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Abstract—Particle Swarm Optimization (PSO) has been widely
applied due to its simplicity and effectiveness in solving opti-
mization problems. However, PSO often suffers from premature
convergence and stagnation in local optima, especially in complex
search spaces. This paper proposes a novel PSO algorithm by
incorporating stochastic perturbations into the velocity updating
mechanism. Specifically, the acceleration coefficients are per-
turbed by the introduced randomly occurring uncertainty to
improve the search ability of the entire swarm. Experimental
results on representative CEC benchmark functions demonstrate
that the proposed algorithm outperforms several existing PSO
variants.

Index Terms—Particle Swarm Optimization, acceleration co-
efficients, randomly occurring uncertainty.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is a population-based
evolutionary algorithm inspired by social behaviors of or-
ganisms such as bird flocking and fish schooling [1]. PSO
has been effectively applied to various real-world problems,
ranging from robotics to data analytics, including areas such
as path planning for robots, robot learning, feature selection,
and image segmentation [2]-[5].

Despite its success, PSO suffers from premature conver-
gence, particularly for complex and high-dimensional opti-
mization problems. To address the premature convergence
problem, researchers have proposed numerous PSO variants
[6]. In [6], the recent developments on PSO algorithms can
be broadly categorized into four types: 1) adjusting control
parameters; 2) designing novel velocity and position updating
strategies; 3) developing new topological structures; and 4)
hybridizing PSO with other evolutionary algorithms.

In PSO, the control parameters (including the inertia weight
and the acceleration coefficients) play a significant role in
discovering potential solutions in the search space [7]. The
inertia weight reflects the influence of the particle’s previous
velocity on its current velocity, representing the particle’s trust
in its current motion. The inertia weight enables particles
to maintain momentum and encourages particles to explore
the whole search space. The acceleration coefficients guide
the particle’s trajectory toward better solutions. The cognitive
acceleration coefficient represents the weight given to the
particle’s own best-known position, driving it towards its
personal experience. While the social acceleration coefficient
reflects the influence of the swarm’s global best position,
guiding the particle based on the experience of the entire
group. The control parameters shape the dynamic behavior of

particles and directly affect the algorithm’s ability to efficiently
explore and exploit the search space [7].

Updating the control parameters in PSO, particularly the
acceleration coefficients, has received considerable attention
over the past few decades [8], [9]. Beyond deterministic
schedules, recent studies have introduced randomness (e.g.,
noise and uncertainty) into the acceleration coefficients with
the purpose of enhancing the search ability of the optimizer.
Noises typically refer to uncontrollable random errors in mea-
sured quantities, and uncertainty is a broader concept that en-
compasses model-driven variability, which can be deliberately
introduced to influence algorithmic behavior. For example,
the Randomized PSO (RPSO) has been proposed in [10],
which perturbs acceleration coefficients using the Gaussian
noise. The introduction of the Gaussian noise contributes to
the enhancement of the escaping ability of the entire swarm
from local optima. However, the use of unbounded Gaussian
noise may cause particles to move beyond the search space,
potentially resulting in inconsistent adjustment of the velocity,
thereby causing the premature convergence issue. In this
situation, it becomes a seemingly natural idea to introduce
the uncertainty into the optimizer due to its bounded property.

Motivated by the above discussions, this paper proposes
a PSO with Randomly Occurring Uncertainty (PSORU) al-
gorithm. The Cosine function is employed to model the
uncertainty, which provides an effective perturbation on the
acceleration coefficients of the optimizer. The advantages of
using the randomly occurring uncertainty modeled by the
Cosine function can be summarized: 1) the perturbation of
the acceleration coefficients using the uncertainty tunes the
optimizer’s dynamic characteristics, which would enhance the
search performance of the optimizer with a higher possibility
of escaping from the local optima comparing with the con-
ventional PSO algorithm; and 2) the Cosine function modeled
uncertainty is made to occur with a relatively small provability,
thereby contributing to a proper balance between convergence
and exploration. The main contributions of this paper can be
summarized as follows:

1) A novel PSORU algorithm is proposed by introducing
the randomly occurring uncertainty modeled by the
Cosine function into the velocity updating scheme to
perturb the acceleration coefficients, thereby improving
the optimizer’s capability of escaping from local optima.

