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Abstract—In this paper, the secure particle filtering problem
is investigated for a class of stochastic nonlinear systems subject
to non-Gaussian noises and randomly switching nonlinearities.
As an essential characteristic of real-world sensors, the sensor
resolution is incorporated into the measurement model to provide
a realistic representation of the available data. By resorting to
the exclusive or logical operations, an encryption-decryption-
based scheme is leveraged to enhance the transmission security
of measurements and lower the communication overhead. The
objective of this paper is to design a novel particle filtering
scheme in the coexistence of randomly switching nonlinearities,
non-Gaussian noises, sensor resolution effects and decrypted
measurements. Specifically, a mixture distribution, employing the
statistical property of the randomly switching nonlinearities, is
constructed to generate the new particles. By considering the
effects of sensor resolutions and decryption errors, the likelihood
function is parameterized to facilitate the update of weights.
Finally, a numerical example with Monte Carlo simulations is
presented to illustrate the effectiveness of the proposed filtering
algorithm.

Index Terms—Encryption-decryption scheme, particle filter-
ing, randomly switching nonlinearities, sensor resolution, non-
Gaussian noises.

I. INTRODUCTION

Over the past several decades, nonlinear state estimation or
filtering problem has remained an active area of research due
mainly to its indispensable role across diverse engineering do-
mains which include, but are not limited to, robotics, industrial
process control, power systems, environmental monitoring,
and autonomous vehicles [1]-[3]. Consequently, a plethora of
nonlinear filtering approaches, customized for various system
dynamics and noise specifications, has been developed in
the literature. Several typical strategies are extended Kalman
filtering, unscented Kalman filtering, set-membership filtering,
and H., filtering [4]-[6]. For example, a dynamic event-
triggered H., state estimator has been designed in [7] for a
class of delayed neural networks with sector-bounded nonlin-
ear activation functions, gain fluctuations and energy-bounded
noises. In [8], the distributed extended Kalman filtering prob-
lem has been solved for saturated systems with differentiable
nonlinearity, amplify-and-forward relays and Gaussian noises.
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With the increasing demand for the accurate state estimation
in practical applications involving strong nonlinearities and
non-Gaussian noises, particle filtering has attracted consid-
erable research attention in recent years. Different from the
traditional linearization-based or Gaussian-assumption-based
methods, the particle filtering approach aims to approximate
the posterior distribution of the system state based on a group
of weighted particles [9]-[11]. Such a sampling-based strategy
endows particle filter with the outstanding ability to deal
with various complicated system dynamics and non-Gaussian
noises. Recently, the phenomenon of randomly switching
nonlinearities, caused probably by abrupt environmental per-
turbations and intermittent switchings between subsystems,
has begun to receive initial attention [12]. Nevertheless, the
corresponding state estimation problem, where the switched
nonlinearities are not restricted to any specific type, would
be particularly challenging (if not impossible) by using the
traditional methods. Therefore, a seemingly natural approach
is to address such nonlinearities within the particle filtering
framework.

In the context of remote state estimation, the signal trans-
mission between sensors and the remote estimator typically
depends on the network communication technology. Neverthe-
less, in practical engineering, the open and shared nature of
communication networks noticeably increase the vulnerability
of signal transmission to cybersecurity threats, particularly
the risk of data eavesdropping [13]. These vulnerabilities are
highly likely to threaten the measurement integrity and leak
the confidential information, thereby resulting in deteriorated
estimation performance. To this end, considerable research at-
tention has been devoted to the study of secure state estimation
problem, see [14] and the references therein. For example, the
secure set-membership filtering problem has been studied in
[15] for two-dimensional systems under the exclusive-or-based
encryption-decryption strategy and the unknown but bounded
noises. Nevertheless, when it comes to the stochastic systems
subject to randomly switching nonlinearities and non-Gaussian
noises, the available results have been really scattered, which
motivates this current investigation.

