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Analytical Solution to Optimal Distributed Bipartite
Consensus for Heterogeneous Multi-Agent Systems on
Coopetition Networks: A Fast Convergent Algorithm
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Abstract—This note makes the first attempt to investigate the optimal
bipartite consensus problem in the general case for heterogeneous
multi-agent systems with cooperative-competitive interactions, specifically
those containing a spanning tree. Unlike traditional control protocols
based on the gradient descent method, our proposed optimal bipartite
algorithm demonstrates a fast superlinear convergence speed. The key
innovation of this method lies in the design of a fully distributed
optimal controller, which is based on a distributed observer utilizing local
neighbor information. The analytical solution for the optimal controller
is derived with the help of the Riccati equation, aligning with classical
optimal control theory. This approach unifies the design method for both
the bipartite consensus problem and the well-studied consensus problem.
Additionally, the proposed optimal algorithm can be directly extended to
homogeneous systems. A numerical example is provided to demonstrate
the effectiveness and rapid convergence of our control algorithm.

Index Terms—Distributed optimal bipartite consensus, Heterogeneous
multi-agent system, LQ optimal control, Distributed observer.

I. INTRODUCTION

Over the past few decades, there has been a noticeable increase
in research interest in multi-agent systems (MASs). This growing
interest is largely motivated by the practical applications of MASs in
control theory and various industries, including unmanned vehicles
[1], traffic networks [2], distributed sensor networks [3], and smart
grids [4], among others [5]. As the society, economy and industrial
technology continue to develop rapidly, considerable attention has
been drawn to an emerging research direction: the bipartite consensus
of MASs. Unlike traditional consensus control, bipartite consensus
is designed to guide all agents to converge to a final value of
equal magnitude but opposite sign within cooperative and competitive
communication networks.

In many complex network environments, it is more reasonable
to consider both cooperative and competitive relationships among
agents. For instance, in social networks, relationships between pairs
of agents may be characterized as friendly or hostile, based on trust
or distrust. In economic systems, duopolistic regimes often emerge
when companies compete for resources [6]–[8]. Similarly, in the
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RoboMaster competition, each robot gathers information from both
teammates and opponents to make decisions that align with its team.
Unlike existing studies on MASs that focus solely on cooperative
relationships, signed graph theory is introduced to characterize inter-
action communications where cooperation and competition coexist
among agents. The concept of bipartite consensus has been first
introduced in [9], where the necessary and sufficient conditions
have been established for bipartite consensus among single-integrator
agents under a strongly connected signed graph.

Building on the pioneering work of Altafini [9], the bipartite
consensus control problem of MASs has been extensively studied
over the past decade. The findings from [9] have been extended
to more general contexts including double-integrator dynamics [10],
high-order agent dynamics with a single input [11], general multi-
input multi-output linear systems [12], and singular MASs [13],
among others. Since then, various variants of bipartite consensus
have emerged, such as interval bipartite consensus, adaptive bipartite
consensus, finite-time bipartite consensus, mean-square bipartite con-
sensus, and approximate optimal consensus based on reinforcement
learning (RL) [14]–[18]. It is noteworthy that, in all these studies,
the dynamics of MASs are assumed to be the same.

In engineering practice, agents often have different dynamics,
making bipartite consensus of heterogeneous MASs a focal point of
research in recent years. Utilizing gauge transformations, the authors
in [19] demonstrated the equivalence between bipartite output syn-
chronization and the well-studied cooperative output synchronization,
providing a sufficient H∞-criterion for achieving bipartite output
consensus. Bipartite output tracking control protocols have been
further explored in [20]. However, the lower bound for the coupling
gain (required to guarantee bipartite consensus performance) depends
on the minimal real part of the nonzero eigenvalues of the Laplacian
matrix of the signed graph, which may necessitate global topology
information. Although distributed adaptive protocols based on output
regulation theory [21] have been proposed in [22], these approaches
require the solution of the regulation equation and do not consider
performance optimization. As a result, the convergence speed in these
related works is not optimal.

