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Abstract—Particle Swarm Optimization (PSO) has been widely
applied due to its simplicity and effectiveness in solving opti-
mization problems. However, PSO often suffers from premature
convergence and stagnation in local optima, especially in complex
search spaces. This paper proposes a novel PSO algorithm by
incorporating stochastic perturbations into the velocity updating
mechanism. Specifically, the acceleration coefficients are per-
turbed by the introduced randomly occurring uncertainty to
improve the search ability of the entire swarm. Experimental
results on representative CEC benchmark functions demonstrate
that the proposed algorithm outperforms several existing PSO
variants.

Index Terms—Particle Swarm Optimization, acceleration co-
efficients, randomly occurring uncertainty.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is a population-based
evolutionary algorithm inspired by social behaviors of or-
ganisms such as bird flocking and fish schooling [1]. PSO
has been effectively applied to various real-world problems,
ranging from robotics to data analytics, including areas such
as path planning for robots, robot learning, feature selection,
and image segmentation [2]–[5].

Despite its success, PSO suffers from premature conver-
gence, particularly for complex and high-dimensional opti-
mization problems. To address the premature convergence
problem, researchers have proposed numerous PSO variants
[6]. In [6], the recent developments on PSO algorithms can
be broadly categorized into four types: 1) adjusting control
parameters; 2) designing novel velocity and position updating
strategies; 3) developing new topological structures; and 4)
hybridizing PSO with other evolutionary algorithms.

In PSO, the control parameters (including the inertia weight
and the acceleration coefficients) play a significant role in
discovering potential solutions in the search space [7]. The
inertia weight reflects the influence of the particle’s previous
velocity on its current velocity, representing the particle’s trust
in its current motion. The inertia weight enables particles
to maintain momentum and encourages particles to explore
the whole search space. The acceleration coefficients guide
the particle’s trajectory toward better solutions. The cognitive
acceleration coefficient represents the weight given to the
particle’s own best-known position, driving it towards its
personal experience. While the social acceleration coefficient
reflects the influence of the swarm’s global best position,
guiding the particle based on the experience of the entire
group. The control parameters shape the dynamic behavior of

particles and directly affect the algorithm’s ability to efficiently
explore and exploit the search space [7].

Updating the control parameters in PSO, particularly the
acceleration coefficients, has received considerable attention
over the past few decades [8], [9]. Beyond deterministic
schedules, recent studies have introduced randomness (e.g.,
noise and uncertainty) into the acceleration coefficients with
the purpose of enhancing the search ability of the optimizer.
Noises typically refer to uncontrollable random errors in mea-
sured quantities, and uncertainty is a broader concept that en-
compasses model-driven variability, which can be deliberately
introduced to influence algorithmic behavior. For example,
the Randomized PSO (RPSO) has been proposed in [10],
which perturbs acceleration coefficients using the Gaussian
noise. The introduction of the Gaussian noise contributes to
the enhancement of the escaping ability of the entire swarm
from local optima. However, the use of unbounded Gaussian
noise may cause particles to move beyond the search space,
potentially resulting in inconsistent adjustment of the velocity,
thereby causing the premature convergence issue. In this
situation, it becomes a seemingly natural idea to introduce
the uncertainty into the optimizer due to its bounded property.

Motivated by the above discussions, this paper proposes
a PSO with Randomly Occurring Uncertainty (PSORU) al-
gorithm. The Cosine function is employed to model the
uncertainty, which provides an effective perturbation on the
acceleration coefficients of the optimizer. The advantages of
using the randomly occurring uncertainty modeled by the
Cosine function can be summarized: 1) the perturbation of
the acceleration coefficients using the uncertainty tunes the
optimizer’s dynamic characteristics, which would enhance the
search performance of the optimizer with a higher possibility
of escaping from the local optima comparing with the con-
ventional PSO algorithm; and 2) the Cosine function modeled
uncertainty is made to occur with a relatively small provability,
thereby contributing to a proper balance between convergence
and exploration. The main contributions of this paper can be
summarized as follows:

1) A novel PSORU algorithm is proposed by introducing
the randomly occurring uncertainty modeled by the
Cosine function into the velocity updating scheme to
perturb the acceleration coefficients, thereby improving
the optimizer’s capability of escaping from local optima.

2) The effectiveness of the PSORU algorithm is compre-
hensively evaluated on the selected CEC2017 bench-
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mark functions. Results demonstrate the superiority of
the PSORU algorithm over several well-known PSO
algorithms.

The rest of this paper is organized as follows. In Section
II, the proposed PSORU algorithm is explained in detail.
Experimental results, parameter settings, and discussions are
presented in Section III. Finally, conclusions and future direc-
tions are drawn in Section IV.