2) The effectiveness of the PSORU algorithm is compre-
hensively evaluated on the selected CEC2017 bench-
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mark functions. Results demonstrate the superiority of
the PSORU algorithm over several well-known PSO
algorithms.

The rest of this paper is organized as follows. In Section
II, the proposed PSORU algorithm is explained in detail.
Experimental results, parameter settings, and discussions are
presented in Section III. Finally, conclusions and future direc-
tions are drawn in Section IV.

II. METHODOLOGY
A. Motivation

In PSO, control parameters critically balance the search
status of the swarm between exploration and exploitation [6].
The inertia weight determines the trade-off between global
and local search tendencies, while the acceleration coefficients
guide particles toward their personal best positions and the
global best position. Effective tuning of the control parameters
is essential to maintain the swarm diversity and alleviate
premature convergence, particularly in complex optimization
problems.

Many existing PSO variants rely on static values or de-
terministic scheduling of control parameters. Recent develop-
ments in PSO have shown that introducing randomness into
control parameters could effectively enhance the population
diversity and improve the search performance of the optimizer
[6]. Motivated by the success of RPSO [10], a seemingly
natural idea is to introduce the uncertainty into the velocity
updating process of PSO with the hope of improving the
search performance of the optimizer. The Gaussian white noise
(GWN) used in RPSO is unbounded and may cause instability
in particle movement. In contrast, bounded and smooth un-
certainty mechanisms can provide more stable perturbations
and enable more consistent exploration of the problem space.
Furthermore, when such uncertainty is activated stochastically,
it offers better control over the optimization dynamics. To
be specific, the uncertainty is employed to perturb the time-
varying acceleration coefficients, which are made to occur
randomly with a small probability, thereby contributing to
a proper balance between the convergence and the diversity.
Uncertainty can be modeled by using a wide range of mathe-
matical functions. In this paper, the Cosine function is applied
to model the uncertainty due to its easy implementation.

B. The PSORU Algorithm

In the PSORU algorithm, the randomly occurring uncer-
tainty introduces randomness into the optimization process,
encouraging particles to explore diverse regions of the search
space. The velocity and position of the i-th particle at the ¢-th
iteration are updated as follows:

vi(t+1) = w(t)vi(t) + (c1(t) + arAer(t)r1(po(t) — xi(t))
+ (c2(t) + agAea(t))ra(gu(t) — zi(t))
l‘i(t—i-l) :a:i(t)—l—vi(t—&-l) (D)

where ¢;(t) and co(t) are time-varying acceleration coeffi-
cients [9]; w(t) is the linearly decreasing inertia weight [7];
r1 and ro are random variables uniformly distributed in [0, 1];
pp(t) denotes the i-th particle personal best position; and g5 ()
represents the global best position of the swarm; a; and ao
are binary activation factors that operate independently; and
Acq(t) and Acy(t) are two independent uncertainties.

Here, a; and ag control the presence of perturbations
Acy(t) and Aca(t), respectively. Aci(t) and Aco(t) occur
randomly based on the given activation probability, which
offers a dynamic control over the balance between exploration
and exploitation. In this paper, a popular mathematical func-
tion, the Cosine function, is employed to model the uncertain-
ties Acy (t) and Acy(t). The inclusion of employing the Cosine
function is motivated by the usage of the Sigmoid function in
the AWPSO [11]. The Cosine function, denoted by cos(x),
is a fundamental trigonometric function that is smooth and
bounded. The smooth and bounded characteristics contribute
to a natural regulation of the acceleration coefficients.

Table II-B summarizes the activation status of perturbations
Acq (t) and Acy(t) under different combinations of the binary
indicators «; and as. Each «; € {0,1} determines whether
the corresponding perturbation Ac; is active (i.e., a; = 1) or
inactive (i.e., o; = 0).