On the other hand, in real-world applications, it is almost
impossible for sensors to detect arbitrarily minute changes
in measurement signals owing to the technical limitations
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[16]. The sensor resolution is typically determined by the
manufacturing cost, and the inexpensive sensors often feature
low resolving ability and large measurement biases. Therefore,
some research efforts have been directed toward the state
estimation problem under the sensor resolution effects [17].
Particularly, the state estimator has been developed in [18] for
artificial neural networks with Lipschitz continuous nonlin-
earities, sensor resolution effects and unknown but bounded
noises. Unfortunately, in case that the randomly switching
general nonlinearities and non-Gaussian noises are concerned,
the corresponding state estimation problem has not been
thoroughly investigated yet.

Summarizing the above discussions, this paper aims to tack-
le the encryption-decryption-based state estimation problem
for a class of stochastic systems with randomly switching
nonlinearities, sensor resolution effects, and non-Gaussian
noises. In doing so, two difficulties arise as follows: 1) how
to develop a suitable secure filtering framework capable of
handling the considered complexities? and 2) how to diminish
the impact of these complicated phenomena on the filtering
performance? The contributions of this paper can be high-
lighted from the following two aspects: 1) the encryption-
decryption-based secure state estimation problem is, for the
first time, investigated for a class of stochastic systems subject
to randomly switching nonlinearities, sensor resolution effects
and non-Gaussian noises; and 2) an easy-to-implement par-
ticle filtering scheme is proposed by carefully designing the
particle generation process and parameterizing the expression
of likelihood function based on the decrypted measurements.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. System Description

Consider a class of stochastic nonlinear systems governed
by the following dynamics:

w(t+1) = F(t)z(t) +v(t) f(x(t))
+ (L =~()g(x(t) +n(t) (M
Zs(t):hs( ())+CS()7S 1723"'7N

where z(t) € R and z4(t) € R represent, respectively, the
system state vector and the measurement output of the sth
sensor at time instant ¢. F'(t) € R™**" denotes a known
real-valued matrix. hgs(-) : R™ — R signifies the known
measurement function of the sth sensor. 7(¢) € R™ stands
for the process noise satisfying p, ;) (-) and (,(t) € R denotes
the measurement noise of the sth sensor satisfying p¢_ s (-).
f(): R™ +— R™ and g(-) : R™ +— R"* indicate the known
nonlinear vector-valued functions, and the switching behavior
between them is characterized by a Bernoulli distributed ran-
dom variable «(t) with the following probability distribution:

{ Pr{y(t) =1} = Vr )
Pr{y(t) =0} =1-7;
where the known constant 75 € [0, 1] represents the probabil-

ity that the nonlinear function f(-) is activated in the system
dynamics.

Before proceeding further, let us present the following two
common assumptions.

Assumption 1: The initial state vector z(0) follows a prior
distribution with known po)(-).

Assumption 2: The process noise 7)(t), the measurement
noises (s(t) (s =1,2,...,N), the random variable (t), and
the initial state vector are mutually independent.

In engineering practice, it is well recognized that the sensors
cannot detect arbitrarily small changes in measurements due to
the inherent limitations of sensor resolution. Similar to [17]—
[19], the actual measurement output Z(¢) of the sth sensor
at time instant ¢ under the effect of sensor resolution can be
described by

B O
2 =0, 2o(t) € (=1, 1) 3)
BSOS

where [ signifies the sensor resolution of the sth sensor and
the notation [-| ([-]) represents the floor (ceil) function.

B. Encryption-Decryption-Based Transmission Scheme

In this paper, the measurement outputs are transmitted to
the remote state estimator over a wireless communication
network. Following the similar line of [15], the exclusive-or-
based encryption-decryption scheme is adopted to enhance the
transmission security and reduce the communication overhead.

