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ABSTRACT 

Nitrous oxide (N2O) emissions from wastewater treatment facilities pose a significant 

environmental challenge. This study proposes a novel data-driven modelling approach 

using emerging neural ordinary differential equations (NODE) to capture the complex 

dynamics of N2O production in typical activated sludge processes. 

The author established an experimental simulation platform, based on the BSM1 

(benchmark simulation model no.1) plant, with the ASMG1 (activated sludge model 

for greenhouse gases no.1) mathematical model. This platform generates simulated 

monitoring data and validates the model. The author then proposes NODE-based 

models, analogous to traditional biokinetic models, capable of capturing the complex 

dynamics of N2O generation through learning from process monitoring data. However, 

two primary challenges need to be overcome. 

First, to address inherent stiffness in the underlying dynamics, the author proposes a 

paired normalisation method for training stability. Additionally, an incremental 

training strategy was introduced, starting from a collocation method to establish a 

robust foundation, followed by refinement using the direct NODE method for 

enhanced accuracy and efficiency. 

Second, as monitoring data in wastewater plants typically contain confounding factors 

from continuous influent variations and operational adjustments, representing 

exogenous excitations to the dynamics to be captured, therefore the training 

procedures was extended to account for these external influences. 

The approaches were validated on the established platform. The results demonstrate 

the effectiveness of the NODE-based model in capturing the intricate dynamics of N2O 

production in wastewater treatment. This research presents a promising new avenue 

for data-driven modelling of N2O in wastewater treatment, with the potential to improve 

process optimisation and emission control strategies. 

Keywords: neural ordinary differential equations (NODE), N2O emissions, wastewater 

process, data-driven modelling. 
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Chapter 1 Introduction 

1.1 Greenhouse gas emissions in wastewater treatment 

Despite net zero initiatives implemented in many countries, the global warming trend 

remains alarmingly accelerated. The World Meteorological Organization (WMO) 

reported that human-induced climate change reached new heights in 2024, with a 

global mean near-surface temperature of 1.55 ± 0.13 °C above the 1850-1900 average 

(WMO, 2025). This underscores the urgent need to fast-track commitments to slash 

greenhouse gas (GHG) emissions and achieve carbon neutrality. 

Wastewater treatment, a critical process in modern urban infrastructure, is essential 

for protecting public health and the environment. These treatment processes involve 

a complex series of physical, chemical, and biological operations designed to remove 

contaminants from municipal and industrial wastewater before it is released back into 

the environment. However, they also contribute to GHG emissions, including direction 

emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the 

treatment processes, and indirect emissions from plant operation, primarily electricity 

consumptions. 

CO2 emissions stemming from oxidation of wastewater organic matters are excluded 

from GHG inventory by Intergovernmental Panel on Climate Change (IPCC), due to 

their biogenic origins and non-anthropogenic contribution (Bartram et al., 2019). 

CH4 is mainly generated under anaerobic conditions where organic contaminants 

decompose. The pathway involves various types of anaerobic microorganisms 

through four conversion steps: hydrolysis, acidogenesis, acetogenesis, and 

methanogenesis, same as processes in anaerobic digester (Zhan, Hu and Wu, 2018). 

N2O is a potent greenhouse gas, with an estimated global warming potential 265 times 

greater than CO2 over a 100-year period (Bartram et al., 2019). Furthermore, it is a 

detrimental substance and the largest donator to ozone depletion. In wastewater 

treatment, N2O is a by-product of biological nitrogen removal processes, typically from 

nitrification and denitrification, with more complicated mechanisms than CO2 and CH4 

generation (Zhan, Hu and Wu, 2018). N2O emissions exhibit significant spatiotemporal 

variations, with magnitudes ranging from negligible to 25% of total influent nitrogen 

(Ye, Porro and Nopens, 2022). 



Chapter 1 Introduction 

2 

In wastewater treatment plants (WWTPs), N2O emissions can account for up to 80% 

of overall carbon footprint (Daelman et al., 2013), positioning WWTPs as the sixth 

largest contributor of global emissions (Tchobanoglous et al., 2014). Figure 1.1 

illustrates the percentages of the U.S. GHG emissions by gas and N2O emissions by 

source based on the data from 1990 to 2022. Similarly, in the UK, the water sector 

accounts for nearly a third of the industrial and waste process GHG emissions (Water 

UK, Ricardo and Mott MacDonald, 2020). 

 

Figure 1.1 U.S. GHG emissions by gas (left) and nitrous oxide emissions by source 

(right), based on data of 1990-2022, adapted from (U.S. EPA, 1993) 

As the development of green electricity advances, direct emissions of N2O and CH4, 

particularly N2O, will become the dominant source of carbon emissions from WWTPs, 

presenting a significant environmental concern (Valkova et al., 2020). Therefore, 

studying and modelling N2O production is of great significance for minimizing the 

carbon emissions of WWTPs. 

1.2 Conventional N2O production modelling 

Conventional models for wastewater processes, including those that account for N2O 

generation, are typically biokinetics based (Ye, Porro and Nopens, 2022), such as 

well-established Activated Sludge Model Series (ASM1, ASM2, and ASM3) and their 

extensions. These models employ systems of ordinary differential equations (ODEs), 

often represented in the form of Gujer matrix by water professionals (Henze et al., 

2000). They describe the biochemical dynamics among biomass and substrates based 

on discovered mechanisms and pathways, utilising numerous kinetic coefficients and 
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stoichiometric parameters that require calibration and validation to fit the local 

conditions. 

Research advancements have led to mechanistic models incorporating three major 

pathways of N2O production: 1) hydroxylamine oxidation, 2) nitrifier denitrification, and 

3) heterotrophic denitrification. When properly calibrated, these models can estimate 

site-specific emissions and inform mitigation strategies. 

Despite their advantages, current mathematical models face challenges in fully 

elucidating the complex biological interactions and operational factors that govern N2O 

emissions, due to key knowledge gaps that remain, including: 

● The abiotic reaction pathway is still under debate (Stein, 2011; Su et al., 2019), 

● The role of archaea and certain microorganism species requires further 

clarification (Castellano-Hinojosa et al., 2018), 

● The extent of contributions from different production pathways under varying 

conditions is not fully understood. 

N2O production during nitrogen removal is a complex and transient process involving 

multiple interconnected pathways. These processes are influenced by several factors, 

including microbial community composition, substrate availability, dissolved oxygen 

levels, nitrite concentrations, pH, and temperature. However, these factors exhibit 

significant variability due to ever-changing influent characteristics and periodic 

operational adjustments, introducing uncertainty into the modelling process. The 

intricate interplay of these factors makes it challenging to develop comprehensive 

mathematical models that accurately capture the full range of N2O dynamics and 

variations. 

Furthermore, applying mathematical models necessitates validation and calibration of 

numerous parameters, a challenging and time-consuming process due to inherent 

non-linearity, processes interdependency, and measurement uncertainty (Belia et al., 

2009). Collecting reliable and accurate data, particularly from specifically designed lab 

tests and field measurements, can be difficult and often expensive. Additionally, these 

calibrations may not be easily transferable when scenarios change. 

In summary, the practical application of the conventional mathematical modelling for 

N2O prediction requires both accurate elaboration of the underlying mechanisms and 
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extensive experience and knowledge about process control. However, the increasing 

complexity of industrial processes often makes such prerequisites difficult to satisfy in 

real-world settings. Despite ongoing research to address these issues, the limitations 

discussed hinder the accuracy, reliability and adaptability of conventional mechanistic 

models, highlighting the need for innovative approaches or alternatives to modelling 

N2O in wastewater treatment. Data-driven approaches, for instance, have the 

capability to overcome some of these limitations by learning complex relationships 

directly from process monitoring data (Haimi et al., 2013; Pisa, Santín, et al., 2019; 

Sun and Ge, 2021), potentially capturing dynamics that are difficult to describe using 

traditional mathematical modelling. 

1.3 Data-driven modelling 

Data-driven modelling offers a promising alternative for wastewater treatment. These 

approaches have gained significant traction in recent years due to advancements in 

data collection, storage capabilities, particularly computing power and sophisticated 

artificial intelligence (AI) algorithms. 

A variety of data-driven techniques can be employed in wastewater treatment, ranging 

from soft sensor and fuzzy logic systems to earlier machine learning algorithms such 

as principal component analysis (PCA), random forests, genetic algorithms, support 

vector machine (SVM), multi-layer perceptron (MLP). More recently, applications of 

deep learning (DL) have proliferated, including convolutional neural network (CNN), 

recurrent neural network (RNN), generative adversarial network (GAN), transformers, 

reinforcement learning (RL), outperforming these earlier methods (Asadi and 

McPhedran, 2021; Ho et al., 2021; Khalil et al., 2023; Khalil et al., 2024). 

Modern WWTPs can collect a wealth of information as online sensors continuously 

monitor various parameters, including influent composition, dissolved oxygen levels, 

and effluent quality. Today, many WWTPs are equipped with not only online sensors 

at different locations of the process stages (see Figure 1.2), but also solenoid 

actuators which can be controlled remotely. SCADA system samples and collects the 

readings at a frequency like 5, 10 or 30 minutes, as well control signals are sent to 

executors from SCADA as necessary. The WWTP data are often formed in time series, 

reflecting yearly, seasonal, and diurnal cycles with some variations and turbulences 

brought by environmental and operational changes. 
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Figure 1.2 Illustration of typical WWTP instrumentation and monitoring parameters 

The collected data serve as a rich resource for uncovering hidden patterns and 

relationships within the treatment process. Data-driven approaches leverage these 

large datasets, develop predictive models without relying solely on first-principles or 

mechanistic understanding. They offer several advantages over conventional 

mechanistic models (Khalil et al., 2023): 

● Reduced reliance on mechanistic understanding: Data-driven models do not 

require a complete understanding of the underlying biological and chemical 

pathways, which can be incomplete in complex systems. 

● Identification of complex relationships: They can uncover intricate, non-linear 

relationships between process variables that may be difficult to capture with 

traditional models. 

● Real-Time Process Monitoring: Data-driven models have the potential for real-

time predictions and control, allowing for proactive adjustments to optimise 

treatment efficiency and minimize environmental impact. 

● Adaptability: These models can adapt to changing operational conditions and 

influent characteristics by continuously learning from new data or through 

retraining. 

While data-driven models hold significant promise, there are challenges to consider (Newhart 

et al., 2019): 

In  u nt
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● Data Quality and coverage: The success of data-driven models hinges on the quality 

and representativeness of the available data. Ensuring comprehensive and accurate data 

collection is crucial. 

● Model Interpretability: Understanding the rationale behind the model's predictions can 

be difficult due to their black-box nature. 

As sensor technology and data management practices continue to evolve, data-driven 

models are poised to play an increasingly important role in the future of wastewater 

treatment. 

1.4 Neural ODE approach 

Neural ordinary differential equations (NODEs) emerge as a powerful technique for 

modelling dynamic systems within the realm of data-driven approaches. This method 

leverages the strengths of both deep neural networks (DNNs) and traditional 

mechanistic models. DNNs provide exceptional expressiveness, allowing NODEs to 

capture complex non-linear system dynamics. Meanwhile, the mathematical 

foundation of differential equations within NODEs offers valuable insights into the 

underlying physical relationships that govern these dynamics. This marriage of DNNs 

and differential equations positions NODEs as a promising tool for modelling dynamic 

systems such as those encountered in wastewater treatment. 

While neural networks are often criticized for their black-box nature, NODEs offer a 

level of interpretability through their connection to differential equations. The learned 

dynamics can be analysed in terms of rate of change and influences between variables, 

potentially revealing interpretable causal mechanisms within the system (Zou et al., 

2024) 

Unlike traditional machine learning methods constrained by fixed time steps, NODEs 

excel at learning and representing complex temporal dynamics, regardless of irregular 

or variable time intervals frequently encountered in actual data (Kidger et al., 2020). 

The continuous nature allows NODEs to provide solutions at any arbitrary time point. 

This capability makes them well-suited for modelling wastewater systems with such 

real-world complexities, allowing them to effectively adapt to the inherent variability 

and non-linearity present in wastewater treatment processes. 
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While mechanistic modelling heavily relies on clear understanding of the underlying 

dynamics and explicit mathematical expressions, conventional machine learning 

methods like MLPs and RNNs act as black boxes, merely mapping the input and 

output from large datasets without offering logical or causal interpretations. NODEs 

bridge this gap by learning and extracting physical laws directly from monitored data, 

creating continuous time series models that handle data with irregular intervals. 

Moreover, NODEs often require less data compared to traditional methods and can 

incorporate prior knowledge, further enhancing the interpretability of their outcomes. 

Figure 1.3 compares the paradigms of these different modelling approaches. 

 

Figure 1.3 paradigms of different modelling approaches 

This study explores the capabilities of NODEs for data-driven modelling of wastewater 

processes, particularly focusing on N2O production. Given the relative novelty of 

NODEs, a dedicated chapter later will introduce their fundamental concepts. 

1.5 Research objectives 

The overarching aim of this research is to develop and implement NODE-based 

models for data-driven modelling of wastewater treatment processes, with a specific 

focus on nitrous oxide (N2O) production dynamics. This aim encompasses 

investigating and understanding the underlying mechanisms of N2O emissions and the 

interactive effects of operational interventions, as well as addressing challenges 

related to system stiffness, core algorithms, and training stability and efficiency. 

To achieve this aim, the following objectives have been established: 

● Objective 1: Elucidate the mechanisms and pathways of N2O emissions in 

wastewater treatment processes and identify the factors influencing N2O 

production and emissions. Critically review the progress and limitations of current 
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mathematical and data-driven modelling approaches for N2O production in 

wastewater treatment. 

● Objective 2: Develop solutions to address the issues of system stiffness, training 

instability and divergence in NODE models. Ensure that the learning process can 

be conducted smoothly and successfully. 

● Objective 3: Develop and train NODE models using the proposed methods and 

coded algorithms, ensuring they can produce reliable and accurate results. 

● Objective 4: Validate and test the developed models under various scenarios, 

evaluate and improve their performance, analyse their limitations, propose 

improvement methods, and identify future research directions. 

Through the accomplishment of these objectives, this research is expected to 

contribute to the development of a practical and effective solution for modelling N2O 

production in wastewater treatment. This will ultimately aid in minimizing GHG 

emissions and pave the way for the creation of low carbon "smart plants" in water 

industry. 

1.6 Research methodology overview 

This research aims to develop and validate a data-driven NODE model for predicting 

N2O production in WWTPs. The methodology undertaken in the research 

encompasses several key phases, each designed to address specific objectives and 

contribute to the overall goal of improving N2O modelling in wastewater treatment. 

1) Critical literature review 

The foundation of this research is built upon an extensive and critical literature review, 

which serves multiple purposes: 

● Understanding N2O production mechanisms: A thorough exploration of existing 

literature will be conducted to understand the complex mechanisms and pathways 

of N2O production, including the influence of operational factors. 

● Mathematical and data-driven modelling assessment: The current state-of-the-art 

in both mathematical and data-driven modelling approaches for N2O emissions 

will be evaluated, identifying their strengths, limitations, and potential for 

improvement. 
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● NODE theory and applications: A detailed analysis of NODE theory, its 

advancements, and existing applications will be undertaken. Given the relative 

novelty of NODE, a particular focus will be placed on identifying potential gaps 

and opportunities for contribution. 

● Continuous Literature Tracking: To ensure the research remains aligned with the 

latest developments, a systematic approach to tracking new machine learning 

algorithms and their potential application to N2O modelling will be implemented. 

 

2) Experimental simulation platform 

Following the literature review, the research will focus on establishing a robust 

experimental simulation platform. 

The decision to conduct research on a simulation platform, rather than using real-world 

data, not only because lack of real-world data and research time is limited, but also for 

the reason that NODE is a new approach, necessitating to start from simulation firstly 

and prove its feasibility before applying to real-world cases. In fact, the use of a 

simulation platform, rather than real-world data, offers several advantages: 

● Provides controlled conditions for testing and validation. 

● Allows for the generation of large, diverse datasets that might be impractical to 

obtain from real WWTPs. 

● Enables the exploration of extreme or rare scenarios that are critical for 

comprehensive model training. 

● Facilitates easy comparison with mathematical results to verify performance. 

Key aspects of the simulation platform include: 

● Simulation platform development: An experimental simulation platform will be 

constructed to replicate the complex dynamics of WWTPs. This platform will 

enable controlled experimentation and comparison of model performance against 

simulated and potentially real-world data. 

● Data generation: The simulation platform will generate synthetic datasets that 

accurately represent the relevant processes and parameters influencing N2O 

production. This will provide a robust foundation for model development and 

testing. 
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● Validation framework: The developed platform shall be validated by reference 

database system or assessed by wastewater theory and practice. The platform 

also provides comparison of simulation results with established mathematical 

models to ensure accuracy, and metrics for assessing the fidelity of the simulation 

to real-world scenarios. 

● Addressing stiffness issue: It is crucial to overcome the obstacles associated with 

training NODEs such as stiffness. This is the most challenging and time-

consuming phase, requiring significant coding effort and trial-and-error testing and 

improvement based on the experience built upon failures. The solution will be 

embedded in the platform to facilitate future experiments. 

 

3) Model development and training 

With the stiffness issues addressed, the research will proceed to construct and 

implement NODE models for N2O production prediction: 

● NODE model construction: Multiple NODE models will be developed, 

incorporating different training datasets and architectural variations to explore the 

optimal model configuration. 

● Model optimization: The developed NODE models will undergo extensive training 

and tuning to achieve acceptable levels of accuracy in predicting N2O production. 

This process will involve careful selection of hyperparameters, feature engineering, 

and evaluation metrics. 

 

4) Model Validation and Evaluation 

● Scenario Testing: The trained NODE models will be rigorously tested under 

various simulated scenarios to assess their predictive performance and 

generalizability. 

● Strengths and Weaknesses: A comprehensive analysis of the models' strengths, 

weaknesses, and limitations will be conducted to identify areas for improvement 

and potential applications. 

● Future Directions: Based on the evaluation results, recommendations for future 

research and development of NODE-based N2O modelling will be provided. 
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The methodological framework and hypothesised workflow for this research are 

summarised in Figure 1.4. 

 

Figure 1.4 Overview of research methodology framework and workflow 

1.7 Thesis outline 

The thesis comprises seven main chapters and an extensive appendix. 

Thesis structure outlining the objectives addressed is summarised in Table 1.1. 
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Table 1.1 Thesis structure outlining the objectives addressed 

Chapter Paper Title Objective met 

1  Introduction  

2  Literature review on N2O production modelling 1 

3  NODE fundamentals 1 

4  Experimental simulation platform 2 

5 Yes Tackling stiffness for NODE models 2 

6 Yes Implementation of NODE modelling of N2O in 
BSM1 plant 

3 

7  Discussion and conclusion 4 

8  Appendix 3 

9  Reference  

Each chapter is briefed as follows. 

Chapter 1: Introduction 

● Highlight the concern over N2O emissions and their contribution to GHG 

production in wastewater treatment. 

● Brief conventional N2O modelling methods, introducing data-driven NODE 

approach. 

● State the research objective, methodology and thesis outline. 

Chapter 2: Literature review on N2O production modelling 

● Discuss mechanisms and pathways of N2O emissions in wastewater treatment. 

● Review existing knowledge of factors influencing N2O production and emission. 

● Analyse current methods for N2O production modelling by both mathematical and 

data-driven approaches. 

● Critically evaluate the limitations of existing methods and justify the use of NODE 

models. 

Chapter 3: NODE fundamentals 

● Explain the core concepts of NODE models. 

● Brief the detailed techniques and training steps of NODE models for dynamic 

system modelling. 

Chapter 4: Experimental simulation platform 
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● Describe the development or selection of the simulation platform and mathematic 

model used for your experiments. 

● Explain how the platform is configured, and how to organise, process influent data 

and generate training data including N2O. 

● Validate the data generation process by comparing reference results and 

wastewater theory. 

Chapter 5: Tackling stiffness issue for NODE training 

● Define the concept of system stiffness and its challenges in training NODE models. 

● Explain the specific methods or techniques proposed and implemented to address 

stiffness issue. 

● Validate the effectiveness of proposed approach and its impact on training stability. 

Chapter 6: Implementation of NODE model in BSM1 plant 

● Explain how the NODE model is constructed and trained in the settings of BSM1 

plant. 

● Present the results of model training with different data. 

● Evaluate the model’s performance and analyse its behaviours in different 

scenarios. 

Chapter 7: Discussion and Conclusion 

● Discuss the overall performance of the NODE model in simulating N2O production. 

● Analyse the limitations of the model and potential areas for improvement. 

● Summarize the key findings of the research and its contribution to N2O modelling 

in wastewater treatment. 

● Conclude by suggesting potential future research directions based on your 

findings. 

The appendix contains detailed training loss and logs, extended results and analyses, 

comprehensive plots and visualisations, additional information and amendment. It 

complements the main body of the thesis but doesn't directly affect the core arguments 

or flow of the discussion.  

Due to their length, code scripts are not included in the thesis itself but are provided 

separately in electronic form for accessibility. 
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1.8 Significance of the research 

This research has the potential to significantly advance data-driven modelling of N2O 

production in wastewater treatment facilities. Some of its key impacts include: 

● Improved accuracy and generalizability: By leveraging process monitoring data 

and the flexibility of NODEs, the model could achieve more accurate predictions 

of N2O productions compared to traditional methods. Additionally, the model's 

ODE-based nature may allow for better generalizability to different plants and 

operating conditions. 

● Enhanced understanding of N2O production: NODEs can capture the complex 

relationships between various process parameters and N2O emissions. This 

deeper understanding will provide valuable insights into the key factors influencing 

N2O production, allowing for targeted mitigation strategies. 

● Practical process optimization: The model's ability can be used to optimize 

wastewater treatment processes. This optimization can minimize N2O emissions 

while maintaining treatment efficiency, leading to more sustainable and 

environmentally friendly practices. 

● Paving the way for broader applications: The success of this data-driven 

approach using NODEs could pave the way for its application to other 

environmental modelling challenges within wastewater treatment, or beyond the 

water field, such as chemical engineering, biomedical processes, environmental 

science, etc. 
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Chapter 2 Lit r tur  r vi w: Mod   in  o  N2O 

 roduction in w  t w t r tr  t  nt  roc      

Nitrous oxide (N2O) is a byproduct of biological nitrogen removal processes in 

wastewater treatment. The transformation of nitrogen within these processes is highly 

complex, extending far beyond the conventional paradigms of nitrification and 

denitrification. This complexity is largely due to the intricate microbial ecology involved 

in these processes (Khalil et al., 2024). 

While nitrification and denitrification are the two primary routes traditionally recognized 

in nitrogen removal, recent research has revealed the existence of multiple "side 

routes" or ancillary bioreactions occurring simultaneously (Ye, Porro and Nopens, 

2022). These additional pathways contribute to the overall nitrogen transformation 

process and N2O production, making the system more complex than previously 

understood. 

Identifying these complex microbial interactions and the various pathways of nitrogen 

transformation is crucial for developing effective strategies to mitigate N2O emissions 

from wastewater treatment plants. 

2.1 Mechanism and pathway 

The main methods for identifying N2O sources include isotope technology, inhibitor 

methods, and enzyme assays.  

● Isotope technology involves either adding isotopes or measuring the natural 

abundance of stable nitrogen isotopes (15N) in wastewater to trace N2O origins 

(Wunderlin et al., 2013; Gruber et al., 2022). While the potential of isotope 

technology is widely recognized, its application in quantifying N2O generation 

pathways within wastewater treatment systems requires further refinement, 

particularly in terms of accuracy and reliability (Duan et al., 2017). 

● Inhibitor methods involve adding specific denitrification inhibitors to identify N2O 

sources (Yang et al., 2022). By selectively inhibiting specific microbial processes, 

researchers can determine the relative contributions of different pathways to N2O 

production. 
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● enzyme assays analyse the activity of denitrifying enzymes to determine N2O 

origins (Yang et al., 2022). This technique provides insights into the microbial 

processes responsible for N2O generation. 

Despite extensive research in the last decades, the mechanisms underlying N2O 

generation in wastewater treatment are still not fully understood, with multiple 

generation pathways being interrelated and often context dependent. There remains 

ongoing debate regarding the dominant N2O sources. Additionally, the relative 

contribution of different N2O generation pathways can vary significantly under different 

processes and operating parameters (Ye, Porro and Nopens, 2022). As shown in 

Figure 2.1, to date, the widely accepted four major pathways are (Chen et al., 2020): 

i) hydroxylamine (NH2OH) oxidation or nitrifier nitrification (NN) pathway,  

ii) nitrifier denitrification (ND) pathway,  

iii) heterotrophic denitrification (HD) pathway, and 

iv) abiotic pathway. 

 

Figure 2.1 possible pathways of N2O emissions from biological wastewater treatment 

process 

During nitrification, ammonia (NH3) is oxidized to nitrate (NO3
-) in two sequential steps: 

first to nitrite (NO2
-) via the intermediate hydroxylamine, primarily by ammonia-
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oxidizing bacteria (AOB), and then to NO3
- mainly by nitrite-oxidizing bacteria (NOB). 

Other microorganisms capable of participating in the nitrification process include 

ammonia-oxidizing archaea (AOA), heterotrophic nitrification-aerobic denitrification 

(HN-AD) bacteria, and complete ammonia oxidation (comammox) microorganisms 

(YU et al., 2019). During denitrification, NO3
- is converted to nitrogen gas (N2) through 

intermediates NO2
-, NO, and N2O. Microorganisms involved include heterotrophic 

denitrifying bacteria (HDB), AOB, anaerobic ammonium oxidation (anammox) bacteria, 

and HN-AD bacteria (Hao et al., 2023). However, actual reactions might be incomplete, 

and numerous side reactions can occur, reducing nitrogen removal efficiency and 

generating N2O emissions. 

2.1.1 Hydroxylamine oxidation pathway 

Hydroxylamine is an obligatory intermediate in the initial step of nitrification, where 

ammonia is converted to nitrite (Tchobanoglous et al., 2014). The production of N2O 

via NH2OH oxidation pathway primarily stems from transient NH2OH accumulation 

caused by imbalances in the ammonia oxidation enzyme turnover (Cantera and Stein, 

2007). During this process, AOB derive energy by oxidizing NH3 to NO2
− through a 

two-step reaction: first, NH3 is oxidized to NH2OH by the enzyme ammonia 

monooxygenase (AMO), followed by the oxidation of NH2OH to NO2
− by the enzyme 

hydroxylamine oxidoreductase (HAO) (Domingo-Félez and Smets, 2019). 