II. METHODOLOGY

A. Motivation

In PSO, control parameters critically balance the search
status of the swarm between exploration and exploitation [6].
The inertia weight determines the trade-off between global
and local search tendencies, while the acceleration coefficients
guide particles toward their personal best positions and the
global best position. Effective tuning of the control parameters
is essential to maintain the swarm diversity and alleviate
premature convergence, particularly in complex optimization
problems.

Many existing PSO variants rely on static values or de-
terministic scheduling of control parameters. Recent develop-
ments in PSO have shown that introducing randomness into
control parameters could effectively enhance the population
diversity and improve the search performance of the optimizer
[6]. Motivated by the success of RPSO [10], a seemingly
natural idea is to introduce the uncertainty into the velocity
updating process of PSO with the hope of improving the
search performance of the optimizer. The Gaussian white noise
(GWN) used in RPSO is unbounded and may cause instability
in particle movement. In contrast, bounded and smooth un-
certainty mechanisms can provide more stable perturbations
and enable more consistent exploration of the problem space.
Furthermore, when such uncertainty is activated stochastically,
it offers better control over the optimization dynamics. To
be specific, the uncertainty is employed to perturb the time-
varying acceleration coefficients, which are made to occur
randomly with a small probability, thereby contributing to
a proper balance between the convergence and the diversity.
Uncertainty can be modeled by using a wide range of mathe-
matical functions. In this paper, the Cosine function is applied
to model the uncertainty due to its easy implementation.

B. The PSORU Algorithm

In the PSORU algorithm, the randomly occurring uncer-
tainty introduces randomness into the optimization process,
encouraging particles to explore diverse regions of the search
space. The velocity and position of the i-th particle at the t-th
iteration are updated as follows:

vi(t+ 1) = ω(t)vi(t) + (c1(t) + α1∆c1(t))r1(pb(t)− xi(t))

+ (c2(t) + α2∆c2(t))r2(gb(t)− xi(t))

xi(t+ 1) = xi(t) + vi(t+ 1) (1)

where c1(t) and c2(t) are time-varying acceleration coeffi-
cients [9]; ω(t) is the linearly decreasing inertia weight [7];
r1 and r2 are random variables uniformly distributed in [0, 1];
pb(t) denotes the i-th particle personal best position; and gb(t)
represents the global best position of the swarm; α1 and α2

are binary activation factors that operate independently; and
∆c1(t) and ∆c2(t) are two independent uncertainties.

Here, α1 and α2 control the presence of perturbations
∆c1(t) and ∆c2(t), respectively. ∆c1(t) and ∆c2(t) occur
randomly based on the given activation probability, which
offers a dynamic control over the balance between exploration
and exploitation. In this paper, a popular mathematical func-
tion, the Cosine function, is employed to model the uncertain-
ties ∆c1(t) and ∆c2(t). The inclusion of employing the Cosine
function is motivated by the usage of the Sigmoid function in
the AWPSO [11]. The Cosine function, denoted by cos(x),
is a fundamental trigonometric function that is smooth and
bounded. The smooth and bounded characteristics contribute
to a natural regulation of the acceleration coefficients.

Table II-B summarizes the activation status of perturbations
∆c1(t) and ∆c2(t) under different combinations of the binary
indicators α1 and α2. Each αi ∈ {0, 1} determines whether
the corresponding perturbation ∆ci is active (i.e., αi = 1) or
inactive (i.e., αi = 0).

TABLE I
ACTIVATION STATUS OF PERTURBATIONS BASED ON (α1, α2)

(α1, α2) ∆c1(t) Status ∆c2(t) Status
(0, 0) Inactive Inactive
(0, 1) Inactive Active
(1, 0) Active Inactive
(1, 1) Active Active

The combination of activation factors α1 and α2 results in
four possible activation states: neither component active, only
social active, only cognitive active, or both active. These states
influence the contribution of corresponding perturbation terms
in Eq. (1).

The activation factors α1 and α2, governed by the respective
activation probabilities p1 and p2, are defined by:{

P (α1 = 1) = p1, P (α1 = 0) = 1− p1,

P (α2 = 1) = p2, P (α2 = 0) = 1− p2.
(2)

Note that the value of the activation probabilities p1 and p2
is reasonably small, which leads to a proper tradeoff between
the population diversity and the convergence performance.

