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Recursive Remote State Estimation for Stochastic
Complex Networks with Degraded Measurements
and Amplify-and-Forward Relays

Tong-Jian Liu, Zidong Wang,

Abstract—This paper is concerned with the remote state
estimation problem for stochastic complex networks under the
effects of degraded measurements and amplify-and-forward (AF)
relays. Three sets of random variables are employed to describe
the measurement degradation, the sensor transmission energy,
and the relay transmission energy, respectively. The measurement
from each node is transmitted to an AF relay and then forwarded
to the remote estimator to facilitate the state estimation. A novel
recursive estimator is constructed in the form of the extended
Kalman filter. An upper bound of estimation error covariance
is determined by solving Riccati-like difference equations based
on the statistical information of the random variables, and such
an upper bound is then minimized by choosing an appropriate
estimator gain. Furthermore, sufficient conditions are established
under which the estimation error is exponentially bounded
in the sense of mean square. Finally, the effectiveness of the
proposed estimation scheme is demonstrated by some numerical
simulations.

Index Terms—Complex networks, state estimation, amplify-
and-forward relay, degraded measurements, variance constraints.

I. INTRODUCTION

In the last few decades, complex networks have gained
considerable research attention due to their wide range of
practical applications such as smart grids [32], epidemic spread
[38], biological networks [20], sensor networks [51], and
failure propagation analysis in aero-engine [28]. Generally, a
complex network is constituted by a group of nodes, and the
dynamics of every node is affected by the neighboring nodes
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under a given topology [2]. So far, much research effort has
been devoted to different issues in complex networks including
modeling [7], stability analysis [16], and synchronization [53].

The availability of system state information is crucial for
monitoring and comprehending the operational conditions of
the considered systems. However, in the case of complex
networks, obtaining system states is often challenging due to
the complexities of the operating environments, limitations
of physical devices, and high costs associated with mea-
surements [5], [15], [27], [30], [47], [55]. So far, significant
attention has been devoted to the problem of state estimation
in complex networks [29], [39], [41], [56]. For instance,
a mixed compensation method has been proposed in [26]
to enhance the performance of set-membership filtering for
complex networks with communication channel constraints.
In [13], a minimum-variance estimator has been designed
for complex networks under signal transmission attacks. An
event-triggered recursive state estimation approach has been
developed to handle time-varying nonlinear complex networks
with the effects of quantization [34]. For complex networks
with randomly varying topologies, a finite-horizon estimator
has been constructed in [8] to simultaneously satisfy variance-
constrained and H, estimation requirements. Furthermore, in
[23], a recursive estimator based on the extended Kalman filter
(EKF) has been established for stochastic complex networks
with switching topology.

Degraded measurements, a common network-induced phe-
nomenon, frequently arise in signal transmissions due to
factors such as multi-path propagation/shadowing caused by
obstacles [4], limited bandwidth [11], and random fluctuations
in network environments [52]. These degraded measurements
effectively capture the non-ideal characteristics of measure-
ments transmitted through imperfect channels, making them
a topic of interest for many researchers [46]. For instance,
the problem of recursive minimum-variance state estimation
has been addressed in [25] for a class of two-dimensional
shift-varying systems subject to degraded measurements. In
the context of wireless localization, the target tracking prob-
lem has been investigated in [1] by considering the effects
of degraded measurements and quantization. Nonetheless, to
date, the consideration of degraded measurement in complex
networks has not been given adequate attention yet, and this
serves as one of the main motivations for our research.

It is important to note that most existing results on the
state estimation problem may not directly apply to situations
where measurements need to be transmitted over long-distance
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wireless channels. In such scenarios, the signal intensity of
measurements may attenuate during long-distance transmis-
sion due to limitations in transmission capacity [9]. To enhance
the quality of long-distance signal transmission, a common
strategy is to incorporate a relay within the transmission link.
Two widely adopted relay types are Decode-and-Forward (DF)
relays [48] and Amplify-and-Forward (AF) relays [3]. In AF
relays, the received signals from the source are amplified
before being forwarded to the destination. The AF relay
strategy is widely employed in practical applications, including
bent-pipe satellites, fixed microwave links, and cooperative
wireless communication systems [18], [31], [37]. Notably,
state estimation becomes particularly crucial when signals are
transmitted via AF relays, as the amplification process of the
relay introduces additional noise into the measurements.

Till now, systems employing AF relays have recently gained
considerable research attention [12], [40], [42], [45]. For
example, the effects of noise correlation on AF relays have
been investigated in [17] by focusing on optimizing the relay
gains to maximize the rate. A robust recursive state estimation
strategy has been proposed in [43] for estimating states in
a linear stochastic system under the influence of AF relays
with random transmission energy. However, to the best of the
authors’ knowledge, the state estimation problem for time-
varying stochastic complex networks with AF relays and
degraded measurements remains an ongoing research topic.
Hence, the main objective of this paper is to address this
research gap.

Motivated by the aforementioned considerations, the pur-
pose of this paper is to explore the remote state estimation
problem in a stochastic complex network with degraded mea-
surements and AF relays. Addressing this problem is techni-
cally challenging due to the influence of AF relays and de-
graded measurements on the relationship between the system
states and the received signal at the remote estimator. To tackle
this challenge, we propose a remote estimator based on the
EKF by taking into account the statistical characteristics of the
random transmission energy and the measurement degradation.
Furthermore, we analyze the estimation performance in terms
of the exponential boundedness of the estimation error in the
mean square sense.

This paper offers several key contributions, which can be
summarized as follows.

1) A detailed and comprehensive model is developed to de-
scribe the dynamics of a time-varying complex network
with degraded measurements and AF relays. This model
provides a solid foundation for addressing the remote
state estimation problem.

2) By solving Riccati-like difference equations, an upper
bound for the estimation error covariance is derived.
This bound serves as an important metric for evaluating
the performance of the proposed estimator.

3) The gain of the EKF-based estimator is designed recur-
sively in order to minimize the derived upper bound of
the estimation error covariance. This recursive design
approach enhances the efficiency and effectiveness of
the estimation process.

4) Sufficient conditions are established to ensure the expo-
nential boundedness of the estimation error in the mean
square sense. These conditions provide theoretical guar-
antees for the stability and reliability of the proposed
estimation scheme, an aspect not addressed in literature
such as [43].

Overall, a comprehensive framework is established in this
paper for addressing the remote state estimation problem in
a time-varying complex network with degraded measurements
and AF relays.