Regarding the global optimal consensus problem, designing an
effective consensus controller poses significant challenges. A pri-
mary obstacle is that the design of each controller requires infor-
mation from non-neighboring agents, which typically leads to a
centralized algorithm. This difficulty became apparent in 1968 when
Witsenhausen provided a counterexample [23], demonstrating that
the solution to linear optimal control problems with decentralized
feedback control constraints might be a nonlinear function. To achieve
global optimal consensus for MASs, various approaches have been
explored. For example, the inverse optimal control method [24], the
LQR method [25], [26], and the network approximation technique
[27] have been applied to develop distributed controllers based on
local neighbors’ information. However, the state weight matrix in
the corresponding cost function tends to be either overly complex
or very specific, and these methods are generally applicable only

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/TAC.2025.3631511, IEEE Transactions on Automatic Control

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works (see: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/)..



2

to homogeneous systems with cooperative networks. Currently, the
optimal bipartite consensus control problem for continuous-time
heterogeneous MASs has primarily focused on using reinforcement
learning (RL) techniques [18], [28]–[30] to approximate the solution
of the optimal controller, rather than providing an analytical solution.
Furthermore, the cost function considered is local, not global. As
a result, research on distributed global optimal bipartite consensus
in general for discrete-time heterogeneous MASs remains under
explored and requires further in-depth investigation.

Motivated by the above discussion, this paper aims to study the
distributed optimal bipartite leader-follower consensus for heteroge-
neous MASs over a general directed signed interaction graph. We
propose a unified design framework for a distributed asymptotically
optimal bipartite consensus controller using LQ optimal control and
distributed observer design. The primary contributions of this paper
are as follows.

1) A distributed asymptotically optimal controller is derived with
the aid of a distributed observer that incorporates each agent’s
historical state information. Unlike the methods described in
[9], [19], [20], the proposed approach does not require the
gauge transformations process and eliminates the need for
the solvability assumption of the output regulation equation.
This offers a fresh perspective on distributed optimal bipartite
consensus control.

2) The precise analytical solution of the optimal controller is
obtained by solving the Algebraic Riccati Equation (ARE),
and the state weight matrix in the global cost function is also
allowed to be any positive definite constant matrix, making
it more general compared to those used in [24], [27]. This
aligns with classical optimal control methods, demonstrating
the versatility and applicability of our approach.

3) The proposed optimal controller can drive all agents to bipartite
consensus with a fast superlinear convergence speed, which
is superior to traditional bipartite consensus algorithms based
on gradient descent. This is supported by theoretical analyses
and a numerical example. Additionally, the proposed optimal
consensus algorithm is directly applicable to the homogeneous
case.

Notations: Rn×m represents the set of n × m-dimensional re-
al matrices. Ip is the identity matrix with dimension p × p.
diag{a1, a2, · · · , aN} denotes the diagonal matrix with diagonal
elements being a1, · · · , aN . ‖x‖ is the 2-norm of a vector x. ρ(A)
is the spectral radius of matrix A. AT and A† denote the transpose
and the Moore-Penrose inverse of a matrix A. Range(A) means the
range space of A. N(A) is the null Space of A. sign(·) is the sign
function.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph theory

A signed directed graph Gs = {V, E ,A}, where V =
{1, 2, · · · , N} is the set of nodes (agents), E ⊆ V × V is the set
of edges. As = [aij ]N×N is weighted signed adjacency matrix. For
an edge (i, j), node i is called the parent node, node j is called
the child node. If (i, j) ∈ E , then aij 6= 0, i.e., agents i and j can
exchange information; aij = 0, otherwise. Moreover, aij > 0 and
aij < 0 mean the cooperative interaction and competitive interaction
between agent i and agent j, respectively. The signed directed graph
containing the leader 0 is the augmented graph Ḡ = {V̄, Ē} where
V̄ = V ∪ {0} and Ē ⊆ V̄ × V̄ . N̄i = {j|(i, j) ∈ Ē} represents
the neighbour set of agent i. A directed graph is said to contain
a spanning tree if there exists a node called root such that there
exists a directed path from this node to every other node in the

graph. The Laplacian matrix Ls of a signed graph is defined as
Ls = diag(

∑N
j=1 |a1j |, · · · ,

∑N
j=1 |aNj |)−As.

Lemma 1. A signed directed graph G is structurally balanced if its
node set V can be divided into two disjoint nonempty subsets V1
and V2, i.e., V1 ∪ V2 = V and V1 ∩ V2 = ∅, such that aij ≥ 0, if
∀i, j ∈ Vq or ∀i, j ∈ Vr , and aij ≤ 0, if ∀i ∈ Vq, ∀j ∈ Vr , where
q 6= r, and q, r ∈ {1, 2}.