The electron flux generated from NH2OH promotes NO2
− reduction. Nevertheless, due 

to metabolic imbalances, a portion of the accumulated hydroxylamine can undergo 

further oxidation to nitric oxide (NO), which is subsequently reduced to N2O by NorS, 

a homologue of nitric oxide reductases (Stein et al., 2007). This mechanism is widely 

accepted for the hydroxylamine oxidation pathway of N2O production. An alternative 

hypothesis proposes that conversion of NH2OH by HAO to a nitrosyl radical (NOH), 

which subsequently decomposes chemically to form N2O (Poughon, Dussap and Gros, 

2001). 

Traditionally, NH2OH was considered the sole intermediate. However, recent findings 

suggest that NO may also play a role (Caranto and Lancaster, 2017). Notably, while 

the aforementioned reactions predominantly occur under aerobic conditions during 

nitrification, NH2OH oxidation can also take place under anaerobic conditions. The 
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direct conversion of NH2OH to N2O by cytochrome P460 under anaerobic conditions 

has been reported (Caranto, Vilbert and Lancaster, 2016). 

Studies have demonstrated that the NH2OH oxidation pathway represents a 

substantial N2O source in diverse wastewater treatment systems (Law et al., 2012; 

White and Lehnert, 2016; Wrage-Mönnig et al., 2018), including conventional activated 

sludge (CAS) processes (Tumendelger, Alshboul and Lorke, 2019), the oxidation tank 

of anoxic/aerobic processes (Guo et al., 2021), granular partial nitrification-anaerobic 

ammonia oxidation processes (Liu et al., 2020), and membrane aerated biofilm 

reactors (Liu et al., 2022). However, the relative contribution of this pathway to overall 

N2O emissions can vary significantly depending on operational factors, such as 

dissolved oxygen concentration, ammonium loading, and pH (Law et al., 2012; 

Domingo-Félez and Smets, 2019). Further research is essential to elucidate the 

precise mechanisms governing N2O formation through this pathway under different 

operating conditions. 

2.1.2 Nitrifier denitrification pathway 

Nitrifier denitrification, primarily carried out by ammonia-oxidizing bacteria (AOB), 

involves the reduction of NO2
- to N2O via NO without requiring organic carbon. This 

pathway is particularly prevalent under low DO conditions, where nitrite substitutes 

oxygen as the electron acceptor (Zhu et al., 2013). Their biochemical reactions can 

occur through two primary routes: 

● Direct conversion of NO2
- to N2O: catalysed by isomeric nitrite reductase (Nir) 

(Casciotti and Ward, 2001). 

● A two-step process: where NO2
- is first converted to NO by nitrite reductase, 

followed by the reduction of NO to N2O by NO reductase (Nor) and cytochrome 

c554 (Beaumont et al., 2004; Kozlowski, Price and Stein, 2014). 

A key distinction of AOB is their lack of N2O reductase (NOS) in their genomes, 

preventing the further reduction of N2O to N2 (Kozlowski, Kits and Stein, 2016). 

Consequently, N2O is the terminal product of this pathway. Nitrifier denitrification 

occurs concurrently with ammonia oxidation under aerobic conditions and is amplified 

in microaerobic environments. 
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The precise role of nitrifier denitrification in AOB remains unresolved. Several 

hypotheses have been proposed: 

● Energy Conservation: Under oxygen-limited conditions, AOB might utilize nitrifier 

denitrification to generate some energy for survival (Kozlowski, Price and Stein, 

2014). 

● Electron Dissipation: High NH4
+ influxes can lead to an excess of electrons. 

Nitrifier denitrification could act as a mechanism to dissipate these electrons 

(Domingo-Félez and Smets, 2019). 

● Competition Control: By reducing NO2
-, AOB can gain a competitive advantage by 

limiting the substrate for NOB (Poth and Focht, 1985). 

● Detoxification: Nitrifier denitrification might serve as a detoxification mechanism 

for AOB to remove excess NO2
-, which can be toxic at high concentrations 

(Wrage-Mönnig et al., 2018). 

● Intermediate oxidation byproduct: Some studies suggest N2O production could be 

an unintended consequence of AOB using NO as an electron sink to accelerate 

NH2OH oxidation during aerobic metabolism (Yu et al., 2018). 

The relative dominance of nitrifier denitrification versus other N2O production 

pathways (e.g., NH2OH oxidation) is influenced by the concentrations of various 

nitrogen species in the wastewater. Studies employing nitrogen isotope fractionation 

analysis have indicated that nitrifier denitrification can be a dominant pathway for N2O 

production in systems treating domestic wastewater (Wunderlin et al., 2013). However, 

under conditions of high ammonia and low nitrite concentrations, the hydroxylamine 

oxidation pathway may become increasingly relevant (Kozlowski, Kits and Stein, 2016). 

Nitrifier denitrification has been identified as a significant source of N2O emissions in 

various wastewater treatment processes (Kim et al., 2010; Zhu et al., 2013), including 

sequencing batch reactors (SBRs) (Li et al., 2019; Liu et al., 2021), oxidation ditches 

(Zhou et al., 2019), partial nitrification-anammox (Wan and Volcke, 2022), and the 

anoxic phase of anaerobic/aerobic processes (Guo et al., 2021). Recent research 

suggests that different operational conditions may favour the growth of specific AOB 

strains with varying N2O production pathways (Stein, 2011). For instance, Law et al. 

(2012) found that in an enriched AOB culture adapted to high levels of NH4
+ and NO2

- 

(∼500 mg N/L) and low DO concentrations (0.5-0.8 mg O2/L), the majority of N2O 
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production was attributed to the chemical breakdown of the nitrosyl radical formed 

during NH2OH oxidation to NO2
-. 

While the understanding of nitrifier denitrification has improved, further research is 

imperative to elucidate the precise mechanisms controlling this pathway's activation 

and its contribution to N2O production under varying operational scenarios. 

Additionally, exploring the impact of AOB strain diversity on N2O production pathways 

could provide valuable insights for developing more effective mitigation strategies in 

wastewater treatment systems. 

2.1.3 Heterotrophic denitrification pathway 

Heterotrophic denitrification is carried out by a diverse group of facultative 

heterotrophic microorganisms capable of using O2, NO2
-, or NO3

- as electron 

acceptors to degrade carbon sources and generate energy for growth (Mills, 2019). 

This pathway involves the sequential reduction of NO3
- to N2 through a series of 

enzymatic reactions, with NO2
-, NO, and N2O as intermediate products. The enzymes 

responsible for these transformations are nitrate reductase (NaR), nitrite reductase 

(NiR), nitric oxide reductase (NOR), and nitrous oxide reductase (NOS), respectively 

(Hochstein and Tomlinson, 1988). Different redox active metals catalyse specific 

enzyme for their reactions, for instance, molybdenum for NO3
- reduction, iron or 

copper for NO2
- reduction, iron for NO reduction, and copper for N2O reduction 

(Richardson et al., 2009). 

While the complete denitrification pathway culminates in the production of harmless 

N2, incomplete denitrification can lead to N2O accumulation. Several factors contribute 

to this: 

● Specific microbial group: Not all denitrifying bacteria possess all the necessary 

enzymes for complete denitrification. Some lack NOS, resulting in N2O as the end 

product (Hallin et al., 2018; Gao et al., 2019). 

● Inhibitive environmental conditions: Factors such as low dissolved oxygen, high 

organic loading, and pH can inhibit NOS activity, leading to N2O accumulation 

(Pan et al., 2012). 
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● Unbalanced enzyme kinetics: The relative rates of the different enzymatic steps 

can influence the accumulation of N2O. For instance, if NOS activity is slower than 

NOR activity, N2O can accumulate (Pan, Ni and Yuan, 2013). 

Notably, heterotrophic denitrification holds a unique position in wastewater treatment 

processes as the only known biological sink for N2O (Chen et al., 2020). This 

characteristic presents a promising opportunity for developing methods to reduce N2O 

emissions by leveraging this natural sink (Zhou et al., 2022). Recent research has 

focused on identifying and harnessing new bacterial strains with enhanced N2O 

reduction potential, such as heterotrophic aerobic denitrifying bacteria (Rajta et al., 

2020). These novel strains offer innovative approaches for mitigating N2O emissions 

in wastewater treatment systems. 

While heterotrophic denitrification serves as a potential sink, studies have also 

demonstrated that this pathway can be a significant source of N2O production in 

certain processes, such as the anoxic zone of aerobic plus anaerobic ammonia 

oxidation biofilters and nitrifying biofilters (Humbert et al., 2020; J. Li et al., 2022). 

2.1.4 Abiotic pathway 

In addition to biological processes, abiotic reactions contribute to N2O production in 

wastewater treatment, often interacting with biotic mechanisms (Soler-Jofra et al., 

2016). 

The most prominent abiotic pathway involves the reaction between NH2OH and nitrous 

acid (HNO2) (Falcone, Shug and Nicholas, 1963; Anderson, 1964). This process, 

along with other generated intermediates, such as HNO and ONNO, through 

spontaneous reactions or under catalysis of substances like manganese oxide and 

ferrous ions, can lead to N2O generation (Yamazaki et al., 2014). Key reactions include: 

𝐍𝐇𝟐𝐎𝐇 + 𝐇𝐍𝐎𝟐 → 𝐍𝟐𝐎 + 𝟐𝐇𝟐𝐎 Equation 2-1 

𝟐𝐍𝐇𝟐𝐎𝐇 + 𝐎𝟐 → 𝐍𝟐𝐎 + 𝟑𝐇𝟐𝐎 Equation 2-2 

𝟒𝐍𝐇𝟐𝐎𝐇 → 𝟐𝐍𝐇𝟑𝐍𝟐𝐎 + 𝟑𝐇𝟐𝐎 Equation 2-3 

𝟐𝐍𝐇𝟐𝐎𝐇 + 𝟐𝐌𝐧𝐎𝟐 + 𝟒𝐇+ → 𝐍𝟐𝐎 + 𝟐𝐌𝐧𝟐+ + 𝟓𝐇𝟐𝐎 Equation 2-4 
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Other notable pathways include the reduction of HNO2 by Fe2+ and the oxidation of 

NH2OH by Fe3+ (Terada et al., 2017). These reactions are significantly influenced by 

pH and substrate concentration, with N2O production increasing under acidic 

conditions and high nitrite concentrations (Zhu-Barker et al., 2015; Su et al., 2019). 

Intermediates such as nitroxyl (HNO) and hyponitrous acid (H2N2O2) can also 

contribute to N2O generation through various reactions (Yamazaki et al., 2014): 

The abiotic pathway, though typically accounting for a smaller portion of total N2O 

production, can become substantial under certain conditions, particularly in the 

presence of heavy metals (Zhu-Barker et al., 2015). Under these conditions, the 

contribution of abiotic reactions to overall N2O emissions can increase significantly 

(Harper et al., 2015). 

2.2 Factors influencing N2O production 

Researchers have conducted extensive laboratory testing (Chen et al., 2020; Guo et 

al., 2021; Lee, Lin and Lei, 2022) and full-scale measurements in WWTPs (Foley et 

al., 2010; Pan et al., 2016; Song et al., 2020; Khalil et al., 2024) to elucidate the 

relationships between operational parameters and N2O production. Various analytical 

techniques, including "black box" approaches (Song et al., 2020), sensitivity analyses 

(Lancioni et al., 2024), and principal component analyses (Bellandi et al., 2020), have 

been employed in these investigations. The studies have identified numerous 

parameters influencing N2O production, such as nitrogen load (Song et al., 2020), DO 

level (Aboobakar et al., 2013; Zhu et al., 2013), carbon-to-nitrogen (C/N) ratio (Yan et 

al., 2021), nitrite concentration (Cantera and Stein, 2007; Terada et al., 2017), 

𝟐𝐇𝐍𝐎𝟐 + 𝟒𝐅𝐞𝟐+ + 𝟒𝐇+ → 𝟒𝐅𝐞𝟑+ + 𝐍𝟐𝐎 + 𝟑𝐇𝟐𝐎 Equation 2-5 

𝟒𝐅𝐞𝟑+ + 𝟐𝐍𝐇𝟐𝐎𝐇 → 𝟒𝐅𝐞𝟐+ + 𝐍𝟐𝐎 + 𝐇𝟐𝐎 + 𝟒𝐇+ Equation 2-6 

𝐍𝐇𝟑𝐎𝐇+ + 𝐇𝐍𝐎 → 𝐍𝟐𝐎 + 𝐇𝟐𝐎 + 𝐇𝟑𝐎
+ Equation 2-7  

𝟐𝐇𝐍𝐎 → 𝐍𝟐𝐎 + 𝐇𝟐𝐎 Equation 2-8  

𝟐𝐇𝟐𝐍𝟐𝐎𝟐 → 𝐍𝟐𝐎 + 𝐇𝟐𝐎 Equation 2-9  
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circulation ratio (Zhang et al., 2024), solids retention time (SRT) (Zhou et al., 2019), 

pH (Pan et al., 2012), temperature (Li et al., 2019), and salinity (Zhao et al., 2014). 

Among these, DO levels, carbon source availability, and microbial community 

composition have been recognized as primary determinants of N2O production in 

wastewater treatment processes (Mannina et al., 2018; Lee, Lin and Lei, 2022; Hao 

et al., 2023). 

It is important to note that these factors are intricately interconnected. For example, 

DO concentrations and the availability of carbon and nitrogen sources affect NO2
- 

accumulation, while recycle ratio and feeding regimes influence carbon and nitrogen 

availability. Collectively, these factors impact microbial community distribution, 

enzyme activity, and ultimately influencing N2O generation (Chen et al., 2019; Duan 

et al., 2020; Ye, Porro and Nopens, 2022; Hao et al., 2023; Khalil et al., 2024). This 

complex interplay of variables underscores the multifaceted nature of N2O production 

in wastewater treatment processes and highlights the need for a comprehensive 

approach to mitigate its emissions. This section summarizes the impacts on N2O 

generation from three categories: wastewater characteristics, process parameters, 

and microbial populations. 

 

Figure 2.2 Categories of factors influencing N2O generation in wastewater treatment 
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2.2.1 Wastewater characteristics 

Wastewater characteristics significantly influence N2O generation and emission. 

Despite identical treatment processes, substantial variations in N2O emissions can 

occur between different wastewaters (Song et al., 2020). Key characteristics include 

carbon and nitrogen sources, temperature, pH and so on. As essential nutrients for 

microbial growth, carbon and nitrogen sources impact microbial communities and 

enzyme activity within the process. Temperature, pH, and other wastewater 

components affect microbial activity and chemical reactions, indirectly influencing N2O 

production. 

2.2.1.1 Carbon source 

The carbon source in wastewater significantly influences N2O production by 

modulating denitrifying microbial growth and enzyme synthesis. Insufficient carbon 

supply can lead to elevated N2O emissions due to incomplete denitrification, while 

excessive organic loading can stimulate AOB activity, thereby increasing N2O 

production. The specific carbon source also affects denitrification efficiency and N2O 

emissions (Chen et al., 2019). 

Studies on anaerobic-anoxic-oxic (A2O) (Yan et al., 2021), membrane bioreactor 

(MBR) (Mannina et al., 2018), and SBR (Zhao et al., 2022) processes have identified 

dissolved inorganic carbon concentration and specific ammonia oxidation activity are 

two parameters most closely related to N2O emissions (Song et al., 2020). A strong 

positive correlation exists between these parameters. High dissolved inorganic carbon 

levels enhance AOB activity, consequently increasing N2O emissions. Similarly, 

elevated organic loads are associated with higher N2O emissions (Thwaites et al., 

2021). Within anaerobic zones, low carbon-to-nitrogen ratios can decrease the 

heterotrophic denitrification rate, promoting nitrate accumulation and the activity of 

denitrifying phosphorus-accumulating organisms, thus promoting N2O production 

during phosphorus removal (Mannina et al., 2018). 

Acetic acid as a carbon source minimizes N2O emissions while maximizing total 

nitrogen removal. Conversely, mixed acids promote AOB growth, leading to increased 

N2O production (Yan et al., 2021). Although propionic acid results in lower N2O 
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emissions compared to acetic acid, denitrification efficiency is reduced by 40% (Pan 

et al., 2013; Li, Wang and Jia, 2022). 

2.2.1.2 Nitrogen source 

The concentration of various nitrogenous compounds in wastewater significantly 

influences N2O production by affecting multiple N2O generation pathways and altering 

microbial populations. The concentrations of nitrogen sources, particularly NH4
+ and 

NO2
-, strongly impact N2O production (Law et al., 2012; Terada et al., 2017). As 

substrates for the hydroxylamine oxidation pathway and the nitrifier denitrification 

pathway, increased concentrations of NH4
+ and NO2

- substantially promote N2O 

production. These compounds also directly facilitate the abiotic production of N2O 

(Harper et al., 2015). 

The nitrogen loading of the influent affects the relative abundance of microbial 

communities, thereby influencing N2O production. In low-nitrogen wastewater 

treatment, N2O-reducing denitrifiers dominate the denitrifying community. Conversely, 

as influent nitrogen strength increases, N2O-producing denitrifiers gradually become 

dominant. Furthermore, the shift from AOA to AOB as the primary ammonia oxidizers 

with increasing influent strength also promotes N2O production (Sun et al., 2022). 

2.2.1.3 Salinity 

Wastewater salinity can induce changes in microbial metabolic enzymes and cell 

structure, significantly impacting denitrification efficiency and GHG emissions. The 

relationship between salinity and N2O production follows a non-linear trend, initially 

increasing and then decreasing as salinity rises. This trend is significantly negatively 

correlated with the nitrogen removal rate (Shao et al., 2020). 

In salinity shock experiments, increased salinity inhibits the activity of AMO and HAO, 

thereby slowing the ammonia oxidation rate and NO2
- formation. Simultaneously, 

nitrous oxide reductase is inhibited, leading to an increase in N2O production via the 

hydroxylamine oxidation pathway and the heterotrophic denitrification pathway (P. Li 

et al., 2023). 

Under long-term salinity acclimation, the abundance of NOB decreases while that of 

AOB increases. This shift in microbial community composition results in increased N2O 
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production through the nitrifier denitrification pathway and decreased N2O production 

via the heterotrophic denitrification pathway (Zhao et al., 2014). 

2.2.1.4 Others 

In addition to carbon and nitrogen sources, N2O production is influenced by various 

other factors, including temperature (Li et al., 2019; Humbert et al., 2020), pH (Su et 

al., 2019; Kemmou and Amanatidou, 2023), and external additives (Caranto and 

Lancaster, 2017; Terada et al., 2017). 

Temperature: Within a certain range, microbial activity increases with rising 

temperature. However, different microorganisms exhibit varying temperature 

sensitivities, potentially leading to the accumulation of intermediate products in the 

nitrogen conversion process or altering reaction equilibria, thereby affecting N2O 

production(Chen et al., 2019). 

pH: The pH level influences both the form of substances in wastewater and microbial 

activity (Pan et al., 2012; Su et al., 2019). Generally, alkaline conditions are believed 

to reduce N2O production. 

External Additives: 

● Hydroxylamine: The addition of external NH2OH disrupts the balance between 

NH2OH consumption and generation (Soler-Jofra et al., 2016; White and Lehnert, 

2016). It strengthens the electron supply to AMO (Zhao et al., 2022), accelerates 

the conversion of NH4
+ to NH2OH, and enhances the contribution of the NH2OH 

oxidation pathway to NO and N2O during the aerobic oxidation of NH4
+ (Zhao et 

al., 2021). 

● Hydrazine (N2H4): The addition of N2H4 can reduce N2O production by inhibiting 

the activity of AOB and competing with NH2OH for HAO (Zhao, Lei, et al., 2022). 

2.2.2 Microbial populations 

The microbial populations significantly influence N2O production. The relative 

abundance of various nitrogen-removing microbial groups is a critical factor affecting 

N2O generation. Previous studies have reported a positive correlation between N2O 

emissions and the abundance of AOB, while a negative correlation exists with AOA 

and NOB (Duan et al., 2021). High AOB abundance promotes N2O production, 
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whereas increased NOB abundance can effectively reduce nitrite accumulation, 

thereby mitigating N2O generation. Studies have demonstrated that seasonal 

increases in N2O emissions are associated with NOB decline, leading to NO2
- 

accumulation (Gruber et al., 2021) 

Denitrifying bacteria abundance markedly impacts final N2O emissions. The HD 

pathway, the sole N2O-consuming process in biochemical treatment, can eliminate 

over 80% of N2O under sufficient carbon availability (Hink, Nicol and Prosser, 2017). 

Remarkably, the N2O reduction capacity of the denitrifying microbial community 

typically exceeds its N2O production ability by two to ten times. This characteristic 

makes denitrification a potential N2O sink in wastewater treatment systems, capable 

of reducing N2O not only from denitrification but also from other pathways (Bollon et 

al., 2016). 

N2O production levels vary significantly among different microorganisms. For instance, 

AOA (Hink, Nicol and Prosser, 2017; Yin, Bi and Xu, 2018; Jung et al., 2019) and 

Comammox (Kits et al., 2019) exhibit lower N2O emission levels compared to AOB. 

Furthermore, variations exist among different strains of AOB. The AOA genome does 

not encode typical nitric oxide reductase, and consequently, it cannot produce N2O 

through denitrification. It is hypothesized that AOA primarily produces N2O through 

coupling with abiotic reactions (Stieglmeier et al., 2014). The chemical reaction 

between NH2OH and NO is considered the main source of N2O in AOA, resulting in 

an overall lower N2O yield compared to AOB (Hink, Nicol and Prosser, 2017). 

Comammox bacteria, which lack genes related to nitrogen oxide (NOx) production, 

also demonstrate lower levels of N2O production (Palomo et al., 2018). 

2.2.3 Process parameters 

Process parameters, particularly DO concentration and recirculation ratio, play crucial 

roles in N2O production during wastewater treatment. 

2.2.3.1 DO 

DO levels influence N2O formation in both aerobic and anaerobic zones.  

Aerobic zone: 
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● low DO (< 0.5 mg/L): inhibits NOB, leading to nitrite accumulation and enhanced 

N2O production through AOB denitrification(Wunderlin et al., 2012; Castellano-

Hinojosa et al., 2018). 

● Moderate DO (0.5-1.0mg/L): promotes N2O production via NH2OH oxidation 

pathway (Aboobakar et al., 2013; Peng et al., 2014). 

● Higher DO (>1.0mg/L): No further promotion of NH2OH oxidation pathway. 

Elevated DO also stimulates NOB activity, reducing NO2
- accumulation and N2O 

production from AOB denitrification (Yue et al., 2018).  

As AOB denitrification is a more substantial N2O source than NH2OH oxidation 

(Aboobakar et al., 2013; Peng et al., 2014), overall N2O production tends to decrease 

with increasing DO within the range of 0.5 to 3.0 mg/L (Yan et al., 2019; He et al., 

2023). 

Anaerobic zone:  

● Presence of DO inhibits nitrous oxide reductase activity, resulting in incomplete 

denitrification and increased N2O production through the HD pathway (Liang et al., 

2015; Yue et al., 2018). 

● Strict anaerobic conditions allow complete heterotrophic denitrification, promote 

sufficient reduction of N2O, and therefore minimize N2O emissions (Zhu et al., 

2013; Yue et al., 2018). 

2.2.3.2 Recirculation ratio 

Recirculation ratio affects N2O production by altering carbon source and ammonium 

(NH4
+) concentrations, thereby influencing microbial activity. As the ratio gradually 

increases within a certain range, the N2O release rate exhibits a trend of first 

decreasing and then increasing from a certain point (Zhang et al., 2024). 

● Low recirculation ratio: Insufficient dilution of NH4
+, leading to high free 

ammonia (FA) concentrations, which inhibits AOB and NOB activity, with NOB 

being more severely affected NOB (Law, Lant and Yuan, 2011; Kinh et al., 2017). 

Consequently, NH2OH accumulates and is oxidized to N2O and HNO, in which 

HNO further reacts to form N2O under low DO conditions through polymerization 

and hydrolysis (Duan et al., 2021). 
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● High recirculation ratio: can result in carbon source deficiency and nitrate 

accumulation, leading to incomplete denitrification and increased N2O production 

(Kemmou and Amanatidou, 2023). 

● Optimal recirculation ratio: achieves low FA and low NO2
- levels, minimizing 

N2O generation through NH2OH oxidation pathway and ND pathway. Optimal 

recirculation ratios enhance nitrogen removal while minimizing N2O release 

(Zhang et al., 2024). 

In summary, maintaining appropriate DO levels in both aerobic and anaerobic zones, 

while finding the optimal recirculation ratio, can effectively reduce N2O production 

through various pathways and enhance overall nitrogen removal efficiency. 

2.3 Mechanistic N2O modelling 

Dynamic mechanistic N2O models based on the different generation pathways are 

summarised in Table 2.1. 

Table 2.1 N2O mathematical models based on generation pathways 

Pathway Model characteristics Reference 

NN Three-step NH3 oxidation via NH2OH and NOH, 
NOH chemically decomposes to N2O. 

(Law et al., 2012) 

 Three-step NH3 oxidation via NH2OH and NO, NO 
reduced to N2O; no oxygen inhibition. 

(Ni et al., 2013) 

ND Two-step NH3 oxidation, two-step NO2
-reduction; 

oxygen inhibits the reduction of NO2
- and NO. 

(Ni et al., 2011) 

 Two-step NH3 oxidation, two-step NO2
-reduction; 

FA and FNA as substrate for AOB growth; no 
oxygen inhibition, with an added FA inhibition term. 

(Pocquet, 
Queinnec and 

Spérandio, 2013) 

 One-step NH3 oxidation, two-step NO2
-reduction; no 

oxygen inhibition. 
(Mampaey et al., 

2013) 

 One-step NH3 oxidation, two-step NO2
-reduction; 

FA and FNA inhibit NH3 oxidation; oxygen inhibition 
represented by Haldane function. 

