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Abstract—In this paper, a novel role-differentiated learning
with noisy label (RD-LNL) approach is proposed for industrial
outlier detection. A leader-follower-inspired sample selection
(LFSS) strategy is introduced to choose relatively “clean samples”
for establishing a robust outlier detector against label noise.
Specifically, a pre-trained deep learning model is employed as
the leader network to guide the training of two follower deep
learning models via a joint training manner, where a selection
metric is designed to facilitate sample selection by leveraging both
the training dynamics and the prediction discrepancy among the
models. To further enhance the possibility of selecting potential
clean samples, an adaptive selection scheme is put forward to
adaptively adjust the clean sample selection ratio throughout
the model training process by making full use of the loss
characteristics of the samples. The proposed outlier detection
approach is exploited in a real-world industrial outlier detec-
tion task with application to wire arc additive manufacturing
(WAAM). Experimental results demonstrate the effectiveness of
the developed RD-LNL approach for WAAM outlier detection in
terms of detection accuracy.

Index Terms—Outlier detection, learning with noisy labels,
industrial data analysis, wire arc additive manufacturing.

I. INTRODUCTION

In the era of big data, deep learning (DL) techniques have
achieved great success across various domains. Notably, label
quality is crucial for ensuring both the predictive accuracy
and generalization ability of DL models. In many real-world
applications, the obtained raw data are normally unlabeled
and require annotation by human experts or automated tools.
Due to the unexpected errors in automated labeling tools and
mis-operation by human annotators, the obtained training data
may exist data with incorrect labels. Such label noise would
corrupt the training process and mislead the mapping between
the feature space and the target space, thereby affecting the
performance and reliability of the trained DL model.

To build a trustworthy DL model using data with label
noise, learning with noisy labels (LNL) has become a recently
popular topic in DL [1]. Serving as a prominent class of LNL
approaches, sample selection focuses on identifying correctly-
labeled samples (i.e., clean samples) for model training by
using specific metrics (e.g., the training loss and similarity
metrics). Compared with other classes of LNL approaches
such as robust training and label correction, sample selection
is capable of decreasing the negative influences from samples
with label noise (i.e., noisy samples) and avoiding the mis-

leading effects arising from label correction errors. A major
advantage of sample selection is its simplicity and ease of
implementation, which leads to the widespread adoption of
sample selection in various applications for handling label
noise in recent years [2]–[5].

Sample selection may suffer from incorrect selection, where
clean samples are misclassified as noisy samples, especially
when applied to large or complex data sets with label noise.
During the model training process, noisy samples would cause
error accumulation and introduce model biases, which results
in degraded model performance. Recently, a number of sample
selection variants have been proposed to improve the selection
performance by introducing advanced training strategies or
developing new network architectures [6]–[8]. For instance,
in [7], the O2U-Net has been proposed for identifying noisy
and clean samples by making use of the loss variation of
each sample at different training stages. In [6], a well-known
LNL approach named Co-teaching has been proposed, where
the Siamese network structure is employed. Particularly, the
potential clean samples identified by each network are utilized
to update its peer network. The Siamese network structure has
been widely adopted in sample selection by leveraging the
unique learning capability of each network, offering comple-
mentary views on samples and improving selection accuracy.
Unlike single-network methods, the Siamese-network-based
sample selection (SNSS) approach leverages model diversity
to reduce confirmation bias and improve robustness against
label noise. Apart from the Co-teaching approach, various
SNSS approaches, including Co-teaching+ [9], JoCoR [4], and
DivideMix [8] have also achieved notable success in tackling
the noisy label problem.

To reduce the computational cost, many SNSS methods
employ identical and simple subnetworks, which would unfor-
tunately constrain the model’s learning and representation ca-
pabilities, especially when handling complex data sets. More-
over, identical architectures sometimes fail to provide diverse
multi-view representations of data patterns, thereby limiting
the network complementarity and impairing the model’s ability
to discriminate clean and noisy samples. Inspired by coordi-
nation strategies in multi-agent systems, the leader-follower
framework proposed in [10] is a seemingly promising solution
to break symmetry among subnetworks and promote diverse
yet coordinated model learning behaviors. In the leader-
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follower framework, role differentiation among subnetworks
is achieved, where the leader network incorporates additional
domain-specific knowledge (which is imparted to the follower
networks to guide their training), thereby improving the overall
capacity to identify and select clean samples.