Notations. The notations used in the whole paper are
standard except where otherwise stated. R™ and R**Y denote
the z-dimension of Euclidean space and the set of x x y real
matrices, respectively. Z represents the non-negative integers.
AT and A~ denote the transpose and the inverse of matrix A,
respectively. || - || represents the spectral norm of matrices and
the Euclidean norm of vectors. For the symmetrical matrices
U and V, the notation U > V (respectively, U > V') means
that U — V is positive semidefinite (respectively, positive
definite). o denotes the Hadamard product which is defined as
[A o Bl;; £ a;; - bsj. The symbol @ represents the Kronecker

amB al,nB
product defined as A ® B = : : I

am1B GmnB
and 0 respectively represent the identity matrix and zero
matrix with appropriate dimensions. E{z} stands for the
mathematical expectation of the random variable z. coly{z;}
denotes the column vector [z =] ... z%]. 1, € R"™*" is
the all-ones matrix. diag{- - - } denotes a block-diagonal matrix
and diag {A;} represents the matrix diag{A;, Aa,..., An}.
tr{-} represents the trace of a square matrix.

II. PROBLEM FORMULATION

In this paper, we consider a class of discrete time-varying
stochastic complex networks coupled with N nodes. The
dynamics of the ¢th node is described as follows:

N
Tig 41 = f(@ip,) + Zwi,jFCL’j,tz + By wit,, (1)
=1
Yit, = 00, Cit, iy, + Vig,, 2
where t, € Z, is the time instant, z;;, € R" is the

system state of the ith node, y; ;. € R™ is the measurement
output, and w; ;, and v; ;_are zero-mean additive noises with
covariances ; ;. > 0 and R, > 0, respectively. The mean
value of the initial state 2;0 is Z;0. f(-) is a known and
continuously differentiable nonlinear function. B; ;, and C; ¢,
are known matrices.

In the network (1)-(2), the phenomena of degraded measure-
ment is characterized by the random variable ¢; ;_ € [0, 1] with
mathematical expectation ;. and variance aftz. Oir. (1=
1,2,...,N) are independent of the noises w;7tz and v, .
W = [wi;] € RN*N is the coupled configuration matrix of
the network with w;; > 0 (i # j). Specifically, w;; > 0 if
node j and node 4 are directly connected and w;; = 0 (i # j)
otherwise. W is symmetric with Z;V:l jAiWi] = Wi
I' = diag{g1,92,...,9n} is an inner-coupling matrix.
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Fig. 1. The diagram of state estimation for complex networks with AF relays

For the considered complex network, all sensors need to
send measurements to the remote estimator via the AF relay,
which can be seen in Fig. 1. The random transmission energy
of each sensor and AF relay are p,;;. € Rand p,;;, € R
(1=1,2,...,N), respectively. ps ; ;, and p,; ., are indepen-
dent of each other, the measurement degradation, and all the
noises.

The transmission model for the AF relay is described as
follows. The signals received by the ith AF relay at time ¢,

are denoted as d; ;, € R™ with
zt7 \/psthszt yzt?+<sztz7 (3)

where the subscript s represents the sensor-to-relay channel,
Hg;., € R™*™ is a diagonal matrix which characterizes
the channel coefficient of sensor-to-relay channel, and (s ; ¢,
stands for the zero-mean noise with covariance S ;. > 0.

The random transmission energy ps ;. € R is subjected to
the following probability distribution:

Prob{psi.. =0, Y =x", . n=12..p @

where ’9[3@,@ is the transmission energy, and X@t € [0,1]
are known scalars with Y7, X[shlt =1

The signals received by the ith relay are amplified and
forwarded to the destination for state estimation. The actual

received signal at the destination r; ;. € R"™ is expressed as:

Tit, = Qitor/Prit.Hrit.dit, + Crites )]
where the subscript r represents the relay-to-destination chan-
nel, a;;, > 0 is the amplification factor, H, ;; € R"™*™
is a diagonal matrix which characterizes the channel coef-
ficient of relay-to-destination channel, and ¢, ;;_ stands for
the zero-mean noise with covariance S, ;;, > 0. The random
transmission energy pr; ¢, is governed by

PrOb{pr,i,t, - E«TJ, tz} szt ) T = 1727"'71;[)7 (6)
[]

rit. is the transmission energy of the 7th case and

0< X[”]t < 1 are known scalars with ZT 1 X”]tz =1
Remark 1: The utilization of AF relays allows the trans-
mission of measurements from each node to the destination
through long-distance channels. The AF relays amplify the
strength of the measurement signals, enabling their successful
transmission. However, the presence of AF relays introduces
additional complexities to the remote state estimation problem.
Specifically, the AF relays introduce random transmission en-
ergies, denoted as ps ; ;. and p,.; ., , associated with the source
and relay nodes, respectively. These random transmission ener-
gies contribute to the variability in the received measurements
and need to be considered in the estimation process. Addition-

where 9.

ally, the AF relays introduce extra transmission noises, denoted
as (s4¢, and (¢, which further affect the quality and
reliability of the received measurements. Overall, the inclusion
of AF relays in the system introduces random transmission
energies and additional transmission noises, posing additional
challenges to the remote state estimation problem. These
challenges need to be effectively addressed to achieve accurate
and reliable estimation of the system states.

The following estimator is constructed for node 4:
N

Figortie. =F i) + O wii T, ©)
=1

Tig g1)t41 =Tiea1pe, T Kipor1 (i1 — @i 1
X Prito4+1Dsi,t +1M6 0. +1Hr i 6 41
X Hyio. 41056, 11%5 0. 41)e. ) (8
where Z;, |, is the estimate of x;;, at time t, with
Zj0/0 = Ti,0, and T; 411}, 1s the one-step prediction at time

_ o N [T _ s
tee Dsito+1 Zh:l Xs,ito+1 195,i,tz+1 and pri¢ 41 =
Y 1th +1 7l t.41- Ki¢.41 is estimator gain that

needs to be determined later.

Remark 2: The presence of degraded measurements and AF
relays adds complexity to the design of the remote estimator.
To effectively manage the stochastic nature arising from these
factors, the proposed remote estimator, as detailed in (7)
and (8), incorporates both the statistical information of the
degraded measurements and the transmission energy of the
sensors/relays. By leveraging statistical information, such as
the mean and variance of the degraded measurements, the es-
timator can address the effects introduced by the measurement
degradation. Similarly, incorporating the statistical information
of the transmission energy of the sensors and relays enables the

estimator to adapt to the varying energy levels in the system.
For node i, define the one-step prediction error and the
estimation error as T, 1]t = Tit, 41 — LToe +1)¢, and
Tip 41t 41 = TLt +1 = %44, 41|, +1. respectively. Then, we
have

Tig o, =f(Tie,) — Tt e.)

N
F(@ie )+ Z wigD (2.
=1

+ Bit. @i, - )
Using the Taylor series expansion around Z;; |, for
f(xit.), we have

F@ie,) = f(@ie ) + Aie. T e, +0o(Zie e, 1),
where

10)

Of(xit.)