(Guo and 
Vanrolleghem, 

2014) 

NN 

+ 

ND 

Three-step NH3 oxidation, one-step NO2
-reduction; 

introduction of electron carrier Mred and Mox; 
simulating electron competition; no oxygen 
inhibition; not considering cell growth. 

(Ni et al., 2014) 

 Three-step NH3 oxidation, one-step NO2
-reduction; 

introduction of electron carrier Mred and Mox; 
(Peng et al., 

2016) 
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simulating electron competition; no oxygen 
inhibition; not considering cell growth; introduction 
of ATP/ADP linking energy synthesis and 
consumption processes 

 2-P model, includes five consecutive enzymatic 
reactions; oxygen inhibition represented by Haldane 
function; describes the trend of NO/N2O changes; 
predicts N2O emission factors. 

(Pocquet et al., 
2016) 

 Not considering NO production and consumption; 
including AOB and NOB growth and decay; suitable 
for very low DO conditions. 

(Ding et al., 
2018) 

HD ASMN, coupling carbon oxidation and nitrogen 
oxide reduction; four-step denitrification. 

(Hiatt and Grady, 
2008) 

 ASM-ICE, coupling carbon oxidation and nitrogen 
oxide reduction; four-step denitrification; 
introduction of electron carriers. 

(Pan, Ni and 
Yuan, 2013) 

 Denitrification reaction rate analogous to electrical 
current intensity through parallel resistors in a 
circuit; using fewer parameters. 

(Domingo-Félez 
and Smets, 2020) 

 Not considering NO, three-step denitrification; not 
considering the inhibitory effect of NO. 

(Pavissich et al., 
2012) 

 Extended ASM2d; three-step denitrification; added 
NO2

- Inhibition term. 
(Wisniewski, 
Kowalski and 

Makinia, 2018) 

 Introduction of denitrifying polyphosphate-
accumulating organisms (DPAOs) and denitrifying 
glycogen-accumulating organisms (DGAOs) on N2O 
production during denitrifying phosphorus removal 
(DPR) system; four-step denitrification; covering 
N2O production, nitrogen oxide reduction, 
phosphate release and uptake and intracellular 
polymers turnover. 

(Ren et al., 2023) 

NN 

+ND 

+HD 

ASM2d-N2O, combining the 2-P and ASMN models, 
expanding the ASM2d model, covering nitrogen, 
phosphorus, and organic matter removal as well as 
N2O stripping; simulating different DO levels for N2O 
emissions to determine the optimal aeration 
strategy. 

(Massara et al., 
2018) 

 Combining the 2-P and ASMN models; adding TIC 
component to describe the impact of CO2 
absorption on pH; simulating the N2O production in 
the SHARON reactor. 

(Mampaey et al., 
2019) 

NN 

+ND 

NDHA model, combining and revising the 2-P and 
ASMN models; NO as a precursor to N2O 

(Domingo-Félez 
and Smets, 2016) 
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+HD 

+abiotic 

production; adding two abiotic pathways; calibrated 
with a specific respiratory stoichiometry. 

2.3.1 Modelling of N2O produced by AOB 

Based on the two pathways of N2O production by AOB, namely the NN pathway and 

the ND pathway, models of N2O production during nitrification process can be 

classified as single-pathway and dual-pathway models. 

2.3.1.1 Single pathway model 

Several studies have proposed single-pathway models to explain N2O production 

during AOB activity (Law et al., 2012; Mampaey et al., 2013; Ni et al., 2013; Pocquet, 

Queinnec and Spérandio, 2013; Guo and Vanrolleghem, 2014). These models focus 

on either the hydroxylamine oxidation pathway or nitrifier denitrification pathway, 

therefore struggling to capture full complexity of the production. 

hydroxylamine oxidation pathway 

There are two primary models based on the incomplete oxidation of hydroxylamine: 

the NH2OH/NOH model (Law et al., 2012) and the NH2OH/NO model (Ni et al., 2013). 

In the former, N2O production results from the spontaneous chemical decomposition 

of unstable NOH, bypassing the need for biological enzyme catalysis. Conversely, the 

latter model proposes that NH2OH serves as an electron donor for NO reduction to 

N2O, a process catalysed by biological enzymes. While these models effectively 

describe N2O emissions under conditions of high DO and low NO2
- accumulation, they 

fall short in predicting the impact of elevated NO2
- levels on N2O production. 

Law et al. (2012) and Ni and Ye et al. (2013) proposed distinct models for the NH2OH 

oxidation pathway. Law et al. (2012) hypothesized that N2O production resulted from 

the chemical decomposition of unstable NOH, an intermediate in NH2OH oxidation. In 

contrast, Ni and Ye et al. (2013) simulated NH2OH oxidation as an electron donor 

process, generating NO, which is subsequently reduced to N2O under the catalysis of 

nitric oxide reductase. Notably, Ni and Yuan (2015).assumed that DO did not inhibit 

NO reduction. 

Nitrifier denitrification pathway 
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Two primary models describe AOB denitrification: the four-step model (Ni et al., 2011) 

and the three-step model (Mampaey et al., 2013). The former incorporates DO 

inhibition on AOB-mediated NO2
- and NO reduction, while the latter employs DO as a 

substrate to investigate its impact on N2O and NO emissions but neglects NH2OH 

production, limiting its ability to explain N2O peaks associated with NH2OH kinetics. 

Ni et al. (2011) posits that NO2
- serves as the final electron acceptor, with NO being 

an intermediate produced from NH2OH oxidation. Conversely, Mampaey et al. (2013) 

propose a coupled ammonia oxidation and denitrification process where NH3 is the 

electron donor for NO2
- reduction. 

A key distinction between the two models is the role of DO. Ni et al. (2011) incorporates 

DO inhibition of AOB denitrification, while Mampaey et al. (2013) does not. Additionally, 

Ni et al. (2011) distinguishes two steps in ammonia oxidation (NH3 to NH2OH, then to 

NO2
-), whereas Mampaey et al. (2013) propose a direct conversion of NH3 to NO2

-. 

Subsequent research has expanded upon these foundational models. Building upon 

four-step model (Ni et al., 2011), Pocquet, Queinnec and Spérandio (2013) proposed 

a model that excludes DO inhibition while incorporating pH effects on AOB reaction 

rates and considering FA and FNA as substrates for AOB denitrification. Guo and 

Vanrolleghem (2014), in response to Mampaey et al. (2013) , incorporated DO 

inhibition using the Haldane function for NO2
- and NO reduction and included FA and 

FNA inhibition on AOB activity. 

Evaluation 

Evaluations of single-pathway models by Ni and Yuan et al. (2013) and Spérandio et 

al. (2016) using batch and long-term wastewater treatment plant data demonstrated 

their ability to accurately predict NH4
+, NO2

-, and NO3
- concentrations. However, these 

models consistently failed to reproduce measured N2O data, suggesting the 

simultaneous occurrence of both NH2OH oxidation and AOB denitrification pathways, 

with their relative contributions varying under different operational conditions (Pocquet 

et al., 2016). 

Peng et al. (2015) further investigated the applicability of single-pathway models. Their 

findings indicate that the NH2OH oxidation model is suitable for high DO (>1.5 mg O2/L) 

with low NO2
- accumulation (0-5.0 mg N/L), while the AOB denitrification model is 
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effective under low DO (<0.5 mg O2/L) with varying NO2
- levels or high DO (>0.5 mg 

O2/L) with NO2
- accumulation exceeding 1.0 mg N/L at non-inhibitory concentrations 

(note: NO2
- concentrations exceeding 50mg N/L inhibit AOB denitrification). 

The limited scope of single-pathway models highlights the need for a unified multi-

pathway model to accurately capture the dynamic nature of N2O production by AOB 

across different operation conditions. 

2.3.1.2 Dual pathway model 

The dual-pathway model of AOB addresses the limitations of single-pathway models 

in comprehensively describing N2O production. This model incorporates two primary 

approaches: the decoupling method based on electron carriers and the direct coupling 

method. 

Ni et al. (2014) pioneered a decoupling method that categorizes the complex 

biochemical reactions and electron transfer processes in AOB metabolism into three 

oxidation and three reduction reactions. By utilizing reduced mediator (Mred) and 

oxidized mediator (Mox), this model decouples oxidation and reduction reactions. It 

effectively predicts the relative contribution of AOB to total N2O production under 

varying DO and NO2
- concentrations, assuming constant inorganic carbon levels. 

Building upon the previous work, Peng et al. (2016) proposed an enhanced decoupling 

method based on electron and energy balance. This model incorporates adenosine 

triphosphate (ATP) and adenosine diphosphate (ADP), linking biomass growth energy 

with inorganic carbon fixation. As a result, it elucidates the impact of spatiotemporal 

changes in inorganic carbon concentration on AOB growth and N2O production 

through different pathways. 

However, both models have limitations in describing NO production. They assume that 

NO consumption occurs primarily within AOB cells without accumulation or release, 

leading to inaccurate predictions of gaseous NO emissions (Ni et al., 2014). 

Additionally, these models fail to account for the influence of pH on N2 production. 

To address these shortcomings, Pocquet et al. (2016) developed the 2-P model (two-

pathway model), which directly couples the two AOB pathways and measures both 

NO and N2O emissions. This model accurately predicts the combined effects of free 
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nitrous acid (FNA) and DO, the impact of NO2
- concentration changes on N2O 

production, and intermediate NO emission trends. It also compensates for the single-

pathway model's inability to predict changes in the NO/N2O ratio. However, the 2-P 

model cannot describe N2O production under dynamically changing inorganic carbon 

concentrations. 

While dual-pathway models offer improved N2O production descriptions compared to 

single-pathway models, they present challenges due to their numerous parameters 

and calibration difficulties (Maktabifard et al., 2022). Single-pathway models may be 

more suitable under specific conditions outlined in the previous chapter. For scenarios 

outside these conditions, dual-pathway models offer a more accurate representation 

of N2O production. 

2.3.2 Modelling of N2O produced by HDB  

The ASM1 model simplifies denitrification as a single-step process. While subsequent 

advancements led to the development of multi-step models. Kotlar et al. (1996) 

proposed two-step model but did not include the intermediate N2O. Pavissich et al. 

(2012) introduced three-step model that incorporate N2O. However, this model did not 

consider the inhibitory effects of NO on AOB and NOB. To overcome these limitations 

and comprehensively understand the accumulation of all denitrification intermediates, 

four-step denitrification models have been widely adopted. 

Hiatt and Grady (2008) developed the activated sludge model for nitrogen (ASMN), 

coupling nitrogen oxide reduction with organic carbon oxidation through a single redox 

reaction. This model accounts for pH, temperature, and substrate inhibition (FA and 

FNA), providing insights into activated sludge performance under high nitrogen 

conditions. However, it overlooks the critical relationship between electron availability 

from carbon oxidation and the electron demand of the four denitrification steps. 

Insufficient electron supply can lead to electron competition, impacting N2O 

accumulation. 

Pan, Ni and Yuan (2013) introduced the Activated Sludge Model with Indirect Coupling 

of Electrons (ASM-ICE) model, incorporating electron carriers (Mred and Mox) to 

indirectly couple carbon oxidation with nitrogen reduction. The model simulates 

electron competition among denitrification processes by adjusting the affinity 
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constants of these electron carriers. While this model can predict N2O accumulation, 

its accuracy in predicting NO emissions is hindered by parameter uncertainties and 

limited kinetic data for NO reduction. Although subsequent work by Pan et al. (2015) 

demonstrated the ASM-ICE model's superiority in capturing electron competition and 

intermediate accumulation compared to the ASMN model, and its increased 

complexity due to additional parameters can pose challenges for calibration and may 

lead to overparameterization. 

Domingo- Félez and Smets (2020) proposed the Activated Sludge Model with Electron 

Competition (ASM-EC) model, drawing an analogy between electron competition in 

respiratory processes and electron distribution across multiple resistances. This model 

effectively describes organic carbon oxidation and four-step denitrification with fewer 

parameters than ASMN and ASM-ICE, providing accurate predictions of denitrification 

intermediates and enabling optimization of carbon dosage. 

All these models employ a four-step denitrification pathway, involving NO2
-, NO, and 

N2O as intermediates. Typically, NO inhibition is incorporated into kinetic rate 

expressions using a term (KI,NO,H) (Mampaey et al., 2019). Recent empirical evidence 

indicates negligible NO accumulation during anaerobic phases, allowing for the 

simplification of the four-step model to a three-step process, directly reducing NO2
- to 

N2O (Pavissich et al., 2012; Wisniewski, Kowalski and Makinia, 2018). 

While three-step model (Pavissich et al., 2012) addressed NO2
- and NO reduction, it 

overlooked NO inhibition. Wisniewski, Kowalski and Makinia (2018) extended this 

model, incorporating a NO2
- switch function into the ASM2d framework to account for 

NO2
- inhibition. This refined model effectively predicts N2O and exhibits strong 

agreement with effluent COD and PO4
- concentrations (Hongbo et al., 2020). 

Ren et al. (2023) developed a model to elucidate the dynamic production of N2O within 

denitrifying phosphorus removal (DPR) systems inhabited by denitrifying 

polyphosphate-accumulating organisms (DPAOs) and denitrifying glycogen-

accumulating organisms (DGAOs). The model explores the interplay of competition 

and cooperation among these microorganisms during the four-step denitrification 

process, emphasizing the pivotal role of polyhydroxyalkanoate (PHA) and glycogen 

storage and utilization in N2O generation. Incorporating four distinct denitrification 
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pathways for both DPAOs and DGAOs, including (1) anoxic polyphosphate/glycogen 

storage, (2) anoxic biomass growth, (3) anoxic endogenous respiration, and (4) anoxic 

PHA respiration, the model accurately reproduced N2O production dynamics observed 

in three DPR systems, highlighting the complex interactions between DPAOs and 

DGAOs (Ren et al., 2023). 

2.3.3 Models coupling AOB and HDB pathways  

Recent studies have recognised the interplay between AOB and heterotrophic 

denitrifiers in overall N2O production (Aboobakar et al., 2013; Ni et al., 2013; 

Rodriguez-Caballero et al., 2013; Ni et al., 2015). Consequently, integrated models 

that incorporate both processes have emerged and offer a more accurate description 

of N2O production dynamics. These models can be categorized as follows: 

1) ASM1-type Models: These models couple one of the single-pathway models of 

AOB with the ASMN model (Ni et al., 2011; Pocquet, Queinnec and Spérandio, 

2013; Guo and Vanrolleghem, 2014). They have successfully described N2O 

emissions in mixed culture nitrification-denitrification systems and determined the 

relative contributions of AOB and heterotrophic denitrifying bacteria to N2O 

production. 

2) Electron Balance-based Models: These models combine the dual-pathway 

model of AOB with the ASMN model (Ni et al., 2015). They have proven effective 

in describing N2O emissions in mixed culture systems. 

3) Complete Electron Balance Models: These models integrate the dual-pathway 

model of AOB with the ASM-ICE model (Wang et al., 2016). However, further 

testing is required to validate their effectiveness. 

4) NDHA Model: The NDHA (Nitrifier Nitrification, Nitrifier Denitrification, 

Heterotrophic Denitrification, and Abiotic Reaction) model predicts dynamic 

changes of NO and N2O under varying conditions of NH4
+, NO2

-, and DO 

(Domingo-Félez et al., 2017). It can qualitatively capture the distribution of NO and 

N2O under high or low DO conditions and is calibrated by respiration 

measurement to assess the uncertainty of N2O production. 

5) ASM2d-N2O model: Massara et al. (2018) expanded the ASM2d model into the 

ASM2d-N2O model by incorporating elements from the 2-P and ASMN models. 

This comprehensive model simulates nitrogen, phosphorus, and organic matter 
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removal while considering three biological N2O production pathways and N2O 

stripping. It offers a valuable tool for optimizing aeration strategies by predicting 

N2O emissions under varying DO concentrations. 

While these models provide valuable insights, they often overlook the role of 

intracellular polymers, particularly PHA, in N2O accumulation during heterotrophic 

denitrification under external carbon source limitation (Zhou et al., 2012). To address 

this gap, updated models have been developed:  

1) Liu et al. (2015) addressed this by linking heterotrophic growth with intracellular 

polymers under external carbon source limitation and N2O generation and 

consumption, though autotrophic pathway is not covered. 

2) Ding et al. (2016) extended the ASM3 model to encompass N2O production during 

both autotrophic nitrification and heterotrophic denitrification, including the 

influence of intracellular polymers in the A2O process 

In summary, mechanistic modelling of N2O has advanced considerably, enabling 

qualitative analysis of production mechanisms and quantitative prediction of emissions 

from wastewater treatment. Nevertheless, incomplete understanding of N2O 

generation processes hinders the development of a unified model structure and limits 

the models' ability to accurately represent diverse operational conditions. Furthermore, 

challenges in model calibration and validation compromise the reliability of quantitative 

N2O emission predictions (Seshan et al., 2024). To date, the successful full-scale 

implementation of mathematical N2O modelling in real WWTPs remains scare and 

presents significant challenges (Khalil et al., 2024). 

2.4 Data-driven N2O modelling 

While mechanistic models have traditionally been employed to simulate N2O 

production and emissions in wastewater treatment, data-driven approaches offer a 

complementary perspective. Unlike biokinetic models, which rely on theoretical 

underpinnings, data-driven methods extract patterns and relationships directly from 

process monitoring data, providing a more practical alternative. 
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2.4.1 Types of data-driven methods used in wastewater 

In recent years, advancements in machine learning (ML) and artificial intelligence (AI) 

have significantly boosted the popularity of AI-based data-driven techniques, many of 

which have demonstrated state-of-the-art performance (LeCun, Bengio and Hinton, 

2015). Industries increasingly leverage 'big data' to construct data-driven models for 

addressing critical challenges within their respective fields (Zhong et al., 2021). 

Given the broad scope of machine learning and artificial intelligence, a wide range of 

algorithms can be applied to data-driven approaches. To facilitate understanding 

within this section, a brief overview of various algorithm types is provided below, 

categorized by their nature and function. 

● Fuzzy logic 

Fuzzy logic techniques are based on fuzzy set theory, which allows for degrees of 

truth rather than the classical binary logic. In wastewater treatment, these 

techniques are often used in risk assessment models (Flores-Alsina et al., 2009). 

Fuzzy logic controllers (FLC) use linguistic variables and if-then rules to make 

decisions, mimicking human reasoning. This approach is well-suited for 

wastewater treatment processes where precise mathematical models are difficult 

to develop due to the system's complexity (Chiranjivi et al., 2024). Advantages 

include the ability to handle nonlinearity, incorporate expert knowledge, and 

operate effectively with noisy or incomplete data. Fuzzy logic has been applied in 

various aspects of wastewater treatment, including aeration control, sludge 

bulking prediction, and pH control (Nadiri et al., 2018). It can improve process 

stability, reduce energy consumption, and enhance overall treatment efficiency. 

However, limitations exist. Designing effective fuzzy rules requires expert 

knowledge, which can be subjective; achieving optimal performance for complex 

systems might be potentially difficult; and there is a lack of learning ability 

compared to some machine learning techniques (Vijayaraghavan and 

Jayalakshmi, 2015). 

● Time series forecasting 

Time series forecasting is a statistical technique used to predict future values 

based on historical time-ordered data. In wastewater treatment, it can be applied 

to predict various parameters such as influent flow rates, pollutant concentrations, 
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or treatment efficiency over time (Berthouex and Box, 1996). The main advantage 

of time series forecasting is its ability to capture temporal patterns, seasonality, 

and trends in data, which is particularly useful in wastewater treatment where 

many processes exhibit cyclical or seasonal variations (Q. Zhang et al., 2019). 

Common methods include Autoregressive Integrated Moving Average (ARIMA), 

exponential smoothing, and more advanced techniques like employing Long 

Short-Term Memory (LSTM) neural networks (Lim and Zohren, 2021). These 

models can help optimize treatment processes, predict potential system overloads, 

detect fault or anomaly, and improve resource allocation. However, time series 

forecasting has limitations: it assumes that past patterns will continue into the 

future, which may not always hold true in dynamic wastewater systems. 

Additionally, these models may struggle with sudden, unpredictable events or 

changes in system behaviour (Kang et al., 2020). Despite these challenges, time 

series forecasting remains a valuable tool in wastewater treatment, offering 

insights for operational decision-making and long-term planning when used in 

conjunction with domain expertise and other modelling approaches (Li and Wang, 

2021). 

● Non-neural-network ML 

Often refer to conventional ML methods, such as PCA, K-means clustering, 

decision trees, SVM, K-nearest neighbours (KNN), Random Forests (RF), 

Gradient Boosting Machine (GBM) and Adaptive Boosting (AdaBoost). These 

algorithms offer diverse approaches to data analysis and prediction in wastewater 

treatment (Khalil et al., 2023). They excel in different areas: PCA for 

dimensionality reduction and feature extraction (Tao et al., 2013; Abba, Elkiran 

and Nourani, 2021); K-means for data clustering (Laili, Indrasti and Wahyudi, 

2022); decision trees for interpretable rule-based decisions (Logan, Roberts and 

Smith, 2024); SVM for robust classification and regression (Ribeiro, Sanfins and 

Belo, 2013; Cheng et al., 2019); KNN for pattern recognition (Kim et al., 2016); 

Random forests for ensemble learning and handling complex datasets (P. Zhou 

et al., 2019); and GBM or AdaBoost for boosting weak learners (Bagherzadeh et 

al., 2021; Gholizadeh et al., 2024). In wastewater treatment, these techniques 

have been applied to various tasks such as process optimization, fault detection, 

effluent quality prediction, and operational parameter estimation (Hafsa, Al-Yaari 
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and Rushd, 2021). Advantages include their ability to handle non-linear 

relationships, deal with high-dimensional data, and provide insights into feature 

importance. Many of these methods also offer good interpretability, which is 

crucial in process control and decision-making. However, limitations exist. They 

might be less accurate than deep learning for complex patterns; some require 

careful feature selection and parameter tuning; others may struggle with highly 

imbalanced datasets or extrapolation beyond the training data range. Additionally, 

the performance of these models can be sensitive to the quality and quantity of 

available data (Hilal et al., 2022; Han et al., 2023). 

● DNN-based models 

Deep learning employs artificial neural networks with multiple layers to extract 

complex patterns from data (Alvi et al., 2023). MLPs are foundational (Shen et al., 

2024), while Convolutional Neural Networks (CNNs) excel at spatial pattern 

recognition data (Wenbing and ZHANG, 2020; Y. Li et al., 2023), and Recurrent 

Neural Networks (RNNs) (Pisa et al., 2018; Wongburi and Park, 2023), including 

LSTM and its variants (Pisa, Santin, et al., 2019; Yaqub et al., 2020; Farhi et al., 

2021; Xu et al., 2023), are particularly effective for time-series forecasting and 

capturing long-term dependencies in process data. Neural ODEs offer continuous-

time modelling in wastewater treatment (Quaghebeur et al., 2022). DNN-based 

models excel at predicting complex process dynamics, optimizing operations, and 

detecting anomalies (Mamandipoor et al., 2020; G. Wang et al., 2022; J.-H. Wang 

et al., 2022; Lin, Hanyue and Bin, 2022; Zhang et al., 2023; Shaban et al., 2024). 

They can be also used in model predicative control (MPC) (Bernardelli et al., 2020; 

Wang et al., 2020, 2023; He, Zhang and Li, 2021; Yuting Liu et al., 2023). Their 

advantages include the ability to automatically extract relevant features, handle 

large volumes of data, and adapt to changing conditions. However, it requires 

substantial computational resources, large datasets, and careful hyperparameter 

tuning. The black-box nature of deep models can hinder interpretability. 

Additionally, overfitting and out-of-distribution (OOD) generalisation might be an 

issue if training data are not sufficiently representative (Ng et al., 2020). 

● Generative neural networks 

Generative neural networks represent cutting-edge techniques in machine 

learning with emerging applications in wastewater treatment. Generative 
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Adversarial Networks (GANs) generate synthetic data for augmenting limited 

datasets, simulating rare events in treatment processes, and improving model 

performance (Asadi and McPhedran, 2021; Rani et al., 2024). Autoencoders learn 

efficient data representations for anomaly detection, data denoising and feature 

extraction (Ba-Alawi et al., 2021, 2022; Peng et al., 2022; Salles et al., 2022; 

Zhang, Suzuki and Shioya, 2022). Transformers excel in capturing long-range 

dependencies in time-series data, enabling advanced forecasting and process 

optimization (Huang et al., 2021; Peng and Fanchao, 2022; Chang, Zhang and 

Wang, 2023). LLMs can generate human-like text, potentially aiding in report 

generation, knowledge management, and decision support (B. Xu, Wen, et al., 

2024; Liang et al., 2024). While these models offer immense potential for 

improving wastewater treatment processes, challenges include data quality, 

computational requirements, and model interpretability (B. Xu, Wen, et al., 2024). 

● Genetic algorithm optimisation 

Genetic Algorithm (GA) optimization and its variants like Simulated Annealing (SA), 

Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) are 

metaheuristic methods inspired by natural processes (Holenda et al., 2007; Huang 

et al., 2015). GA mimics biological evolution, using selection, crossover, and 

mutation to optimize solutions (Beraud, Lemoine and Steyer, 2009; Iqbal and 

Guria, 2009; Bagheri et al., 2015). SA is inspired by the annealing process in 

metallurgy, gradually cooling a solution to reach an optimal state (Govindarajan, 

Kumar and Karunanithi, 2005; Zeferino, Antunes and Cunha, 2009; Cunha and 

Antunes, 2012). PSO simulates the social behaviour of birds flocking to find the 

best position (Khoja et al., 2018; Ye et al., 2019; Lu et al., 2021; Su et al., 2022), 

and ACO models the foraging behaviour of ants to find optimal paths (Verdaguer, 

Clara and Poch, 2012; Verdaguer et al., 2014; Afshar et al., 2015; Verdaguer, 

Molinos-Senante and Poch, 2016). They excel at optimising complex, non-linear, 

and multi-objective problems, such as energy minimization, effluent quality 

improvement, and process control. However, they can be computationally 

expensive and sensitive to parameter tuning, requiring careful implementation and 

problem-specific adaptations (Béraud et al., 2007; Iqbal and Guria, 2009). 