TABLE 1
ACTIVATION STATUS OF PERTURBATIONS BASED ON (a1, a2)

(a1, a2) | Aci(t) Status | Aca(t) Status
(0, 0) Inactive Inactive
0, 1) Inactive Active
(1, 0) Active Inactive
(1, 1) Active Active

The combination of activation factors «; and as results in
four possible activation states: neither component active, only
social active, only cognitive active, or both active. These states
influence the contribution of corresponding perturbation terms
in Eq. (1).

The activation factors a;; and ae, governed by the respective
activation probabilities p; and po, are defined by:

Play =1)=p1, Pl =0)=1-py, )
P(Oégzl):pg, P((IQ:O):I—])Q.
Note that the value of the activation probabilities p; and po
is reasonably small, which leads to a proper tradeoff between
the population diversity and the convergence performance.

C. The Procedure of the PSORU Algorithm
The proposed PSORU algorithm integrates randomly occur-
ring uncertainty into the velocity update phase. The procedure
of the PSORU algorithm is presented in Algorithm 1.
III. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Configuration

The experiments were conducted on a PC with an Intel(R)
Core(TM) i5-12400F CPU running at 2.50 GHz, and a 64-bit
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Algorithm 1: Procedure of the PSORU

Input: Swarm size N; maximum iterations 7'; linearly
decreasing inertia weight w(t); cognitive
coefficient ¢4 (t); social coefficient co(t);
activation probabilities p;, po.

Output: Global best solution gy ().

Randomly initialize particle positions z;(¢) and

velocities v;(t), fori =1,2,...,N;

Evaluate the initial fitness of each particle and set

personal bests p;,(0) and global best g;(0);
fort=1to T do

hybrid functions. Composition Function 1, Composition Func-
tion 3, Composition Function 6, and Composition Function 9
(i.e., F20, F22, F25, and F28 in CEC2017) are selected from
the composition functions.

C. Experimental results

To further assess the performance of the proposed algorithm,
comparison experiments are conducted among the proposed
PSORU algorithm, the basic PSO algorithm [1], the PSO-
TVAC algorithm [9], and the PSO-LDIW algorithm [7].