Ai7tz - aIL t
lz

|331,tz =T, ty|ty

and o(|%;¢,;.|) represents the high-order terms of Taylor
series expansion. According to the analysis in [6] and [21],
the high-order terms can be written as follows:

o(|Zie_1e. 1) (1D
where L; ; is the problem-dependent scaling matrix, and R; ;
is the unknown time-varying matrix which represents the lin-
earization errors of dynamical error and satisfies N; ¢ thz <

=L Nig, Tit,|t,s
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1. It follows from (9)-(11) that
N

Fipoarfe. =(Aip. + L Rie )i + Y wig T,
j=1
= ja.pe.) + Bie. @i, (12)
According to (2), (3), (5) and (8), the estimation error of
tth node is of the following form:

Tig pifto+1 = — Kot 41000, 41Dri t . +1Ds it +1Hi 41

X Hyjoo 4 1Hs i +1Ci 0. 41)Ti 0. 41)¢.

+ Kt 41 t.4+1(Prito+1Dsit+1H4 ¢ +1

— /Proito 1N/ Psyisto+10i+1) Hyit 41

X Hy i1, +1Cit,+1%Ti 0,41 — Kit 11050, 41

X N/ Priito i1/ Ds,ito 1 0,1 Hs it 11

X Vit 41 — Ko, 415 0, 41/ DPrito+1Hr it 41
(13)

X Coyistat1 — Wit 41GCr i, +1-
For brevity, let us denote

Ty q1pe, = COWN{Zit, 4100, b Brurift,+1 = COIN{ i, w141
2, 2 coln{wie. b, Eroy1j.t1 2 cOln{Eir g1 i1ty
Frogrjee = colv{Bip 41}y v = coln{vi },
i, 2 coln{wiz. }, (s, 4 coln{Cs,i,t. }
Crt. 2 coly{Crin.}, A, 2 diagy{Adi},
By, £ diagy{Bii.}, Ci. 2 diagy{Ci.},
K. 2 diagy{Ki:.}, Le. 2 diagy{Lis.},
Q:. 2 diagy{Qir.}, Re. 2 diagy{Ris.},
R,, 2 diagy {Nis.}, Hre, 2 diagy{Hriz.},
Hs,, & diagy{Hs,it.},
Ay, 2 diag{ar. I, a2 1,...,ane I},
O, 2 diag{01,4. 1,024 1,...,0n:.1},
A, £ diag{pr,e, I, poe. 1, ...

z

7/"LN,tz‘[}7

= A q. _ _ _

Prit.+1 = diag{prat. 411, Prze.+1l, .. Prove. 411},

= A g _ _ _

Ps,to+1 = diag{ps 10,411, Ps,2.t.+11, . ., Ps, N +11

§ .

Pri.+1 = diag{y/Dr 1. +11, /Dr2toi1l, - /DN +11},

Potoi1 2 diag{\/Ps.1,t. 114, /Ds,2,6- 111, -, /Ps Nt 111}
Then, we have Ty_11;, = Ty, 11— %4, 41p¢, and Ty g, 41 =
T, 41 — Ty, 41pe,+1- With the definition of the Kronecker
Product, (12) and (13) can be rewritten as follows:

Tpoqrpe. =(Ar, + Lo Ny )T + (W D)2y,
+ By, @y, (14)
Ty g =0 = Ko paihe, 1 Pre, 11 Ps e 1™ 11 Hrp 11
X Hg . 110, 41)%¢ 41, + Koo, 11
X (Pr,tz+1ps,tz+1mtz+l - Pr,tz+lps,tz+1
X O, 41)Hrp 41 Hs 410 4120, 41 — K11
X A1 Prp 41 Potor i B o1 He r 1141
— Ky, 1M, 1P, 1 g, 11Gs 0,11
— Kt 141Gt 41 (15)
Denote the one-step prediction error covariance and the
estimation error covariance as P;_ 1, = E{jtﬁlltﬁizﬂ\t }
N Y =T rectivel
and Ptz+1|tz+1 = E{xtz+1‘tz+1xtz+1|tz+l}’ respectlvely.
The objective of this paper can be categorized into three
main aspects.

1) The -calculation of upper bounds for the predic-
tion/estimation error covariances is pursued. These
bounds provide valuable insights into the performance
and accuracy of the estimation process.

2) The design of the estimator gain is crucial to minimize
the upper bound of the estimation error at each time
step, and this involves determining an appropriate gain
that optimally balances the trade-off between estimation
accuracy and stability.

3) The analysis of the boundedness of the estimation error
obtained with the designed state estimator is conducted,
which aims to establish conditions under which the es-
timation error remains bounded, ensuring the reliability
and effectiveness of the proposed estimation scheme.

Some lemmas will be presented next, which will be ex-
ploited for further proceeding.

Lemma 1: [50] For the given matrices U, V, VW and R >
0 and an unknown matrix F which satisfies FFT < I, if
there exists an arbitrary positive constant v > 0 such that
U — WRWT > 0, then the following inequality holds

U+ VFIW)RU + VFW)T <UR™ —yWIW)ty”

A VA
Lemma 2: [19] Let A = [a;j]nxn be a real-valued matrix

and B = diag{by,bs,...,b,} be a diagonal random matrix.
Then, we have

E{b?}  E{biby} E{b1bn}
stsary < [P0 ml
E{bpbi} E{bnbs} E{éi}

where o is the Hadamard product.

Lemma 3: [22] Let A, B, C € R™™™ and B, C be symmetric
positive definite matrices. If C — ABAT > 0, then B~! —
ATCtA > 0.

Lemma 4: For matrices A, B, M and N with appropriate
dimensions, the following equations hold:

dtr{ AMB}

o T T
M =A'B*,
Otr{AMTB}
—om B4
T
8tr{(AMljc))//\\/lf(AMB) } o AT AMBNEBT.

Definition 1: [36] The stochastic process p,, is said to be
exponentially bounded in the sense of mean square if there
exist real numbers 1,15 > 0 and 0 < 93 < 1 such that

E{llon|?} < thllol*05 + ¥a
holds for every n > 0.

Lemma 5: [36] Let g, be a stochastic process. Assume
that there is a stochastic process V,,(o,) with @, v, 8 > 0 and
0 < a <1 such that

2”971“2 < Vn(@n) < ’aHQnHQ
, and

E{Vat1(ont1)lon} — Valon) < B — aViu(on)-

Then, the stochastic process g, is exponentially bounded in
the sense of mean square.
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III. MAIN RESULTS

A. Estimator design

In this subsection, we will firstly calculate the covariances of
the one-step prediction error and the estimation error. Then,
the upper bound of the estimation error covariance will be
minimized by selecting the proper estimator gain.