1) Encrypter: To begin with, let us consider the following
uniform quantizer U(-) with input signal A and range [—A, A]:

A, A>A
_A_’_%, )\€|: A+2(k 1)A A+2kA)
—A, A< —A

U =

“4)
where k£ € {1,2,...,K} and K denotes the quantization
level. To avoid the occurrence of quantizer saturation, let
us define U, (Z(t)) & ws(t)u(zf((?)), where w;(t) signifies
an adjustable scaling parameter, ensuring that j((?)| < A
when the actual measurement output exceeds the range. It
is not difﬁcult to see that the quantization error, denoted by
E(t) = Z,(t) — U, (Z(t)), satisfies the following condition:

ws(t)A
() < . 5
&) < 22 )

The quantized measurement U, (Zs(t)) for the sth sen-
sor, corresponding to the index k(t) € {1,2,...,K}, is
encoded into a binary bit string denoted by B.(t) =
{bs 1( ) s Q(t) L(t)}, bs)i(t) S {07 1}, i=1,2,...,L,
where L represents the length of the binary bit string and
satisfies K = 2. Subsequently, such a binary bit string,
referred to as the plaintext, is encrypted by resorting to the

following operation:

Bi(t)

where B, (t) and £,(t) represent, respectively, the ciphertext
to be transmitted and the pregenerated key sequence. The

= XOR(Bs(t), &s(t)) (6)
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notation XOR(,-) denotes the componentwise exclusive or
logical operation on pairs of binary bit strings.

Assumption 3: The binary bit strings are transmitted over
the wireless channel without any bit errors or time delays.

2) Decrypter: Based on the received ciphertext B, (t), the
decrypted bit string B,(t) can be obtained as follows:

B’s (t) = XOR(BS (t)’ Es (t)) N

Obviously, according to Assumption 3, the binary bit strings
B,(t) and B,(t) are identical, which means that B,(t) can be
recovered by using the key sequence E(t). The decrypted
binary bit string l’;‘s(t) is subsequently transformed into a
decimal-valued measurement signal Zs(¢) for estimation pur-
poses.

Remark 1: It is important to note that Assumption 3 is
critical for ensuring the successful decryption. If the wireless
channels are prone to cyber attacks and potential data tam-
pering, error-detecting techniques such as cyclic redundancy
check [20] can be utilized to identify transmission errors
and enhance data integrity. When errors are detected in the
binary data, a straightforward yet feasible solution is to discard
such erroneous data and treat the corresponding measurement
information as unavailable.

C. Preliminaries on Particle Filtering Approach

To begin with, let us define all the available mea-

surements up to time instant t as ZN(1 : t) £
[ZN)T ZN )T ZN0T]", where ZN(t) £
[Z1(t)  Z(t) Zn(t)] "It is well known that based on

the measurements Zi{¥ (1 : t), the minimum mean-square error
estimate for the state vector, denoted by & (t), can be calculated
by

#(t) = / (Op(a(t) 2N (1 : 1))da(t) ®)

where p(x(t)|Z{V(1 : t)) denotes the posterior probability
density function and is updated in the following manner [21]:

pla(®)| 2 (1:t-1))
= /p(w(t)lx(t* D)p(e(t = DIZ{ (1t —1))da(t — 1)

pla(t)|2{(1: 1)
__ pEOl@)p®)| 2 (1t 1))

JpZY @)e@)p(®)| 277 (1 : = 1))da(t)’
It should be noted that such a recursive propagation is gen-
erally not analytically tractable due to the complexity of the
involved integrals. To this end, the particle filtering method [9]
is developed to provide a numerical approximation solution for
the posterior probability density function as follows:

pla(t)| 2 (1: 1)) Zw —a™(t) ()
w™(t) = ’”(tﬂ)p(ZfV(t)lxm(t)) (10)

where A(-) signifies the Dirac delta function, M denotes the
number of sampled particles, and =™ (¢), sampled from the

prior density p(z(t)|z™(t — 1)) at time instant ¢, represents
the mth particle with the importance weight w™ (t).

The objective of this paper is to design a state estimation
scheme such that: 1) the transmission security of the measure-
ment outputs can be ensured by leveraging the exclusive-or-
based encryption-decryption scheme; and 2) the joint impacts
of the randomly switching nonlinearities, non-Gaussian noises,
sensor resolutions and decryption errors can be effectively
compensated for by carefully designing the particle filtering
algorithm.