The clean sample selection ratio (CSSR) plays a significant
role in sample selection, which brings a trade-off between
the inclusion of clean samples against the exclusion of noisy
samples. Many existing sample selection approaches use a
constant CSSR based on experimental experience, which de-
mands domain knowledge and cannot guarantee consistent
performance on various data sets with multi-modal inputs or
partially labeled data. In Co-teaching, a dynamic selection
strategy has been designed, where the CSSR decreases ac-
cording to the stage of training to gradually exclude noisy
data and retain clean samples. Unfortunately, the dynamic
selection strategy in Co-teaching overlooks the variability
in the training process across different data sets, potentially
leading to premature exclusion of valuable samples or delayed
removal of noisy ones. To enhance selection efficiency and
fully utilize potentially clean samples, a reasonable idea is to
adaptively adjust the CSSR based on both the training state
information and the loss characteristics.

Motivated by above discussions, in this paper, a role-
differentiated LNL (RD-LNL) approach is put forward for
industrial outlier detection. A leader-follower-inspired sample
selection (LFSS) strategy is proposed for identifying potential
clean samples. Then, the chosen clean samples are fed into
the deep neural networks (DNNs) for outlier detection. In
particular, three DNNs are trained collaboratively. Here, a
leader network is pre-trained on clean auxiliary data and
guides the joint training of two follower networks by fully
leveraging its domain knowledge. A selection metric is in-
troduced that integrates both the training dynamics and the
prediction divergence across the DNNs. According to the
selection metric, an adaptive selection scheme is proposed to
adaptively adjust the CSSR during the training process.

The contributions of this paper lie in the following threefold:
1) A LFSS strategy is proposed for training the outlier

detection model with selected potential clean samples,
where a leader network and two follower networks are
trained jointly for sample selection by leveraging the
domain knowledge of the leader network.

2) An adaptive selection scheme is introduced to adjust the
CSSR adaptively through the model training process,
which makes use of the loss characteristics of the
training samples.

3) The developed RD-LNL approach is successfully ap-
plied to a real-world industrial outlier detection appli-
cation using data collected from a wire arc additive
manufacturing (WAAM) pilot line. Experimental results
verify the practical utility of the developed RD-LNL
approach for handling data with label noise.

The remaining sections of this paper are organized as
follows. In Section II, the developed RD-LNL approach is
introduced. Experimental results for WAAM outlier detection

under label noise are presented in Section III. Finally, conclu-
sions are presented in Section IV.

II. METHODOLOGY

A. Motivation

Many SNSS approaches use identical network architectures
with random initialization to encourage diverse learning be-
haviors and reduce confirmation bias [4], [6]. During the
model training, samples are selected based on the prediction
consensus of the networks. Nevertheless, identical architec-
tures with random initialization may still lack sufficient repre-
sentational diversity, thereby decreasing the selection quality.
As a role-differentiated framework, the leader-follower frame-
work is capable of integrating domain-specific knowledge and
model diversity to support effective sample selection [10]. Be-
sides, the variation between the leader and follower networks
brings multiple perspectives of the learning process, which
helps reduce confirmation bias and improve the reliability of
selected samples.

As a critical factor, the CSSR directly determines how
many samples are used for model training at each training
epoch, and thus governs the balance between preserving clean
samples and excluding noisy samples. It is worth mentioning
that most existing approaches adopt the fixed selection ratio
or the dynamic selection ratio based on training epochs. Such
selection ratios may overlook the fact that training dynamics
vary significantly across data sets, and thus decrease the
generalization ability of the approaches. To address the above
mentioned limitation, a seemingly reasonable solution is to
consider both the training epochs and the sample loss charac-
teristics to adaptively select clean samples during training.

In this paper, an RD-LNL approach is developed for indus-
trial outlier detection with noisy labels. An LFSS strategy is
introduced to select clean samples to train the outlier detector.
To be specific, a pre-trained network is employed as the leader
network and is utilized to guide the joint training process
with two follower networks. A selection metric is designed
for sample selection by integrating both training behavior
and prediction divergence across the networks. Based on the
selection metric, an adaptive selection scheme is put forward
to improve the quality of selected samples by adaptively
adjusting the CSSR during the training process.

