is possible that the limited count of butyrate 
producers in AGORA is explained or influenced by challenges related to gaps in genome annotation of 
transporter gene polymorphisms and lack of experimental data, resulting in GEMs that do not encode 
the corresponding pathways.90,91 Additionally, our study characterizes carbohydrate utilization capabil
ities in AGORA strains qualitatively. While a quantitative assessment of such capabilities would have 
provided greater insights limited experimental data prevents reliable mapping of enzymatic and nutrient 
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uptake rates. MICOM partially addresses this challenge through the application of its cooperative_tra
deoff method, which significantly reduces the simulation space.39 Despite these limitations, genome- 
scale modeling is a rapidly growing technology with an ever-expanding repertoire of GEMs and efforts 
to develop GEMs-based frameworks that better capture cellular and community dynamics are 
ongoing;35,92, for example, the integration of meta-transcriptomics and GEMs community modeling35 

or the application of AI to improve model accuracy.90,92 Importantly, predicted relative differences and 
percentage changes can provide meaningful insights of the studied system.93,94 Recently, a quantitative 
metabolite exchange scoring system was proposed to identify exchanged metabolites that are central in 
a community of GEMs.11 Meanwhile, the conceptual framework we propose here focuses on the 
identification of strains/GEMs, in a given network, that can better guarantee the establishment of 
resilient minimal communities. Proof of concept GEMs-based interventions of the human gut micro
biome have been hypothesized,31 however, to the best of our knowledge, this is the first GEMs pipeline 
for informing the design and evaluation of a minimal multi-strain microbial consortium constructed to 
enhance a specific metabolic outcome.

Conclusion

Through applying genome-scale metabolic modeling, we have provided a system-level overview of the metabolic 
capabilities of human gut microbes in the carbohydrate nutritional dimension, and applied this as functional 
building-blocks for intervention design. We introduce a comprehensive community design framework that 
encompasses strain selection, resilience inference, and expands previous work for the prediction of intervention 
response. In doing so, we have set the stage for subsequent studies to refine and expand upon such rationale. 
While our findings remain predictive in nature, the framework we present offers a tractable and mechanistically 
informed basis for future experimental testing. Such approaches will be crucial for translating GEMs-based 
insights into validated, intervention-ready strategies.
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