foreach particle i in the swarm do
Evaluate current fitness of particle ¢; c TABLE III
. . OMPARISONS OF VARIOUS PSO ALGORITHMS IN 30-DIMENSIONAL
if current fitness is better than py(t) then SEARCH SPACE
| Update py(t);
end PSO PSO-LDIW PSO-TVAC PSORU
fi(z) Minimum 2.73 x 10° 5.94 x 10?2 1.32 x 102 1.03 x 102
end Mean 7.75 x 10° 4.38 x 109 1.89 x 108 4.81 x 108
Update global best g;(t) based on all py(t); Std. Dev. 4.40 x 10° 3.80 x 109 6.34 x 10% 8.40 x 108
foreach particle i in the swarm do fo(z) Minimum 6.19 x 102 6.00 x 102 6.00 x 102 6.00 x 102
Sample 71, 7o; Sample vy, ava; Mean 6.31 x 10% 6.04 x 102 6.01 x 10% 6.02 x 102
. Std. Dev. 7.69 3.50 1.38 1.80
Generate uncertainties Aci(t) and Aca(?) f3(x) Minimum 7.20 x 103 2.80 x 103 3.42 x 103 2.93 x 103
using cosine function; Mean 8.05 x 103 4.36 x 103 4.62 x 103 4.34 x 103
Update velocity v; (¢ + 1) using Eq. (1); Std. Dev. 4.37 x 102 5.90 x 102 6.67 x 102 5.81 x 102
Update position z;(¢ + 1) based on the updated fa(z) Minimum 1.52 X 10: 1.17 X 10: 1.15 X 10; 1.17 X 10;
. Mean 1.80 x 103 1.35 x 103 1.24 x 103 1.27 x 10
velocity; Std. Dev. 2.15 x 102 2.22 x 102 6.72 x 10! 5.91 x 10
end f5(z) Minimum 1.14 x 108 4.95 x 103 1.92 x 10% 2.12 x 103
if stopping criteria are met then Mean 7.94 x 10 5.14 x 10* 3.06 x 10* 2.65 x 10*
| break; Std. Dev. 4.42 x 106 4.87 x 10* 2.24 x 10* 2.29 x 10*
end fe(x) Minimum 2.32 x 103 2.09 x 10° 2.06 x 103 2.07 x 10°
Mean 2.65 x 103 2.37 x 10° 2.36 x 103 2.29 x 103
end Std. Dev. 1.48 x 102 1.59 x 102 1.57 x 102 1.28 x 102
return g (t). Fz(z) Minimum 2.48 x 103 2.35 x 10° 2.34 x 105 2.34 x 103
Mean 2.53 x 103 2.40 x 103 2.37 x 103 2.37 x 103
Std. Dev. 2.28 x 10! 2.86 x 101 2.12 x 10! 2.05 x 10!
fs(z) Minimum 2.84 x 103 2.76 x 10° 2.72 x 103 2.72 x 10°
Windows 10 operating system. MATLAB 2023b was used as Mean 2.92 x 10% 2.84 x 103 2.80 x 103 2.78 x 103
the programming environment. Std. Dev. 5.19 x 101 5.57 x 10! 4.40 x 10! 3.47 x 10"
fo(z) Minimum 3.96 x 10° 2.80 x 10° 4.27 x 10° 2.82 x 10°
Mean 6.37 x 103 5.41 x 10% 4.91 x 103 4.73 x 103
TABLE II Std. Dev. 7.64 x 102 8.43 x 10% 4.09 x 102 5.87 x 102
EXPERIMENT CONFIGURATIONS fio(z) Minimum 3.72 x 103 3.43 x 10° 3.40 x 103 3.38 x 10°
Mean 4.23 x 103 3.80 x 102 3.80 x 103 3.76 x 103
Parameter Value Std. Dev. 2.47 x 102 2.52 x 102 1.84 x 102 1.69 x 102
Swarm Size (swarm) 100
Maximum Iterations (maxiter) 1000
Dimensionality (dim) 30 L. .
Number of Runs (runnum) 50 The statistical results of the PSO performance evaluation
Activation Probability (p) 0.3 are presented in Table III. Note that lower fitness values

B. Benchmark functions

To evaluate the effectiveness of the proposed PSORU al-
gorithm, experiments are carried out on ten representative
benchmark functions from the CEC2017 benchmark suite [12].
Specifically, the Shifted and Rotated Bent Cigar Function (i.e.,
F1 in CEC2017) is selected from the unimodal functions. The
Shifted and Rotated Expanded Scaffer’s F6 Function and the
Shifted and Rotated Schwefel’s Function (i.e., F5 and F9 in
CEC2017) are selected from the simple multimodal functions.
Hybrid Function 1, Hybrid Function 5, and Hybrid Function
6 (i.e., F10, F14, and F19 in CEC2017) are selected from the