● Reinforcement learning 
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Reinforcement learning (RL) is a machine learning paradigm where an agent 

learns to make decisions by interacting with an environment and receiving rewards 

or penalties. Key features include the use of value functions, policy gradients, and 

model-free or model-based approaches (Hernández-del-Olmo, Llanes and 

Gaudioso, 2012). It has shown promise in wastewater treatment by optimizing 

complex processes like aeration, chemical dosing, and energy management, 

leading to enhanced treatment efficiency, reduced operational costs, and 

improved compliance with environmental regulations (Chen et al., 2021; Yang et 

al., 2021; Aponte-Rengifo et al., 2023). RL agents can learn optimal control 

policies without explicit programming, adapting to dynamic conditions and 

improving performance over time. However, RL requires significant computational 

resources, data, and careful tuning of hyperparameters, and may suffer from 

issues such as exploration-exploitation trade-offs and convergence difficulties 

(Hernández-del-Olmo et al., 2018; Yang et al., 2021). 

● Hybrid models 

Hybrid models in wastewater treatment combine mechanistic models, grounded 

in process understanding, with machine learning models for data-driven insights 

(Cheng et al., 2023). These models leverage the strengths of both approaches 

and mitigate their weaknesses, offering enhanced predictive accuracy and 

adaptability compared to standalone approaches (Lotfi et al., 2019; Quaghebeur, 

Torfs, Baets, et al., 2022). By leveraging mechanistic knowledge, they provide 

interpretable results, better generalization to new conditions and handle data 

scarcity effectively (Bagheri et al., 2015; Mahjouri et al., 2017; Asadi and 

McPhedran, 2021; Mehrani et al., 2022). By fitting data pattern, they enhance the 

prediction accuracy, identify the key factors and offer practical solutions (Ye et al., 

2019; Heo et al., 2021; B. Xu, Pooi, et al., 2024; Lancioni et al., 2024). However, 

they can be complex to develop and require careful integration of diverse 

modelling techniques. Applications span process optimization, real-time control, 

and effluent quality prediction, contributing to improved wastewater treatment 

efficiency (Li et al., 2021; B. Xu, Pooi, et al., 2024). 

● Auxiliary approaches 

Auxiliary approaches like Computational Fluid Dynamics (CFD), Global Sensitivity 

Analysis (GSA), and Monte Carlo simulation enhance data-driven wastewater 
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treatment modelling by providing insights into process dynamics, parameter 

sensitivity, and uncertainty quantification (Porro et al., 2019). CFD simulates fluid 

flow and transport phenomena, offering detailed spatial and temporal information 

on treatment processes (Le Moullec et al., 2010; Pishnamazi et al., 2012). It is 

often used for optimizing reactor designs and flow patterns in wastewater (Porro 

et al., 2019; Patziger, 2021). GSA helps identify key parameters influencing model 

outputs, improving model understanding and simplification (Sin et al., 2011; 

Cosenza et al., 2014; Baalbaki et al., 2017; Al et al., 2019). Monte Carlo simulation 

assesses model robustness by propagating uncertainties through the model, 

improving prediction reliability (Carrasco and Chang, 2005; Taheriyoun and 

Moradinejad, 2015; Zhao et al., 2017; Long et al.,  0 9;      ł et al., 2022). These 

methods complement data-driven models by providing mechanistic understanding 

and enhancing model interpretability, leading to improved process control, 

optimization, and risk assessment in wastewater treatment (Samstag et al., 2016; 

Hong et al., 2022). 

2.4.2 Data-driven models for N2O simulation 

Data-driven models are capable of solving classification and regression prediction 

problems by learning implicit associations among variables within large datasets 

(LeCun, Bengio and Hinton, 2015). Due to the numerous parameters and complex, 

variable influencing factors inherent to wastewater treatment processes, data-driven 

models offer substantial advantages for predicting system behaviours (Zhong et al., 

2021). In recent years, researchers have explored the application of data-driven 

models for simulating wastewater treatment processes (Bahramian et al., 2023), 

enabling model-based optimization of key processes, such as improving pollutant 

removal efficiency and reducing energy consumption (Newhart et al., 2019). 

As an intermediate product of nitrogen transformation in wastewater, N2O can also be 

simulated and predicted using data-driven models (Hwangbo et al., 2021), provided 

N2O concentration data are available. By predicting N2O production under varying 

operating conditions, these models can inform strategies for N2O reduction or 

minimization (Lu et al., 2023). Table 2.2 provides an overview of studies that have 

applied data-driven models to N2O production and emissions in wastewater treatment 

over the past decade. 
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Table 2.2 Summary of studies on data-driven models including N2O in wastewater treatment 

in last ten years 

No Reference 
Modelling 
methods 

Function Claimed Results 

1 (Liu et al., 2024) 
preprint 

SVR + ANN Prediction, 
analysis 

Hybrid model achieved 
accurate N2O prediction with 
R2=99.26% and 
MAPE=0.49% 

2 (Rani et al., 2024) 

preprint 

Generative 
adversarial 
wavelet neural 
operator 
(GAWNO) 

Fault 
detection 

Showcased in the WWTP 
N2O dataset, the GAWNO 
approach holds promise for 
fault detection. 

3 (X. Xu et al., 2024) Basic RNN, 

LSTM 

Prediction The optimal LSTM model 
outperformed basic RNN 
model with 19% improvement 
in RMSE for N2O prediction 

4 (Daneshgar et al., 
2024) 

Flow sheet + 
CFD biokinetic 
+ risk 
assessment 
(fuzzy) 

Control Model based protocol 
achieved up to yearly 50% 
reduction primarily in N2O 
emission in case study. 

5 (Khalil et al., 2024) mRMR for 
feature 
selection, 
NSGA-II for 
hyperparamete
r optimisation 

Feature 
selection 
and 
hyperparam
eter 
optimisation 

Balanced model complexity 
and performance in a case 
study with AdaBoost models 
for N2O emission prediction. 

6 (Lancioni et al., 
2024) 

ASM2d + MLP,  

Global 
sensitivity 
analysis 

Real-time 
control 

The hybrid model support 
operator to potentially reduce 
up to 21% GHG emissions 
while maintain effluent 
standard 

7 (Tejaswini, 
Maheswari and 
Ambati, 2024) 

PI, MPC 

Supervisory 
fuzzy control 
framework 

Control PI-MPC combination for NO2
- 

and DO control showed 25% 
reduction in total GHG 
emission compared with 
literature, while MPC-MPC 
structure for DO control alone 
resulted in 49% reduction. 

8 (Khalil et al., 2023) Framework to 
balance model 
complexity, 
performance 

Model 
selection 

Showcased in the WWTP 
N2O dataset that the best 
performing models are 
KNN(R2=0.88), 
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and 
interpretability 

AdaBoost(R2=0.94) and 
DNN(R2=0.90). 

9 ( .  z  ą , 
Zaborowska and 
 ą     ,  0  ) 

K-means Model 
selection 

XGboost outperformed 
MARS, and SVM in predicting 
N2O emissions. 

10 (K. Li et al., 2022) Modified ASM1 
+ teacher 
forcing LSTM 

Prediction Hybrid model outperformed 
white-box and black-box 
models, with better capability 
of predicting low N2O 
emission (93% increase in 
overall performance). 

11 (Mehrani et al., 
2022) 

Mechanistic 
model (GPS-X) 
+ MLP / SVM / 
GBM 

Prediction MLP outperformed SVM / 
GBM with R2=0.67 and 95% 
accuracy in N2O production 
prediction 

12 (Seshan et al., 
2022) 

conference 

ASM type 
biokinetic 
model 
(BioWin), ANN 

Prediction ANN model outperformed 
biokinetic model in N2O 
prediction accuracy  

13 (Quaghebeur et 
al., 2022) 

Mechanistic + 
Neural ODE 

Prediction Hybrid model improves 
predictive performance by 
combining the strengths of 
both mechanistic and data-
driven model 

14 (Asadi and 
McPhedran, 2021) 

GAN + non-
linear 
regression, 
and GA 

Estimation The hybrid model could 
reasonably determine GHG 
emission rate estimator.  

15 (Stentoft et al., 
2021) 

Stochastic 
differential 
equations 
derived from 
ASM1, 

MPC 

Control / 
optimisation 

Illustrated flexibility of the 
proposed MPC algorithm 
through comparison of 
different control performances  

16 (Hwangbo et al., 
2021) 

GSA, 

DNN, LSTM 

Prediction LSTM model outperformed 
DNN model (R2>94%, 64% 
reduced RMSE) 

17 (Bae et al., 2021) Random forest Identification RF model identified the 
sOUR-ratio as the most 
influential trigger of N2O 
emissions. 

18 (Hwangbo, Al and 
Sin, 2020) 

Integrated 
framework 
including deep 
learning (MLP) 

Prediction Showcased the framework 
well predicted N2O 
concentration (R2>0.88) 
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for process 
modelling 

19 (Bellandi et al., 
2020) 

PCA,  

k-means, 
agglomerative, 
and HDBSCAN 
clustering 

Analysis All identified two main N2O 
pathways (NN and ND) 

20 (Song et al., 2020) Random forest Identification
, analysis 

 

Identified the most influential 
from aerator: dissolved 
inorganic carbon (DIC) and 
specific ammonia oxidation 
activity (sOURAOB); from 
anoxic: dissolved-organic- 
carbon to NO2

-/NO3
- ratio 

21 (Vasilaki, Conca, 
et al., 2020) 

Changepoint 
detection, SVM 

Identification
, estimation 

Changepoints coincide with 
changes of N2O emission 
range and behaviour. SVM 
model can detect high risk 
N2O emission periods 

22 (Vasilaki et al. 
2020) 

Changepoint 
detection, SVM 

Identification
, estimation 

Changepoints linked with 
changes of N2O fluxes; SVM 
model can detect N2O 
emission range. 

23 (Porro et al., 2019) 

conference 

CFD + 
biokinetic 
model + Fuzzy 
logic control 

Control Hybrid model can assess the 
impact of different process 
control strategies and mixing 
conditions on reactor GHG 
production 

24 (Vasilaki et al., 
2018) 

Changepoint 
detection, 
Spearman's 
rank 
correlation, k-
means cluster, 
PCA 

Identification
, Analysis 

Multivariate analysis revealed 
correlations between 
influential factors in N2O 
dynamics 

25 (Porro et al., 2018)  

conference 

Fuzzy logic 
and 
knowledge-
based risk 
assessment 
model 

Online 
supervision 
and control 

Integrated model predicts risk 
correlating to actual effluent 
TSS concentration, and 
facilitate to make predictive 
based control scheme 

26 (Boiocchi, Gernaey 
and Sin, 2017) 

Fuzzy logic Control Drastic reduction of N2O 
emission in ND pathway 
dominant plants. 
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27 (Sweetapple, Fu 
and Butler, 2014) 

Multi-objective 
NSGA-II 

Optimisation
/ control 

demonstrated the potential of 
proposed control strategies 
for the reduction of GHG 
emissions in a cost-effective 
manner, with trade-offs and 
optimised solutions to 
different problem.  

A review of the literature reveals that data-driven models applied to N2O production 

and emissions in wastewater treatment primarily serve three functions: 

● Identification: Uncovering key factors influencing N2O generation and 

consumption, while also implementing fault and anomaly detection, dimension 

reduction, feature selection, and component analysis to support data validation 

and the development of mitigation strategies (Bellandi et al., 2020). 

● Prediction: Forecasting N2O production and/or emissions based on identified 

input variables using a constructed or trained data-driven model and evaluating 

N2O emissions during wastewater treatment system operation (Khalil et al., 2024). 

● Control: Minimizing N2O emissions through model-based prediction or direct 

optimisation algorithms using control methods such as traditional Proportion-

Integration (PI) control, FLC, MPC, and advanced multi-objective optimization 

techniques like multi-agent deep reinforcement learning (MADRL) (Lu et al., 2023). 

2.4.2.1 Identifying Key Influencing Factors of N2O production 

Biological process in wastewater treatment plants is a major source of N2O emissions 

(Vasilaki et al., 2019; Hongbo et al., 2020). Studies have shown that the release of 

N2O in bioreactors is closely related to wastewater properties (such as COD, ammonia, 

nitrite, nitrate, water temperature) and process operating parameters (such as aeration, 

recirculation rate) (Kemmou and Amanatidou, 2023; Huang and Liu, 2024). Due to 

numerous variables involved in the treatment processes, machine learning methods 

can be used to identify the key influencing factors of N2O emissions, thereby providing 

support for subsequent prediction and control. 

To quantify the impact of various factors on N2O emissions, Song et al. (2020) used 

the random forest method to analyse the emission mechanism and key influencing 

factors of N2O in the activated sludge tank of a wastewater treatment plant. The results 

showed that the dissolved inorganic carbon concentration and specific ammonia 
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oxidation activity were most significantly correlated with N2O emissions in the aerobic 

aeration tank; while in the anoxic tank, the ratio of dissolved organic carbon to nitrate 

nitrogen had the greatest impact on N2O emissions. Bae et al. (2021) also used RF 

method to analyse the correlation between N2O emissions and wastewater properties 

in a real wastewater treatment plant. The results showed that microbial changes had 

little impact on N2O emissions, while the ratio of oxygen utilization rate of AOB to NOB 

had the greatest impact on N2O emissions. 

In addition to RF method, Hwangbo et al. (2021) employed GSA based on a DNN to 

identify the key parameters related to N2O emissions in WWTPs. GSA, using variance 

decomposition to reveal how input variables of process conditions impact N2O 

emissions. Comparing Sobol and Kucherenko index methods (Cosenza et al., 2014), 

Hwangbo et al. (2021) found temperature, nitrate, ammonia, and influent flow rate as 

primary factors affecting liquid-phase N2O concentration using the Sobol index. The 

Kucherenko index additionally highlighted the importance of air flow rate and dissolved 

oxygen setpoint These complementary findings effectively identify crucial parameters 

for N2O emission control in wastewater treatment. 

Bellandi et al. (2020) developed a PCA model capable of distinguishing between NN 

and ND pathways using two principal components. To automate the identification of 

these pathways, three clustering methods were applied to the PCA scatterplot. While 

K-means clustering provided a reasonable separation of the two primary pathways, it 

encountered difficulties in classifying boundary points. Conversely, both 

agglomerative and HDBSCAN (Hierarchical Density-Based Spatial Clustering of 

Applications with Noise) clustering successfully differentiated between the NN and ND 

pathways while effectively excluding outliers. Vasilaki et al. (2018) also employed PCA 

and clustering techniques with multivariate statistical analysis to uncover correlations 

between influential factors in N2O dynamics. Furthermore, Vasilaki et al. (2020) 

applied changepoint detection techniques to SCENA (Short Cut Enhanced Nutrient 

Abatement) process and Carrousel reactors respectively, demonstrating their 

capability of pinpoint the N2O emission “hotspot” period. 

The growing prevalence of online monitoring equipment and intelligent control 

platforms enables continuous data collection on N2O-related parameters. These 

datasets serve as a foundation for developing data-driven N2O models. By employing 
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data mining techniques, these models can identify crucial operational factors and 

detect anomalies, thereby supporting the implementation of model predictive control 

strategies to minimize N2O emissions in wastewater treatment. 

2.4.2.2 Predicting N2O Emissions 

Once key factors influencing N2O emissions are identified, they can be incorporated 

as input variables into machine learning prediction models to forecast N2O emissions. 

Earlier studies relied on limited data to estimate emission factors or their ranges. For 

instance, Vasilaki and Conca et al. (2020) employed SVM to classify N2O variations 

and predict N2O levels in side-stream SBRs. The SVM classifier categorized dissolved 

N2O concentration ranges, while the regression model estimated average N2O levels. 

In another study, Vasilaki and Danishvar et al. (2020) utilized SVM to identify 

operational patterns in wastewater treatment systems and predict N2O emission 

ranges, thereby providing reliable estimates of emission factors in the absence of real-

time N2O monitoring. 

Given the scarcity of online N2O monitoring in some WWTPs, Asadi and McPhedran 

(2021) employed GAN to generate additional virtual data related to N2O emissions. 

Using temperature, DO, nitrite, nitrate, and ammonium concentrations as input 

variables, nonlinear regression models provided reasonable N2O emission rate 

estimates. 

The increasing availability of process time-series data has driven a surge in studies 

focused on dynamic point prediction using advanced data-driven algorithms like DNN-

based models, often achieving state-of-the-art performance (Hwangbo, Al and Sin, 

2020; Khalil et al., 2024). Seshan et al. (2022) compared a biokinetic model and an 

ANN-based model for a real WWTP. The biokinetic model utilized a commercial 

software for simulation and a full year’s real data for calibration. The ANN model 

employed relevant process parameters, including influent flowrate, and ammonium 

concentration in the aerobic tank, as inputs to predict the gaseous N2O concentration. 

Results indicated that the ANN model outperformed the mechanistic model in terms 

of prediction accuracy. 

Hwangbo, Al and Sin (2020) introduced an integrated framework incorporating a deep 

learning model and demonstrated its application to an industrial wastewater treatment 
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plant. The case study revealed that the optimally structured deep learning model 

significantly outperformed conventional machine learning models, yielding superior 

accuracy (R2>97.7%, RMSE=0.032). In subsequent research, Hwangbo et al. (2021) 

employed the GSA method to identify key factors and subsequently utilized DNN and 

LSTM models for N2O emission forecasting. DO, ammonia, nitrate, temperature, 

influent flow rate, and air flow rate were selected as input variables, with N2O 

emissions as the target variable. Owing to its ability to capture long-term dependencies, 

LSTM model exhibited superior predictive accuracy (R2> 94%, RMSE reduced by 64%) 

compared to the DNN-based model (R2>90%). 

Mehrani et al. (2022) developed a hybrid mechanistic and machine learning model for 

N2O production forecasting in an experimental nitrifying SBR. The mechanistic model 

built with a commercial simulation software, generated predicted data, including 

ammonia, nitrite, nitrate concentrations, and MLSS, which were used as inputs 

alongside online measurements of DO, pH, and temperature for the machine learning 

models. Among the three ML models tested (ANN, SVM, and GBM), ANN 

demonstrated superior performance in predicting dissolved N2O concentrations. 

X. Xu et al. (2024) compared RNN and LSTM models for predicting N2O emissions 

from a WWTP. They tuned six key hyperparameter to obtain an optimal model. Results 

revealed that the LSTM model significantly outperformed the RNN model, achieving 

an Explained Variance Score (EVS) of 93% compared to 85% for the RNN. 

Additionally, the LSTM model demonstrated a 19% reduction in RMSE, indicating 

superior prediction accuracy and robustness to sudden events. 

Leveraging advanced algorithms on extensive monitoring data, data-driven models 

are increasingly precise in predicting N2O emissions. By capturing the complex 

relationships between operational parameters and N2O release, these models provide 

a robust framework for controlling and mitigating N2O emissions in wastewater 

treatment plants. 

2.4.2.3 Controlling and mitigating N2O Emissions 

Effective N2O emission control must be balanced with maintaining effluent quality and 

minimizing costs, complicating the development of mitigation strategies. Optimization 

approaches can be model-free or model-based, encompassing techniques such as 
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traditional PI control, evolutionary algorithms, knowledge or AI-based fuzzy logic 

control, model predictive control, and advanced reinforcement learning (Lu et al., 

2023). 

Sweetapple, Fu and Butler (2014) employed the NSGA-II multi-objective evolutionary 

algorithm to determine Pareto optimal control parameter sets for an activated sludge 

process. They identified effective solutions to balance emission reduction with 

competing objectives. Their findings demonstrate that multi-objective optimization can 

substantially reduce greenhouse gas emissions without plant modifications. However, 

trade-offs between different objectives must be carefully considered. 

Fuzzy logic control is a widely adopted method for mitigating N2O emissions in 

wastewater treatment plants (Lu et al., 2023). Boiocchi, Gernaey and Sin (2017) 

implemented an FLC strategy for a WWTP, utilizing the ammonium-to-nitrate ratio as 

a control parameter to adjust aeration levels to inhibit N2O production. While effective 

in processes with generation of N2O dominated by the ND pathway, this approach 

demonstrated limitations in systems primarily influenced by the NN pathway. 

Porro et al. (2018, 2019) developed a module adopting FLC as a core to regulate N2O 

emissions. This module evolved from knowledge-based rules to an AI driven approach, 

integrating biokinetic and CFD modelling. Knowledge-based approach effectively 

elucidates GHG production pathways and key influential factors within wastewater 

systems. By assigning risk coefficients to those factors, active pathways can be 

identified, enabling the proposal of targeted mitigation strategies. (Ye, Porro and 

Nopens, 2022). Hybrid modelling, combining AI-based FLC with mechanistic or CFD 

models, facilitates the evaluation of various process control strategies and mixing 

conditions on reactor greenhouse gas production (Porro et al., 2019). 

Daneshgar et al. (2024) developed a hybrid model-based protocol integrating 

flowsheet, CFD, and N2O risk assessment models. Tests across three case studies 

demonstrated that their N2O risk model, grounded in fuzzy decision theory, effectively 

identified high-risk conditions. This protocol provides a robust framework for WWTPs 

to minimize carbon footprint while maintaining removal efficiencies. 

The enhanced accuracy of data-driven models has significantly improved the 

performance of model predictive control (MPC) (Lu et al., 2023). By accurately 
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predicting N2O emissions under varying operating conditions, MPC enables targeted 

process control to reduce N2O emissions. For instance, Stentoft et al. (2021) 

developed an MPC algorithm optimizing wastewater treatment plants across multiple 

objectives, including effluent quality, energy consumption, cost, and global warming 

impact (incorporating direct N2O emissions and indirect carbon footprint). Prioritizing 

global warming minimization led to a substantial 35-43% reduction in daily GHG 

emissions. Lancioni et al. (2024) developed an early warning system based on MPC 

to mitigate GHG emissions in WWTPs. Their model integrated the ASM2d mechanistic 

model with a MLP deep learning model, using GSA to identify real-time biokinetic 

patterns. Successfully applied in a real wastewater plant, the system enabled 

operators to implement possible mitigation strategies that can reduce direct GHG 

emissions by up to 21% without compromising effluent standard. 

Tejaswini, Maheswari and Ambati (2024) developed an integrated supervisory control 

framework on the BSM2G platform to evaluate the impact of different control strategies 

on GHG emissions. Comparing PI, MPC, and FLC controllers, they found that a 

combined PI-MPC strategy for nitrate and DO control structure achieved the best 

results, reducing total GHG emissions by 25% compared to literature. Additionally, an 

MPC-MPC strategy solely for DO control led to a 49% reduction in GHG emissions 

relative to previous studies. 

2.4.3 Selection of data-driven models 

The rapid advancement of machine learning has led to a proliferation of data-driven 

modelling approaches. Selecting the optimal model for accurate performance is crucial. 

 z  ą , Z               ą      ( 0  ) proposed an algorithm for selecting machine 

learning models for N2O emission prediction in WWTPs. Employing k-means 

clustering, they compared MARS, SVM, and XGBoost models, finding that prediction 

accuracy varied based on input data variability. GSA revealed XGBoost as the only 

model consistently capturing relationships between all input variables and N2O 

emissions. 

Khalil et al. (2023) developed a comprehensive framework for selecting machine 

learning algorithms for real-time N2O emission modelling, prioritising accuracy, model 

complexity, computational efficiency, and interpretability. Their comparative analysis 

of KNN, decision trees, ensemble learning, and DNN models identified KNN (R2=0.88), 
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AdaBoost (R2=0.94), and DNN (R2=0.90) as top performers  In subsequent research 

(Khalil et al., 2024), they introduced an approach employing multi-objective 

optimization with the NSGA-II genetic algorithm to optimize feature selection and 

hyperparameters, resulting in computationally efficient online N2O emission models 

for WWTPs. 

Data-driven models excel at predicting N2O emission behaviour under specific 

operating conditions. When provided with sufficient and representative data, these 

models can generate highly accurate forecasts and adapt to process changes through 

online updates. Data-driven models offer advantages over traditional mechanistic 

models by mitigating issues such as over-parameterization, sensitivity to operating 

conditions, and the need for extensive calibration and validation. Nevertheless, their 

predictive capabilities are constrained under unforeseen circumstances. In such cases, 

mechanistic models can be employed to augment the dataset. By harnessing their 

complementary strengths, the integration of mechanistic models with data-driven 

approaches offers promising avenues for improving N2O emission predictions in 

wastewater treatment systems. This integrated approach has the potential to yield 

more accurate, adaptable, and comprehensive modelling tools, thereby optimizing 

wastewater treatment processes and minimizing GHG emissions (Khalil et al., 2024). 

Quaghebeur et al. (2022) developed a framework that combines a neural differential 

equation with a mechanistic ODE model. Their hybrid model, trained on dry weather 

data but evaluated under rainy conditions, exhibited improved predictive performance 

(RMSE=0.66) compared to the mechanistic model alone (RMSE=3.06), and enhanced 

generalisation ability in extrapolating to unobserved rain event, a challenge 

traditionally encountered by data-driven models (RMSE=5.75). 

K. Li et al. (2022) developed a hybrid model for N2O emissions in wastewater treatment 

plants, combining a first-principles model and a deep learning model. The first-

principles model (white-box) was adapted from the ASM model and implemented in a 

simulation platform, while the DL model (black-box) employed a teacher-forcing LSTM 

algorithm. Comparative analysis with black-box and white-box models demonstrated 

the superior predictive accuracy of the hybrid approach. Furthermore, the study 

evaluated the hybrid model's applicability and potential for identifying mitigation 



Chapter 2 Literature review: Modelling of N2O production in wastewater treatment 
processes 

 

54 

strategies, highlighting its promising generalizability and sensitivity to critical factors 

influencing N2O emissions. 

In summary, the convergence of burgeoning machine learning and AI algorithms with 

the widespread adoption of online monitoring equipment and the growing volume of 

process data has significantly advanced data-driven modelling for predicting and 

understanding N2O generation and emissions in wastewater treatment plants. 
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Chapter 3 NODE  und   nt    

NODEs represent a novel approach to neural networks that replaces the discrete 

layers of traditional architectures with a continuous transformation of data. This 

transformation is governed by a system of ODEs (Chen et al., 2018). 

The core concept of NODEs is that the hidden state of the network evolves over a 

continuous time interval according to a differential equation. The initial state 

corresponds to the input data, while the final state represents the output. This 

continuous evolution allows for more expressive and flexible models compared to 

traditional layer-based architectures (Kidger 2022). 