III. DESIGN OF ENCRYPTION-DECRYPTION-BASED
PARTICLE FILTERING ALGORITHM

In this section, we are going to develop a modified particle
filtering algorithm to tackle the complexities arising from
the concurrent presence of randomly switching nonlinearities,
non-Gaussian noises, sensor resolutions and decryption errors.

As indicated in (9) and (10), the new particle z™(t) is
typically sampled from the prior density p(x(t)|z™(t — 1))
in standard particle filtering algorithm, where the sampling
process is primarily determined by the known statistics of
the process noise 7)(t). Nevertheless, due to the existence of
randomly switching nonlinearities, the statistical property of
the random variable ~(¢) (specified in (2)) should also be taken
into consideration. Subsequently, following the similar line of
[11], it can be obtained from the law of total probability, the
system dynamics (1), and Assumption 2 that

p(z(@)|z™(t - 1))
= p(x(t)a™(t = 1),y(t - 1) =0) (1 —75)
+p (@)™t = 1),y -1) =1)7f
=p®FE-1z™( - 1) +g(="(t - 1)) (1 - 77)
+p@@)F(E—1)z"(—1)+ fa™({=1)) 7. (A1)

In other words, the particles should be sampled from a mixture
distribution described by (11), where the mixture weight is
governed by the statistical property of nonlinearity switching
behaviors.

To proceed, let us focus on formulating an update expression
for the importance weight w™(¢) associated with the mth
particle =™ (t). It is clear from (10) that the key procedure
is to parameterize the likelihood function p(Z{ (¢)|z™(t)) by
accounting for the cumulative effects of sensor resolutions and
decryption errors.

Based on (3)-(7), it is not difficult to obtain that

|25 () — Zs(1)]
= |2s(t) — U, (Z:(1))]
< as(t) = Zs(8)] + [Zs() — Usn, (Z6(2))]
< ()A—Hséis(t). (12)

Then, according to (12) and the measurement model in (1), the
likelihood function associated with the sth sensor and the mth
particle ™ (t), denoted by p(Z,(t)|x™(t)), can be evaluated
as follows:

P (Zs(t)[=™ (1))
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P (Zs(t) = Ls(t) < 2(t) <7Zs(t) + L (t)|z™ (1))
p(H (2™ (t)<<5()<H+ (1))

(H (@™ (1) = D¢,y (Hy (2™ (1))
where ¢ ()(+) stands for the cumulative distribution function
of the measurement noise (,(t), Hy (2" (t)) = Z5(t) — Ls(t)—
hs(x™(t)), and HF (2™ (t)) = Zs(t) + Ls(t) — hs(x™(t)).

On the other hand, it follows from Assumption 2 that

= ‘I’csu) (13)

N

pEN Ol 1) = [ p

s=1

(Zs(t)|=™ (1)) - (14)
Therefore, according to (10), (13) and (14), the importance
weight w™ (t) associated with the mth particle 2™ (¢) can be
updated by

N
it —1) H Dy (HF (2™ (1))

B¢ 1) (H; (z™(t))] -

In what follows, the developed encryption-decryption-based
particle filtering algorithm is detailed in Algorithm 1 for ease
of practical implementation.

w™(t) =

15)

Algorithm 1 Encryption-decryption-based particle filtering
algorithm under sensor resolution effects and randomly switch-
ing nonlinearities.

1: Initialization: Sample M particles from the prior density
Pa(0)(+) with equally assigned importance weights and set
the maximum recursive time instant as 7.

2: fort =1to T do

3: Decrypt the received ciphertext B, (t) and accordingly
generate the measurement signal Z4(t) with respect to the
sth sensor.

for m =1 to M do

5: Draw new particle 2™ (¢) from the mixture distri-
bution specified in (11).

6: Assign unnormalized importance weight w™ (¢) for
the newly generated particle ™ (t) according to (15),
where the term on the left-hand side is substituted with
w™(t).

