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Abstract—In this paper, the secure particle filtering problem
is investigated for a class of stochastic nonlinear systems subject
to non-Gaussian noises and randomly switching nonlinearities.
As an essential characteristic of real-world sensors, the sensor
resolution is incorporated into the measurement model to provide
a realistic representation of the available data. By resorting to
the exclusive or logical operations, an encryption-decryption-
based scheme is leveraged to enhance the transmission security
of measurements and lower the communication overhead. The
objective of this paper is to design a novel particle filtering
scheme in the coexistence of randomly switching nonlinearities,
non-Gaussian noises, sensor resolution effects and decrypted
measurements. Specifically, a mixture distribution, employing the
statistical property of the randomly switching nonlinearities, is
constructed to generate the new particles. By considering the
effects of sensor resolutions and decryption errors, the likelihood
function is parameterized to facilitate the update of weights.
Finally, a numerical example with Monte Carlo simulations is
presented to illustrate the effectiveness of the proposed filtering
algorithm.

Index Terms—Encryption-decryption scheme, particle filter-
ing, randomly switching nonlinearities, sensor resolution, non-
Gaussian noises.

I. INTRODUCTION

Over the past several decades, nonlinear state estimation or

filtering problem has remained an active area of research due

mainly to its indispensable role across diverse engineering do-

mains which include, but are not limited to, robotics, industrial

process control, power systems, environmental monitoring,

and autonomous vehicles [1]–[3]. Consequently, a plethora of

nonlinear filtering approaches, customized for various system

dynamics and noise specifications, has been developed in

the literature. Several typical strategies are extended Kalman

filtering, unscented Kalman filtering, set-membership filtering,

and H∞ filtering [4]–[6]. For example, a dynamic event-

triggered H∞ state estimator has been designed in [7] for a

class of delayed neural networks with sector-bounded nonlin-

ear activation functions, gain fluctuations and energy-bounded

noises. In [8], the distributed extended Kalman filtering prob-

lem has been solved for saturated systems with differentiable

nonlinearity, amplify-and-forward relays and Gaussian noises.
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Foundation under Grant 2021TQ0009, in part by the Royal Society of the
U.K., and in part by the Alexander von Humboldt Foundation of Germany.

With the increasing demand for the accurate state estimation

in practical applications involving strong nonlinearities and

non-Gaussian noises, particle filtering has attracted consid-

erable research attention in recent years. Different from the

traditional linearization-based or Gaussian-assumption-based

methods, the particle filtering approach aims to approximate

the posterior distribution of the system state based on a group

of weighted particles [9]–[11]. Such a sampling-based strategy

endows particle filter with the outstanding ability to deal

with various complicated system dynamics and non-Gaussian

noises. Recently, the phenomenon of randomly switching

nonlinearities, caused probably by abrupt environmental per-

turbations and intermittent switchings between subsystems,

has begun to receive initial attention [12]. Nevertheless, the

corresponding state estimation problem, where the switched

nonlinearities are not restricted to any specific type, would

be particularly challenging (if not impossible) by using the

traditional methods. Therefore, a seemingly natural approach

is to address such nonlinearities within the particle filtering

framework.

In the context of remote state estimation, the signal trans-

mission between sensors and the remote estimator typically

depends on the network communication technology. Neverthe-

less, in practical engineering, the open and shared nature of

communication networks noticeably increase the vulnerability

of signal transmission to cybersecurity threats, particularly

the risk of data eavesdropping [13]. These vulnerabilities are

highly likely to threaten the measurement integrity and leak

the confidential information, thereby resulting in deteriorated

estimation performance. To this end, considerable research at-

tention has been devoted to the study of secure state estimation

problem, see [14] and the references therein. For example, the

secure set-membership filtering problem has been studied in

[15] for two-dimensional systems under the exclusive-or-based

encryption-decryption strategy and the unknown but bounded

noises. Nevertheless, when it comes to the stochastic systems

subject to randomly switching nonlinearities and non-Gaussian

noises, the available results have been really scattered, which

motivates this current investigation.

On the other hand, in real-world applications, it is almost

impossible for sensors to detect arbitrarily minute changes

in measurement signals owing to the technical limitations
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[16]. The sensor resolution is typically determined by the

manufacturing cost, and the inexpensive sensors often feature

low resolving ability and large measurement biases. Therefore,

some research efforts have been directed toward the state

estimation problem under the sensor resolution effects [17].

Particularly, the state estimator has been developed in [18] for

artificial neural networks with Lipschitz continuous nonlin-

earities, sensor resolution effects and unknown but bounded

noises. Unfortunately, in case that the randomly switching

general nonlinearities and non-Gaussian noises are concerned,

the corresponding state estimation problem has not been

thoroughly investigated yet.