While NODE can replace residual networks for supervised learning, or describe 

continuous normalizing flows, or generate latent function for time-series forecasting, 

this study emphasized the particular interest on the potential of NODEs in solving 

dynamical systems, such as those encountered in wastewater treatment processes. 

3.1 Concept and methodology 

Using ODEs to describe dynamical systems is a fundamental approach across various 

scientific and engineering fields (Gear, 1981; Hairer and Wanner, 1996). These 

equations define the rate of change of key system variables, thereby expressing how 

the system evolves with respect to time. Complex systems, such as wastewater 

treatment processes, can be described using a system of mechanistic ODEs, 

generally formalized in Equation 3-1  

Where 𝑡 denotes time; 𝑌(𝑡) represents the state vector, which evolves over time. 𝑓 is 

the core function defining the relationships between the states and their corresponding 

derivatives. 

Given an initial value, the evolution of the dynamical system can be visualized by 

solving the ODEs. This scenario is often referred to as an initial value problem (IVP). 

The solution to an IVP provides a trajectory of the system states over time, starting 

from the specified initial condition (       ,  z z    ł       ł ż ń   ,  0 0). 

𝒅𝒀(𝒕)

𝒅𝒕
= 𝒇(𝒀(𝒕), 𝒕) Equation 3-1 
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NODEs extend this concept by bridging the gap between ODEs and deep learning. 

NODEs can be viewed as a continuous-time extension of residual neural networks 

(ResNets). While standard neural networks consist of discrete layers that transform 

the input, NODEs replace these discrete transformations with a continuous 

transformation defined by ODEs (Chen et al., 2018). 

The key innovation of NODEs is modelling the evolution of the hidden state as a 

continuous-time dynamical system. A neural network is constructed to approximate 

the function 𝑓 that computes the derivative of the hidden states. Mathematically, a 

NODE can be defined as: 

𝒅𝒀(𝒕)

𝒅𝒕
= 𝑵𝑵(𝒀(𝒕), 𝒕, 𝜽) Equation 3-2 

where NN denotes the neural network, 𝜃 represents the weight and bias parameters 

of the neural network. 

DNN have demonstrated remarkable expressive power in deep learning. These 

programmable neural networks, with structured architectures and an increased 

number of hidden layers, performs more accurately in predication tasks compared to 

traditional machine learning (Wu et al. 2021; Vanrolleghem and Lee 2003). Their 

exceptional approximation capability is formalised by the universal approximation 

theorem (Kurt, Maxwell and Halbert, 1989; Pinkus, 1999; Elbrächter et al., 2019). This 

theorem establishes that, under specific conditions, DNN with a single hidden layer 

can approximate any continuous function to an arbitrary degree of accuracy, given 

sufficient neurons in that layer. While practical limitations exist due to data availability, 

quality, and computational constraints, advancements in neural networks 

advancements continue to enable innovative applications like NODE (Chen et al., 

2018; Dupont, Doucet and Teh, 2019; Harry and Howe, 2021), which leverage DNN’s 

function approximation capabilities to tackle complex differential equations.  

As a data-driven approach, NODEs offer new opportunities to reveal the underlying 

function f based on observed data. The core distinction between mechanistic ODE 

and neural ODE lies in how they define the function 𝑓. Mechanistic models rely on 

manually crafted formulas requiring significant domain expertise and tremendous 

technical efforts. In contrast, NODE models discover this relationship from observed 
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data 𝑌(𝑡) through a trainable neural network. This approach reduces the dependency 

on explicit expert-derived formulas, allowing the model to adapt to real-world data. 

3.2 Training of NODE 

For many dynamical systems, only time-series data of 𝑌(𝑡) are typically measured (Wu 

et al., 2021). Consequently, training of the neural network is designed to be 

accomplished through integration of the ODEs. For example, in wastewater processes, 

the state of wastewater can be monitored by measuring the concentrations of 

fractioned components at various time points, such as active heterotrophic biomass 

(XBH), readily biodegradable substrate (SS), chemical oxygen demand (COD) and 

ammonia. However, direct measurements of component reaction rates are often 

unavailable. As a result, NODEs training is designed to utilize only component 

concentration data. This process involves integrating ODEs from an initial condition 

y(t0), e.g., at the time when influent enters the bioreactor, to a final condition y(tn), 

e.g., at the end of hydraulic retention time (HRT) when the flow leaves the reactor as 

effluent. 

𝒀(𝒕𝒏) = 𝒀(𝒕𝟎) + ∫ 𝑵𝑵(𝒀(𝒕))𝒅𝒕
𝒕𝒏

𝒕𝟎

= 𝑶𝑫𝑬𝑺𝒐𝒍𝒗𝒆𝒓(𝑵𝑵,𝒀(𝒕𝟎), (𝒕𝟎, 𝒕𝒏), 𝜽) 

Equation 3-3 

Where (t0, tn) denotes the range of integration, Y(t0) represents initial condition, Y(tn) 

denotes the states at time tn. 

In practice, the solution is often obtained through numerical methods, with ODE 

solvers playing a vital role in solving dynamical systems. Thanks to mathematical 

advancements, various types of ODE solvers are now available (       ,  z z    ł 

      ł ż ń   ,  0 0). However, issues such as stiffness may still be encountered, 

which will be discussed in subsequent chapters (Kushnir and Rokhlin, 2012). 

In machine learning, training a neural network involves iterative update of its weights 

and bias by reducing the discrepancy between the model’s prediction and true data. 

This process is known as backpropagation (Amari, 1993). 

A loss function, also named cost function or error function, is often defined to quantify 

a model's performance on a given dataset (LeCun, Bengio and Hinton, 2015). It serves 
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as a guiding metric in the learning process, directing the model toward improved 

performance through iterative training. In the context of NODEs, the loss function L(𝜃) 

can be defined similarly to conventional machine learning approaches. For example, 

one common choice is the mean absolute error (MAE): 

𝑳(𝜽) =
𝟏

𝒏
∑ |𝒀(𝒕𝒊)

𝑵𝑵 − 𝒀(𝒕𝒊)
𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏|

𝒏

𝒊=𝟏
 

= 
𝟏

𝒏
∑ |𝑶𝑫𝑬𝑺𝒐𝒍𝒗𝒆𝒓(𝑵𝑵,𝒀(𝒕𝟎), (𝒕𝟎, 𝒕𝒊), 𝜽) − 𝒀(𝒕𝒊)

𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏|
𝒏

𝒊=𝟏
 

Equation 3-4 

Building upon the loss function, gradient descent algorithms can then be employed to 

iteratively update and optimise the weights and biases of the neural network until 

achieving the desired accuracy (Kingma and Ba, 2014; Finlay et al., 2020). The 

primary technical challenge in training NODEs lies in backpropagation within gradient 

descent algorithms. Gradient calculation can be performed via forward and reverse 

mode differentiation. While forward pass is straightforward, it often incurs high memory 

costs and introduces additional numerical errors (Chen et al., 2018). As a remedy, the 

adjoint sensitivity method is thus employed by introducing the hidden states h(t) and 

the adjoint a(t), which is the gradient of the loss with respect to the hidden state: 

𝒂(𝒕) =
𝝏𝑳

𝝏𝒉(𝒕)
 Equation 3-5 

The weights and biases 𝜃 of the neural network can then be optimised by computing 

the gradient through the integration of h(t) and a(t): 

𝒅𝑳

𝒅𝜽
= ∫ 𝒂(𝒕)𝑻

𝒕𝟎

𝒕𝒏

𝝏𝑵𝑵(𝒉(𝒕), 𝒕, 𝜽)

𝝏𝜽
𝒅𝒕 Equation 3-6 

The adjoint method reduces memory cost and controls numerical error in exchange of 

solving a reversing ODE, rather than directly differentiating the accumulated forward 

pass operations (Chen et al., 2018). However, solver errors can propagate and amplify 

into gradient flow, rending it ill-conditioned. Even minuscule errors in the forward route 

can result in a pronounced deviation in the reversing solution (Kim et al., 2021). These 

issues are exacerbated when the studied system already exhibits stiffness. 

By employing modern ODE solvers and gradient descent algorithms, such as the 

Adam (Adaptive Moment Estimation) optimizer used in the experiments (Kingma and 
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Ba, 2014), the neural network’s weights and biases can be iteratively updated and 

optimized until the level of desired accuracy is attained. 

3.3 Development of NODE 

While the concept of using differential equations in modelling has a long history, NODE 

emerged as a groundbreaking concept with the publication of "Neural Ordinary 

Differential Equations" by Chen et al. (2018). This work, which received the best paper 

award at NeurIPS 2018, was hailed as a "radical new design" by MIT Technology 

Review.  

Since its inception, NODEs have rapidly evolved into a diverse family of neural 

differential equations, spawning various extensions and modifications (Kidger, 2022): 

● Augmented neural ODEs (ANODEs): Address the limited expressiveness of 

original NODEs by augmenting the state space with additional dimensions, 

incorporating latent variables into the ODE system, enabling more complex data 

modelling (Dupont, Doucet and Teh, 2019). 

● Neural controlled differential equations (NCDEs): Extend NODEs to handle 

irregularly sampled time series data through the inclusion of control terms (Kidger 

et al., 2020). 

● Neural stochastic differential equations (NSDEs): Introduce stochasticity into 

NODEs to model uncertainty and noise inherent in real-world systems (Jia and 

Benson, 2019; Tzen and Raginsky, 2019). 

● Neural partial differential equations (NPDEs): Apply the NODE framework to 

partial differential equations, expanding its applicability to a wider range of 

problems (Ruthotto and Haber, 2020; Sun, Zhang and Schaeffer, 2020). 

● Graph neural ODEs: Adapt NODEs for graph-structured data, enabling 

continuous-time graph representation learning (J. Choi et al., 2022; Bergna et al., 

2023). 

● Physics-informed neural network (PINN): Incorporate physical laws and 

domain knowledge into the NODE framework for improved accuracy and 

interpretability in scientific modelling (Karniadakis et al., 2021; Kong et al., 2022). 

● Hamiltonian neural networks: Integrate principles from Hamiltonian mechanics 

to improve energy conservation in physical systems modelling (Greydanus, 

Dzamba and Yosinski, 2019). 
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● Spatial-temporal neural ODE: Extend NODEs to model both spatial and 

temporal dynamics simultaneously (Zhou et al., 2021). 

● Continuous normalizing flows: Apply NODEs to generative modelling, enabling 

efficient sampling and density estimation of complex probability distributions 

(Kobyzev, Prince and Brubaker, 2020). 

These variants and extensions have significantly broadened the applicability of 

NODEs across various domains, including time series analysis (Verma, Heinonen and 

Garg, 2024), generative modelling (Garsdal, Søgaard and Sørensen, 2022), and 

physics-informed machine learning (Gabriel S Gusmão et al., 2022; Treibert and 

Ehrhardt, 2022). The rapid development of NODE-based approaches demonstrates 

their potential to revolutionize continuous-time modelling in artificial intelligence and 

scientific computing. 

3.4 NODE applications 

In the real world, governing laws for most dynamical systems are often incompletely 

or imperfectly understood. While it can be argued that NODE also lacks explicit closed-

form equations at the present, preventing direct symbolic representation of the 

underlying law (although this might be feasible in the future through methods like 

SINDy(sparse identification of nonlinear dynamics) (Kaheman, Kutz, and Brunton 

2020), they can effectively approximate the practical results achieved by mechanistic 

models (Xie, Parlikad and Puri, 2019; Esteve-Yagüe and Geshkovski, 2021; Zhou et 

al., 2021; Garsdal, Søgaard and Sørensen, 2022; Núñez et al., 2023; Verma, 

Heinonen and Garg, 2024). This capability makes NODEs applicable to processes 

without established mechanistic models, as many systems exhibit analogous dynamic 

patterns of growth and decay, such as those observed in bacterial and substrate 

interactions in wastewater treatment. 

Different from conventional machine learning, which merely maps the input and output 

with discretised time series data at fixed intervals (Zhong et al., 2021), NODE is 

continuously defined, enabling it to provide solutions at any arbitrary time (Zou et al., 

2024). This feature proves particularly valuable when dealing with intermediate 

products such as N2O emissions.  
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NODE presents distinct advantages and holds significant potential for dynamical 

systems. Their applications have been seen in many science and engineering fields, 

including: 

1) Prediction: Flexible output and better generalisation (Dupont et al., 2019; Kidger 

et al., 2020). 

2) Parameter estimation: Determination of kinetic parameter solely from operational 

monitoring data (Bradley and Yr, 2022; Kong et al., 2022). 

3) Modelling: Accurate predicative modelling, with enhanced robustness through 

integration with mechanistic model. (Quaghebeur et al., 2022) 

4) Optimal control: Optimisation of dynamic systems (Sandoval, Petsagkourakis 

and del Rio-Chanona, 2022). 

5) Knowledge discovery: Unveiling insights through PINN with certain 

interpretability and knowledge discovery potentials (Cuomo et al., 2022; Gusmão 

et al., 2022; Karniadakis et al., 2021; Xue et al., 2021). 

Despite rapid advancements in NODEs and their widespread adoption across various 

fields, their application within the water sector remains notably limited. To date, only 

two published studies have explored the use of NODEs for water-related systems. 

The first study, conducted by De Jaegher et al. (2020), employed a neural differential 

equation to model colloidal fouling in electrodialysis, a complex process that can be 

used in both drinking water and wastewater treatment. Their study demonstrated the 

model’s capacity to accurately predict fouling rates even with a limited set of 

experimental data. Subsequent simulation study and sensitivity analysis validated the 

model’s robustness, quantifying the relative contribution of crossflow velocity (40%), 

current (20%), and salt concentration (13%) to fouling rates. The study concluded that 

given sufficient high-quality data with a broad input range. The NODE model can 

capture the system dynamics and generalize well to unseen conditions. The absence 

of discontinuities or abrupt changes in model behaviour highlighted the suitability and 

robustness of NODEs for this complex domain. 

The second study by Quaghebeur et al. (2022) proposed a hybrid modelling approach 

that integrates mechanistic physics-based models with data-driven NODE models. 

When applied to wastewater treatment, this hybrid model demonstrated the NODE's 

ability to compensate for knowledge gaps in the mechanistic model, leading to 
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improved predictive performance. Complementarily, the mechanistic component 

enhanced the model's capacity to extrapolate to unseen conditions compared to purely 

data-driven models. The study concluded that this hybrid approach effectively 

combines the strengths of both modelling paradigms while mitigating their individual 

limitations, albeit at the cost of reduced model interpretability. 

3.5 Opportunities and Challenges 

NODE offer a promising approach to modelling complex dynamic systems, such as 

wastewater treatment processes. By representing the system as a continuous-time 

differential equation, NODE can capture non-linear relationships between input 

variables, system states, and output parameters. 

Their potential application in wastewater treatment can include: 

● Process modelling: NODEs can accurately model the dynamics of biological 

processes in wastewater treatment, such as activated sludge, membrane 

bioreactors, and anaerobic digestion. This enables better understanding, 

prediction, and control of these systems (Garsdal, Søgaard and Sørensen, 2022; 

Zou et al., 2024). 

● Real-time optimization and control: By integrating sensor data and real-time 

predictions, NODEs can optimize operational parameters, such as aeration rate, 

sludge retention time, and chemical dosage, to improve treatment efficiency, 

reduce energy consumption and mitigate GHG emissions (Sandoval, 

Petsagkourakis and del Rio-Chanona, 2022). 

● Anomaly detection: Through continuous monitoring of system behaviour, 

NODEs can identify abnormal patterns that indicate potential issues, such as 

equipment failures or process upsets, allowing for early intervention and 

prevention of treatment failures (Mamandipoor et al., 2020; Salles et al., 2022). 

● Knowledge discovery: By learning the underlying dynamics of the wastewater 

treatment process, NODEs can be used to estimate the kinetic parameters or 

discover knowledge that may still be hidden from professionals (Champion et al., 

2019; Fasel et al., 2022). 

While NODEs hold great promise, several challenges remain: 
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● Computational efficiency: Training and inference can be computationally 

expensive due to the need for ODE solvers, particularly for large-scale systems 

(Golovanev and Hvatov, 2022). 

● Stability: Ensuring the stability of the ODE system during training is crucial, 

especially for stiff dynamical systems common in wastewater treatment (Tuor et 

al., 2020). 

● Interpretability: Fully unlocking the potential of NODEs for interpretability 

requires further research to bridge the gap between mathematical representations 

and real-world phenomena (Golovanev and Hvatov, 2022). 

● Data quality and availability: The performance of NODEs heavily relies on the 

quality and quantity of available data, which can be challenging to obtain in some 

wastewater treatment contexts (Hansen et al. 2024; Bahramian et al. 2023; 

Newhart et al. 2019). 

Despite these challenges, the field of NODEs is rapidly evolving. Ongoing research is 

dedicated to addressing these limitations and exploring novel applications across 

various fields such as physics (Lee and Parish, 2021; M. Choi et al., 2022; Zakwan et 

al., 2023; Kircher, Döppel and Votsmeier, 2024), biology (Giampiccolo et al., 2024; 

Hossain et al., 2024; Xiang et al., 2024), and finance (Yang et al., 2023). Advances in 

computational methods, such as adaptive ODE solvers and parallelization techniques 

(Haque et al. 2023; Bosch et al. 2024), are continually improving the efficiency of 

NODE implementations. 

In summary, NODEs represent a powerful and flexible framework for deep learning, 

offering new opportunities for modelling complex dynamics and systems. The 

development of NODE variants and extensions is progressively expanding the 

potential of this approach, while addressing current challenges will be key to its 

widespread adoption and integration into practical applications. 
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Chapter 4 Ex  ri  nt    i u  tion    t or  

A self-built simulation platform was developed to conduct experiments and facilitate 

data-driven modelling of N2O in wastewater treatment by means of NODEs. This 

approach was adopted due to the following considerations: 

● Novelty and complexity: Due to the novelty of NODEs and the complexity of 

wastewater treatment processes, preliminary experimentation with simulated data 

was deemed essential before transitioning to real data or real-world applications. 

● Experimental flexibility: The ability to generate and manipulate diverse datasets 

is crucial for comprehensive experimentation. Simulated data provide precise 

control and ground truth validation, which are often challenging with real-world 

data. 

● Integration requirements: Embedding NODEs neural network within an ODE 

modelling framework is essential for this research. This integration is not feasible 

with commercial simulation software due to lack of source code access. 

● Data availability: The absence of suitable real-world datasets necessitated the 

creation of a simulated environment for data generation. 

MATLAB (The MathWorks Inc, 2024) served as the programming language for the 

experiments. Two simulation approaches were employed using MATLAB: 

● Simulink simulation: Used for generating simulated data intuitively. 

● MATLAB code simulation: Implemented for Simulink results verification, model 

validation, and NODE integration due to Simulink's limitations in this regard. 

Simulink simulations offer a visual representation closely aligned with process flow, 

enhancing comprehension. Nevertheless, constructing accurate models, particularly 

for complex systems, can be challenging due to algebraic loop issues and the 

complexities of S-function development (Chaturvedi, 2017). 

MATLAB language simulation, while requiring programming proficiency, provide 

greater flexibility and precision. Their higher-level language nature can hinder 

accessibility for environmental science scholars without coding experience (David, 

Vasel and Wouwer, 2009). 
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Given the ease of integrating NODE into modules, MATLAB code simulation is the 

primary focus of these experiments. Simulink simulations serve as a comparative 

reference for validation purposes. 

The ASMG1 model was selected as the primary mechanistic model for data generation. 

However, ASM1 would be used initially before full ASMG1 implementation due to its 

simplicity and available references for code verification and debugging. 

The BSM1 plant model was chosen as a fully configured virtual wastewater treatment 

plant for this study, given its status as a well-established benchmark in wastewater 

treatment research. 

4.1 N2O mechanistic model used 

The ASMG1 mechanistic model was employed to generate observed data including 

nitrous oxide production. The components of ASMG1 model were then adopted to 

characterise the NODE model throughout the whole research. 

The ASMG1 model extends existing activated sludge models by incorporating GHG 

emissions, specifically N2O. It was developed and incrementally refined through a 

series of advancement by various researchers: 

● Hiatt and Grady (2008): formulated ASMN model, introduced N2O with four-step 

denitrification for carbon oxidation and nutrient removal and highlighted the role of 

free ammonia and FNA as true substrates and inhibitors. 

● Mampaey et al. (2013): Added an AOB denitrification pathway. 

● Guo and Vanrolleghem (2014): Modified DO kinetic terms and validated the 

model's performance. 

● Flores-Alsina et al. (2014): Integrated the model into BSM2 (Corominas et al., 

2012), and evaluated its performance in full-scale plants from the viewpoint on 

balance of effluent quality, economic cost and greenhouse gas emissions. 

ASMG1 comprehensively integrates N2O production and consumption by mixed 

cultures of AOB and heterotrophic de-nitrifiers. This model is temperature and pH 

dependant, highlighting the role of free ammonia and free nitrous acid in N2O 

generation. Additionally, it refines the nitrifier-denitrification pathway by incorporating 

Haldane kinetics to represent the influence of DO on N2O production, a key point of 

mostly discussed (Guo & Vanrolleghem, 2014). This allows the model to capture 
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seasonal variations in N2O emissions. Notably, the ASMG1 maintains simplicity, 

excluding difficult-to-measure components like hydroxylamine, and comprises only 18 

components and 15 reactions. 

The ASMG1 model was further improved by the author in two aspects, based on the 

latest version from the publications (Flores-Alsina et al., 2014; Guo and Vanrolleghem, 

2014):  

1) Rationalised Coefficients: Replaced all decimals with fractions (e.g., 8/7 instead 

of 1.142857) for better continuity checks.  

2) Corrected misprint or typo: I   q          “process rate 7”, the concentration of 

NOB should multiply right elements (                   (“)”)                     ), 

according to the appendix of the paper titled “Comparison of different modelling 

approaches to better evaluate greenhouse gas emissions from whole wastewater 

treatment plants” (Corominas et al., 2012). 

3) Corrected error: In equation for alkalinity component concentration SALK, the 

                                           “process rate 10”: (-iXB/14) should be 

included. It should not stand alone among summary elements. 

4.1.1 Gujer matrix and model equations 

The details of the modified Gujer matrix and equations for ASMG1 are provided as 

follows.  

1) The intermediate symbols were defined firstly for brevity, shown in Table 4.1 

Table 4.1 The intermediate symbols 

Symbol Value 

A = (-24+3·(-16)+8)/14+(-24+2·(-16)+8)/14=64/14-48/14=8/7 

B = 16/7 

C = (-24-16)/14 = -40/14 = -20/7 

D = (-24+2·(-16)+8)/14 = -48/14 = -24/7 

E = YH·ηY 

F = (1-YH·ηY) / (YH·ηY) 

G = YA1·ηY_AOB 

J = - iXB / 14 

W = F·7 / 4 

2) The number for each process reaction the ASMG1 model is described Table 4.2 

Table 4.2 Number of processes 
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No Process 

r1 Aerobic growth of heterotrophs 

r2 Anoxic growth of heterotrophs, reducing NO3
- to NO2

- 

r3 Anoxic growth of heterotrophs, reducing NO2
- to NO 

r4 Anoxic growth of heterotrophs, reducing NO to N2O 

r5 Anoxic growth of heterotrophs, reducing N2O to N2 

r6 Aerobic growth of AOB autotrophs 

r7 Aerobic growth of NOB autotrophs 

r8 Decay of heterotrophs 

r9 Decay of AOB autotrophs 

r10 Decay of NOB autotrophs 

r11 Ammonification of soluble organic nitrogen 

r12 Hydrolysis of particulate organics 

r13 Hydrolysis of particulate organic nitrogen 

r14 Aerobic AOB nitrifier denitrification, reducing NO2
- to NO 

r15 Aerobic AOB nitrifier denitrification, reducing NO to N2O 

3) The process rate equations were defined in the Table 4.3 

Table 4.3 Process rate equations 

No Process Rate ρ 

r1 μH·SS/(KS1+SS)·SO/(KOH1+SO)·XBH 

r2 μH·ηg2·SS/(KS2+SS)·SNO3/(KNO3+SNO3)·KOH2/(KOH2+SO)·XBH 

r3 μH·ηg3·SS/(KS3+SS)·SNO2/(KNO2+SNO2)·KOH3/(KOH3+SO))·KI3NO/(KI3NO+SNO)·XBH 

r4 μH·ηg4·SS/(KS4+SS)·SNO/(KNO+SNO+SNO
2/KI4NO)·KOH4/(KOH4+SO)·XBH 

r5 μH·ηg5·SS·/(KS5+SS)·SN2O/(KN2O+SN2O)·KOH5/(KOH5+SO)·KI5NO/(KI5NO+SNO)·XBH 

r6 μAOB·SFA/(KFA+SFA+SFA
2/KI9FA)·SO/(KO_AOB+SO)·KI9FNA/(KI9FNA+SFNA)·XAOB 

r7 μNOB·SFNA/(KFNA+SFNA+SFNA
2/KI10FNA)·SO/(KO_NOB+SO)·KI10FA/(KI10FA+SFA)·XNOB 

r8 bH·XBH 

r9 bAOB·XAOB 

r10 bNOB·XNOB 

r11 ka·SND·XBH 

r12 kh·(XS/XBH)/(KX+XS/XBH)·(SO/(KOH+SO)+ηh·KOH/(KOH+SO)·SNOX/(KNO3+SNOX))·XBH 

r13 r12·XND/XS 

r14 

μAOB·ηAOB·SO/(KSO_AOBden1+(1-

2*(KSO_AOBden1/KIO_AOBden1)
0.5)·SO+SO

2/KIO_AOBden1)·SFA/(KFA_AOB+SFA)·SFNA/(KFNA_AOB+SFNA)·XAOB 

r15 

μAOB·ηAOB·SO/(KSO_AOBden2+(1-

2*(KSO_AOBden2/KIO_AOBden2)
0.5)·SO+SO

2/KIO_AOBden2)·SFA/(KFA_AOB+SFA)·SNO/(KNO_AOB+SNO)·XAOB 

4) The stoichiometric matrix was defined in the Table 4.4 
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4.1.2 Calculation of gaseous N2O flux 

The flux of gaseous N2O emissions for a reactor is calculated using          ’      

and the striping equation (Foley et al., 2010), based on the liquid N2O concentration 

and aeration rate: 

𝐹𝑙𝑢𝑥𝑁2𝑂 = −𝐾𝐿𝑎𝑁2𝑂 ∙ (𝑆𝑁2𝑂𝑠𝑎𝑡 − 𝑆𝑁2𝑂) ∙ 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 Equation 4-1 

KLaN2O is calculated using equations: 

𝐾𝐿𝑎𝑁2𝑂 = 𝐾𝐿𝑎𝑂2

√𝐷𝑁2𝑂

√𝐷𝑂2

 Equation 4-2 

and corrected for the current temperature from reference temperature, using standard 

factor θ: 

𝐾𝐿𝑎𝑇 = 𝐾𝐿𝑎𝑇𝑒𝑚𝑝_𝑟𝑒𝑓 ∙ 𝜃𝑇−𝑇𝑒𝑚𝑝_𝑟𝑒𝑓 Equation 4-3 

Where, 

FluxN2O: the flux of gaseous N2O,     (g/day) 

KLaO2:  the oxygen volumetric mass transfer coefficient, (/day) 

SN2Osat: the saturation concentration of N2O in water  (g/m3) 

SN2O:  the concentration of dissolved N2O in water  (g/m3) 

Vreactor: the volume of the reactor     (m3) 

KLaO2:  the oxygen transfer coefficient     (/day) 

DO2:   the diffusion coefficient of oxygen in water   (m2/s) 

DN2O:  the diffusion coefficient of nitrous oxide in water (m2/s) 

T:  the current temperature     (K) 

Temp_ref: the reference temperature      (K) 

4.1.3 Stoichiometric and kinetic parameters 

Stoichiometric parameters as shown in Table 4.4 describe the mass balance of various 

components during biological processes. They essentially tell us how much of one 

substance is consumed or produced for a given amount of another substance. 