B. Problem Formulation

Consider a heterogeneous discrete-time multi-agent system con-
sisting of N agents over a directed graph G with the dynamics of
each agent given by

xi(s+ 1) = Aixi(s) +Biui(s), i = 1, 2, · · · , N (1)

where xi(s) ∈ Rn and ui(s) ∈ Rm are, respectively, the state and
the input of each agent, and Ai ∈ Rn×n and Bi ∈ Rn×m are the
coefficient matrices.

The dynamic of the leader is given by

x0(s+ 1) = A0x0(s), (2)

where x0 ∈ Rn is the leader’s state, and A0 ∈ Rn×n is the system
state matrix.

Define the cost function of the multi-agent system (1) as

J(τ,∞) =

∞∑
s=τ

(
N∑
i=1

N∑
j=0

(xi(s)− dixj(s))TQ(xi(s)− dixj(s))

+

N∑
i=1

uTi (s)Riui(s)

)
, (3)

where Q ≥ 0 and Ri > 0 are weighting matrices, di = 1,∀i ∈ Vq ,
and di = −1, ∀i ∈ Vr , where q 6= r.

Assumption 1. For i = 1, 2, · · · , N , (Ai, Bi) is stabilizable.

Assumption 2. The signed directed graph G is structurally balanced,
and graph Ḡ has a directed spanning tree with the node 0 as the root.

Problem 1. For the heterogeneous MASs (1)–(2), our objective is to
design a distributed control protocol ui(s) that minimizes the cost
function (3) while ensuring that the system (1)-(2) achieves leader-
follower bipartite consensus, i.e., for any initial conditions xi0,

lim
s→∞

‖xi(s)− dix0(s)‖ = 0, i = 1, · · · , N.

Remark 1. It should be noted that the existing method for a similar
Problem 1 in continuous-time systems [31] requires a dynamic
compensator for each agent, resulting in the necessity to solve
multiple Sylvester matrix equations: A0 = Ai + BiUi. However,
the unique solution Ui may not be exist, for instance, in the case of

A1 =

[
0 1
0 0

]
, B1 =

[
0
1

]
and A0 =

[
0 −1
1 0

]
. Furthermore, when

Ai = A and Bi = B, the following bipartite consensus protocol,
proposed in [12], [31], is commonly used

ui(s) = µS
∑
j∈Ni

|aij |(xj(s)− sign(aij)xi(s)) (4)

where S = R−1BTP is a feedback matrix and coupling gain µ ≥
1

2mini=2,··· ,N Re(λi)
. It is clear that this bipartite consensus protocol

depends on the non-zero eigenvalues of the Laplacian matrix Ls of
signed graph Gs, and the convergence speed is also influenced by
these eigenvalues, which cannot be further optimized. In contrast,
this paper aims to design a distributed optimal controller ui(s) for
discrete-time multi-agent systems that achieves bipartite consensus
while minimizing the global cost function (3).
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III. DISTRIBUTED OPTIMAL BIPARTITE CONSENSUS PROTOCOL

Define the bipartite state error between agent i and j as:

eij(s) = xi(s)− dixj(s). (5)

Through the foregoing analyses, (5) can be equivalently expressed as

eij(s) =

{
xi(s)− xj(s), i, j ∈ V1 or V2
xi(s) + xj(s), i ∈ V1, and j ∈ V2

(6)

Then, the state error system is given by

eij(s+ 1) = Aieij(s) +Biui(s)

+ di(Ai −Aj)xj(s)− diBjuj(s) (7)

with i = 1, · · · , N , j ∈ Ni and B0 = 0. Undoubtedly, the relative
neighbour error system (7) is not a standard linear system due to the
last two non-zero terms. In fact, these extra terms can be viewed as
a total disturbance term ri(s), i.e., ri(s) = di(Ai − Aj)xj(s) −
diBjuj(s), for j ∈ Ni. Also, we first apply the feedforward
controller to eliminate ri(s) such that the system (7) is converted
into a standard linear system. Consequently, the controller for agent
i is given by

ui(s) = uri(s) + ufi(s), (8)

where the first part (the feedforward controller uri(s)) in (8) is
designed in the following two ways:

• Case 1: If Bi is an invertible matrix, then

uri(s) = −diB−1
i [(Ai −Aj)xj(s)−Bjuj(s)], (9)