Summarizing the above discussions, this paper aims to tack-

le the encryption-decryption-based state estimation problem

for a class of stochastic systems with randomly switching

nonlinearities, sensor resolution effects, and non-Gaussian

noises. In doing so, two difficulties arise as follows: 1) how

to develop a suitable secure filtering framework capable of

handling the considered complexities? and 2) how to diminish

the impact of these complicated phenomena on the filtering

performance? The contributions of this paper can be high-

lighted from the following two aspects: 1) the encryption-

decryption-based secure state estimation problem is, for the

first time, investigated for a class of stochastic systems subject

to randomly switching nonlinearities, sensor resolution effects

and non-Gaussian noises; and 2) an easy-to-implement par-

ticle filtering scheme is proposed by carefully designing the

particle generation process and parameterizing the expression

of likelihood function based on the decrypted measurements.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Description

Consider a class of stochastic nonlinear systems governed

by the following dynamics:⎧⎪⎨
⎪⎩

x(t+ 1) = F (t)x(t) + γ(t)f(x(t))

+ (1− γ(t))g(x(t)) + η(t)

zs(t) = hs(x(t)) + ζs(t), s = 1, 2, . . . , N

(1)

where x(t) ∈ R
nx and zs(t) ∈ R represent, respectively, the

system state vector and the measurement output of the sth

sensor at time instant t. F (t) ∈ R
nx×nx denotes a known

real-valued matrix. hs(·) : R
nx �→ R signifies the known

measurement function of the sth sensor. η(t) ∈ R
nx stands

for the process noise satisfying pη(t)(·) and ζs(t) ∈ R denotes

the measurement noise of the sth sensor satisfying pζs(t)(·).
f(·) : Rnx �→ R

nx and g(·) : Rnx �→ R
nx indicate the known

nonlinear vector-valued functions, and the switching behavior

between them is characterized by a Bernoulli distributed ran-

dom variable γ(t) with the following probability distribution:{
Pr{γ(t) = 1} = γ̄f
Pr{γ(t) = 0} = 1− γ̄f

(2)

where the known constant γ̄f ∈ [0, 1] represents the probabil-

ity that the nonlinear function f(·) is activated in the system

dynamics.

Before proceeding further, let us present the following two

common assumptions.

Assumption 1: The initial state vector x(0) follows a prior

distribution with known px(0)(·).
Assumption 2: The process noise η(t), the measurement

noises ζs(t) (s = 1, 2, . . . , N), the random variable γ(t), and

the initial state vector are mutually independent.

In engineering practice, it is well recognized that the sensors

cannot detect arbitrarily small changes in measurements due to

the inherent limitations of sensor resolution. Similar to [17]–

[19], the actual measurement output �zs(t) of the sth sensor

at time instant t under the effect of sensor resolution can be

described by

�zs(t) =

⎧⎪⎪⎨
⎪⎪⎩

⌊
zs(t)
ls

⌋
ls, zs(t) ≥ ls

0, zs(t) ∈ (−ls, ls)⌈
zs(t)
ls

⌉
ls, zs(t) ≤ −ls

(3)

where ls signifies the sensor resolution of the sth sensor and

the notation �·� (	·
) represents the floor (ceil) function.

B. Encryption-Decryption-Based Transmission Scheme

In this paper, the measurement outputs are transmitted to

the remote state estimator over a wireless communication

network. Following the similar line of [15], the exclusive-or-

based encryption-decryption scheme is adopted to enhance the

transmission security and reduce the communication overhead.

1) Encrypter: To begin with, let us consider the following

uniform quantizer U(·) with input signal λ and range [−Λ,Λ]:

U(λ) =

⎧⎪⎪⎨
⎪⎪⎩
Λ, λ ≥ Λ

−Λ + (2k−1)Λ
K , λ ∈

[
−Λ + 2(k−1)Λ

K ,−Λ + 2kΛ
K

)
−Λ, λ < −Λ

(4)

where k ∈ {1, 2, . . . ,K} and K denotes the quantization

level. To avoid the occurrence of quantizer saturation, let

us define Uωs(�zs(t)) � ωs(t)U( �zs(t)ωs(t)
), where ωs(t) signifies

an adjustable scaling parameter, ensuring that | �zs(t)ωs(t)
| < Λ

when the actual measurement output exceeds the range. It

is not difficult to see that the quantization error, denoted by

ξs(t) � �zs(t)− Uωs(�zs(t)), satisfies the following condition:

|ξs(t)| ≤ ωs(t)Λ

K
. (5)