B. Overview of the RD-LNL Approach

The developed RD-LNL approach is shown in Fig. 1. The
RD-LNL approach consists of three networks: Network 3
serves as the leader, while Network 1 and Network 2 act as
followers.

The Transformer is utilized as the backbone of the leader
network in order to capture long-range dependencies within
the time series and improve the generalization capability. The
Transformer is composed of several identical encoder layers,
where each layer includes a multi-head attention mechanism
and a lightweight 1D convolutional module to enhance local
temporal feature extraction.
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The convolutional neural network (CNN) serves as the
backbone of the follower networks, enabling efficient training
and effective extraction of local features. Each CNN consists
of multiple standard convolutional modules, each containing a
convolutional layer followed by batch normalization. Residual
connections are employed in both the encoder layers and the
convolutional modules to facilitate gradient flow and stabilize
training. Three identical multi-layer perceptrons (MLPs) are
employed as the classifiers, each attached to the output of one
network.
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Fig. 1. The proposed RD-LNL approach

C. Loss Function

1) Classification Loss: The cross-entropy is applied to
compute the classification loss for Network 1, Network 2, and
Network 3 (i.e., L1

C , L2
C , and L3

C , respectively), which are
given by:

L1
C = − 1

N

N∑
i=1

M∑
j=1

yij log(ŷ
1
ij), (1)

L2
C = − 1

N

N∑
i=1

M∑
j=1

yij log(ŷ
2
ij), (2)

L3
C = − 1

N

N∑
i=1

M∑
j=1

yij log(ŷ
3
ij), (3)

where N indicates the sample size of current mini-batch; M
denotes the total number of classes; yij is the jth element of
the label vector corresponding to the ith sample; and ŷ1ij , ŷ2ij ,
and ŷ3ij are the jth element of the predicted output for the ith
sample of Network 1, Network 2, and Network 3, respectively.

2) Prediction Divergence: To mitigate the confirmation
bias of each network and enhance collaborative sample selec-
tion performance, in this paper, the prediction divergences be-
tween all pairs of networks are calculated, where the Kullback-
Leibler (KL) divergence and Jensen–Shannon (JS) divergence
are employed. Specifically, the KL divergence is utilized to
measure the output discrepancies between the leader network
and each of the two follower networks (i.e., L13

D and L23
D ), and

the JS divergence is applied to calculate the output discrepancy
between two follower networks (i.e., L12

D ). The prediction
divergences between all pairs of networks are calculated by:
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N
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[
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where Qi = 1
2 (P

1
i + P 2

i ) is the average distribution of the
two follower networks for the ith sample; L13

D and L23
D denote

the prediction discrepancy between Network 1 and Network
3, and Network 2 and Network 3, respectively; L12

D represents
the prediction discrepancy between Network 1 and Network
2; P 1

i , P 2
i and P 3

i are the distribution of the output probability
of the ith sample from Network 1, Network 2, and Network
3, respectively; and P 1

ij , P 2
ij and P 3

ij are the output probability
for the ith sample with the jth class of Network 1, Network
2, and Network 3, respectively.

Remark 1: Network 3, denoted as the leader network, is
obtained via pre-training and fine-tuning. Compared with the
follower networks that are trained directly on the noisy labeled
data set, the leader network has better feature representation
and discriminative capabilities. It is worth mentioning that
KL divergence measures the information loss introduced when
approximating one probability distribution with another, mak-
ing the direction of comparison a critical factor due to its
asymmetric nature. To guide the follower networks toward the
prediction behavior of the leader, in this paper, the prediction
divergences L13

D and L23
D are calculated according to (4) and

(5). Furthermore, the JS divergence is applied in calculating
L12
D based on (6) due to its symmetric and bounded nature to

ensure balanced comparison of the output prediction between
the two follower networks.

3) Overall Loss Function: The overall loss functions of the
three networks (i.e., L1, L2, and L3) are given by:

L1 = α1L
1
C + β1L

13
D + γ1L

12
D , (7)

L2 = α2L
2
C + β2L

23
D + γ2L

12
D , (8)

L3 = L3
C , (9)

where α1, α2, β1, β2, γ1 and γ2 are hyper-parameters for
balancing the contributions of the classification loss and the
prediction divergences.