• Case 2: If Range([Aj −Ai, Bj ]) ⊆ Range(Bi), then

uri(s) = −diB†i [(Ai −Aj)xj(s)−Bjuj(s)]
+ (I −B†iBi)z(s), (10)

where (I −B†iBi)z(s) ∈ N([Aj −Ai, Bj ]) for all z(s).
To guarantee the solvability of the liner equation Biuri(s) +

ri(s) = 0, uri(s) is designed via Case 1 or Case 2, where Case1
is a special case of Case 2, and an invertible Bi can indeed be
replaced by the identity matrix I without loss of generality. It is
clear that uri(s) requires only the state and input information from
the neighboring agent j, making it a distributed form of control.
Under the feedforward control (9) or (10), the relative neighbor error
system (7) is rewritten as the following standard linear system:

eij(s+ 1) = Aieij(s) +Biufi(s). (11)

The bipartite consensus problem for heterogeneous MASs (1)–(2)
is equivalent to the stability problem of the error system (7). In
general, the total edge number over the communication graph may
exceed N . However, under Assumption 2, it is sufficient to select
edges eij(s) along a spanning tree within the signed graph.

Redefine the global error vector

Ξ(s) =
[
eT10(s) · · · eTij(s) · · · eTN,N−1(s)

]T
where all eij(s) terms correspond to the edges of the spanning tree
selected as above. Then, the global error system is written as

Ξ(s+ 1) = ÃΞ(s) + Buf (s), (12)

where uf (s) =
[
uTf1(s) uTf2(s) · · · uTfN (s)

]T ,
Ã = diag{A1;A2; · · · ;AN}, and B = diag{B1;B2; · · · ;BN}.

The corresponding cost function (3) is reformulated as

J(τ,∞) =

∞∑
s=τ

 N∑
i=1

∑
j∈Ni

eTij(s)Qeij(s) +

N∑
i=1

uTfi(s)Riufi(s)


=

∞∑
s=τ

[ΞT (s)QΞ(s) + uTf (s)Ruf (s)], (13)

with Q = diag{Q, · · · , Q} and R = diag{R1, · · · , RN}, and Ni
specifically refers to the neighborhood in the spanning tree subgraph,
where each node (except the root node) has exactly one parent node.

Remark 2. Unlike traditional bipartite consensus protocols [9],
[11], where gauge transformation is used to convert non-cooperative
problems into cooperative ones, this paper addresses the bipartite
consensus problem for MASs described by (1)–(2) using a novel
approach. We solve the problem with a distributed bipartite consen-
sus controller based on LQ optimal control theory and distributed
observer design. This approach eliminates the need for gauge trans-
formations and directly tackles the bipartite consensus challenge in
a more straightforward and efficient manner.

By applying the feedforward controller uri(s) in (9) or (10), the
solution to Problem 1 becomes equivalent to solving the optimal
control problem for the system (12) with the cost function (13). In
particular, when the global error information Ξ(s) is available for
all agents, the optimal control can be obtained by the standard LQ
regulator (LQR) method stated in the following lemma.

Lemma 2. [32] Suppose that Ξ(s) is available for all agents.
Consider system (12) with cost (13). Then, the optimal controller
is given by ufi(s) = KiΞ(s), which can be formulated in a global
form as:

uf (s) = KuΞ(s), (14)

where the feedback gain Ku is given by

Ku = −(R+ BTPB)−1BTPÃ (15)

and P is the solution of the following ARE

P = ÃTPÃ+Q− ÃTPB(R+ BTPB)−1BTPÃ. (16)

The corresponding optimal cost function is

J∗(τ,∞) = ΞT (τ)PΞ(τ). (17)

Moreover, if P is the unique positive definite solution to (16), then
Ã+ BKu is stable.

Under the centralized controller (14) (the communication topology
is a complete graph), the multi-agent system (1)–(2) achieves bipartite
consensus. However, in practical communication networks, the global
error information Ξ(s) is not accessible to all agents. Therefore, we
will design a distributed controller based on an observer to overcome
this limitation.

A. Distributed optimal bipartite consensus protocol design

In this subsection, we design a novel distributed bipartite consensus
controller that leverages a distributed observer to estimate the global
information Ξ(s). Since the control input ufi(s) is not shared with
other agents, the distributed optimal control problem of the system
(12) is transformed into a decentralized control problem, which can
be reformulated as follows:

Ξ(s+ 1) = ÃΞ(s) +

N∑
i=1

Biufi(s), (18)

Yi(s) = HiΞ(s), i = 1, · · · , N (19)
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where Yi(s) is the local measurement for agent i, Bi consists of
0n×m and B, and Hi is a {0, In} matrix whose specific forms depend
on the interaction among agents.