The quantized measurement Uωs(�zs(t)) for the sth sen-

sor, corresponding to the index k(t) ∈ {1, 2, . . . ,K}, is

encoded into a binary bit string denoted by Bs(t) �
{bs,1(t), bs,2(t), . . . , bs,L(t)}, bs,i(t) ∈ {0, 1}, i = 1, 2, . . . , L,

where L represents the length of the binary bit string and

satisfies K = 2L. Subsequently, such a binary bit string,

referred to as the plaintext, is encrypted by resorting to the

following operation:

B̄s(t) = XOR(Bs(t), Es(t)) (6)

where B̄s(t) and Es(t) represent, respectively, the ciphertext

to be transmitted and the pregenerated key sequence. The
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notation XOR(·, ·) denotes the componentwise exclusive or

logical operation on pairs of binary bit strings.

Assumption 3: The binary bit strings are transmitted over

the wireless channel without any bit errors or time delays.

2) Decrypter: Based on the received ciphertext B̄s(t), the

decrypted bit string B̃s(t) can be obtained as follows:

B̃s(t) = XOR(B̄s(t), Es(t)). (7)

Obviously, according to Assumption 3, the binary bit strings

B̃s(t) and Bs(t) are identical, which means that Bs(t) can be

recovered by using the key sequence Es(t). The decrypted

binary bit string B̃s(t) is subsequently transformed into a

decimal-valued measurement signal z̃s(t) for estimation pur-

poses.

Remark 1: It is important to note that Assumption 3 is

critical for ensuring the successful decryption. If the wireless

channels are prone to cyber attacks and potential data tam-

pering, error-detecting techniques such as cyclic redundancy

check [20] can be utilized to identify transmission errors

and enhance data integrity. When errors are detected in the

binary data, a straightforward yet feasible solution is to discard

such erroneous data and treat the corresponding measurement

information as unavailable.

C. Preliminaries on Particle Filtering Approach

To begin with, let us define all the available mea-

surements up to time instant t as ZN
1 (1 : t) �[ZN

1 (1)T ZN
1 (2)T · · · ZN

1 (t)T
]T

, where ZN
1 (t) �[

z̃1(t) z̃2(t) · · · z̃N (t)
]T

. It is well known that based on

the measurements ZN
1 (1 : t), the minimum mean-square error

estimate for the state vector, denoted by x̂(t), can be calculated

by

x̂(t) =

∫
x(t)p(x(t)|ZN

1 (1 : t))dx(t) (8)

where p(x(t)|ZN
1 (1 : t)) denotes the posterior probability

density function and is updated in the following manner [21]:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p(x(t)|ZN
1 (1 : t− 1))

=

∫
p(x(t)|x(t− 1))p(x(t− 1)|ZN

1 (1 : t− 1))dx(t− 1)

p(x(t)|ZN
1 (1 : t))

=
p(ZN

1 (t)|x(t))p(x(t)|ZN
1 (1 : t− 1))∫

p(ZN
1 (t)|x(t))p(x(t)|ZN

1 (1 : t− 1))dx(t)
.

It should be noted that such a recursive propagation is gen-

erally not analytically tractable due to the complexity of the

involved integrals. To this end, the particle filtering method [9]

is developed to provide a numerical approximation solution for

the posterior probability density function as follows:

p(x(t)|ZN
1 (1 : t)) ≈

M∑
m=1

wm(t)Δ(x(t)− xm(t)) (9)

wm(t) = wm(t− 1)p(ZN
1 (t)|xm(t)) (10)

where Δ(·) signifies the Dirac delta function, M denotes the

number of sampled particles, and xm(t), sampled from the

prior density p(x(t)|xm(t − 1)) at time instant t, represents

the mth particle with the importance weight wm(t).
The objective of this paper is to design a state estimation

scheme such that: 1) the transmission security of the measure-

ment outputs can be ensured by leveraging the exclusive-or-

based encryption-decryption scheme; and 2) the joint impacts

of the randomly switching nonlinearities, non-Gaussian noises,

sensor resolutions and decryption errors can be effectively

compensated for by carefully designing the particle filtering

algorithm.