Stoichiometric parameters ensure that the mass of elements (like carbon, nitrogen, 

phosphorus) is conserved throughout the process, determine the yield coefficients of 

different microbial groups (e.g., heterotrophs, autotrophs) in converting substrates into 
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new cells, and predict the quantity of products (e.g., nitrate, nitrite, solids) generated 

during the process (Hauduc et al., 2013). 

Kinetic parameters describe the rate at which biological reactions occur. They quantify 

the speed of microbial growth and decay, substrate utilization, and product formation. 

Example of kinetic parameters include m                            (μmax), half-

saturation coefficient (Ks), decay rate coefficient (bd), inhibition coefficients for toxic 

substances. These parameters are crucial for understanding the dynamic behaviour 

of wastewater treatment systems (Almeida, Reis and Carrondo, 1997). 

In the experiments, the default values of stoichiometric and kinetic parameters for 

ASMG1 model from literatures (Flores-Alsina et al., 2014) were adopted in the 

experiments. Please refer to the cited literature or attached electronic file of source 

code for details as this part is not the focus of this study. 

4.2 BSM1 plant configuration 

As shown in Figure 4.1, the BSM1 plant consists of five activated sludge reactor tanks 

connected in series with a total volume of 6000 m3, followed by a secondary clarifier. 

The first two tanks are 1000 m3 anoxic bioreactors with mixing devices, where 

denitrification reactions mainly occur, while the remaining three are 1333 m3 aerobic 

bioreactors with oxygenation devices at the bottom, where carbon oxidation and 

nitrogen nitrification reactions mainly take place. This configuration represents a 

typical A/O process that combines nitrification with denitrification for efficient nutrient 

removal. 

The secondary clarifier consists of 10 uniform layers, each 0.4m high, with a total 

volume of 6000 m3. Assumed as a non-reactive unit, there are no chemical reactions 

inside, and it is mainly used for the precipitation of particulate components and sludge 

recirculation operations. The inflow enters from the 6th layer, the 10th layer (top layer) 

discharges the treated and settled wastewater, and the 1st layer (bottom layer) enables 

sludge recirculation and waste sludge discharge. Takacs’ model with double 

exponentially settling velocity method (Takács, Patry and Nolasco, 1991) was adopted 

for describing the secondary clarifier. 

One key modification was made to the original components of the BSM1 plant: the 

ASM1 (activated sludge model no. 1) was replaced with the ASMG1 model for 



Chapter 4 Experimental simulation platform 

 

71 

bioprocess reactions. This modification allows for comprehensive modelling of 

greenhouse gas production in the wastewater treatment process. 

 

Figure 4.1 Overview of the BSM1 plant. Adapted from(Alex et al., 2018) 

The operational parameter settings were adopted from the open-loop control 

described in the BSM1 technical report (Alex et al., 2018). The recycling activated 

sludge flowrate was set to match the influent flowrate, while the internal recirculation 

flowrate was set at three times the influent flowrate. Waste sludge was discharged at 

a constant rate of 385 m3/d. Minimal aeration was provided for the first two anoxic 

tanks, with a KLa of 2/d, while the aeration rate for the remaining three oxic tanks was 

set at a constant value of 240 /d. No external carbon source was added to the tanks. 

The control parameter settings are summarized in Table 4.5. 

Table 4.5 Experimental control settings 

No Controls Settings 

1 RAS flowrate 1 time of influent flowrate 

2 IR flowrate 3 times of influent flowrate 

3 WAS flowrate 385 (m3/d) 

4 Aeration Kla for unit 1 ~ 5 2, 2, 240, 240, 240 (/d) respectively 

5 External carbon addition none 

For a more detailed description of the plant configuration, including specific parameter 

values and operational ranges, please refer to the official BSM1 report (Alex et al., 

2018) and ASMG1 documents (Flores-Alsina et al., 2014; Guo & Vanrolleghem, 2014). 
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These resources provide in-depth information on the plant structure, process 

equations, and simulation protocols that form the foundation of this experimental setup. 

4.3 Influent data 

The BSM1 model provides three types of influent datasets to represent distinct 

weather conditions, which significantly influence wastewater characteristics and flow 

rates. 

● Dry weather scenario: The dataset encompasses two weeks of dynamic dry 

weather influent data, characterizing relatively smooth flow patterns and stable 

microbial populations. This simulates routine and normal operations in a 

wastewater treatment plant. 

● Rain weather scenario: The dataset presents one week of dynamic dry weather 

conditions followed by a prolonged rain event in the subsequent week. The rain 

event results in a rapid increase in flow due to surface runoff and a concomitant 

decrease in pollutant concentrations. This scenario may induce increased 

hydraulic loading on treatment units and washout effects on settled solids. 

● Storm weather scenario: The dataset combines one week of dry weather data 

with two superimposed storm events. This reflects abrupt flow rate surges and 

significantly reduced pollutant concentrations due to excessive dilution. Unlike the 

rain weather scenario, these storm events are characterized by short duration and 

rapid recovery to normal conditions. 

To align with the ASMG1 model's requirements, this study extended the well-

established BSM1 influent dataset to include six additional components: nitrite (SNO2), 

nitric oxide (SNO), nitrous oxide (SN2O), nitrogen (SN2), NOB (XNOB), and Temperature. 

Zeros were filled for five added components SNO2, SNO, SN2O, SN2, XNOB. The 

temperature is set at 15°c, and pH is at 7. The extended influent data in dry, rain, and 

storm weather scenarios for ASMG1 based BSM1 model are visualised in Figure 4.2. 
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Figure 4.2 ASMG1 influent data of dry, rain and storm weather scenarios 

We used extended influent data of 14 days in dry, rain, and storm weather scenarios 

as input, run the BSM1 plant simulation, and generated five sets of input data and 

trajectory state data for each reactor tank, mimicking monitored data. Sampling point 

were set at every 15 minutes. 

Prior to initiating any scenario simulations, the system was stabilized for an initial 

period of 100 days, as specified in BSM1 documentation. This stabilization phase 

employed a constant input of average dry weather flow rate and flow-weighted 

average influent concentrations. 

4.4 N2O production simulation with Simulink 

Simulink is a graphical programming environment employed for modelling, simulating, 

and analysing dynamic systems. As part of the MATLAB suite, it provides a visual 

approach to system design. Simulink models are constructed using interconnected 

blocks that represent system components. These blocks can encapsulate 

mathematical operations, physical systems, or other functions. Information is 

transmitted between blocks via signals. Simulink leverages numerical solvers to 

integrate differential equations and compute the system's behaviour over time. 
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Running the model calculates the system's response to inputs within a specified 

timeframe (Chaturvedi, 2017). 

Given the complexity of wastewater process models like ASM1 or ASMG1, custom-

built blocks utilizing S-functions are often necessary. Typically programmed in C or 

C++, S-functions offer custom algorithm, enhanced performance and flexibility for 

intricate models or real-time applications. The original BSM1 model already 

incorporated S-functions for the ASM1 process, albeit with simplifications of real-world 

plant conditions (Alex et al., 2018). Nevertheless, the generated reference results 

demonstrated reasonable alignment with actual scenarios, establishing it as a suitable 

benchmark for wastewater process simulation. Commercial simulation software has 

adopted similar principles and frameworks, while potentially incorporating more 

complex process reactions. 

By creating core blocks with embedded S-functions for individual treatment units and 

connecting them according to the plant's flow layout, a complete Simulink simulation 

of the BSM1 plant can be constructed. Once the solver and environmental parameters 

are defined, the model can be executed to generate results. 

The overall simulation diagram of BSM1, incorporating ASMG1 model is presented in 

Figure 4.3. The modular diagram for sub-system bioreactor, secondary clarifier and 

hydraulic delay unit are presented in Figure 4.4, Figure 4.5, and Figure 4.6 respectively. 

Hydraulic delay unit is designed to avoid algebraic loop issue. 
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Figure 4.3 Simulation diagram of ASMG1 based BSM1 plant 

 

Figure 4.4 Modular diagram of bioreactor 

 

Figure 4.5 Modular diagram of secondary clarifier 

 

Figure 4.6 Modular diagram of hydraulic delay unit 
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S-functions were developed for the ASMG1 model and integrated into the BSM1 

framework, replacing the ASM1 model S-functions. These new S-functions were 

embedded within the combiner and bioreactor blocks. The second clarifier component 

was modified to accommodate ASMG1 components. The code underwent rigorous 

debugging and was validated against wastewater theory and established treatment 

practices by comparison with a MATLAB code version. 

4.5 N2O production simulation with MATLAB code 

The implementation of N2O production simulation in the BSM1 plant using MATLAB 

language follows common wastewater modelling practices (David, Vasel and Wouwer, 

2009; Chaturvedi, 2017). The simulation framework comprises three key modules: the 

ASMG1 module, the BSM1 module, and the plant performance module. These 

modules serve as the core components and function as the backbone for the 

simulations. 

4.5.1 Key modules 

4.5.1.1 ASMG1 module 

The ASMG1 module constitutes the core of the model, representing essential 

bioprocess reactions based on given differential equations. The steps to structure the 

module are as follows: 

1) Specification of basic kinetic parameters. 

2) Formulation of temperature- and pH-corrected kinetic parameters. 

3) Calculation of free ammonia, free nitrous acid, and total oxidized nitrogen 

concentrations, which impact N2O production, and are integrated into the process 

rate equations. 

4) Definition of 15 process rates as shown in Table 4.3, including: 

● Aerobic growth and decay of HDB, AOB and NOB. 

● Four-step heterotrophic denitrification reactions 

● Two-step AOB nitrification reactions 

● Soluble and particulate nitrogen decomposition 

5) Calculation of reactions using equations from the stoichiometric matrix, with 

predefined stoichiometric parameters. 
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4.5.1.2 BSM1 module 

BSM1, a benchmark model for activated sludge wastewater treatment, can be 

efficiently implemented in MATLAB (The MathWorks Inc., 2024) due to its robust 

numerical and computational strengths. Additionally, its matrix operations facilitate the 

representation of complex reactor configurations and interconnections within the 

BSM1 model. At its core, BSM1 is a system of differential equations describing the 

dynamics of various components within the activated sludge process.  

The mathematical framework of the BSM1 module is established through the following 

steps: 

1) Interpolation of influent flowrate and concentration at the given time (𝒕). 

2) Calculation of temperature-dependent parameters, particularly for gaseous 

components NO, N2O and N2. 

3) Computation of inflow concentrations to activated sludge by mixing influent, RAS, 

and IR flows. A hydraulic delay unit is added to avoid algebraic loop issue. 

4) Core calculations involve evolution of components in five bioreactor tanks by 

calling the ASMG1 module and determination of gaseous component emissions 

using the method described in section 4.1.2. 

5) Simulation of settling in the secondary clarifier for overflow of the top clean layer 

as effluent and downflow of the bottom layer for recycling or discharge of the 

concentrated activated sludge. 

Once established, the BSM1 module can simulate the complete evolution trajectory 

for various influent inputs using numerical solvers. Both steady-state and dynamic 

simulations are feasible by giving different influent data and time periods. Among 

various options that MATLAB offered for ODE solvers, the following two are adopted 

for the experiments: 

● Ode45, based on the explicit Runge-Kutta (4,5) formula (Dormand-Prince pair), is 

sufficient for constant influent input during stabilization. 

● Ode15s, derived from the Gear method, is employed for dynamic simulations. The 

model's stiffness, resulting from the wastewater treatment system's inherent 

nature, can be addressed by this solver. 
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MATLAB's symbolic math toolbox was utilized to derive and manipulate the system's 

equations accurately, enhancing the model's overall precision and flexibility. 

4.5.1.3 Plant performance assessment module 

Plant performance assessment is typically conducted during the second week of 

operation, as the system is presumed to have stabilized after initial fluctuations. 

Evaluation is based on BSM1 criteria (Alex et al., 2018), with additional metrics for 

N2O emissions. 

Key performance indicators include: 

● Effluent quality index (EQI): As defined in BSM1. 

● Operational cost index (OCI): Calculated as the sum of daily pump, aeration, and 

mixing energy costs, plus five times the daily sludge cost and three times the daily 

carbon mass cost. 

● Violations: Including time in violation, number of violations, and percentage of time 

in violations, as defined in BSM1. 

● 95th percentile effluent concentrations for ammonium, total nitrogen, and total 

suspended solids. 

● N2O emission rate: Calculated for each bioreactor, with summarized emissions for 

nitrification and denitrification stages. 

4.5.2 Simulated data verification 

To validate the code, the ASM1 model was initially used to compare results with the 

reference data in the BSM1 technical report. A 100-day stabilization with constant 

influent input for steady state was conducted. The largest error of 0.002 for suspended 

solids (Ss) in the steady state indicates a strong agreement between the MATLAB 

code and Simulink simulation results, confirming the reliability of the coded model. 

Figure 4.7 visually compares the effluent results for both simulations at steady states 

after stabilization (non-reactive soluble inorganic compounds SI omitted). 
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Figure 4.7 Effluent results of 100-day stabilisation obtained from MATLAB code 

simulation and reference 

Table 4.6 presents the steady-state results of five bioreactors after 100 days of 

stabilization. The comparison with reference data indicates negligible errors, 

suggesting a high degree of accuracy in the model. 

Table 4.6 Steady state results of five bioreactors after 100-day stabilisation 

Components 

Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5 

simulated reference simulated reference simulated reference simulated reference simulated reference 

SI (mg/l) 30 30 30 30 30 30 30 30 30 30 

SS (mg/l) 2.8099 2.8099 1.4598 1.4598 1.1501 1.1501 0.9957 0.9957 0.8899 0.8899 

XI (mg/l) 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 

XS (mg/l) 82.151 82.151 76.4121 76.4121 64.8723 64.8724 55.7056 55.7057 49.3171 49.3171 

XBH (mg/l) 2551.2 2551.2 2552.8 2552.8 2556.5 2556.5 2558.6 2558.6 2558.7 2558.7 

XBA (mg/l) 147.5533 147.5532 147.4722 147.4721 148.1007 148.1007 148.6848 148.6848 148.9546 148.9545 

XP (mg/l) 448.1451 448.1451 448.8150 448.8150 449.7093 449.7093 450.6044 450.6044 451.4996 451.4996 

SO (mg/l) 0.0043 0.0043 6.3037e-5 6.3037e-5 1.7272 1.7272 2.4331 2.4331 0.4884 0.4884 

SNO (mg/l) 5.3355 5.3355 3.6288 3.6288 6.4984 6.4984 9.2540 9.2540 10.3720 10.3720 

SNH (mg/l) 7.9586 7.9586 8.3852 8.3852 5.5988 5.5988 3.0210 3.0210 1.7834 1.7834 

SND (mg/l) 1.2166 1.2166 0.8818 0.8818 0.8290 0.8290 0.7670 0.7670 0.6884 0.6884 

XND (mg/l) 5.2858 5.2858 5.0306 5.0306 4.3934 4.3934 3.8796 3.8796 3.5278 3.5278 
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SALK (mol/m3) 4.9331 4.9331 5.0855 5.0855 4.6815 4.6815 4.3005 4.3005 4.1322 4.1322 

Table 4.7 presents the steady-state concentrations of solids and soluble components 

in the secondary clarifier after 100 days of stabilization. A close agreement was 

observed between these results and the reference data. 

Table 4.7 Steady state results in secondary clarifier after 100-day stabilisation 

Layer 

TSS (mg/l) SI (mg/l) SS (mg/l) SO (mg/l) SNO (mg/l) SNH (mg/l) SND (mg/l) SALK (mol/m3) 

sim ref sim ref sim ref sim ref sim ref sim ref sim ref sim ref 

10 12.4935 12.5 30 30 0.8899 0.889 0.4883 0.491 10.3709 10.4 1.7846 1.73 0.6884 0.688 4.1324 4.13 

9 18.1094 18.1 30 30 0.8899 0.889 0.4883 0.491 10.3711 10.4 1.7844 1.73 0.6884 0.688 4.1324 4.13 

8 29.5345 29.5 30 30 0.8899 0.889 0.4883 0.491 10.3713 10.4 1.7842 1.73 0.6884 0.688 4.1323 4.13 

7 68.9607 69.0 30 30 0.8899 0.889 0.4883 0.491 10.3715 10.4 1.7839 1.73 0.6884 0.688 4.1323 4.13 

6 355.921 356 30 30 0.8899 0.889 0.4883 0.491 10.3717 10.4 1.7837 1.73 0.6884 0.688 4.1323 4.13 

5 355.922 356 30 30 0.8899 0.889 0.4883 0.491 10.3719 10.4 1.7835 1.73 0.6884 0.688 4.1323 4.13 

4 355.921 356 30 30 0.8899 0.889 0.4883 0.491 10.3717 10.4 1.7837 1.73 0.6884 0.688 4.1323 4.13 

3 355.922 356 30 30 0.8899 0.889 0.4883 0.491 10.3715 10.4 1.7840 1.73 0.6884 0.688 4.1323 4.13 

2 355.921 356 30 30 0.8899 0.889 0.4883 0.491 10.3713 10.4 1.7842 1.73 0.6884 0.688 4.1323 4.13 

1 6390 6394 30 30 0.8899 0.889 0.4883 0.491 10.3711 10.4 1.7844 1.73 0.6884 0.688 4.1324 4.13 

*Note: sim: simulated; ref: reference 

Although no reference data exists for direct comparison with ASMG1 results, the 

outcomes were validated against established wastewater theory and treatment 

practices. The results were deemed to fall within reasonable ranges, rendering them 

suitable for subsequent experiments. 

The visualisation of simulated data generated using the ASMG1 based BSM1 model 

under various weather conditions can be found in figures of model predications for 

comparison. Additionally, the appendix 8.1 includes a plant performance assessment 

for the various weather scenarios achieved with the model. 
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Chapter 5 T c  in   ti  n    in NODE  od    

Wastewater treatment processes inherently exhibit stiffness, which poses challenges 

for numerical simulation. This issue is exacerbated when such systems are integrated 

with neural networks. Stiffness has emerged as a primary obstacle to applying NODE 

in N2O modelling within wastewater treatment. 

5.1 Background 

Despite promises in diverse scientific and engineering fields, NODEs have seen 

limited application in wastewater treatment. Successful NODE implementation hinges 

on effective training using monitoring data that represent the system's dynamics. 

However, challenges arose when applying NODEs to a simple wastewater model like 

ASM1 using the torchdiffeq package in Python (Chen, 2018) and following the author's 

methods (Chen et al., 2018). Training consistently failed (Figure 5.7 and Figure 5.8). 

Similar difficulties were encountered when capturing the dynamics of rapidly changing 

components (e.g., N2O, see Figure 5.15 and Figure 5.16) using the dlode45 function 

in MATLAB (The MathWorks Inc, 2023). Stiffness has been recognised as a key culprit 

behind these setbacks (Kim et al., 2021), and overcoming it is the main objective of 

this chapter. 

Stiffness arises when fast and slow components in the dynamics are presented at 

largely separated scales. Traditional mathematical modelling approaches utilise 

adaptive or implicit solvers to address stiffness in ordinary differential equations (ODEs) 

effectively. However, when these solvers are applied to stiff NODEs trained through 

gradient-descent based optimisations, their efficacy diminishes. The combination of 

stiff ODEs and neural networks can lead to two undesirable outcomes: (1) high 

computational costs due to extremely small time-steps required for numerical stability, 

and (2) pathological gradients in the loss function, potentially hindering training 

convergence. 

Few existing studies propose methods for mitigating stiffness in NODEs. For example, 

Kim et al. (2021) illustrated that proper equation and loss function scaling produced 

good results for two benchmarking stiff problems. However, the experiments utilising 

this approach for wastewater process modelling frequently encountered underflow 

errors during training, leading to premature termination. 
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As stiffness is often peculiar to the studied system, this work is motivated to analyse 

the underlying cause and find solutions to address the stiffness issue in data-driven 

wastewater process modelling with NODEs. 

5.1.1 Stiffness in mechanistic ODEs 

Most real-world systems of ODEs require numerical methods, as analytical solutions 

are often unavailable or impractical. Stiffness arises when certain numerical methods 

fail to provide stable solutions unless the step size to be taken is extremely small 

(Hairer and Wanner, 1996). This phenomenon is an intrinsic property of the differential 

systems and is surprisingly common in many real-life problems (Kushnir and Rokhlin, 

2012). Despite its prevalence, a rigorous mathematical definition for stiffness remains 

elusive (Kushnir and Rokhlin, 2012).  

The “               ”    sometimes utilised to quantify system stiffness, defined as the 

product of the time span and the ratio of the real part of the fastest eigenvalue (𝜆̅) and 

slowest eigenvalue (𝜆) of the ODE       ’  Jacobian: 

𝑺𝒕𝒊𝒇𝒇𝒏𝒆𝒔𝒔 𝑹𝒂𝒕𝒊𝒐 =
|𝑹𝒆(𝝀)|

|𝑹𝒆(𝝀)|
(𝒕𝟏 − 𝒕𝟎)  Equation 5-1 

Empirically, stiff systems often exhibit significant disparities in the rate of change 

among various components. This disparity manifests as one component evolving 

slowly over time while another undergoes abrupt or swift changes, attributable to the 

system’s distinctive chemical or biological kinetics. Apparently, the time span plays a 

crucial role in the issue. For long-time simulations, the issue can become severely 

problematic. 

Wastewater processes exemplify these disparities in scales and dynamic behaviours. 

They encompass components with high concentrations that undergo slow changes 

(e.g., heterogeneous biomass) and transient components or intermediate products 

with low concentrations that exhibit rapid fluctuations (e.g., dissolved oxygen, soluble 

substrate, hydroxylamine). Given the typical HRT of bioreactors ranging from 4 to 20 

hours, the stiffness of these systems becomes evident. 

Given an example from the ASM1 model, to obtain a stable solution within acceptable 

tolerances, it is advised (Mogens, Willi, Takashi and Mark, 2000) that when applying 



Chapter 5 Tackling stiffness in NODE models 

 

84 

numerical methods to the model implementation, the maximum time step size should 

be less than:  

𝒕 <
𝑽𝓴 𝑪𝓴𝒊

𝑶𝓴𝒊+𝑲𝓴𝒊
= 𝜽𝓴𝒊 Equation 5-2 

Where V𝓀 is the volume of reactor compartment 𝓀. C𝓀𝒾, O𝓀𝒾, and K𝓀𝒾 are the 

concentration, output transport terms, and consumption terms of component 𝒾 in 

reactor compartment 𝓀 respectively. The term 𝜃𝓀𝒾 is the mean residence time of 

component 𝒾 in compartment 𝓀 at steady state. With default values, 𝜃𝓀𝒾 is of the order 

of ten minutes for XBH, XBA, XP, XS and XND, of one minute for SS, SND, SNH, SALK but of 

one second for So (Mogens, Willi, Takashi and Mark, 2000). The time step adopted in 

ODE solver typically ranges from 5-20% of the advised maximum step for a trade-off 

between sufficient accuracy and acceptable computational cost. If it is large than 𝜃𝓀𝒾, 

the correctness of the results cannot be guaranteed. 

Figure 5.1 illustrates a continuous stirred-tank reactor (CSTR) example modelled 

using ASM1, evolving from an initial concentration (see Table 5.1) over 6 hours, with 

consistent DO control at 2 mg/l. It demonstrates the rapid evolution of various 

components and their first-order derivatives with rates of change ranging from 

approximately -0.02 mg/(l·d) to 8000 mg/(l·d). Additionally, the figure highlights the 

asynchronous occurrence of steep and flat segments for each component curve, 

indicating differing temporal dynamics. 

Table 5.1 Initial condition defined in the experiment of ASM1 model 

Component SS XS XBH XBA XP SO SNO SNH SND XND SALK SN2 

Unit mg COD/l mg COD/l mg COD/l mg COD/l mg COD/l mg O2/l mg N/l mg N/l mg N/l mg N/l eq ALK/l mg N/l 

Value 59.8 260.1 2552 148 449 2 0 23 1.8 7.8 0.007 0 
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Figure 5.1 Components concentration (solid line) and their reaction rate (dot line) in a 

CSTR of ASM1 model with constant DO control at 2mg/l 

The stiffness issue can be further intensified in more complex models, such as the 

ASM2d-N2O model (Massara et al., 2018), which encompasses more volatile and 

intermediate components and more intricate reactions. For instance, the consumption 

rate of fermentable substrate (Sf), can rapidly decline from 9000 mg/(l·d) to nearly zero 

within one minute, while oxygen uptake rate (OUR) may fluctuate around 6000 mg/(l·d). 