A new distributed controller for agent i is designed as

u∗fi(s) = KiΞ̂i(s), (20)

where Ξ̂i(s) is a distributed observer for each agent based on the
available information from itself and its neighbor agents. Totally
different from the traditional observer, Ξ̂i(s) is designed as follows:

Ξ̂i(s+ 1) = ÃΞ̂i(s) + B1K1Ξ̂i(s) + · · ·
+ Bi−1Ki−1Ξ̂i(s) + Biu∗fi(s)
+ Bi+1Ki+1Ξ̂i(s) + · · ·+ BNKN Ξ̂i(s)

+ Li(Yi(s)−HiΞ̂i(s)), (21)

where Ki =
[
0 · · · I 0 · · · 0

]
Ku is the subpart of Ku

obtained by solving ARE (16), Li is the observer gain to be
determined later to ensure the stability of the observers. Specifically,
for agent i, the input ufj(s), i 6= j is unknown, so we replace it by
the observer information KjΞ̂i(s), and this forms the innovation of
our design method.

The following Theorem 1 demonstrates that the stability of the
designed observer can be guaranteed. Furthermore, it shows that the
multi-agent system (1) achieves leader-follower bipartite consensus
under the proposed distributed controller.

Theorem 1. Let Assumption 2 hold. Consider the global error system
(18) and the distributed control laws (20)-(21). If there exist observer
gains Li (i = 1, · · · , N) such that the matrix

Ac =


Θ1 −B2K2 · · · −BNKN

−B1K1 Θ2 · · · −BNKN

...
...

. . .
...

−B1K1 · · · −BN−1KN−1 ΘN

 (22)

is asymptotically stable with Θi = Ã+ BKu − BiKi − LiHi, then
the observers (21) are asymptotically stable, i.e.,

lim
k→∞

‖Ξ̂i(s)− Ξ(s)‖ = 0. (23)

Moreover, if the Riccati equation (16) has a positive definite solution
P , under the distributed controllers (9), (20) with (21), the MASs
(1)–(2) can achieve leader-follower bipartite consensus.

Proof. Define the observer error vector Ξ̃i(s) = Ξ(s)− Ξ̂i(s). Then,
combining system (18) with observers (21), one obtains

Ξ(s+ 1) = (Ã+ BKu)Ξ(s)− B1K1Ξ̃1(s)

− B2K2Ξ̃2(s)− · · · − BNKN Ξ̃N (s), (24a)

Ξ̃i(s+ 1) = (Ã+ BKu − BiKi − LiHi)Ξ̃i(s)
− B1K1Ξ̃1(s)− · · · − Bi−1Ki−1Ξ̃i−1(s)

− Bi+1Ki+1Ξ̃i+1(s)− · · · − BNKN Ξ̃N (s), (24b)

Combining equations (24a) and (24b) yields[
Ξ(s+ 1)

Ξ̃(s+ 1)

]
= Āc

[
Ξ(s)

Ξ̃(s)

]
, (25)

where Ξ̃(s) =
[
Ξ̃T1 (s), Ξ̃T2 (s), · · · , Ξ̃TN (s)

]T
, Āc =[

Ã+ BKu Ψ
0 Ac

]
, Ψ =

[
−B1K1 · · · −BNKN

]
and Ac

in (22) is derived.
Obviously, if there exist matrices Li such that the closed-loop ma-

trix Ac is asymptotically stable, then observer errors Ξ̃(s) converge
to zero as s → ∞, i.e., Eq. (23) holds. Furthermore, since P is

the positive definite solution to Riccati equation (16), we know that
Ã+ BKu is stable and, based on the LQ control theory, the leader-
follower consensus of multi-agent system (1) can be achieved, i.e.,
Problem 1 is solved. The proof is now complete.

Remark 3. Unlike the cases of complete graphs and undirected
graph presented in [27], [33], the proposed control strategy is
indeed distributed for general directed graphs, as it relies solely
on local information of neighboring agents. On the one hand, the
optimal control gain matrix Ki, as the subpart of the global feedback
gain matrix Ku obtained by solving the ARE (16), relies solely on
the system matrices Ã,B of the global relative error system (12)
constructed by the neighbor error eij(s) along with a spanning
tree; hence, Ki is obtained under the distributed information without
needing to know the Laplacian matrix’s nonzero eigenvalues (which
is global information). On the other hand, the distributed observer
Ξ̂i(s) is designed to estimate the full Ξ(s) based on the local observer
data.