C. The Procedure of the PSORU Algorithm

The proposed PSORU algorithm integrates randomly occur-
ring uncertainty into the velocity update phase. The procedure
of the PSORU algorithm is presented in Algorithm 1.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Configuration

The experiments were conducted on a PC with an Intel(R)
Core(TM) i5-12400F CPU running at 2.50 GHz, and a 64-bit
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Algorithm 1: Procedure of the PSORU
Input: Swarm size N ; maximum iterations T ; linearly

decreasing inertia weight ω(t); cognitive
coefficient c1(t); social coefficient c2(t);
activation probabilities p1, p2.

Output: Global best solution gb(t).
Randomly initialize particle positions xi(t) and
velocities vi(t), for i = 1, 2, . . . , N ;

Evaluate the initial fitness of each particle and set
personal bests pb(0) and global best gb(0);

for t = 1 to T do
foreach particle i in the swarm do

Evaluate current fitness of particle i;
if current fitness is better than pb(t) then

Update pb(t);
end

end
Update global best gb(t) based on all pb(t);
foreach particle i in the swarm do

Sample r1, r2; Sample α1, α2;
Generate uncertainties ∆c1(t) and ∆c2(t)

using cosine function;
Update velocity vi(t+ 1) using Eq. (1);
Update position xi(t+ 1) based on the updated

velocity;
end
if stopping criteria are met then

break;
end

end
return gb(t).

Windows 10 operating system. MATLAB 2023b was used as
the programming environment.

TABLE II
EXPERIMENT CONFIGURATIONS

Parameter Value
Swarm Size (swarm) 100
Maximum Iterations (maxiter) 1000
Dimensionality (dim) 30
Number of Runs (runnum) 50
Activation Probability (p) 0.3

B. Benchmark functions

To evaluate the effectiveness of the proposed PSORU al-
gorithm, experiments are carried out on ten representative
benchmark functions from the CEC2017 benchmark suite [12].
Specifically, the Shifted and Rotated Bent Cigar Function (i.e.,
F1 in CEC2017) is selected from the unimodal functions. The
Shifted and Rotated Expanded Scaffer’s F6 Function and the
Shifted and Rotated Schwefel’s Function (i.e., F5 and F9 in
CEC2017) are selected from the simple multimodal functions.
Hybrid Function 1, Hybrid Function 5, and Hybrid Function
6 (i.e., F10, F14, and F19 in CEC2017) are selected from the

hybrid functions. Composition Function 1, Composition Func-
tion 3, Composition Function 6, and Composition Function 9
(i.e., F20, F22, F25, and F28 in CEC2017) are selected from
the composition functions.

C. Experimental results

To further assess the performance of the proposed algorithm,
comparison experiments are conducted among the proposed
PSORU algorithm, the basic PSO algorithm [1], the PSO-
TVAC algorithm [9], and the PSO-LDIW algorithm [7].

TABLE III
COMPARISONS OF VARIOUS PSO ALGORITHMS IN 30-DIMENSIONAL

SEARCH SPACE

PSO PSO-LDIW PSO-TVAC PSORU
f1(x) Minimum 2.73× 109 5.94× 102 1.32× 102 1.03× 102

Mean 7.75× 109 4.38× 109 1.89× 108 4.81× 108

Std. Dev. 4.40× 109 3.80× 109 6.34× 108 8.40× 108

f2(x) Minimum 6.19× 102 6.00× 102 6.00× 102 6.00× 102

Mean 6.31× 102 6.04× 102 6.01× 102 6.02× 102

Std. Dev. 7.69 3.50 1.38 1.80
f3(x) Minimum 7.20× 103 2.80× 103 3.42× 103 2.93× 103