Let us investigate the one-step prediction error covariance
now. From (14), it follows that

Py, =B{F 10 7140}
=(Ar, + LR, + WRD) P,y (A + L Xy,
+WoT)" +B,.Q. Bl (16)

Proposition 1: The estimation error covariance satisfies the
following recursion:

Py i1t 41
=(I — Ky 1M 11Prp+1Ps b 1841 Hrp 1 Hs 1. 1
X Cy, 1) Py e (I — K 1M 1Pt +1Ps i 4120, 41
X Hyyov1Hg . 110 11)T + Ki 1A 41 (B, 41
° (Hr,tz+1Hs,tz+1ctz+1E{l'tz+1wt7;+1}C£+1Hs,tz+1
X Hypo )| N1 K 4 Ko Ay (€410 (Hopga
X Hyy 1R 1 Ho g 1o, 1) | M1 Ky + Ky
X A1 (D10 (Hrpo41Ss. 11 Hpg, 1)) A 1 K7
+ Ki1Sre 1K, (17)
where
B, 1 édiag{[p”‘,17tz+1p5;1’tz+1(0-%,tz+1 + /'L%tz+1)
- ﬁ%,l,tz+1ﬁ§,1,tz+1ﬂ%,tz+ﬂ1mv Pr2.t.+1
X Ps¢2,tz+1(05,tz+1 + ﬂ%,tﬁ-l)

[pr,N,tqul

—2

— Pr2t.+1
) 2

X Py ot +1M2.4,+1)Lms -+

X ( 2 2 )
Ps, Nt +1(ON ¢, 41 + BNt +1

_2 —2 2
_prNt +1Ps Nt +1#N,tz+1]1m}v

[7] el
Prit.+1 *ZXHt 101 1= 12,00 N,
T7=1
[}
. 1,2 N
pS”i’tz+1_Z Szt+1 cszrl’ t=15s e 1Y,
h=
Set.41 :dlagN{Ss,i,tz+1}7
A 7.
Srt.+1 :dlagN{Sr,i,tzH}a
as
i1 =€, 11 @ 1iy,
n s
Di,41 =0¢,41 Q Ly,
pr,l,tz+1ps,l,tz+lv lf h = lv
. N r i _
[€t1]yy £ Prowtat1Psht. 41Dt 11
XPs,lt,+15 if h#1,
TYRAIPY G YRS
=t =9 = - ;
kil Droht.+1Drlt.+1, A hF#L

Proof: According to (15), we have
Py 1)t 41
=(I — K¢.s1M.11Prt.+1Pstc 1 v1Hrt w1 Hs 1.1
X Croq1) P q1pe. (I = Kiopa A1 Pry, 1 Pas 11
X Qltz+1Hv‘,tz+1Hs,tZ+10tz+1)T + Ky 110,41

X B{Dt.11Hrt.41Hs 1. 11Cr, 1120, 117) 1 CF

X Hyy 1Hr, 1D M KL+ K 1A

X E{,ﬁr,tz+1753,tz+1Hr,tz+1Hs,tz+1Vtz+1Vf,7;+1

X Hs,tz+1H7’,t2+1755,t2+173r,tz+1}Atz+1K;I;+1

+ Kpo1 A B{Pys 1 Hyp o1 Cor. +1¢ 1 Hre

X Pri. +1}At +1At 11 Ko 4150, +118f 11 (18)
where 9. 11 2 Pri. i1 Pt 410041~ Proto41Ps 1% 41.

Noting that the random variables p;.;; 41, Ps,it,+1 and
Oit.+1, ¢ = 1,2,..., N are independent of each other for
each node i, we have

E{(\/Dri,t. 117/ Psit, 105441 — Driit.+1Ds,it, +1
X prig41)?}
_ 2 2
_prvlvtz+1p3717tz+1(Ji,tz—‘rl =+ /J’i,tz+1)
i=12. ..N.

- ﬁii.tz{»lﬁg,i,tz«l»l:uitz+17
Similarly, for ¢ = 1,2,..., N, we have
E{pr it 410500417 = Prit.+1Ps,it. +15
]E{p?",i,tz+1} = Priit +1-

Based on Lemma 2, it follows that

E{Yi.+1Hri 1 Hot. 41C 17 177, (1 CF 4

X Hey 11Hri, 197 11}
=B 110 (Hpp1Hop 1C 1 B{w 12f 3O 4y

X Hs,tz+1Hr,tZ+1)7 (19)
E{ﬁr,tz+1755,tz+1H7~,tz+1Hs,tz+1Vtz+1V;‘CH
X Hs,tz+1Hr,tz+1753,tz+175r,tz+1}
=C 410 (Hrp.+1Hsp.41Re+1Hsp 41 Hr g 41),  (20)
E {757’,t2+1 Ht. 1 Cs,tz+],<;1:t2+1H7‘,tz+]737’,15244 }
ZQtz-s-l o (Hr,tz+lss,tz+1Hr,tz+1)- 2D

By substituting (19)-(21) into (18), we have (17), and the
proof is complete. |

With (16) and (17), we can determine the one-step pre-
diction error covariance and the estimation error covariance
in a recursive form. Unfortunately, it is challenging to directly
utilize (16) and (17) to obtain the exact error covariances as the
presence of unknown terms, namely N;_and E{wterleH},
complicates the calculation process, where N, arises from the
linearization errors, while E{ xterlxz; 41} is introduced by the
stochastic degraded measurements. To address these difficul-
ties and alleviate the computational burden, it is advisable to
find and minimize an upper bound of the estimation error
covariance by appropriately designing the estimator gain at
each sampling time, which allows for a more practical and
efficient implementation.

Theorem 1: Consider the one-step prediction error covari-
ance P q;, in (16) and the estimation error covariance
P;_11)4.41 in (17). Let positive scalars €, 1 and 7, be given.
Consider the following discrete-time Riccati-like difference
equations:

=(A. + WD) (X, |t =y D)7 (AL + W
@) +~, 'Ly LT + B, Q.. Bl (22)

DT
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and
Stotiftot1 =0 — K418, 1Pt 41Ps .12 +1Hrp 41
X Hsp. 410 41) 8¢ 1. (L — K41 Ae 1
X ﬁr,terl,’ss,tz+1Qltz+1Hr,tz+1Hs,tz+1
X Croy))" + KoM 11 [Br 110 (Hrr
X Hs,tz+1Ctz+1Qtz+1CZHHs,tz-s-lHr.,tz+1)]
X A1 K+ KA1 [Cra
o (Hypt,+1Hst,41Re, +1Hst,41Hy 1, 41)]
X A1 KD+ KA1 (D01
o (Hr 4185t 11 Hppo 1) A 1 K4
+ Ktz+1Sr,tz+1Ktj;+17
with the initial condition Yg;g > Fyjg > 0, where
Qi1 2 (L4 er4)Seppee + (L e 4020011087 1y, -
If X, < 'yt_zll for all t, > 0, then X, |}, 41 is an upper
bound of the estimation error covariance P;_ 1}, 11 Moreover,

the trace of upper bound > L);, 41 can be minimized by
choosing the estimator gain K ; given as follows:

Ki. 41 = diag{K1 .41, Koy, 11, -
where
Ki,tz+1 éq’l,izztzjtutzC;,{_;_ﬂqs,tz-&-1Hr,7sz-',-19[1tz-~-1
X Pot.11Prt. 410, 4195 (P2 Ay 1197 ,) 7",