7: end for

for m =1 to M do
Update the normalized importance weight by em-

ploymg w" ( ) EM S)(t)

10: end for

11: Generate the state estimate Z(¢) based on the following
expression:

M
=Y
m=1
12: Perform the resampling process if necessary (e.g.,

when the effective sample size is less than a given value).
13: end for

Remark 2: Tt should be noted that, in this paper, although
only two nonlinear functions are involved in the system
dynamics (1), the proposed sampling method with the form of
(11) can also be extended to handle the randomly switching
behaviors among multiple nonlinear functions. On the other
hand, if the expression of the likelihood function is modified
as follows:

N

p(ZY (1)) = [ (0 ()™ (1))

s=1
where «,(t) is a binary indicator variable characterizing
whether or not the ciphertext B,(t) is successfully received
without errors (as discussed in Remark 1), then the proposed
algorithm is also applicable to the scenario with transmission
errors or packet dropouts. In this sense, the developed algo-
rithm is quite general and exhibits widespread applicability.

IV. SIMULATION RESULTS

In this section, we would like to offer a numerical example
to illustrate the viability and effectiveness of the proposed par-
ticle filtering scheme under randomly switching nonlinearities
and sensor resolution effects.

Consider a stochastic nonlinear system described by (1) with
the following specifications:

[0.85 —0.2]
—0.2 0.76 |’
[—0.25 tanh(z4(t))
f(z(t) = 0. 35ta?1h(x1( t)) }
oot [ 0.32 tanh (x4 (¢ ig
)

)= | —0.28 tanh (2o )]
ha((t)) = 2sin (a1 () — 2(1)),
ha(2(t)) = =2 cos(x1(t) + 22(t))-

The process noise 7)(t) is considered to obey the Gaussian
mixture distribution with the following probability density
function:

p(n(t)) = (1 = pN (71, X)) + pN (712, E2)

where p = 0.2 signifies the mixture weight. The mean param-
eters are set as zero vectors and the covariance parameters are
set as 3,1 = diag{0.02%,0.02%} and ¥, = diag{0.12,0.1%}.

The measurement noises (;(t) follow the standard Gaussian
distribution truncated to the interval [—2, 2]. Other parameters
are chosen as [; = 0.2, ws(t) =1, K =8, A=4, 3, = 0.5,
M = 200, and T' = 120. The initial state vector x(0) satisfies
the Gaussian distribution with mean [2, —2]7 and covariance
diag{1.22,1.22}.

The simulation results in one realization are displayed in
Figs. 1-4. Specifically, Figs. 1 and 2 show the trajectories of
the true state and the corresponding state estimate, and Figs. 3
and 4 depict the ideal measurements, actual measurements
and decrypted measurements. Clearly, the proposed particle
filtering algorithm is able to well track the state behaviors
in the presence of randomly switching nonlinearities, sensor
resolution effects, and decryption errors.
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3re ® Figs. 5 and 6. Obviously, the proposed algorithm exhibits
superior filtering performance when compared with other two
“s 20 40 60 80 100 120 algorithms. This is not unexpected since the influence of the

Time instant, ¢ considered phenomena is specially compensated for in the

Fig. 3: Ideal, actual, and decrypted measurements of the first sensor. design of particle filter. The above results demonstrate the
effectiveness of the proposed particle filtering scheme.
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Fig. 6: Behaviors of RMSE2(¢) under different algorithms.

V. CONCLUSIONS

In this paper, the secure state estimation problem has been
studied for a class of stochastic systems subject to randomly
switching nonlinearities, sensor resolutions and non-Gaussian
noises. In order to enhance the transmission security of
measurements, an encryption-decryption-based particle filter-
ing algorithm has been put forward, where the particles are
drawn from a mixture distribution and the importance weights
are calculated by taking into account the joint influence of
sensor resolutions and decryption errors. Finally, simulation
results have been provided to showcase the effectiveness and
superiority of the developed particle filtering algorithm. One
of the future topics would be extending the obtained results
by exploring other advanced encryption-decryption techniques
and analyzing the effect of decryption errors on the estimation
performance [22]-[24].
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