Mean 8.05× 103 4.36× 103 4.62× 103 4.34× 103

Std. Dev. 4.37× 102 5.90× 102 6.67× 102 5.81× 102

f4(x) Minimum 1.52× 103 1.17× 103 1.15× 103 1.17× 103

Mean 1.80× 103 1.35× 103 1.24× 103 1.27× 103

Std. Dev. 2.15× 102 2.22× 102 6.72× 101 5.91× 101

f5(x) Minimum 1.14× 106 4.95× 103 1.92× 103 2.12× 103

Mean 7.94× 106 5.14× 104 3.06× 104 2.65× 104

Std. Dev. 4.42× 106 4.87× 104 2.24× 104 2.29× 104

f6(x) Minimum 2.32× 103 2.09× 103 2.06× 103 2.07× 103

Mean 2.65× 103 2.37× 103 2.36× 103 2.29× 103

Std. Dev. 1.48× 102 1.59× 102 1.57× 102 1.28× 102

f7(x) Minimum 2.48× 103 2.35× 103 2.34× 103 2.34× 103

Mean 2.53× 103 2.40× 103 2.37× 103 2.37× 103

Std. Dev. 2.28× 101 2.86× 101 2.12× 101 2.05× 101

f8(x) Minimum 2.84× 103 2.76× 103 2.72× 103 2.72× 103

Mean 2.92× 103 2.84× 103 2.80× 103 2.78× 103

Std. Dev. 5.19× 101 5.57× 101 4.40× 101 3.47× 101

f9(x) Minimum 3.96× 103 2.80× 103 4.27× 103 2.82× 103

Mean 6.37× 103 5.41× 103 4.91× 103 4.73× 103

Std. Dev. 7.64× 102 8.43× 102 4.09× 102 5.87× 102

f10(x) Minimum 3.72× 103 3.43× 103 3.40× 103 3.38× 103

Mean 4.23× 103 3.80× 103 3.80× 103 3.76× 103

Std. Dev. 2.47× 102 2.52× 102 1.84× 102 1.69× 102

The statistical results of the PSO performance evaluation
are presented in Table III. Note that lower fitness values
correspond to better performance, since all test functions are
formulated as minimization problems. Results show that the
proposed PSORU algorithm achieves the smallest minimum
fitness values on 5 out of 10 functions (f1, f2, f7, f8, and f10),
demonstrating its strong exploitation capability. As shown in
Table III, the PSORU algorithm also achieves the lowest mean
fitness values on 6 benchmark functions (f3, f5, f6, f7, f8, f9,
and f10) and the smallest standard deviation on five functions
(f4, f6, f7, f8, and f10) comparing with the selected PSO
algorithms. We can draw the conclusion from the statistical
analysis of the results that the proposed PSORU algorithm
exhibits strong robustness when applied to different types of
complex optimization problems.
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Fig. 1. Convergence plot of the Shifted and Rotated Bent Cigar Function
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Fig. 2. Convergence plot of the Shifted and Rotated Expanded Scaffer’s F6
Function
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Fig. 3. Convergence plot of the Shifted and Rotated Schwefel’s Function
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Fig. 4. Convergence plot of the Hybrid Function 1
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Fig. 5. Convergence plot of the Hybrid Function 5
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Fig. 6. Convergence plot of the Hybrid Function 6
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Fig. 7. Convergence plot of the Composition Function 1
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Fig. 8. Convergence plot of the Composition Function 3
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Fig. 9. Convergence plot of the Composition Function 1 (N = 6)
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Fig. 10. Convergence plot of the Composition Function 9

The convergence plots of the chosen PSO algorithms are
displayed in Figs. 1-10. It can be seen that the PSORU
algorithm demonstrates significantly better convergence speed
and lowest final fitness value compared to the PSO-LDIW and
the PSO-TVAC algorithms. Specifically, the PSORU algorithm
performs better on multimodal and composition functions,
achieving best or comparable results on 8 out of 10 test
functions as shown in Figs. 1-10. The PSORU algorithm does
not achieve the best performance in Fig. 1, which corresponds
to the Shifted and Rotated Bent Cigar Function. This result
may be influenced by the relatively small population size and
limited iteration count in the experiment. Under such settings,
PSO-TVAC, with its time-varying acceleration coefficients,
may better exploit the sharp ridge structure and converge more
efficiently on this unimodal function. Nevertheless, PSORU
still shows competitive performance in most of the selected
functions, thereby showing strong global search capability and
robustness. Besides, the PSORU algorithm converges fast on
many benchmark functions, showing low sensitivity to differ-
ent problem types. In summary, experimental results indicate
that the PSORU algorithm is an effective and robust algorithm
that is capable of handling various complex optimization
problems.

IV. CONCLUSION AND FUTURE WORK

This paper has presented a novel PSORU algorithm that
incorporates randomly occurring uncertainty into the velocity
update mechanism. The uncertainty has been modeled by the
Cosine function. The effectiveness of the PSORU algorithm
has been validated on a series of benchmark functions selected
from the CEC2017 benchmark suite. Experimental results
have shown that the PSORU algorithm demonstrates superior
performance than the basic PSO, the PSO-TVAC, and the
PSO-LDIW algorithms in terms of the convergence speed and
the robustness for handling complex optimization problems.
Some possible future directions include population sensitivity
analysis, as the current setting employs a fixed swarm size
without considering its influence on performance. Addition-
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ally, the modeling of uncertainty plays a critical role in shaping
the optimizer’s dynamics. It is worth developing an adaptive
mechanism to model uncertainty or dynamically adjust ac-
tivation probabilities during the search process. Furthermore,
future work could explore the scalability and robustness of the
PSORU algorithm across problems of varying dimensionality
and complexity.
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