In contrast, nitric oxide (SNO) evolves considerably slowly, ranging between 0 and 5 

x10-4 mg/l throughout the entire period. 

Differential algebraic equations (DAEs) present another source of stiffness. In 

wastewater modelling, process controls variables, such as aeration and external 

carbon input, are often expressed in algebraic form, making the use of DAEs inevitable. 

Recognized as a form of infinite stiffness (Linda, 1982; Hairer and Wanner, 1996), 

DAEs pose compatibility challenges for certain ODE solvers. 

Stiffness remains a significant challenge in numerical analysis of differential equations 

(Postawa et al., 2020). While advancements in computing power and novel algorithms 

offer promising solutions, the effectiveness of solvers varies greatly. Modern solvers 

employing adaptive or implicit methods, such as MATLAB's ode15s, can effectively 

tackle stiff ODEs. However, other solvers may struggle or fail entirely when applied to 

different stiff systems. This highlights that there is no single "best" algorithm for all stiff 

problems (Kushnir & Rokhlin, 2012). Instead, solver suitability depends on the 
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characteristics the specific system. Consequently, researchers often resort to trial-

and-error methods to identify an appropriate solution based on solver features and the 

studied system's behaviour. 

5.1.2 Stiffness in data-driven NODEs 

Despite employing a carefully chosen solver, known to be effective for the stiff 

mechanistic ODEs, training of the corresponding NODEs with the same solver remains 

a challenging task. This discrepancy arises due to the inherent differences in stiffness 

between NODEs and their mechanistic counterparts. 

Similar to traditional DNNs, NODEs are typically initialized with random weights. These 

random starting points can lead to regions where the neural network - approximated 

ODEs exhibit vastly different rates of change – especially if not regularised. This 

disparity in rates can further exacerbate stiffness issues. To mitigate this issue, it is 

crucial to adopt schemes that reduce the variance in initial gradients, thereby 

lessening the likelihood of encountering extreme stiffness. 

Meanwhile, during each training iteration, the solver interacts with the neural networks, 

which approximates a callable ODE function. However, this function is constantly 

evolving due to the changing network parameters (weights and biases) during 

optimisation. As a result, the Jacobian of the approximated ODEs experiences 

variations with a degree of randomness throughout training, stemming from the 

stochastic nature of gradient descent. Essentially, the solver tackles a different ODE 

with potentially disparate stiffnesses at every iteration. This randomness can lead to 

high variance in neural network outputs, amplifying the stiffness and creating 

difficulties for the solver, potentially causing instability, errors or even training 

divergence.  

The adjoint method, commonly used for backpropagation in NODEs, requires multiple 

ODE solver calls in exchange for reduced memory cost. However, this approach may 

significantly increase the risk of encountering stiffness in the adjoint calculations, 

potentially leading to numerical blow-up (Kim et al., 2021). 

Moreover, real-world measurement data inevitably contains noise, disrupting 

smoothness and exacerbating derivative estimation errors. It is well-established that 

minor discrepancies in an ODE initial state can result in substantial divergences over 
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time due to the accumulation of truncation and round-off errors (Gear, 1981; Hairer 

and Wanner, 1996). In the realm of NODEs, data-induced noise can exhibit similar 

behaviour. A tiny error may propagate and amplify through subsequent steps, 

potentially causing model instability after a certain period. Consequently, training stiff 

NODEs with noisy data presents an additional challenge. 

In summary, the intrinsic stiffness of the modelled system, compounded by the 

inherent randomness of neural networks - stemming from initial weight values and/or 

the stochasticity of calculated gradients during training - poses significant challenges 

for data-driven modelling using NODEs. 

5.2 Methodologies 

Stiffness challenges in NODEs are often problem-specific, demanding empirical 

solutions through experimentation. The crux of successfully training stiff NODEs lies 

in maintaining stable gradient computations and avoiding ill-conditioned gradients. 

After extensive exploration and experimentation, the following approaches were 

proposed to tackle these issues: 

1) Normalisation method: normalisation, a well-established technique in 

conventional machine learning, was adapted for seamless integration within the 

neural network architecture of NODEs. This approach tackles the root cause of 

the difficulty by scaling the neural network outputs, alleviating the burden on the 

ODE solver. 

2) Collocation method: This alternative approach bypasses the stiffness by 

employing non-ODE-solver-based collocation techniques. Through directly 

interpolating and regressing the derivatives at desired points, it obviates the need 

for costly ODE solvers, offering a faster solution. 

3) Incremental training strategy: This practical strategy firstly employs collocation 

method for training, followed by direct NODEs training with normalisation based 

on the previously trained result. Adopting this strategy for training not only largely 

stabilises the learning process by addressing stiffness but also saves time and 

refines the results to a higher level compared to utilising the methods alone. 
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5.2.1 Normalisation method 

In machine learning regression tasks, data transformation through scaling is often 

imperative. This is because algorithms used in the training process, such as gradient 

descent adopted in the NODEs training, are sensitive to feature variance (Amari, 1993). 

Scaling or normalisation transforms data to be dimensionless and/or have comparable 

distribution scales. This ensures each feature contributes equally, prevents features 

with higher magnitudes from dominating, speeds up the convergence of optimisation 

algorithms, and improves the learning process performance. Lack of data 

normalisation can lead to slow convergence, inaccurate models, poor generalisability, 

and even complete failure (Bhanja and Das, 2018; Cabello-Solorzano et al., 2023). 

In NODEs, the neural network maps input state variables (let’s say X) to their time 

derivatives (X’). The proposed normalisation method for NODEs utilises a pair of 

normalization and de-normalization layers to wrap the deep neural network of NODE 

architecture (see Figure 5.2). 

 

Figure 5.2 Illustration of NODEs normalisation pair layout 

The normalisation layer is applied to the neural network input, using standardisation 

(Z-score normalisation), a common technique in machine learning (Shanker M, Hu M 

Y and Hung M S, 1996). This transforms the data to have a zero mean and unit 

standard deviation. 
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𝑿𝒊
∗ = 

𝑿𝒊 − 𝝁𝑿

𝜹𝑿
 Equation 5-3 

where, μx and δx denote the mean and standard deviation of the component state data 

sequence X, respectively.  

The de-normalisation layer is then applied to the neural network output to restore 

the state derivative data to its normal range. 

where, μx’ and δx’ denote the mean and standard deviation of the state derivative data 

sequence X’, representing biokinetic rate. 

Max-Min normalization is not recommended due to its sensitivity to outliers, which may 

be present in estimated state derivatives. Standardization offers better robustness in 

such cases. 

It is crucial to note that the normalisation and de-normalisation layers must be applied 

together within the ODE solver, wrapping the neural network. Unlike conventional 

machine learning, where data preprocessing occurs at the beginning, it cannot be 

applied outside the solver. This is because the component states and their derivatives 

carry physical meaning in the dynamics addressed by the solver. Scaling the data 

outside the solver would skew the relationships and interplay of the components, 

substantially distorting the problem to be solved. 

From Equation 5-3 and Equation 5-4, it can be seen that four sets of mean value and 

standard deviation are required. The mean and standard deviation for input can be 

calculated straightforwardly with the monitored time-series component state data. 

However, the derivative data sequence X’ are not available explicitly. To estimate the 

mean and standard deviation of X’, difference quotients can be employed to be applied 

to the state data sequence X, such as the single-sided difference method. 

𝑿′ = (𝒙𝟐 − 𝒙𝟏,  𝒙𝟑 − 𝒙𝟐, … , 𝒙𝒏 − 𝒙𝒏−𝟏) ∙/∆𝒕 Equation 5-5 

Or central difference: 

𝑿𝒊
′ = 𝑿𝒊

′∗ ∗ 𝜹𝑿′ + 𝝁𝑿′ Equation 5-4 
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𝑿′ = (𝒙𝟐 − 𝒙𝟏,  (𝒙𝟑 − 𝒙𝟐)/𝟐,… , (𝒙𝒏 − 𝒙𝒏−𝟐)/𝟐, ( 𝒙𝒏

− 𝒙𝒏−𝟏))/∆𝒕 
Equation 5-6 

Experiments show that single-sided and central differences yield similar results (see 

Table 5.2). Although the approximation tends to be more accurate with densely 

sampled state datasets, a relatively small number of discretisation often suffices. 

Table 5.2 Comparison of single-sided and central difference quotient method in 

correlation ratio and accuracy under different numbers of samplings for a 6-hour 

running CSTR in ASM1 model 

Number of samplings 
Correlation coefficient Average accuracy 

Single-sided Central Single-sided Central 

5 75.9% 72.3% 49.6% 50.5% 

10 87.1% 83.6% 61.2% 66.3% 

20 96.0% 93.1% 71.2% 78.2% 

30 98.5% 97.8% 76.8% 83.8% 

50 99.0% 99.7% 81.6% 88.0% 

100 99.71% 99.98% 86.0% 90.4% 

300 99.97% 100% 89.6% 91.5% 

500 99.99% 100% 90.4% 91.6% 

1000 100% 100% 91.0% 91.6% 

In practice, the mean and standard deviation of component reaction rates can also be 

estimated or corrected by experienced operators from other sources, such as routine 

operation records, site measurements, established mechanistic models, and digital 

twin outputs. 

As demonstrated in the Experiments and results section, normalisation acts as a 

preconditioner in NODEs, significantly improving training stability and efficiency. The 

paired normalisation and de-normalisation layers stabilise gradients, leading to faster 

convergence and improved training smoothness and efficiency. Notably, the 

associated computational overhead is minimal, even practically negligible. 

5.2.2 Collocation method 

While the normalisation method utilises four parameters pre-obtained from the training 

dataset, the collocation method employs the entire trajectory of the observational 

training dataset. It estimates the complete trajectory of the corresponding derivatives 
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using traditional mathematical regression methods, then trains the neural network 

against the collocated pairs of state input data and estimated state derivatives. This 

approach eliminates the need for an ODE solver, thereby avoiding the stiffness issue. 

In NODEs, the direct approach calls out the ODE solver for derivative calculations at 

every training step, with derivative computation remaining implicit or hidden to user. 

Conversely, the collocation method explicitly approximates all the derivatives using 

kernel functions and interpolation / regression methods prior to the training procedure. 

Although both methods involve optimisation by gradient descent, training of the neural 

network in collocation method is simpler as it does not need to go through ODE solver 

at each step, while direct approach must. Consequently, it can be extremely fast and 

robust to noise. Figure 5.3 illustrates the different strategies of these two methods. 

 

Figure 5.3 Different training strategies by direct NODE and collocation method 

                                                                       ,    ’      X(t), 

and their            ,    ’      X’(t), from sampled observations (Y1, Y2, ..., Yn), at the 

time points (t1, t2, …, tn), with measurement errors (e1, e2, …,  n), then: 

𝒀𝒊 =  𝑿(𝒕𝒊) + 𝒆𝒊       𝒊 = 𝟏,… , 𝒏 Equation 5-7 

To derive X(t) and X’(t) from Yi, a common practice is to use non-parametric local 

linear regression for X(t), and local polynomial (often quadratic) regression for X’(t). 
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This approach is               ’                                  z                     

least-squares. Liang and Wu (2008) gave a complete deduction process in their paper. 

The results were briefed as follows. 

𝑿̂(𝒕) = 𝜺𝟏
𝑻 (𝑻𝟏,𝒕

𝑻 𝑾𝒕𝑻𝟏,𝒕)
−𝟏𝑻𝟏,𝒕

𝑻 𝑾𝒕𝒀 Equation 5-8 

𝑿′̂(𝒕) = 𝜺𝟐
𝑻 (𝑻𝟐,𝒕

𝑻 𝑾𝒕𝑻𝟐,𝒕)
−𝟏𝑻𝟐,𝒕

𝑻 𝑾𝒕𝒀 Equation 5-9 

where, 

𝜺𝟏 = [
𝟏
𝟎
]  𝜺𝟐 = [

𝟎
𝟏
𝟎
] Equation 5-10 

𝑻𝟏,𝒕 = [

𝟏 𝒕𝟏 − 𝒕
𝟏 𝒕𝟐 − 𝒕
⋮ ⋮
𝟏 𝒕𝒏 − 𝒕

]  𝑻𝟐,𝒕 =

[
 
 
 
𝟏 𝒕𝟏 − 𝒕 (𝒕𝟏 − 𝒕)𝟐

𝟏 𝒕𝟐 − 𝒕 (𝒕𝟐 − 𝒕)𝟐

⋮ ⋮ ⋮
𝟏 𝒕𝒏 − 𝒕 (𝒕𝒏 − 𝒕)𝟐]

 
 
 

 Equation 5-11 

𝑾𝒕 = [

𝑲𝒉(𝒕𝟏 − 𝒕) 𝟎 ⋯ 𝟎

𝟎 𝑲𝒉(𝒕𝟐 − 𝒕) ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 𝟎 𝑲𝒉(𝒕𝒏 − 𝒕)

] Equation 5-12 

Where K(·) is a symmetric kernel function. Given an example of Epanechnikov kernel 

function, so that: 

𝑲𝒉(𝒕𝒊 − 𝒕) =  𝑲(
𝒕𝒊 − 𝒕

𝒉
) /𝒉 Equation 5-13 

Where h is a bandwidth: 

𝒉 = (𝒏−𝟏
𝟓) (𝒏− 𝟑

𝟑𝟓)((𝐥𝐨𝐠(𝒏))− 𝟏
𝟏𝟔) Equation 5-14 

The choice of kernel function depends on the observation data characteristics. For 

instance, cubic spline is preferred for less noisy or relatively sparse data, while B-

spline or Epanechnikov kernel is suitable for noisier datasets.  

Due to boundary restriction, derivative estimations at both ends are often inaccurate. 

This can be mended by excluding data at both ends, to achieve smoother results and 

reduce excessive changes at the boundaries. 
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Proper data preprocessing can alleviate subsequent burdens and minimise errors in 

the training process. To enhance the accuracy of estimated X and X’, it is advisable to 

smooth the noisy observation Y before applying the collocation method. This may 

involve outlier detection, smoothing techniques and cross validation based on 

wastewater system knowledge. 

The next step involves training the neural network with the estimated X(t) and X’(t) 

pairs. This process is straightforward, similar to conventional machine learning. The 

MAE loss function can be constructed as: 

𝑳(𝜽) =
𝟏

𝒏
∑|𝑵𝑵𝜽(𝑿̂𝒊) − 𝑿′̂𝒊|

𝒏

𝒊=𝟏

 Equation 5-15 

The accuracy of the collocation method depends on the characteristics of 

observational data and estimation methods. While it can be high if the adopted 

methods and data align well, the results often require further refinement using more 

elaborate algorithms. 

5.2.3 Incremental training strategy 

In practice, the results from the collocation method are       “     ”         

sufficiently accurate, although they may be close to the global minima and less prone 

to local minimum (Rackauckas et al., 2020). To improve the model fidelity to the 

optimal level, further training using finer or more elaborate methods, such as local 

minimum algorithms or direct NODEs approach, is expected. Since the collocation 

method provides a good initial result, subsequent optimisation will experience reduced 

stiffness and increased effectiveness. In this way, the model fidelity is incrementally 

improved. 

We refer to this practice - applying a coarse method followed by a finer method that 

builds upon the results of the previous method - as the incremental training strategy. 

The idea is to first provide a rough estimation using the collocation method to narrow 

the approximated range for the result, then refine it locally by the direct NODE method 

to chieve higher fidelity. Figure 5.4 illustrates the steps of the incremental strategy. 
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Figure 5.4 incremental strategy 

5.3 Experiments and results 

Data-driven modelling using NODEs primarily involves the repeated solving of IVPs. 

To demonstrate the feasibility and efficiency of the proposed methods in training 

NODE models for wastewater process modelling, two experiments were conducted. 

Both experiments focused on an IVP in a CSTR using ASM1 and ASM2d-N2O, 

respectively.  

For comparison purposes, simulated trajectory data generated from these 

mathematical models were utilised to train the NODEs models. This allows for a direct 

assessment of the NODE performance against well-established wastewater treatment 

models. 

5.3.1 ASM1 model 

The ASM1 is one of the simplest models for wastewater biological process modelling. 

Introduced in 1987 and revised over the years, it has been widely for simulating 

organic matter and nitrogen removal in wastewater treatment. The version used 

consists of 15 components (including two additional components SN2 and Xinorg for N 

balance and TSS calculation) and 8 reactions (Mogens, Willi, Takashi and van 
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Loosdrecht Mark, 2000). Default values for stoichiometric and kinetic parameters were 

adopted. For detailed model information, please refer to the cited document. 

We generated trajectory data of 1000 points using the ASM1 mathematical model, 

simulating a CSTR from a defined initial state with a fixed dissolved oxygen level of 2 

mg O2/l over 6 hours. The initial values (see Table 5.1) were adapted from the steady 

state of the bioreactor in BSM1 (Alex et al., 2018). Figure 5.5 illustrate the maximum 

eigenvalues of the Jacobian over the IVP solution trajectory, showing peak stiffness 

at approximately 1.7 hours. 

 

Figure 5.5 Maximum eigenvalues of the Jacobian over the IVP solution trajectory 

5.3.1.1 Training options 

We conducted experiments using Python 11 and the torchdiffeq package (Chen, 2018). 

After testing various solvers from both torchdiffeq and the SciPy package (Virtanen et 

al., 2020), dopri5 was selected for the experiments. The tests revealed minimal 

differences between loss functions, with Huber loss performing slightly better. 

However, MAE was deemed sufficient for process modelling and thus adopted in the 

experiments. 

The neural network for the NODEs was constructed as a multilayer perceptron with 

four layers and 50 nodes in each hidden layer, using activation functions between the 

layers. While Chen et al. (2018) used the Tanh activation function in most of his NODE 

examples, Gelu activation function was also tested. Gelu, a relatively new function, 
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bridges stochastic regularisers with non-linearities, distinguishing it from other 

activation functions (Hendrycks and Gimpel, 2016). It has demonstrated higher 

accuracy compared to ReLU, and ELU (Devlin et al., 2019). 

The experiments showed that Gelu outperforms Relu and Tanh in NODEs training for 

wastewater modelling. Figure 5.6 compares Gelu and Tanh functions in loss changes 

for the IVP trajectory training based on ASM1 model, clearly indicating considerably 

enhanced performance with Gelu. It is worth noting that despite nearly 102 orders of 

magnitude loss decline activated by Gelu without normalisation as shown in Figure 

5.6, the results remained unsatisfactory. 
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Figure 5.6 Comparison of activation functions in training loss for an ASM1 IVP, with 

different configurations (top left: Tanh without normalisation; top right: Gelu without 

normalisation; bottom left: Tanh with normalisation; bottom right: Gelu with 

normalisation) 

The NODEs were trained using the ADAM optimiser (Kingma and Ba, 2014) with a 

varying learning rate, as shown in the Figure 5.6. The training began with a high 

learning rate 0.1 to harness speed advantages, then switched to a lower rate 0.001 to 

refine results in response to loss function changes. Training was conducted for 2000 

iterations with a sampling batch size of 512 and 16 steps of the interval calculated 

each time by the solver. For brevity, three non-reactive components (Si, Xi, Xinorg) and 

constant DO are not shown in the following results. 
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5.3.1.2 Normalisation 

The efficacy of the proposed method is assessed by comparing the trained model 

predictions against ground truth trajectories generated by the mathematical model 

under identical initial conditions. Figure 5.7 illustrates a representative training 

example without normalisation. The results indicate that the neural network fails to 

effectively learn from the data, as evidenced by the loss function plateauing after an 

initial rapid decrease within the first few iterations. The gradient norm exhibits a 

pathological pattern, remaining at a consistently low level, which reflects the 

stagnation of the loss throughout the training process. Consequently, the predicted 

component curves do not align well with the ground truth, resulting in a high overall 

RMSE of 62.51. 

 

 

Figure 5.7 NODE training without normalisation (a) training results (b) loss (c) grad 

norm 

The normalisation method is then applied with the estimated mean and standard 

deviation of the derivatives sequence using single-sided difference quotient. The 

neural network was wrapped by the normalisation and de-normalisation pair with the 

estimated parameters. As illustrated in Figure 5.8, this normalisation technique yields 

significant improvements. The predicted trajectory curves now closely align with the 

(a) 

(b) (c) 
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ground truth, resulting in a substantially reduced overall RMSE of 1.73. Moreover, the 

loss function exhibits a gradual decrease throughout the training iterations, while the 

gradient norm demonstrates stable behaviour. 

 

 

Figure 5.8 NODE training with normalisation (a) training results (b) loss (c) grad norm 

5.3.1.3 Incremental strategy 

The incremental strategy was implemented by first training the normalised model using 

the collocation method, followed by direct NODE training. Figure 5.9 and Figure 5.10 

illustrate the results of the collocation method utilising the Epanechnikov kernel 

function, comparing the ground truth with the collocated trajectory and its derivatives. 

The smoothed trajectory demonstrated a close fit to the ground truth, as evidenced by 

a low RMSE of 6.39. However, the derivatives exhibited significant disparity, with a 

high RMSE of 325.5, indicating challenges in accurate estimation. 

(a) 

(b) (c) 
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Figure 5.9 comparison of collocated data and ground truth of the trajectory 

 

Figure 5.10 comparison of collocated derivative and ground truth derivative 

Figure 5.11 illustrates a representative result from the model through NODE prediction 

after trained on collocated dataset in the collocation training stage. As the number of 

iterations increases, the loss consistently decreases, while the gradient norm remains 

stable. Despite this apparent progress, the RMSE remains high at 31.44 after 2,000 

iterations. This persistent discrepancy can be attributed to substantial errors in 

derivative estimation using the collocation method. 

 

(a) 
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Figure 5.11 collocation training stage by incremental strategy (a) training results (b) 

loss (c) grad norm 

Figure 5.12 displays the results of the subsequent direct NODEs training stage. 

Throughout this stage, the loss exhibits a generally consistent decrease, while the 

gradient norm maintains stability at a relatively low level compared to collocation 

training phase.  

 

 

Figure 5.12 direct NODE training stage by incremental strategy (a) training results (b) 

loss (c) grad norm 

(b) (c) 

(a) 

(b) (c) 
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Due to the stochastic nature of neural networks, results may vary slightly across 

different training runs. To assess efficiency, this study conducted 100 trials of each 

training method, each comprising 2,000 iterations under identical conditions. The tests 

were performed on a computer with an Intel® Core™ i7 CPU (2.8 GHz), 16 MB RAM, 

without a dedicated GPU. The test program was executed within the VSCode IDE on 

a Windows 10 64-bit operating system. 

Figure 5.13 presents the results of this efficiency test (detailed data available on the 

project's GitHub repository). The analysis reveals that the incremental training strategy, 

compared to the NODE-only training, consumes 24.3% less time on average and 

yields a 24.7% lower RMSE. Notably, when collocation training precedes NODE 

training, the resulting RMSE demonstrates a smaller standard deviation (1.2) 

compared to the method without collocation integration (1.4), suggesting enhanced 

training stability.  

 

Figure 5.13 Distribution of time consumption and RMSE for 100 times running by 

different training methods. (I-Coll: Incremental collocation training part, I-NODE: 

Incremental NODE training part) 

5.3.2 ASM2d-N2O model 

The growing concern over climate change has intensified focus on greenhouse gas 

emissions from wastewater treatment plants, particularly nitrous oxide (N2O). Recent 

research (Ye, Porro and Nopens, 2022) identifies four potential pathways for N2O 
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generation during biological nitrogen removal in wastewater treatment: (i) 

hydroxylamine oxidation, (ii) nitrifier denitrification, (iii) heterotrophic denitrification, 

and (iv) abiotic reactions. While these pathways may coexist at varying ratios, the 

significance of the fourth pathway remains under debate. 

This experiment employs the ASM2d-N2O model, an extension of the ASM2d model 

that incorporates N2O emissions. This comprehensive model describes 40 reactions 

involving 24 fractionated components, encompassing the biological removal of carbon, 

nitrogen, and phosphorus, including the three major N2O emission pathways. The 

experiments utilised the stoichiometric and kinetic parameters reported in the original 

paper (Massara et al., 2018). 

The model's complexity arises from its inclusion of greenhouse gas emissions like N2O 

and other transient, low-concentration byproducts such as nitric oxide. Additionally, it 

represents complex biochemical reactions. These factors collectively contribute to a 

significant degree of stiffness in the system due to the vast differences in scales and 

magnitudes between various components. This characteristic makes the ASM2d-N2O 

model a suitable test case for evaluating the proposed solutions. 

MATLAB was employed as the programming language for this experiment. This choice 

was motivated by the desire to leverage the latest NODE techniques, as commercial 

platforms typically update their products more frequently than open-source 

alternatives. The data originated from an ASM2d-N2O model simulation of a CSTR for 

six hours under constant dissolved oxygen control at 2 mg/L. The simulation began 

from an initial condition detailed in Table 5.3. The generated trajectory data for the IVP 

was discretised into 1000 points. 

Table 5.3 Initial condition defined in experiment of ASM2d-N2O model 

Component Unit Value Component Unit Value 

SO2 mg O2/l 2 SN2 mg N/l 0 

SF mg COD/l 48.5 XI mg COD/l 40.4 

SA mg COD/l 32.3 XS mg COD/l 202 

SNH4 mg N/l 20 XH mg COD/l 2500 

SNH2OH mg N/l 0 XPAO mg COD/l 250 

SN2O mg N/l 0 XPP mg P/l 70 

SNO mg N/l 0 XPHA mg COD/l 100 
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SNO2 mg N/l 0 XAOB mg COD/l 200 

SNO3 mg N/l 2.6 XNOB mg COD/l 100 

SPO4 mg P/l 9 XTSS mg TSS/l 189 

SI mg COD/l 48.5 XMeOH mg TSS/l 50 

SALK mol HCO3-/m3 5 XMeP mg TSS/l 220 

To simulate the real situation and evaluate how the proposed methods behave on 

noisy monitoring data, four datasets were prepared for this experiment. One set 

contained the original, noise-free data. The remaining three datasets were 

contaminated with varying levels of white noise, each with a different standard 

deviation (SD) amplitude: 0.01, 0.05, and 0.1. To mitigate the effect of noise on training, 

a Gaussian filter was applied with a window size of 50 for smoothing before training 

the models. Figure 5.14 illustrates the generated ground truth data, the data corrupted 

with noise, and the smoothed data. 