Based on Theorem 1, the next task is to appropriately determine
the observer gain matrix Li to ensure the stability of the observer
error system (24b), which can be rewritten as:

Ξ̃(s+ 1) = AcΞ̃(s) = (Aw − LH)Ξ̃(s), (26)

where

Aw =



Ã+
N∑
j=2

BjKj −B2K2 · · · −BNKN

−B1K1 Ã+
N∑

j=1,j 6=2

BjKj · · · −BNKN

...
...

. . .
...

−B1K1 · · · · · · Ã+
N−1∑
j=1

BjKj


H = diag{H1, H2, · · · , HN}, L = diag{L1, L2, · · · , LN}.

In addition, the convergence speed of N + 1 agents depends on the
spectral radius of Ã + BKu and Ac. Since the optimal feedback
gain matrix Ku has been given by (15), in order to achieve the goal
of rapid convergence, we need to adjust the observer gain matrices
Li, i = 1, 2, · · · , N such that the spectral radius of Ac is as small
as possible.

The following lemma presents an approach that uses LMI tech-
niques for the optimal design of the distributed observers.

Lemma 3. For Uc = diag{Uc1, Uc2, · · · , UcN} and W =
diag{W1,W2, · · · ,WN}, assume that there exist matrices Uc,W, S
and parameter α such that

S = ST > 0, Uc = UTc > 0, αI − Uc > 0, (27a)[
Uc − S (UcAw −WH)T

UcAw −WH Uc

]
> 0 (27b)

with Li = U−1
ci Wi. Then, the optimal observer gains can be designed

by solving the following optimization problem

min
Li,Uc,S

α subject to (27) (28)

Proof. If there exist a symmetric positive definite matrix Uc satisfy-
ing the Lyapunov inequality

(Aw − LH)TUc(Aw − LH)− Uc < 0,

then, equivalently, there exists a positive definite matrix ST = S > 0
such that

(Aw − LH)TUc(Aw − LH)− Uc < −S. (29)
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In this case, the system (26) is asymptotically stable. It is very
difficult to solve the inequality (29) directly because it requires the
simultaneous selection of Uc and the gain L. In this case, we take
L = U−1

c W , and it is easy to prove that the inequality (29) is
equivalent to

ATwUc −HTWT + UcAw −WH + S < 0. (30)

Then, utilizing the Schur’s complement lemma, the inequality (27)
holds. Now, we consider the cost function

JL =

TN∑
k=0

Ξ̃(s)TSΞ̃(s) (31)

By taking (29) into consideration, we derive

Ξ̃(s+ 1)TUcΞ̃(s+ 1)− Ξ̃(s)TUcΞ̃(s)

= Ξ̃(s)T (ATc UcAc − Uc)Ξ̃(s) < −Ξ̃(s)TSΞ̃(s)

and then

JL ≤ Ξ̃T (0)UcΞ̃(0)− Ξ̃T (TN )UcΞ̃(TN ) ≤ Ξ̃T (0)UcΞ̃(0)

with TN → ∞, Ξ̃T (TN )UcΞ̃(TN ) → 0. This inequality implies
that one can minimize the cost function (31) by minimizing the
bound Ξ̃T (0)UcΞ̃(0). Note that Ξ̃T (0)UcΞ̃(0) ≤ ‖Ξ̃(0)‖2‖Uc‖ ≤
M2

0 ‖Uc‖, where M0 is the upper bound of the initial value Ξ̃(0).
Therefore, the optimal observer gain L is derived by minimizing the
maximum eigenvalue of Uc, i.e., the minimization problem (28) is
solved.

Remark 4. The parameter Li in distributed observer (21) to mini-
mize the spectral radius of Ac is obtained by solving the optimization
(28) in Lemma 3. Yet, due to the constraints on the diagonal structure
of Uc and W , the derived observer gain Li by the LMI technique is
a suboptimal solution.

To analyze the asymptotical optimal property of the corresponding
cost function, we first derive the cost function under the newly
proposed distributed controller (20). After that, we discuss the
difference between this new cost function and the cost function under
the centralized optimal control (14).

In order to facilitate the analysis, we denote

M1 = (Ã+ BKu)TPΨ−
[
KT

1 R1K1 · · · KT
NRNKN

]
,

M2 =


KT

1 R1K1 · · · 0

0
. . . 0

...
. . .