(23)

KN}, 28

D20 0 - 0 Inww 0 0 - 0],

) N——— N—————
i—1 N—1

(p2,i é[o 0 - 0 Imxm 00 --- 0}
i—1 N—i

R _ _
A1 =M 1 Pr 41 Pt +1%0, 1 Hr 1 Ho t 41
T
X Crp1 e 4116 O 1 Hs 41 Hrg 1 2Ae 1
X Poto1Priv1h, 41+ A1 [%terl
T
o (Hyp.41Hs. 410410, 11C; 1 Hop 41
X Hyg 1) A1+ A1 [€ 410 (Hpp 1
X Hyp y1 Ry 1 Ho g y1Hyrg 1) A1
+ A 1[Dr 010 (Hrp 41550 41Hpt 11)] A, 1
t Spaer. 25)
Proof: For the initial condition, it can be seen that Fyjp <
Yojo- Based on mathematical induction, if we can prove
Ptz+1‘tz+1 S Etz+1|tz+1 when aSSuming Ptz‘tz S Etzltz’ then
Y. +1j¢.+1 18 an upper bound of Py 1}y 11
Firstly, from (16), Lemma 1 and the assumption that
Py, £ X4, it follows that

P, <(Ap + L Ny, + WOT) S,y (Ar, + L, Ny,
+WoT) +B,.Q,.Bf
<A +WeD) (X, —vD) (AL +W
o)+, 'Ly LT + B, Q. Bf
:Etz+1|tz7 (26)

where 7, is a positive scalar satisfying 3; ;. < ’yﬁll. Then,

utilizing the elementary inequality
1 1

1
2 A _ s 2 A 2 -l
(Ef,z+1$tz+1|tz Etz+1'1’tz+1\f/z) (Etz+1~6tz+1|tz

1
_1 T

i
75t2+1$tz+1|tz) >0,

we have
~ T - =T
T 1|t To, e, T Teo4106. Tt 4108,
< ~ =T -1 4 T
SEtA1 T 1) Ty 1), T S 1T +110 Ty, 11y,
where €441 is a positive scalar. It follows naturally that
T
E{Itz+1xtz+1}
-1 s T
SO 4en+)Prsye. +(L+e )@ 412, a0, 27
Substituting (26) and (27) into (17) yields P, i ¢, 41 <

Y 1t t1-
Next, we aim to show that the trace of the upper bound
Y. +1jt.+1 1s minimized with Ky 1 chosen as (24). Rewrite

Y 41je, 41 In (23) as

Sttt +1 =Sto41pt. — Keo+18, 1Prt+1Pst. 1200, 41
X Hr,tz+1Hs,tz+1Ctz+12tz+1\tz - ZtlJrl\tz
X C£+1Hs,tz+1Hr,tz+1Q[tz+17ss,tz+173r,tz+1
X A1 K 0+ KD K 4, (28)

where A; i, is shown in (25). Substituting K; 1 =

Z£1(¢{1Ki,tl+l‘b2,i) into (28) gives rise to

tr {3, 11)e. 41}

N
: T 5 5
=tr{Se 11, = Y _(P] Kie.s1®2.0)Ar. 41 Prs 11Pat 41
=1

T
XU p1 e 1 Hsp 410 415 1, — 244110, Cp, 1

N
X HypoonHypo 1241 Ps i1 Pra A Y (@1
=1
N
x Kip+1®2)" + Z((ijKi,tl+1¢’2,i)Atz+l
i=1
N
X Y (@ Kjs. 4192,5)" ) (29)

=1
It is noted that
tr {((I){iKi,tz—&-l(I)Zi)Atz-kl((I){jKi,tz-Fl(I)Q,j)T} =0
for ¢ # j. According to Lemma 4 and taking the partial
derivative of tr{X; 1| 41} in (29) with respect to K i1,
we have
Otr {4141}
0Kt +1
== 201,510, O 1 Horo 1 Hy 1211

D D T T
X Pst.41Pri 410,41 P55 + 2810y

X Ky 41920 4197 ;. (30)
Since @171-(1){1 = Iyxn, it follows from
otr{%
r{éz+1'tz+1} =0 that
itat1

Kig, 41 =P1:% 1), Ctj;+1Hs,tZ+1Hr,tz+12(tz+1
X ﬁs,t2+1757',tz+1Atz+1(I)gti(q)2,iAtz+1(I)gti)717

which is identical with (24). The proof is now complete. N

Remark 3: Due to the presence of the unknown terms N;_q
and E{z;_y12{ |}, we seek to calculate an upper bound of
the estimation error covariance by employing the Riccati-like
matrix difference equations presented in Theorem 1, thereby
reducing the computational complexity. The estimator gain is
designed to minimize the trace of this upper bound, and the
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+ WD), . + E{$Z+1Zt_zl+l\tz+l

X N 1Pt 1Pst 18 1 Hy 41 Hs 1. 11C1. 1)
X (Ap, + LRy, + W RTD)Z pp, + th+1] | T4 e, }

FE{SF 15, Y [20 = KeoviAi

X Pr.41Ps. 1 1 Hr o 1 Hs i 11Cr11)
X (A, + L. X, + WD) Ty s, + Gy 41
+ 2% ] [Fe (34)
According to Assumption 1, the triangle inequality and the
property of the Kronecker product, we have

| A, + Le X, + W T <|| A, || + |LeRe. || + |[W T
<+ 1+ wg. (35)
From (22), (26) and (35), it follows that
th+1|tz :(Atz +W® F) (Et_jtz - ’Vtz[)i1 (Atz

+Wal) +47'L, LT + B,.Q,. BT

recursive approach is well-suited for online implementation at [2([ — Kt 41

each sampling instant.
The boundedness of the estimation error will be analyzed
based on Lemma 5 in the next subsection.