D. Training Scheme

Fig. 2 demonstrates the training scheme of the RD-LNL
approach.

1) Pre-training of Leader Network: In the proposed RD-
LNL approach, the feature extraction and representation abil-
ities of the leader network are significantly important. Thanks
to its generalization and knowledge transfer capability, transfer
learning becomes an effective solution to obtain the leader
network using a clean auxiliary data set. The leader network
is pre-trained on the clean source domain to learn transferable
representations for the downstream noisy task.
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2) Joint Training on Noisy Labeled Data: After obtaining
the leader network, the follower networks are trained jointly
with the leader network. The joint training process consists
of two main stages, namely warm-up and sample selection.
Specifically, the leader network is initialized using the weights
obtained through pre-training, and the follower networks are
initialized randomly. In the warm-up stage, the leader network
and the follower networks are trained on the noisy data for
several epochs to ensure a stable initialization and learn initial
representations. During warm-up, the leader network is fine-
tuned to adapt its pre-trained knowledge to the noisy target
domain. In the sample selection stage, the clean samples are
selected using the adaptive selection scheme in each epoch
and are then used to update three networks.

3) The Adaptive Selection scheme: In this paper, the “small-
loss criterion” is utilized for sample selection. To be specific,
a selection metric is introduced for selecting potential clean
samples based on three networks, where the loss values of
each sample from three networks during the training are
leveraged for distinguishing clean samples from noisy ones.
The selection metric of each sample LS(i) can be calculated
by:

LS(i) = µ1L1(i) + µ2L2(i) + µ3L3(i), (10)

where L1(i), L2(i), and L3(i) are per-sample loss of three
networks; and µ1, µ2, and µ3 are three hyper-parameters for
balancing the contributions of each term.

The CSSR R(e) is adjusted adaptively during the training
process based on the training epoch and selection metric,
which is calculated by:

R(e) = max

{(
1− e

E
· r̂
)
· σe
σ0
, 1− r̂

}
, (11)

where e and E are the current and total training epochs,
respectively; σe and σ0 denote the standard deviation of values
of selection metric across all samples in the mini-batch at the
eth epoch and the initial training epoch, respectively; and r̂ is
the estimated noise ratio derived from the validation set.

4) Training Procedure: The training process of the RD-
LNL approach is detailed in Algorithm 1. After the training
process, the leader network is then utilized for outlier detection
tasks.

III. WAAM OUTLIER DETECTION

Recognized as a cost-effective additive manufacturing tech-
nique, WAAM fabricates metal parts by employing an electric
arc as the heat source to deposit wire feedstock in a layer-
by-layer manner. WAAM is highly applicable for producing
large and complex metal structures. So far, WAAM has been
deployed in a wide range of industrial applications owing to
its high material efficiency and flexible design capability [11].
It should be noted that the electric arc plays an important role
in WAAM, which significantly affects the process stability.
In real-world scenarios, the characteristics of the wire arc
such as welding current and voltage may experience sudden
changes, which can negatively affect the melt pool behavior
and result in defects in the fabricated parts. The aim of the
experiments is to detect such sudden changes (i.e., outliers) in
order to ensure the manufacturing quality and further improve
the manufacturing process.

A. Data Preparation

1) WAAM Data Sets: The data sets used in this study are
obtained from a real-world WAAM pilot line, where each data
set records the key process parameters (e.g., welding current
and welding voltage) of a distinct WAAM task. Fig. 3 presents
a visualization of the WAAM data. Ground-truth labels are
manually annotated by domain experts, classifying each sam-
ple as either “Normal” or “Outlier” based on operational
characteristics. The detailed description of the WAAM data
sets can be found in [12].
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Fig. 3. Visualizations of the current and voltage of the WAAM data
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Algorithm 1: Training Procedure of the RD-LNL
Approach

Input: Noisy training data set D̃, clean auxiliary data
set D, number of pre-training epochs EP ,
number of warm-up epochs EW , number of
training epochs E, batch size B,
hyper-parameters µ1, µ2 and µ3.

Output: Model parameters of three networks θ1, θ2
and θ3.

1 Randomly initialize θ1.
2 for e← 0 to EP do
3 for n← 0, 1, · · · , |D|

B do
4 Randomly draw a mini-batch.
5 Calculate L3 based on (9).
6 Update θ1.
7 end
8 end
9 Retain θ1 and randomly initialize θ2 and θ3.