...
0 · · · KT

NRNKN

+ ΨTPΨ,

∆J(τ,∞) =

∞∑
s=τ

[
Ξ(s)

Ξ̃(s)

]T [
0 M1

MT
1 M2

] [
Ξ(s)

Ξ̃(s)

]
.

Theorem 2. Under the proposed distributed controllers (20) and (21)
with Li (i = 1, 2, · · · , N) selected such that the matrix Ac in (22)
is asymptotically stable, the corresponding cost function is given by

J?(τ,∞) = ΞT (s)PΞ(s) + ∆J(τ,∞) (32)

where ∆J(τ,∞) is the cost difference between the cost function
J? in (32) and the cost function J∗(τ,∞) in (17). In particular, the
proposed new distributed bipartite consensus controller approximates
the optimal centralized controller.

Proof. The proof follows a similar approach to that of Theorem 2 in
[34]. To save space, we omit the detailed steps here.

B. Comparison with conventional bipartite consensus algorithms

In this subsection, we will discuss the superiority of the newly
proposed bipartite consensus algorithm, particularly in terms of con-
vergence speed and performance index. By comparing these aspects
with existing methods, we aim to highlight the advantages of our
approach in achieving faster and more efficient consensus among
agents in multi-agent systems.

• Faster convergence speed. In fact, from the closed-loop system
(25), one has ∥∥∥∥[Ξ(s)

Ξ̃(s)

]∥∥∥∥ ≤ ρ(Āc)

∥∥∥∥[Ξ(s− 1)

Ξ̃(s− 1)

]∥∥∥∥ ,
where ρ(Āc) represents the larger spectral radius of Ã+ BKu

and Ac. In particular, Ã + BKu is the closed-loop system
matrix obtained by the optimal feedback controller (15), that
is, Ξ(s + 1) = (Ã + BKu)Ξ(s) while Ξ(s + 1)TQΞ(s + 1)
is minimized as in (3), so the modulus of the eigenvalues for
Ã + BKu is minimized in a certain sense. Besides, based on
the optimization in Lemma 3, we can appropriately select Li
such that the upper bound of the spectral radius ρ(Ac) is as
small as possible. From these perspectives, ρ(Āc) minimized,
which contrasts with conventional consensus algorithms where
the maximum eigenvalue of the matrix Āc is not minimized
and is instead determined by the eigenvalues of the Laplacian
matrix L. It is important to note that conventional consensus
algorithms are typically based on the gradient descent method,
which has a relatively low convergence speed. In contrast,
the newly proposed algorithm is based on optimal control
theory and exhibits a fast superlinear convergence speed [35].
Therefore, the proposed approach can achieve faster convergence
than conventional algorithms as demonstrated in the simulation
example.

• Asymptotic optimality. The cost difference ∆J(τ,∞) between
the new distributed controller (20) and the centralized optimal
control (14) is provided in Theorem 2. As s → ∞, this cost
difference approaches zero. In other words, the cost function
corresponding to the proposed distributed controllers (20) is
asymptotically optimal, meaning that as time progresses, the
performance of the distributed controller converges to that of the
centralized optimal control. This demonstrates that the proposed
distributed approach achieves near-optimal performance in the
long run.

Remark 5. It should be noted that the proposed distributed
optimal consensus protocol is also applicable to the
homogeneous multi-agent systems, i.e., Ai = A0 = A and
Bi = B, i = 1, 2, · · · , N . Under this circumstance, the relative
state error (7) is reduced to

eij(s+ 1) = Aeij(s) +Bui(s)− diBuj(s).

With the edges chosen along with a spanning tree, the global error
system is

Ξ(s+ 1) = AΞ(s) + Bu(s) (33)

with

A = IN−1 ⊗A, B =


B d1B 0 · · · 0
0 B d2B · · · 0

· · · · · ·
. . .

. . . 0
0 0 · · · B dN−1B

 ,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 110.1109/TAC.2025.3631511, IEEE Transactions on Automatic Control

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works (see: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/)..



6

and the system (33) is reformulated as

Ξ(s+ 1) = AΞ(s) +

N∑
i=1

B̃iui(s),

Yi(s) = HiΞ(s), i = 1, · · · , N

where Yi(s) is the local measurement information for agent i, B̃i

is the subpart of the matrix B, and Hi is a {0, In} matrix, whose
specific forms depend on the interaction among agents.