B. The boundedness of the estimation error
Assumption 1: For any time step ¢, =0,1,2,..., there are
real _positive constants f, i a, a, fzs, hg, hr, by 7, Oy, Vs,
4., %, ¢ 7,1, ¢ 5r, S, 5s. S5, |, W, g, i, and 1 such that
|l <7 LR | <Tal < Ayr <al,
c<||Cry1ll €Chd < Hgy 1 < hl,
hd<H.i 1 <hI s, <Ss; 1<35l,
s, 0 < Spy 41 <5.1,¢] < B QB <dql,
rl <Ry 41 <TL W] <o, [T <3,
pl < S Bl < FfI< S,

0, <o, 1 S0 T=1,2,..,9, = (Ar. + LeRe, + W?F) Zege. (Ar
st g .
ﬁs < 19[sf?l,tz+1 < 1987 h= 17 27 ey P + LtZNtz e F) + BtZQtZBtZ

q
+ 7| (A + LR
(77 +1+wg)?f (Ar. +Le.Re,
+WRT)S p. (Ae, + LRy, + W ®F)T.
(36)

Theorem 2: Consider the discrete time-varying stochastic
complex network in (1) with AF relays. Let the EKF-based
estimator be constructed as (7)-(8) for each node (1 =
1,2,...,N) with estimator gain K;_y; given in (25), and the
initial estimation error Z|o be bounded. Then, the estimation
error Iy |, is exponentially bounded in the sense of mean

Considering (23), we have
Yt > = Ky 1A, 11 Pr 1Pt 11

square.
. . x 2 H H C >
Proof: To prove the boundedness of the estimation error, tat 1t A1 s a4 tztl) tatlts
we choose X (I — Ky, 1M 1Pri 41 Ps . 4120, 41

X Hyp.41Hs i 41Cr1)"
Substituting (36) into (37) yields

q
Gl agrg| (7 e

3D 37

Since ¥ ), < 7{21[ for all ¢, > 0, we have ¥, ;. < f_'I
for all ¢, > 0.
Based on Assumption 1, we have

~ _ AT -1 =
Vi (Zh.pe.) = xtz\tzztz|tz$tz|tz-

Y > |1+

FHZ e e 1P < Vil (Eepe.) X Pri.i1Psic1. 1 Hrio 1 Ho . 1Cr 11)
- jiltzz;l\tﬁtzltz = fﬂ”ff’tzltz 1> (32 X (A, + LeRe, + WD F)thz\tz
Combining (14) and (15), we obtain X (Ap, + L. X, + WRT)
Ty 1)1 X (I = Ky, 1M, 1Prt.41Ps .11
=(I = K¢, 410, 1Pt 11Ps .12, 11 Hrr, 1 x Ay 1 Hrp 41 Hs . 11Cr 1) (38)
X Hs i, 110, 1) (Ag, + L, Ny, + W RT) &y 4, Based on Lemma 3 and (38), we have
+ T 1+ Gy, 41, (33 x-t 1 ; (A, + L. ¥, +WoI)T

> |1+ ——7
telts (i1 + 1+ wg)2f
X (I - Ktz-s-lAtz-s-lPr,tz+17)s,tz+191tz+1

Txy—1
x H"‘wtz+1H57tz+lctz+1) Et1+1|g2+1

X (I = K, 410, 41Prt.+1Ps 1. +1%2, 41

X Hyp o 1Hs .10 11) (A, + LR, + WRT).
(39)

where

Tiop1 2K A1 D1 Hre 1 Hs o1 Cr 1.1,

G121 — K 1M c1Prp 1Pt 141 Hrt 1
X Hy . 1Ce 1) Br.@i. — Ki 1 (M. 11 Prs 1
X rbs,tz+1Hr,tz+1Hs,tz+lVtz+1 + Atz+175r,tz+l
X Hyp 4+1Cs,t,+1 + Cr,tz+1)-

From (31) and (33), it follows that

B{Ve 1 (T, 10 +1) [T e, b
=& (Ar + LR, + WD) (1 = Ki 1M1

It is straightforward to see that
T -1 B >
EQ2%, 1% (I = KA 1 Pry 11 P12, 1

X Hypop1Hs 410, 41)(Ar. + LR, + W@ T)

! _ e X Ty |t | Te. e} = 0. (40)
X Prt.+1Ps o1+ 1Hp o 41Hs 4. 410t 11) With (18), we have
71 — —
XX 1 (I =Kt 410.41Pr i 41Pst. 11 St 1)t 41

X U g1 Hr g 1 Hs 10 11) (Ar, + L Ry, 2P, 1)t 41
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>Ktz+1Atz+1E{(75r,tz+1755,tz+1@tz+1 — Prt.+1Ps .41
X Ay 41)Hrt 41 Hs it 41C 1w, 171 CL p Ho e 1
X Hr,tz+1(75r,f,z+1fbs,tz+1@tz+1 — Pritot1Ps . +1
X Ay, 1) A 1 K
:E{th+13£+1},
and it follows readily that
E{‘I +1Zt +1t, +1§tz+1‘jtz|tz}

<B{T 1 (BT )) T Tl )
=nN. (41)

Considering that @,_, v;_, (s, and (¢ are all zero-mean
and independent of each other, we have

E{2&] %! e = Eepihe 1P Ps i
X U, 1 Hyp, 01 Hs 1,410, 11)(Ar, + Le Ny,
+W Tz, - |Ze.1e.} =0,
]E{QQSt +1Et )t +1‘Itz+1} =0.
From Assumption 1 and (24), we have

| K% 41|
< max || Kp. 11

(42)

. _
<max (|1, 1. O 1 Ho o1 1141 P41
_ . _ _
X Pr. 4184195 (P2ile, 1Pt 41 Ps i 412, 11
T
X Hrg, 1 st 1C 130, 1110 Cp, 11 Ho o1 Hrp 1
D D T \—1
X 2[t +1Ps.t. +1Prt +1At +1P3,) 7| <,

where £ £ ehyh,fin/0s\/0,a(a?0, 9, p>hih2c?) 7!
Similarly, the followmg relationship can be obtalned:

]E{Q5 t +1|t +1®tz+1}

—tf{zt e = KA 1P 1 Pop a1 Ar
X Hypo11Hy 1. 41Cr 1) B B{w. @/ } B (I — Ky 1
x Ni. 1Py, tz+1755,tz+191tz+1Hr,tz+1Hs,tz+1Ctz+1)T}
+tr{2f )t HKtz-s-lAtz+1E{75r,tz+1755,tz+1Hr,tz+1
X Hyy s1ve.c1v] 1 Hay. 1 1Pt 1 Prssi}
X A Ky {0, KA B{Pry 1
X Hy . +1Cs,tz+1(s,tz+1Hr,tz+17’r,tz+1}Atz+1Kth+1}
+ tr{zt +1]t., +1I{tz+1E{<r,tz+1CE:tz+1}I{tj;+1}

<nNqf~ Y1+ #%a29,9,h2h%E 52) + mN &% (a%0,9,h2
x h27 4+ a*0,h%5, +5,.) f L. (43)
Combining (34) and (39)-(713), we obtain
E{Ve, 41 @1 +0)|Tee e} — Vi (Tespe)
< =880 By r, B,
=—&Vi (Zr0.) +, (44)

where

€ 2q[(7+1+wg)’f+4q]

¢ AnN 4+ nNg(1 + &%a%0,9 E2E2_2_2)i71 +mNk?(@*d,
x OshZh2F + @9, h25, +5,) f .

Obviously, 0 < £ < 1. Based on Lemma 5, (32), and (44),
the estimation error Z;_|;_ is exponentially bounded in sense

of mean square. The proof is complete. |

Remark 4: It should be noted that the effects of AF relays
have been imposed on the received signals at the remote
state estimator. The influences from the AF relays, as well
as the stochastic noises, probabilistic degraded measurements,
and coupling dynamics, have been taken into consideration.
The statistical characteristics of random parameters have been
utilized in our proposed state estimators. Additionally, the
estimator gain has been determined by employing Riccati-like
matrix difference equations. Furthermore, an analysis has been
conducted to examine the boundedness of the estimation error
in the sense of mean square.