10 for e← 0 to EW do

11 for n← 0, 1, · · · , |D̃|B do
12 Randomly draw a mini-batch.
13 Calculate L1, L2 and L3 based on (7), (8) and

(9).
14 Update θ1, θ2 and θ3.
15 end
16 end
17 Retain θ1, θ2 and θ3.
18 for e← 0 to E do

19 for n← 0, 1, · · · , |D̃|B do
20 Randomly draw a mini-batch.
21 Calculate selection metric LS(i) based on (10).
22 Calculate the selection ratio R(e) based on

(11).
23 Obtain clean samples D̃C .
24 Calculate L1, L2 and L3 on D̃C based on (7),

(8) and (9).
25 Update θ1, θ2 and θ3.
26 end
27 end

2) Data Pre-Processing: In this paper, a sliding window
method is applied to segment each data set, with a window
size of 10 and a stride of 5. The label for each segment is
determined based on the labels of its constituent instances: a
segment is considered “Normal” only if all included instances
are labeled as such; otherwise, it is marked as an “Outlier”.
For classification purposes, all labels are converted into one-
hot encoded vectors. Each processed data set is subsequently
divided into training and testing subsets in a 70 : 30 ratio.
To ensure scale consistency and enhance model performance,
min-max normalization is applied to both the training sets and
the testing sets.

B. Implementation Details

1) Model Configurations: The Transformer encoder of the
leader network consists of 3 encoder layers. The CNNs of the
two leader networks both consist of 5 convolutional modules.
The classifier of each network is a 3-layer MLP. To ensure
fair and robust evaluation, all hyper-parameters are selected
through grid search on a separate validation set. The hyper-
parameters are tuned within predefined ranges based on the
best validation performance, and the same selection procedure
is applied consistently across all selected approaches. To be
specific, the hyper-parameters α1, α2, β1, β2, γ1 and γ2 in
the loss functions are set as 0.35, 0.35, 0.7, 0.7, 0.25 and
0.25, respectively. The hyper-parameters µ1, µ1 and µ1 in the
selection metric are set to be 0.6, 0.2 and 0.2, respectively. The
Adam optimizer is adopted and the learning rate is configured
as 0.0001. The epoch numbers of the pre-training process, the
warm-up process and the training process are 30, 10 and 50,
respectively.

2) Experimental Settings: All experiments are performed
under a consistent environment: Ubuntu 20.04.6, PyTorch
2.5.1, Python 3.9.21, and CUDA 12.3, using hardware with
an NVIDIA RTX A6000 GPU (48 GB) and an Intel Xeon
Silver 4214R processor to ensure fair comparisons. Each
experiment is repeated five times, and the mean values of
all evaluation metrics are presented to minimize the effect of
random variation.

To verify the performance of the developed RD-LNL ap-
proach, two standard DL-based outlier detection approaches
and two representative LNL approaches (e.g., Co-teaching
and JoCoR) are selected for comparison. Specifically, in two
standard DL-based outlier detection approaches, the CNN and
the Transformer are employed as the backbone and connected
with two identical classifiers, respectively.

Four evaluation metrics (e.g., accuracy, precision, recall,
and F1-score) are applied to evaluate the effectiveness of the
proposed RD-LNL approach for outlier detection under label
noise. In the experiments, a clean auxiliary data set is selected
for pre-training the leader network, and the other four data sets
are used as the noisy training data. Extensive experiments are
conducted under various noise ratios denoted by φ to evaluate
the outlier detection performance under different levels of label
noise. Each data set is evaluated under noise ratios φ of 30%,
40% and 50%.

C. Results and Discussion

The outlier detection results of the selected approaches on
four WAAM data sets with various noise ratios are summarized
in Table I. As shown by the results, the RD-LNL approach
shows competitive performance across four tasks under various
noise ratios. Detailed analysis of the results is provided below
based on the noise ratio.