III. DESIGN OF ENCRYPTION-DECRYPTION-BASED

PARTICLE FILTERING ALGORITHM

In this section, we are going to develop a modified particle

filtering algorithm to tackle the complexities arising from

the concurrent presence of randomly switching nonlinearities,

non-Gaussian noises, sensor resolutions and decryption errors.
As indicated in (9) and (10), the new particle xm(t) is

typically sampled from the prior density p(x(t)|xm(t − 1))
in standard particle filtering algorithm, where the sampling

process is primarily determined by the known statistics of

the process noise η(t). Nevertheless, due to the existence of

randomly switching nonlinearities, the statistical property of

the random variable γ(t) (specified in (2)) should also be taken

into consideration. Subsequently, following the similar line of

[11], it can be obtained from the law of total probability, the

system dynamics (1), and Assumption 2 that

p (x(t)|xm(t− 1))

= p (x(t)|xm(t− 1), γ(t− 1) = 0) (1− γ̄f )

+ p (x(t)|xm(t− 1), γ(t− 1) = 1) γ̄f

= p (x(t)|F (t− 1)xm(t− 1) + g(xm(t− 1))) (1− γ̄f )

+ p (x(t)|F (t− 1)xm(t− 1) + f(xm(t− 1))) γ̄f . (11)

In other words, the particles should be sampled from a mixture

distribution described by (11), where the mixture weight is

governed by the statistical property of nonlinearity switching

behaviors.
To proceed, let us focus on formulating an update expression

for the importance weight wm(t) associated with the mth

particle xm(t). It is clear from (10) that the key procedure

is to parameterize the likelihood function p(ZN
1 (t)|xm(t)) by

accounting for the cumulative effects of sensor resolutions and

decryption errors.
Based on (3)-(7), it is not difficult to obtain that

|zs(t)− z̃s(t)|
= |zs(t)− Uωs(�zs(t))|
≤ |zs(t)− �zs(t)|+ |�zs(t)− Uωs(�zs(t))|
<

ωs(t)Λ

K
+ ls � L̄s(t). (12)

Then, according to (12) and the measurement model in (1), the

likelihood function associated with the sth sensor and the mth

particle xm(t), denoted by p(z̃s(t)|xm(t)), can be evaluated

as follows:

p (z̃s(t)|xm(t))

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI: 10.1109/ICAC65379.2025.11196717, 2025 30th International Conference on Automation and Computing (ICAC)

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works (see: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/)..



≈ p
(
z̃s(t)− L̄s(t) < zs(t) < z̃s(t) + L̄s(t)|xm(t)

)
= p

(
H̄−

s (xm(t)) < ζs(t) < H̄+
s (xm(t))

)
= Φζs(t)

(
H̄+

s (xm(t))
)− Φζs(t)

(
H̄−

s (xm(t))
)

(13)

where Φζs(t)(·) stands for the cumulative distribution function

of the measurement noise ζs(t), H̄
−
s (xm(t)) = z̃s(t)−L̄s(t)−

hs(x
m(t)), and H̄+

s (xm(t)) = z̃s(t) + L̄s(t)− hs(x
m(t)).

On the other hand, it follows from Assumption 2 that

p(ZN
1 (t)|xm(t)) =

N∏
s=1

p (z̃s(t)|xm(t)) . (14)

Therefore, according to (10), (13) and (14), the importance

weight wm(t) associated with the mth particle xm(t) can be

updated by

wm(t) = wm(t− 1)
N∏
s=1

[
Φζs(t)

(
H̄+

s (xm(t))
)

−Φζs(t)

(
H̄−

s (xm(t))
)]

. (15)

In what follows, the developed encryption-decryption-based

particle filtering algorithm is detailed in Algorithm 1 for ease

of practical implementation.

Algorithm 1 Encryption-decryption-based particle filtering

algorithm under sensor resolution effects and randomly switch-

ing nonlinearities.

1: Initialization: Sample M particles from the prior density

px(0)(·) with equally assigned importance weights and set

the maximum recursive time instant as T .

2: for t = 1 to T do
3: Decrypt the received ciphertext B̄s(t) and accordingly

generate the measurement signal z̃s(t) with respect to the

sth sensor.

4: for m = 1 to M do
5: Draw new particle xm(t) from the mixture distri-

bution specified in (11).

6: Assign unnormalized importance weight w̄m(t) for

the newly generated particle xm(t) according to (15),

where the term on the left-hand side is substituted with

w̄m(t).
7: end for
8: for m = 1 to M do
9: Update the normalized importance weight by em-

ploying wm(t) = w̄m(t)
∑M

i=1 w̄i(t)
.

10: end for
11: Generate the state estimate x̂(t) based on the following

expression:

x̂(t) =
M∑

m=1

wm(t)xm(t).

12: Perform the resampling process if necessary (e.g.,

when the effective sample size is less than a given value).