C. Effects of the sensor/relay transmission energies

Now, let us discuss the effects of the sensor/relay transmis-
sion energies on the estimation performance. For simplicity,
we assume that p, ; ¢+ 41 and p,; ;41 of every node obey the
same probability distribution law, i.e.,

=prt.+11, Pst.41 = Pst.+11,

:[pr,tz-ﬁ-lps,tz—b—lj +p_72«,tz+1ﬁ§,tz+1(1N - I)] ® ]-m,7
Di.41 =Prt+1] + Py 41 (v = )] @ 1. (45)

for every time step ¢,. Moreover, let us denote the variance of

VPrit.+1 (\/Ps,t.+1, respectively) as pri 11 (Ps,t.+1, respec-

tively), i.e.,
Pr.+1 ZE{(VPri.i1 — Pre.+1)° ),
Potor1 ZEB{(\/Potott — Psto+1)’}-

In this case, substituting K;_ 4 into (28), we have

tr{ztz+1|tz+1}

N
:tr{2t2+1|tz - Z Etz+1\tzCZHHs,tzHHr,tzHQ[tﬁl
i—1
X Ay 195 (P20 4195 ,) oAy 1
XUy y1Hr v 1Hs 4. 41CL 15 1 1e, <I’1T,¢<I’1.,i}7
where
Wy, +1 éAtz+12[tz+1H’r,tz+1Hs,tz+lctz+lztz+1|tz 024_1
X Hgy, 1 Hyg, 41,010, 41 + A 11 [0, 1
o (Hr,tz+1Hs,tz+ICtZ+IQtZ+ICE;+1Hs,tZ+1

Pri.+1
P

(46)

X Hyp.41)|Avs1 + (Brag1Pse1) [Atz+1

X l:[(p"‘ytz"!‘lps;tz"rl]+]3’I2",t;+1ﬁz,tz+1(1N — 1))
®1,]o0 (Hr,tz+1Hs,tz+lth+1Hs,tz+lHr,tz+1)]
X A1+ Aot [[(Prer L + 571 (In — 1))
@ L] o (Hrt 416041 Hr 1) A1

+ S’r,f,z—}—l )

Ot 41 Z(Prto41Pst.41) Prt.41Ps,e.1diag{(07 ;1
+ l‘/%,tz+1)1m7 (”%,tz+1 + /l’g,tz-',-l)]-mv cees
2 2 . 2
(ON 11 F BN 1) I} — diag{py ;1 1m,

/’Lg,tz+11m7 R N?V,tz+11m}~
Corollary 1: Assume that p, ;s 41 and p, ;¢ 41 of every
node obey the same probability distribution law. If P, 41
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increases or P, 41 decreases, then tr{¥; i), 41} is non-
increasing.

Proof: Taking the partial derivative of tr{X; i 41}
with respect to ;¢ 41, we have

Otr{%, 111641}

0ﬁ7‘,tz+1

N
:Ztf{EtZJrl\tzC£+1qu,tz+1Hr,tz+19ltz+1/\tz+1‘I)zT,i

=1

_ Oy, 11
x (B2, 4193 ,) 1@2,18_44’%1.1(@2,1%@“
’ Prt.+1 '

x @7 ) 0o A 1 41 Hrg 41 Ho g 41C 4150 1),
Note that

85D3tz+1

ODr,t,+1

D 1P 1 .
- ZMAQH [dlag{(a%,tz-s-l + /Litz+1)1m7
prt +1Ps 41
(02,t2+1 + ﬂ2,tz+1)1mv cey (UJQV,tZ+1 + /j‘?v,tfkl)lm}

o (Hrp 41Ho 1. +1Ce 1%, 1CL 1 Hoy 41 Hyy 41)]
+ (I @L) o (Hri.1Hop 1R 1 Hapoy1Hyppoy1)]

prt +1

X Ai41—2 At [(I ® 1m) o (Hrt. 41

2

prt +1p9f +1
Sr,tz+1 < 0.

(48)

XSs,tz+lHr,tz+l)]Atz+1 =
Py, +1pb ta+1

Based on (47) and (48), it follows that
atr{Et +1\t +1}

3[% t.+1
Similarly, taking the partial derivative of tr{X; 4i);, 11}
with respect to p,.¢_ 41, we have
otr{%; 1), +1}
apr t.+1
Based on (49) and (50), it can be seen that tr{3;_ |1 1}
is non-increasing if p,. ;1 increases or p, ;1 decreases. The
proof is complete. ]
Corollary 2: Assume that p, ;¢ 41 and p, ;¢ 41 of ev-
ery node obey the same probability distribution law. Then,
tr{¥; t1js.4+1} is non-increasing when . 1 increases or
variance pPs ¢, +1 decreases.
Proof: The proof follows a similar approach to that of
Corollary 1 and, for the sake of conciseness, it is omitted
here. [ ]

(49)

(50)

IV. ILLUSTRATION EXAMPLE

In this section, a simulation example is presented to demon-
strate the effectiveness of the proposed recursive EKF-based
estimator in (8)-(9).

Consider a complex network with four nodes where the
coupling matrices are shown as follows,

03 01 01 01
0.1 —03 0.1 0.1 0.2 0

=101 01 -03 o1 ’F_{o 0.2]'
01 01 01 -03

For each node, the nonlinear function f(xz;.,) is chosen as

tanh(0.252}'] ) — 0.22!"
f(@iz.) = 2] s
tanh(().oa:i’tz)

DN »
where z;;, = [x” y Tiy 1 is the system state of ith
node. For i = 1,2,3,4, x“]) and x% are uniform dis-
tribution over the following intervals: T[ll]o € [1.3,2.3],
ey € [-0.75,0.25], b} € [1.25,2.25], xb) € [~0.7,0.3],
o € [1.25,2.25), 2lf) € [~0.75,0.25), xg”o € [1.3,2.3],

and l‘z[l]o €

[-0.75,0.25], respectively. The covariances of
zero-mean Gaussian white noise w;;, (1 = 1,2,3,4) are
Q1. =0.04, Q2. =0.05, Q3,, =0.02, and Q4,, = 0.01.
The covariances of zero-mean Gaussian white noise v; ;.
(1=1,2,3,4) are Ry, =0.02, Ry, =0.03, R3,;, = 0.01,

and R4, = 0.05. The matrices B, ;, and C;,, are set as

_ [0.7—0.2sin(t.) _ [o.07
Bl,tz - |: 04 :| aBZ,tZ - |:021:| 3
0.02 0.01
[0 03 } Bag. = [—0.17} ’
Ciy. =[0.95 0.35],Co,, =[0.94 045],

Cse, =[0.89 0.4] ,Cyy, =[0.9 0.6].