In the experiments under a noise ratio of 30%, the selected
LNL approaches as well as two standard approaches all
exhibit satisfactory performance on four data sets. It should
be noticed that Tasks 1 and 2, the JoCoR reaches higher
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TABLE I
OUTLIER DETECTION RESULTS ON NOISY WAAM DATA SETS WITH DIFFERENT NOISE RATIOS

Approaches Metrics (%) Task 1 Task 2 Task 3 Task 4
30% 40% 50% 30% 40% 50% 30% 40% 50% 30% 40% 50%

Accuracy 96.77 89.01 74.76 95.22 88.43 72.11 95.12 88.82 73.57 93.80 88.65 73.52
Co-teaching Precision 96.10 90.82 50.33 94.26 82.04 52.19 95.86 82.33 53.81 88.54 78.93 48.90

Recall 92.05 90.37 77.62 93.64 88.59 76.36 93.06 88.97 69.31 94.22 79.90 70.55
F1 Score 94.28 90.38 62.28 93.05 86.87 58.15 94.11 87.76 60.31 90.45 70.47 49.73

Accuracy 97.13 93.98 79.00 96.09 93.90 75.50 95.63 93.12 77.20 94.63 92.01 69.58
JoCoR Precision 97.29 93.50 48.55 96.00 93.01 46.01 96.74 91.49 45.75 89.91 79.16 34.01

Recall 92.30 89.18 66.41 95.12 93.43 79.85 95.53 92.61 90.08 96.42 94.55 95.53
F1 Score 94.57 91.39 56.16 95.68 92.65 60.59 96.01 92.41 61.09 93.12 87.12 50.16

Accuracy 87.24 61.90 39.23 85.46 58.92 25.07 73.72 53.34 30.64 71.14 56.98 10.63
Standard Precision 83.29 62.79 55.53 80.48 75.82 36.90 69.53 56.28 42.27 69.24 59.14 26.49
(CNN) Recall 88.09 85.34 31.71 93.12 45.49 46.81 90.79 78.26 45.96 72.62 36.87 18.94

F1 Score 90.02 72.35 40.37 87.45 56.84 41.21 81.71 66.41 43.72 80.64 53.67 22.24

Accuracy 89.16 63.36 41.65 87.66 60.96 27.19 75.71 55.34 32.24 72.39 58.35 12.74
Standard Precision 85.76 64.44 56.93 82.15 77.83 38.44 70.44 58.56 43.71 70.00 61.52 28.25

(Transformer) Recall 89.40 86.11 34.05 94.70 47.73 47.69 91.70 79.54 47.33 73.41 38.94 20.94
F1 Score 92.09 74.33 42.77 89.92 58.52 42.55 82.27 67.56 45.38 81.79 55.74 24.39

Accuracy 96.98 94.20 85.52 95.40 94.07 81.80 95.85 92.85 82.49 95.16 93.85 78.90
RD-LNL Precision 96.17 93.85 86.96 96.95 94.04 86.80 96.82 92.95 88.60 96.70 93.15 87.96

(Ours) Recall 97.02 93.02 87.64 95.25 92.11 81.71 95.66 94.33 85.85 96.66 92.27 88.37
F1 Score 96.37 95.09 86.40 96.28 94.23 84.22 96.14 92.70 86.55 96.29 93.22 87.78

accuracy than the RD-LNL. On the other two tasks, the RD-
LNL approach outperforms the selected approaches in terms
of detection accuracy and F1 score. At a noise level of 40%,
both standard methods exhibit noticeable performance drops.
According to the results, the selected LNL approaches still
show reliable performance. On task 3, the accuracy of the
JoCoR is higher than RD-LNL. Nevertheless, the RD-LNL
approach maintains superior performance across the remaining
tasks, which confirms its effectiveness in detecting outliers
under noisy labels.

In the scenario with a 50% noise ratio, the RD-LNL
approach also demonstrates strong performance, while all
selected approaches suffer significant degradation across the
four datasets. In particular, the accuracy and F1 scores of the
selected approaches do not exceed 80% and 63%, respectively.
In contrast, RD-LNL achieves results on all datasets, highlight-
ing its robustness in the presence of moderate label noise.

IV. CONCLUSION

In this paper, an RD-LNL approach has been developed
for industrial outlier detection under noisy labels. An LFSS
strategy has been proposed to train the outlier detector.
A selection metric has been designed for identifying clean
samples. In addition, an adaptive selection scheme has been
put forward based on the selection metric for adjusting the
CSSR. Experimental results for outlier detection on real-world
data sets have demonstrated satisfactory performance of the
developed approach.
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