Following a similar design process as in (21), we can design a
distributed asymptotically optimal controller based on an observer,
i.e., ui(s) = KiΞ̂i(s), which effectively addresses and solves
Problem 1.

Remark 6. Unlike the related bipartite consensus works [20],
[36], the proposed distributed optimal consensus controller does not
require the design of a reference internal model or the computation of
a solution to a Sylvester equation. This makes the developed bipartite
consensus algorithm simpler and more general. In particular, when
di = 1, ∀i ∈ V , the proposed method can also be applied to solve
the consensus problem in cooperative networks, as demonstrated in
our recent work [34]. More importantly, the asymptotic optimality of
the distributed controller is also guaranteed, making it superior to
traditional methods in terms of convergence performance.

IV. NUMERICAL SIMULATION

In this section, we validate the proposed theoretical results through
the following numerical example.

0

1 3

2

1

1 -2

-1

-1

Fig. 1. Communication topology among four agents

Example 1. Consider the multi-agent system consisting of three
heterogeneous follower agents with the system matrices:

A1 =

[
1.1 1
−2 1

]
, A2 =

[
−2 1
1 −1

]
, A3 =

[
0.5 0
−2 −0.6

]
B1 =

[
1

0.2

]
, B2 =

[
0.1
0.5

]
, B3 =

[
0.2
0.5

]
The leader’s state trajectory is generated by a sinusoidal trajectory
generator with dynamics given by

A0 =

[
cos(0.5) sin(0.5)
−sin(0.5) cos(0.5)

]
.

The interactions of agents are given in Fig.1, which satisfies As-
sumption 2. Each agent only receives neighbor error information,
we choose the edges {e01, e12, e23} along a spanning tree. The
measurement matrix Hi is

H1 =
[
I2 0 0

]
, H2 =

[
I2 0 0
0 I2 0

]
, H3 =

[
0 0 I2

]
.

Set Q = R1 = R2 = R3 = I2. According to ARE (16)
and Lemma 3, the feedback gains Ki and the observer gain Li
can be obtained, respectively. Fig. 2 shows that the observer error
vectors Ξ̃i(s) under the proposed controller (20) converge to zero.
The state trajectories of the three followers and the leader are

depicted in Fig. 3, and the bipartite consensus error trajectories
are displayed in Fig. 4. It is evident that the states of agents 1
and 2 asymptotically track the leader’s state x0(s), while agent 3
asymptotically converges to the leader’s opposite state −x0(s) within
5 steps. This result aligns well with the findings in Theorem 1. To
further verify the convergence performance, using the same initial
conditions, we apply the traditional consensus algorithms proposed
in [9] and [20], the temporal evolution of the states for the leader
and followers is displayed in Fig.5. This figure implies the bipartite
consensus is achieved within 25 steps, which is slower than our
proposed algorithm. Additionally, Figs. 6 and 7 show the evolutionary
trends of absolute errors for agents using the new method and the
old method, respectively. Clearly, by comparison, the newly proposed
method achieves bipartite consensus with a faster convergence speed.
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Fig. 2. The distributed observer error trajectories Ξ̃i(s).
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Fig. 3. State trajectories of each agent xi(s) by the proposed method.

V. CONCLUSION

This note has established a unified design framework for the
bipartite consensus of heterogeneous MASs under a signed directed
graph. The distributed optimal bipartite consensus protocol, which
minimizes a general global cost function, has been derived using
LQ optimal control and observer design incorporating the local
neighbour’s information. The corresponding analytical solution for
the optimal controller has been obtained by solving certain AREs.
Through theoretical analysis and a numerical example, it has been
shown that the proposed method achieves a faster convergence speed
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Fig. 4. Bipartite state error trajectories by the proposed method.
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Fig. 5. State trajectories of each agent xi(s) by the existing method.
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Fig. 6. The evolutionary trend of absolute errors for agents
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Fig. 7. The evolutionary trend of absolute errors for agents

compared to traditional bipartite consensus methods. Furthermore,
this new approach can be directly extended to homogeneous systems
with competitive networks. Note that the observer gains solved
through the optimization problem (28) require global system dynam-
ics. Therefore, a primary focus of future work will be on developing
distributed methods to compute these gains. Additionally, the as-
sumption that all subsystems share the same state-space dimension is
somewhat restrictive. Future research will also explore optimal output
consensus for more general heterogeneous MASs where agents have
different state-space dimensions.
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