To depict the estimation performance, the mean square
estimation error of the ith node MSE;, is introduced as

follows:
Cgn Z IS — & 117,

where € represents the eth 31mu1at10n test. The sum of
the MSE; ;. (z = 1,2,3,4) is denoted by SMSE;_, i.e.,
SMSE;_ S S MSE; L

The channel coefficient matrices are given as H, ; ;. = 0.36
and H,;;, =0.36 (¢ =1,2,3,4). Set the amplification factor
asa;y, =12 (@ =1,2,3,4). (i, and ¢, ;¢ are zero-mean
Gaussian white noises with covariances S, ;;. = 0.25 and
Ssit. = 0.25 (1 = 1,2, 3,4), respectively. Other parameters
are given as 71 = [1.8 —0.25]", Zoo = [1.75 —0.20]7,
Tao = [1.75 —0.25]", Zu0 = [1.8 —0.25]", S =
diag{5,5,4,4,10,10,10,10}, L., = diag{0.03,0.03},
Ly, = diag{0.01,0.03}, L3 ;. = diag{0.03,0.01}, Ly, =
diag{0.01,0.03}, v+, = 0.02, &;, = 0.2, M = 200.

To verify the effectiveness of the proposed estimation al-
gorithm and investigate the effects of the stochastic variables
on the estimation performance, comparative simulations are
presented in different cases. For the degraded measurement,
the probability distribution laws of 6; ;. (: = 1,2, 3,4) in four
cases are listed in Table I.

For the random transmission energy of sensors and relays,
the probability distribution laws of py ;. and p.;; (i =
1,2, 3,4) in four different cases are presented in Tables I and
II1, respectively.

Now let us consider the probability distribution law for
0;+., in Case DO, ps ;. in Case SO, and p, ;. in Case RO,
respectively. According to (22) and (23) in Theorem 1, the
upper bound of the error covariance and the estimator gain
K, 41 (1 =1,2,3,4) can be obtained recursively. Figs. 2-5
show the actual states and their estimates achieved by using

MSE; ;. £
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TABLE 1
The probability distribution law for 6; ;. (: =1,2,3,4)

Case DO Case D1
Oit, 0 05 1 0+, 0 0.17 0.33
Prob{f1,¢,} 0.05 0.05 09 Prob{f;, } 0.05 0.05 0.9
Prob{62,,} 0.05 0.1 0.85 Prob{f2,;: } 0.05 0.1 0.85
Prob{fs, } 0.03 0.17 0.8 Prob{fs;,} 0.03 0.17 0.8
Prob{04.: .} 0.1 0.1 0.8 Prob{fs; } 0.1 01 08
Case D2 Case D3
0;i¢, 0.33 0.5 0.67 0;¢. 0.67 0.83 1
Prob{f1:,} 0.05 0.05 0.9 Prob{fi:,} 0.05 0.05 0.9
Prob{f2,:,} 0.05 0.1 0.85 Prob{f2:,} 0.05 0.1 0.85
Prob{63,,} 0.03 0.17 0.8 Prob{fsz,, } 0.03 0.17 0.8
Prob{0s:,} 0.1 0.1 08 Prob{fs; } 0.1 0.1 0.8
TABLE 11

The probability distribution law for ps ;. (i = 1,2,3,4)

Ps.ists T 15 2 25 3 6 65 7 12125 13
Prob{ps ..} mS002025055 0 0 0 0 0 0 0 0
Prob{ps ;. }inS1 0 0 020250550 0 0 0 0 0

Prob{ps,i+, tinS2 0 0 O O 0 020250550 O O
Prob{ps ;. }inS3 0 0 0 O O O O 0 020.250.55

the proposed EKF-based estimator for nodes ¢+ = 1,2,3,4,
respectively. The log(MSE; ;_) of four nodes and their upper
bounds are depicted in Fig. 6 under M = 200 iterations. It
can be concluded that the proposed EKF-based estimator can
track the actual states well, even when the received signals are
influenced by the degraded measurements and the AF relays.

To examine the influences of degraded measurements, the
estimation performances in Cases D1-D3 are compared in
Fig. 7 with the sensor transmission energy in Case SO and
the relay transmission energy in Case RO. It can be seen that
the estimation errors become smaller with a larger value of
0;.+., which indicates less severe degraded measurements.

In order to show the effects of the random sensor transmis-
sion energy on the estimation performance, we compare Cases
S0-S3 with the degraded measurements in Case DO and the
relay transmission energy in Case R0O. From Fig. 8, we can see
that the estimation error in case S3 is generally the smallest.

Similarly, to discuss the effects of the random relays trans-
mission energy, we compare Cases RO-R3 with the degraded
measurements in Case D0 and the sensor transmission energy
in Case SO. From Fig. 9, it can be asserted that the estimation
error is the smallest in case R3 with the biggest average
transmission power at the relays. It means that the increase of
the transmission energy can lead to more accurate estimation
results, which is consistent with the analyses in Corollaries 1
and 2.

TABLE 111
The probability distribution law for p,; ¢, (i =1,2,3,4)

Prit. T 15 2 25 3 6 65 7 12125 13
Prob{p, i+, ] mR0 03035035 0 0 0 0 0 0 0 0
Prob{p,;+.}inRI 0 0 030350350 0 0 0 0 0
Prob{p,i+.}inR20 0 0 0 0 030350350 0 0
Prob{p,;+.}inR3 0 0 0 0 0 0 0 0 03035035

Fig. 2. State 1., and its estimate &1 ;|4
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Fig. 3. State 2.+, and its estimate £3 ¢,
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ttime step

Fig. 4. State z3,¢, and its estimate &3 |4,

Estimated state &, . ------- Actual state .},

o 50 100 150 200 250 300
t time step

Estimated state 5 | === Actual state 25 |

0 50 100 150 200 250 300
t /time step

Fig. 5. State z4,¢, and its estimate &4 ;|4

V. CONCLUSIONS

This paper has explored the state estimation problem in
complex networks with degraded measurements and AF re-
lays. To address the challenges posed by degraded measure-
ments and random transmission energy, EKF-based estimators
have been developed for each node in the network. The upper
bound of the estimation error covariance has been derived and
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Node 1 gain. Sufficient conditions have been established to ensure
i “‘“““SE“"”""”"““‘\‘ﬁf\“f’\‘,‘v, ] the exponential boundedness of the estimation error in the
50 W e m w mean square sense. The effectiveness of the proposed estimator
‘7”)‘":7‘; : ‘ has been validated through numerical simulations. In future
; research, it would be valuable to extend the proposed method-
e W i ology to more general systems that incorporate additional
T p—TTE ] network-induced phenomena [10], [14], [24], [33], [35], [44],
NI e 1491, 1541
Node 4
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