13: end for

Remark 2: It should be noted that, in this paper, although

only two nonlinear functions are involved in the system

dynamics (1), the proposed sampling method with the form of

(11) can also be extended to handle the randomly switching

behaviors among multiple nonlinear functions. On the other

hand, if the expression of the likelihood function is modified

as follows:

p(ZN
1 (t)|xm(t)) =

N∏
s=1

(p (z̃s(t)|xm(t)))αs(t)

where αs(t) is a binary indicator variable characterizing

whether or not the ciphertext B̄s(t) is successfully received

without errors (as discussed in Remark 1), then the proposed

algorithm is also applicable to the scenario with transmission

errors or packet dropouts. In this sense, the developed algo-

rithm is quite general and exhibits widespread applicability.

IV. SIMULATION RESULTS

In this section, we would like to offer a numerical example

to illustrate the viability and effectiveness of the proposed par-

ticle filtering scheme under randomly switching nonlinearities

and sensor resolution effects.

Consider a stochastic nonlinear system described by (1) with

the following specifications:

F (t) =

[
0.85 −0.2
−0.2 0.76

]
,

f(x(t)) =

[−0.25 tanh(x2(t))
0.35 tanh(x1(t))

]
,

g(x(t)) =

[
0.32 tanh(x1(t))
−0.28 tanh(x2(t))

]
,

h1(x(t)) = 2 sin(x1(t)− x2(t)),

h2(x(t)) = −2 cos(x1(t) + x2(t)).

The process noise η(t) is considered to obey the Gaussian

mixture distribution with the following probability density

function:

p(η(t)) = (1− ρ)N (η̄1,Ση1) + ρN (η̄2,Ση2)

where ρ = 0.2 signifies the mixture weight. The mean param-

eters are set as zero vectors and the covariance parameters are

set as Ση1 = diag{0.022, 0.022} and Ση2 = diag{0.12, 0.12}.

The measurement noises ζs(t) follow the standard Gaussian

distribution truncated to the interval [−2, 2]. Other parameters

are chosen as ls = 0.2, ωs(t) = 1, K = 8, Λ = 4, γ̄f = 0.5,

M = 200, and T = 120. The initial state vector x(0) satisfies

the Gaussian distribution with mean [2,−2]T and covariance

diag{1.22, 1.22}.

The simulation results in one realization are displayed in

Figs. 1-4. Specifically, Figs. 1 and 2 show the trajectories of

the true state and the corresponding state estimate, and Figs. 3

and 4 depict the ideal measurements, actual measurements

and decrypted measurements. Clearly, the proposed particle

filtering algorithm is able to well track the state behaviors

in the presence of randomly switching nonlinearities, sensor

resolution effects, and decryption errors.
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Fig. 1: True and estimated trajectories of the first state component.
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Fig. 2: True and estimated trajectories of the second state
component.

0 20 40 60 80 100 120
-4

-3

-2

-1

0

1

2

3
Ideal measurement
Actual measurement
Decrypted measurement

Fig. 3: Ideal, actual, and decrypted measurements of the first sensor.
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Fig. 4: Ideal, actual, and decrypted measurements of the second
sensor.
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Fig. 5: Behaviors of RMSE1(t) under different algorithms.

In what follows, three filtering algorithms are compared to

demonstrate the superiority of the proposed scheme. These

algorithms include: 1) the proposed particle filtering algorith-

m (abbreviated as PPF); 2) the particle filtering algorithm

neglecting the presence of randomly switching nonlineari-

ties (abbreviated as PF-RSN); and 3) the particle filtering

algorithm neglecting the impact of sensor resolutions and

decryption errors (abbreviated as PF-SR-DE). The behaviors

of the root mean-square error (RMSE) over 50 Monte Carlo

simulations under different filtering algorithms are shown in

Figs. 5 and 6. Obviously, the proposed algorithm exhibits

superior filtering performance when compared with other two

algorithms. This is not unexpected since the influence of the

considered phenomena is specially compensated for in the

design of particle filter. The above results demonstrate the

effectiveness of the proposed particle filtering scheme.
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Fig. 6: Behaviors of RMSE2(t) under different algorithms.

V. CONCLUSIONS

In this paper, the secure state estimation problem has been

studied for a class of stochastic systems subject to randomly

switching nonlinearities, sensor resolutions and non-Gaussian

noises. In order to enhance the transmission security of

measurements, an encryption-decryption-based particle filter-

ing algorithm has been put forward, where the particles are

drawn from a mixture distribution and the importance weights

are calculated by taking into account the joint influence of

sensor resolutions and decryption errors. Finally, simulation

results have been provided to showcase the effectiveness and

superiority of the developed particle filtering algorithm. One

of the future topics would be extending the obtained results

by exploring other advanced encryption-decryption techniques

and analyzing the effect of decryption errors on the estimation

performance [22]–[24].
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