correspond to better performance, since all test functions are
formulated as minimization problems. Results show that the
proposed PSORU algorithm achieves the smallest minimum
fitness values on 5 out of 10 functions (f1, f2, f7, fs, and f10),
demonstrating its strong exploitation capability. As shown in
Table III, the PSORU algorithm also achieves the lowest mean
fitness values on 6 benchmark functions (f3, f5, fs, f7,> fs, fo,
and f19) and the smallest standard deviation on five functions
(f4» fo, f7, fs, and f19) comparing with the selected PSO
algorithms. We can draw the conclusion from the statistical
analysis of the results that the proposed PSORU algorithm
exhibits strong robustness when applied to different types of
complex optimization problems.
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The convergence plots of the chosen PSO algorithms are
displayed in Figs. 1-10. It can be seen that the PSORU
algorithm demonstrates significantly better convergence speed
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achieving best or comparable results on 8 out of 10 test
functions as shown in Figs. 1-10. The PSORU algorithm does
not achieve the best performance in Fig. 1, which corresponds
to the Shifted and Rotated Bent Cigar Function. This result
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Fig. 8. Convergence plot of the Composition Function 3 robustness. Besides, the PSORU algorithm converges fast on
many benchmark functions, showing low sensitivity to differ-
ent problem types. In summary, experimental results indicate
that the PSORU algorithm is an effective and robust algorithm
that is capable of handling various complex optimization
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the robustness for handling complex optimization problems.
Some possible future directions include population sensitivity
Fig. 9. Convergence plot of the Composition Function 1 (N = 6) analysis, as the current setting employs a fixed swarm size
without considering its influence on performance. Addition-
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ally, the modeling of uncertainty plays a critical role in shaping
the optimizer’s dynamics. It is worth developing an adaptive
mechanism to model uncertainty or dynamically adjust ac-
tivation probabilities during the search process. Furthermore,
future work could explore the scalability and robustness of the
PSORU algorithm across problems of varying dimensionality
and complexity.

REFERENCES

[1] J. Kennedy and R. Eberhart, Particle swarm optimization, In: Pro-
ceedings of the International Conference on Neural Networks, Perth,
Australia, Nov. 1995, pp. 1942-1948.

[2] H. C. Huang, FPGA-based parallel metaheuristic PSO algorithm and its
application to global path planning for autonomous robot navigation,
Journal of Intelligent & Robotic Systems, vol. 76, pp. 475-488, 2014.

[3] J. Pugh, A. Martinoli and Y. Zhang, Particle swarm optimization
for unsupervised robotic learning, In: Proceedings of the 2005 IEEE
Swarm Intelligence Symposium, Pasadena, CA, USA, Jun. 2005, pp. 92-
99.

[4] Y. Xue, B. Xue and M. Zhang, Self-adaptive particle swarm optimiza-
tion for large-scale feature selection in classification, ACM Transactions
on Knowledge Discovery from Data, vol. 13, no. 5, pp. 1-27, 2019.

[5] S. Ait-Aoudia, E. Guerrout and R. Mahiou, Medical image segmen-
tation using particle swarm optimization, In: Proceedings of the 2014
International Conference on Information Visualisation, Paris, France,
July. 2014, pp. 287-291.

[6] J. Fang, W. Liu, L. Chen, S. Lauria, A. Miron, and X. Liu, A survey
of algorithms, applications and trends for particle swarm optimization,
International Journal of Network Dynamics and Intelligence, vol. 2,
no. 1, pp. 24-50, Mar. 2023.

[71 Y. Shi and R. C. Eberhart, Parameter selection in particle swarm
optimization, In: Proceedings of the International Conference on
Evolutionary Programming, San Diego, USA, Mar. 1998, pp. 591-600.

[8] M. Clerc and J. Kennedy, The particle swarm - explosion, stability, and
convergence in a multidimensional complex space, IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, Feb. 2002.

[9]1 A. Ratnaweera, S. K. Halgamuge and H. C. Watson, Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients, IEEE Transactions on Evolutionary Computation, vol. 8,
no. 3, pp. 240-255, 2004

[10] W. Liu, Z. Wang, N. Zeng, Y. Yuan, F. E. Alsaadi, and X. Liu, A
novel randomised particle swarm optimizer, International Journal of
Machine Learning and Cybernetics, vol. 12, pp. 529-540, Feb. 2021.

[11] W. Liu, Z. Wang, Y. Yuan, N. Zeng, K. Hone and X. Liu, A novel
sigmoid-function-based adaptive weighted particle swarm optimizer,
IEEE Transactions on Cybernetics, vol. 51, no. 2, pp. 1085-1093,
Feb. 2021.

[12] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu,
Problem definitions and evaluation criteria for the cec 2017 special
session and competition on single objective real-parameter numerical
optimization, in Technical Report, Singapore: Nanyang Technological
University, 2016.

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works (see: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/)..