 

Figure 5.14 Ground truth, noised and smoothed trajectory data of ASM2d-N2O model 

5.3.2.1 Training options 

MATLAB offers a comprehensive suite of ODE solvers yet currently provides only one 

solver specifically designed for Neural ODE (NODE) problems. This limitation reflects 

the relative novelty of the NODE approach, underscoring the need for further 

development in this area. Despite the dlode45 solver being documented as well-suited 
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for non-stiff problems (MATLAB, 2024), it was employed in this specific case for 

experimentation. 

For the NODE model, this study constructed a MLP architecture with two hidden layers, 

each containing 50 nodes. The Gelu activation function was employed between layers 

for improved performance. Xavier Glorot initialization was utilised for the weight 

matrices within the neural network to address vanishing/exploding gradients. The MAE 

served as the loss function throughout the experiments, aiming to minimise the 

absolute difference between predicted and ground truth values. 

The NODEs were trained using the Adamupdate optimiser (Kingma and Ba, 2014) 

with a gradient decay factor of 0.9, a squared gradient decay factor of 0.999, and a 

global learning rate of 0.01. Custom loops were implemented to manage the training 

process. The collocation training stage utilised 3000 iterations, followed by 1000 

iterations for direct NODE training (or 3000 iterations if used independently). A batch 

size of 200 and time steps of 800 were employed during training. 

5.3.2.2 Normalisation 

We initially evaluated the performance of direct NODE training without normalization. 

To validate the results, the predictions from the trained model were compared with 

solutions generated by the mathematical model for the same IVP. Figure 5.15 presents 

a typical example of training with data containing 0.05 SD noise and without 

normalization. While the model successfully describes the trajectory of most 

components, it struggles to capture the trajectories of low-valued scaled components, 

such as SNO, which have magnitudes on the order of 10-4 mg/L. 



Chapter 5 Tackling stiffness in NODE models 

 

105 

 

Figure 5.15 result of training without normalisation with data containing 0.05 SD noise 

Following this observation, the normalisation method was implemented. Figure 5.16 

illustrates the results of direct NODE training with normalisation-denormalisation pair. 

For the normalisation layer, the mean and standard deviation were directly calculated 

from the smoothed component state data sequence. Differently, the denormalisation 

layer employed the differential quotient method to estimate the mean and standard 

deviation of the derivative data sequence from the smoothed dataset. Although some 

turbulences are still evident, the predicted trajectory progressively improves in 

smoothness with increasing training iterations. Importantly, the model now captures 

the trajectories of low-valued scaled components like SNO, leading to more satisfactory 

overall results. 
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Figure 5.16 result of training with normalisation with data containing 0.05 SD noise  

5.3.2.3 Incremental strategy 

We evaluated the performance of incremental training strategies using data 

contaminated with normally distributed noise at three SD levels: 0.01, 0.05, and 0.1. 

The training process consisted of two stages: first, the model was trained using the 

collocation method, followed by further training with the direct NODE method. The 

neural network employed Z-score normalisation at the input layer and de-

normalisation at the output layer. An Epanechnikov kernel function was chosen for 

data collocation.  

The collocation training exhibited a fast and stable convergence process, requiring 

3000 iterations. Subsequent direct NODE training also demonstrated good 

convergence, achieving satisfactory results with only 300 iterations, although 1000 

iterations were used for further refinement. 

As illustrated in Figure 5.19, Figure 5.18 and Figure 5.19, the predictions were 

compared to the observations after training with the same number of iterations on data 

with noise levels of 0.01, 0.05, and 0.1 SD, respectively. The results clearly 

demonstrate that the accuracy deteriorates as the noise level increases. Lower noise 

levels yield better results, as evidenced by the RMSE values of 5.56, 27.28, and 55.52 

for noise levels of 0.01, 0.05, and 0.1 SD, respectively. This reinforces the importance 
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of minimising noise through data smoothing techniques before training to avoid 

training instability and ensure optimal performance. 

 

Figure 5.17 Validation of training by incremental strategy with data containing 0.01 SD 

noise 

 

Figure 5.18 Validation of training by incremental strategy with data containing 0.05 SD 

noise  
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Figure 5.19 Validation of training by incremental strategy with data containing 0.1 SD 

noise  

The comparison demonstrates that the incremental approach of collocation training 

followed by the direct NODE method improved the result and enhanced the training 

stability and speed. Regardless of the chosen approach, normalisation remains crucial 

for successful training of stiff neural ODE models for wastewater process modelling. 

5.4 Summary 

Training NODEs on the stiff dynamics of wastewater treatment processes presents 

substantial challenges. This study proposed a novel normalization method to stabilize 

the training process by addressing the disparate scales inherent in wastewater data. 

By facilitating smoother gradient descent, this approach enables more accurate data-

driven wastewater process modelling. 

To expedite training, this study developed an incremental strategy combining the 

efficiency of collocation methods with the precision of direct NODE training. This hybrid 

approach effectively overcomes initial stiffness and improves overall model accuracy. 

However, the sensitivity of NODEs to noise necessitates careful data preprocessing. 

Data smoothing is highly recommended to attenuate noise amplification and enhance 

model robustness. 
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The findings demonstrate the potential of NODEs for extracting underlying 

mechanisms from wastewater monitoring data. The proposed normalization and 

incremental training methods offer practical solutions for overcoming stiffness 

challenges, thus expanding the applicability of NODEs in wastewater treatment plants. 

These advancements contribute to more efficient and data-driven wastewater 

management. 
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Chapter 6 I      nt tion o  NODE  od   in  o  N2O in 

BSM1    nt 

Nitrous oxide (N2O) emissions from wastewater treatment plants (WWTPs) pose a 

significant environmental threat due to their 265-fold greater global warming potential 

than carbon dioxide and detrimental effects on the ozone layer depletion (WMO, 2024). 

Accurate modelling of N2O production is crucial for improved understanding, predicting, 

and ultimately mitigating emissions. 

6.1 Background 

Data-driven modelling, fuelled by advancements in computing and sophisticated AI 

algorithms, offers a promising alternative (Guo et al., 2020; Ji et al., 2021; Cuomo, 

Cola, et al., 2022; Kong et al., 2022). This study focuses on emerging NODEs (Chen 

et al., 2018), a novel method that combines the expressive power of neural networks 

with the continuous integration capabilities of ODEs. This combination allows NODE 

to capture the intrinsic dynamics that of mathematical models attempt to describe. 

Consequently, NODEs can effectively adapt to the inherent variability and non-linearity 

in wastewater treatment systems. Additionally, unlike traditional machine learning 

methods constrained by fixed time steps, NODEs excel at learning and representing 

complex temporal dynamics regardless of irregular or variable time intervals frequently 

encountered in wastewater treatment data (Kidger et al., 2020). This makes NODEs 

a well-suited tool for modelling wastewater systems with such real-world complexities. 

The core objective is to train a DNN that can approximate the dynamics in the form of 

ODEs from process monitoring data. However, two challenges must be overcome. 

The first lies in learning the intrinsic dynamics from the monitoring data that contain 

external influences, such as changes from the continuous influent input or/and 

operational control adjustment. Mathematically, this translates to solving a system of 

NODE with exogenous excitement (Böttcher and Asikis, 2022). To address this an 

updated training algorithm that can separate the intrinsic dynamics from the data with 

external factors was developed. Secondly wastewater mechanistic ODEs often exhibit 

stiffness, a property that can hinder training stability (Kim et al., 2021). Preceding 

section already tested the proposed normalisation method and incremental training 

strategy and proved their effectiveness in tackling the stiffness. 
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The proposed methods successfully trained NODE models using data simulated with 

the ASMG1 model (Guo and Vanrolleghem, 2014) on BSM1 plant scenarios (Alex et 

al., 2018). Validation results were impressive, particularly regarding prediction of 

minutely scaled nitrous oxide, indicating potential for real-world applications. 

6.2 Methodologies 

BSM1 plant time series data, simulated using a self-built experimental platform, 

replicates real-world monitoring data from a plug-flow A/O process. However, the data 

is a composite of underlying intrinsic reactions and exogenous factors. Consequently, 

the initial step involves developing an algorithm to address exogenous excitation, 

followed by handling the stiffness issue during the training process. 

6.2.1 NODE with exogenous excitation 

NODEs have demonstrated effectiveness in learning dynamics across various 

systems, including time series prediction tasks such as weather forecasting (Verma, 

Heinonen and Garg, 2024), electricity demand prediction (Xie, Parlikad and Puri, 

2019), and COVID-19 spread modelling (Berkhahn and Ehrhardt, 2022). They excel 

at identifying dynamical patterns and trends within data, regardless of the specific 

context or the underlying driving forces. Even for complex systems like wastewater 

treatment, NODE models can be powerful tools. For instance, they could predict future 

effluent quality based solely on historical time-series effluent data, assuming a 

consistent influent pattern. 

Intrinsic dynamics represent the inherent relationships with the system, enabling 

generalisation. These dynamics capture the autonomous rise and fall of biomass and 

substrates within a reactor, driven by their intrinsic biochemical properties and physical 

propensity towards equilibrium (Mogens, Willi, Takashi and van Loosdrecht Mark, 

2000). 

Real WWTPs experience continuous influent flow and operational adjustments for 

optimal efficiency. Observed monitoring data reflects a combination of:  

● Intrinsic biochemical reactions: Represented by the function f in mechanistic 

models. 

● External influences: Continuous influent input and operational control settings. 
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Figure 6.1 Derivation of intrinsic biochemical reaction rates from observations 

including exogenous inputs for NODE model training. 

As illustrated in Figure 6.1, it can be generalised in equations. 

where 
𝑑𝒀𝑡𝑜𝑡𝑎𝑙(𝑡)

𝑑𝑡
 represents the total of rate of change observed, 

𝑑𝒀𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐(𝑡)

𝑑𝑡
 represents 

biochemical intrinsic dynamics, and 
𝑑𝒀𝑖𝑛𝑝𝑢𝑡(𝑡)

𝑑𝑡
 captures exogenous perturbations. 

The aim is to capture the intrinsic biochemical dynamics, represented by function f in 

mechanistic ODE model. This necessitates differentiating between intrinsic dynamics 

and variations caused by influent changes in the observed data. Mathematically, this 

translates to solving a NODE with an exogenous excitation term. 

The training procedure must be extended to distinguish between external input effects 

and intrinsic dynamics. At each step of the ODE solver, the influence of the external 

inputs is subtracted from the data, ensuring that only the intrinsic time-series trajectory 

data are utilised for training the neural network. This approach aligns with established 

practices in mathematical modelling. 

This approach enables the NODE model to learn intrinsic biochemical dynamics while 

accounting for exogenous excitations, potentially improving its generalisation 

capability and applicability to real-world WWTP scenarios. 

𝒅𝒀𝒕𝒐𝒕𝒂𝒍(𝒕)

𝒅𝒕
=

𝒅𝒀𝒊𝒏𝒕𝒓𝒊𝒏𝒔𝒊𝒄(𝒕)

𝒅𝒕
+

𝒅𝒀𝒊𝒏𝒑𝒖𝒕(𝒕)

𝒅𝒕
 Equation 6-1 
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6.2.2 Tackling stiffness issue 

Stiffness arises in dynamical systems when processes occur at vastly disparate time 

scales (Hairer and Wanner, 1996). This phenomenon is commonly observed in 

wastewater treatment processes. For instance, heterotrophic biomass, operating on a 

magnitude of 103, exhibits relatively steady behaviour, while N2O generation, a 

transient intermediate product, occurs on a much smaller scale around 10-3 and 

changes rapidly. 

In NODE models, the inherent stiffness in wastewater mechanistic ODE, is further 

amplified by the stochastic nature of neural networks. This amplification originates 

from the randomness in weight and bias initialisation, as well as their updates during 

gradient descent algorithms used for training (Kim et al., 2021). Conventional stiff ODE 

solvers cannot effectively handle this combined stiffness, posing a significant 

challenge for training NODE. 

To address this issue, a novel normalisation method and an incremental training 

strategy were proposed and tested in previous chapter. This implementation adopted 

these methodologies to tackle stiffness issue. 

The NODE model training consists of two main stages: 

1. Collocation Method: Initially, employing collocation method (Roesch, 

Rackauckas and Stumpf, 2021) , which uses local polynomial regression to 

generate time series pairs of smoothed states Y and estimated derivatives Y'. This 

method provides a preliminary result and helps optimize the neural network 

parameters in the first stage. By training on these collocated data, this method 

effectively mitigates stiffness during the initial training phase. 

2. Direct NODE Training: Following the collocation stage, the model was refined 

through direct NODE training with proposed normalisation method (Finlay et al., 

2020). This second stage builds upon the preliminary results, incrementally 

improving model fidelity. 

This incremental training approach offers several advantages: 

● Reduced computational load: The collocation method provides a computationally 

efficient starting point, reducing the overall training time. 
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● Mitigated stiffness: By avoiding stiffness in the initial stage, a more stable 

foundation was created for subsequent direct NODE training. 

● Enhanced convergence: The pre-trained model from the collocation stage often 

leads to faster and more reliable convergence during direct NODE training. 

The results demonstrate that this incremental strategy significantly improves the 

training process, particularly for stiff systems prevalent in N2O emission modelling. It 

allows for more efficient use of computational resources while maintaining model 

accuracy. 

6.3 Implementation settings 

The implementation was setup on the self-built environment as described in Chapter 

4. The experimental environment was based on the BSM1 plant, a well-established 

platform in wastewater treatment research. ASMG1 mathematical model was 

employed to replace the ASM1 to generate observed data including nitrous oxide 

production. The core components of ASMG1 were then adopted to characterise the 

NODE model of N2O production implemented in BSM1 plant. MATLAB (The 

MathWorks Inc., 2024) served as the programming language for the implementation. 

6.3.1 Training options 

The selection of the training hyperparameters was based on empirical experimentation. 

The choices are detailed as follows. 

ODE solver: dlode45 function was selected for the experiments, as it is the only 

available solver for NODE in MATLAB (MATLAB, 2024) so far, despite it is not 

recommended for stiff problems.  

Structure of neural network: The neural network architecture plays a crucial role in 

encapsulating the model's dimensional complexity and the reaction dynamics. The test 

used a MLP with four hidden layers, each containing 50 nodes. While deeper 

structures (e.g. 5-6 layers, 100-200 nodes) could enhance representation, they are 

computationally expensive. Conversely, a two-layer model was considered 

insufficiently expressive. 



Chapter 6 Implementation of NODE modelling of N2O in BSM1 plant 

 

115 

Activation function: After evaluating Tanh and ReLU functions, the GELU 

(Hendrycks and Gimpel, 2016) was chosen for its efficiency in propagating gradients 

between layers. 

Initiation of the network parameters: Xavier Glorot initialization (Glorot and Bengio, 

2010) was used for weight matrices to mitigate vanishing or exploding gradients and 

therefore enhance the speed and stability of the training process. Kaiming He 

initialization (He et al., 2015) is also a viable option, but it is particularly fit for ReLU 

activations. 

Normalisation parameters: In some experiments, the mean and standard deviation 

used for normalization are calculated directly from the training data and through 

difference quotient method. Other experiments define these parameters as fixed 

values (see Table 6.1) based on observations of the training dataset and 

considerations from wastewater treatment theory and practice. 

Table 6.1 fixed values for normalisation parameters for BSM1 plant 

Component Unit yMean yStd Unit dyMean dyStd 

SI mg COD/l 30 10 mg COD/l/d 0 0 

SS mg COD/l 1.6 2 mg COD/l/d -200 400 

XI mg COD/l 1160 300 mg COD/l/d 0 0 

XS mg COD/l 60 100 mg COD/l/d -500 500 

XBH mg COD/l 2400 500 mg COD/l/d 150 500 

XAOB mg COD/l 128 20 mg COD/l/d 20 20 

XP mg COD/l 420 80 mg COD/l/d 58 5 

SO mg COD/l 2 2 mg COD/l/d -800 800 

SNO3 mg N/l 12 5 mg N/l/d 0 200 

SNH mg N/l 6 6 mg N/l/d -80 100 

SND mg N/l 0.6 0.2 mg N/l/d -20 60 

XND mg N/l 5 3 mg N/l/d -40 50 

SALK mol /m3 4.5 1 mol/m3/d 0 30 

SNO2 mg N/l 0.1 0.2 mg N/l/d 5 20 

SNO mg N/l 0.005 0.005 mg N/l/d 0.2 1 

SN2O mg N/l 0.004 0.002 mg N/l/d 0.2 1 

SN2 mg N/l 13.5 1 mg N/l/d 60 100 

XNOB mg COD/l 44 2 mg N/l/d 5 5 



Chapter 6 Implementation of NODE modelling of N2O in BSM1 plant 

 

116 

Loss function: The mean absolute error (MAE) served as the loss function throughout 

the experiments, guiding the optimization process towards minimising the absolute 

difference between predicted and actual values. 

Gradient descent optimisation: Training was conducted using the adaptive moment 

estimation (Adam) optimiser (Kingma and Ba, 2014), an advanced variant of 

stochastic gradient descent (SGD) known for its adaptive learning rate capabilities. 

The configuration of the Adam optimizer was set with a gradient decay factor of 0.9, a 

squared gradient decay factor of 0.999, and a learning rate of 0.01, consistent with 

common practices. 

Iteration, batch size and NODE steps: The number of training iterations depend on 

the algorithm, computational efficiency, and desired error threshold. In this case, 

custom loops were implemented to manage the training process. The training 

consisted of two stages: a collocation training stage utilising 3000 iterations, followed 

by a direct NODE training stage for 1000 iterations. Batch size is not suggested below 

the 10% of the total discretised trajectory points. Longer NODE steps improve 

prediction accuracy but increase solver difficulty. A batch size of 20% was employed 

and a single time step was used within the NODE solver, balancing accuracy with 

computational limitations. While larger batch sizes and extended time steps could 

improve accuracy, they exponentially increase computational demands. 

6.3.2 Experiments 

Four sets of experiments were conducted to evaluate the proposed algorithms and 

methods: 

1) Prediction ability assessment: This study examined the prediction accuracy of the 

trained model on identical dry weather scenario. 

2) Cross-scenario performance: This study assessed the model’s generalisation 

ability by testing its performance on three different weather scenarios after training 

it with only the first twelve days of rainy data. 

3) Reverse scenario validation: This study tested how a model, which were trained 

with all dry weather data, performed in rain weather scenario, and vice versa, how 

a model, which were trained with all rain weather data, performed in dry weather 

scenario. 
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4) Reduced dimension modelling: This study explored the feasibility of using the 

model with potentially incomplete data. A NODE model with reduced dimensions 

was trained and tested, acknowledging that not all component data in the model 

may be available in real-world scenarios. 

Selecting an optimal metric for model evaluation presents challenges, and there is no 

single perfect metric. While this study employed Root Mean Squared Error (RMSE) 

and coefficient of determination (R-squared) for assessment, these metrics have 

limitations. They can be informative and provide valuable insight, but also misleading, 

particularly when comparing results derived from datasets with different lengths. 

6.4 Results 

6.4.1 Prediction on identical scenario 

A NODE model was trained using data from the first seven days of the dry weather 

scenario. Figure 6.2 and Figure 6.3 depict the training loss curves for the collocation 

and direct NODE training stages, respectively, showcasing a steady decrease in error. 

   

Figure 6.2 Collocation training loss curve  Figure 6.3 NODE training loss curve 

The trained model was then used to predict system behaviour for the subsequent 

seven days (days 7-14) on the same dry weather scenario. Figure 6.4 (see full results 

in appendix 8.2) compares the predictions with the original simulated data, showing 

that the model generally captured the dynamic trends, including N2O generations 

across all five reactors. Notably the model performed best for reactors four and five. 
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Figure 6.4 Testing in predication of day 7 - 14 in dry weather scenario 

Table 6.2 summarise the RMSE for both training and testing stages. The overall RMSE 

for the training stage (days 0-7) was 1.18, while for the testing stage (days 7-14), it 

was 1.11, indicating good agreement between predictions and actual data and 

consistent performance across both phases.  

Table 6.2 Summary of RMSE in dry weather scenario 

Stage Day Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5 Overall 

Training 0-7 2.58 0.36 0.31 0.20 0.15 1.18 

Testing 7-14 2.43 0.39 0.32 0.21 0.16 1.11 

We then used the trained NODE model to assess plant performance for days 7-14 

under dry weather conditions. Table 6.3 presents the results for N2O emissions during 
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nitrification/denitrification, comparing the NODE model predictions with those of the 

ASMG1 model. The NODE model predicted slightly lower N2O emissions in anoxic 

reactors and higher emissions in oxic reactors, resulting in a 2.44% higher total N2O 

emission prediction compared to the ASMG1 model. 

Table 6.3 Assessment of N2O emissions for day 7-14 of dry weather scenario 

Reactor 

N2O emissions (kg N-N2O/d) N2O emissions (kg N2O/d) 

difference 

ASMG1 model NODE model ASMG1 model NODE model 

Anoxic 1 0.010455 0.010418 0.016429 0.01637 -0.35% 

Anoxic 2 0.011148 0.011089 0.017518 0.017426 -0.53% 

Oxic 1 1.2195 1.2514 1.9164 1.9665 2.62% 

Oxic 2 0.60874 0.62763 0.9566 0.98628 3.10% 

Oxic 3 0.2772 0.27856 0.4356 0.43774 0.49% 

Total 2.1271 2.1791 3.3426 3.4243 2.44% 

It's important to note that the dissolved oxygen (SO) levels in anoxic reactors one and 

two did not visually align well with the observed data. This discrepancy stems from the 

significant scale difference in dissolved oxygen levels between anoxic and oxic tanks. 

The SO in reactor two ranged from 0 to 6 x 10-3 mg/L, while reactor five exhibited levels 

from 0 to 6 mg/L – a thousandfold difference. This scale disparity exceeded the 

precision achievable by the loss function, given the limited number of training iterations 

used in the experiments. 

In practical wastewater treatment applications, on-site dissolved oxygen 

measurements are typically around to a precision of 0.1 mg/L due to instrument 

limitations and wastewater inhomogeneity (Roman M. D., 2014). Given these real-

world constraints, this study did not prioritise improving dissolved oxygen level 

predictions in anoxic tanks for this study, as further refinement would offer minimal 

practical benefit. 

6.4.2 Cross-scenario performance 

To evaluate the model's generalization ability, a new model was trained using the first 

12 days of data from rain weather scenario, which included a rain event between days 
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8 and 12. Then this model's performance was assessed on days 12 to 14 across three 

weather scenarios. 

Figure 6.5, Figure 6.6 and Figure 6.7 (see full results in appendix 8.3) illustrate the 

model's performance on day 12 to 14 in dry, rain, and storm weather scenarios, 

respectively. The results demonstrate that the trained model generalizes well across 

various conditions, indicating its broad applicability to unseen data. Notably, the model 

effectively captured the underlying system dynamics, including accurate N2O 

production, across all scenarios. 

 

Figure 6.5 testing in dry weather scenario 
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Figure 6.6 testing in rain weather scenario 
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Figure 6.7 testing in storm weather scenario 

Table 6.4 summarises the RMSE values for the model's performance under dry, rainy, 

and stormy weather conditions. The general trend indicates that the model performs 

best in reactors four and five across all scenarios. However, there are no statistically 

significant differences between reactors or scenarios. This indicates the model's broad 

applicability to various weather conditions. 

The overall RMSE values for the dry, rain, and storm scenarios were 0.23, 0.30, and 

0.59, respectively. While the model's performance slightly degraded in more extreme 

weather conditions, it maintained reasonable accuracy across all scenarios. This 

robust performance across varied weather conditions underscores the model's 

potential for practical applications in wastewater treatment processes, where 

adaptability to changing environmental conditions is crucial. 

Table 6.4 RMSE of the model testing in dry, rain and storm scenarios 

Scenario Day Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5 Overall 

Dry 12-14 0.21 0.14 0.35 0.22 0.15 0.23 

Rain 12-14 0.24 0.22 0.49 0.24 0.18 0.30 

Storm 12-14 0.86 0.69 0.43 0.37 0.43 0.59 

6.4.3 Reverse-scenario validation 

We evaluated the model's generalisation ability through reverse scenario validation. 

Two separate models were trained: a dry weather model tested in rain weather 

scenario, and a rain-weather model tested in dry weather scenario. 
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● Dry Weather Model: This model was trained using data from all 14 days in the 

dry weather scenario, representing the system's typical operation. These data 

excluded disruptions caused by extreme events such as rain or storms. The model 

was then tested on rain weather data, particularly focusing on its performance 

during the rain event period between day 8 to day 12. 

● Rain Weather Model: This model was trained using data from all 14 days in the 

rain weather scenario. These data encompassed both normal operating 

conditions (day 1 to 8) and interruptions caused by rain (day 8 to 12). 

Subsequently, the model was tested on dry weather data to assess its prediction 

accuracy. 

Figure 6.8 (see full results in appendix 8.4) illustrates that the dry weather data trained 

model performed well for normal operation conditions (day 1 to 8) in the rain weather 

scenario. However, its performance faltered during the rain event period (day 8 to 12). 

This is reflected by a drop in the overall R-squared value to 44.9% and an increase in 

the overall RMSE to 37.49. Conversely, as shown in Figure 6.9 (see full results in 

appendix 8.4), the rain weather data trained model maintained good performance 

throughout the entire dry weather scenario. This is evident from the high overall R-

squared value of 99.7% and the low RMSE of 1.44. 
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Figure 6.8 testing dry weather data-trained model in rain weather scenario 

 

Figure 6.9 testing rain weather data trained model in dry weather scenario 
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6.4.4 NODE model with reduced dimensions 

In real-world applications, directly measuring all components used in the ASMG1 

model can be challenging. To address this limitation, a NODE model with reduced 

dimensions was explored. Four carbonaceous substrates were consolidated into total 

COD (TCOD), and ammonia, both soluble and particulate organic nitrogen, were 

combined into Kjeldahl nitrogen (KN). Key components crucial to N2O generation 

(Tchobanoglous et al., 2014), including dissolved oxygen (SO), ammonium (SNH₄), 

nitrate (SNO₃), and nitrite (SNO₂), were retained in the model. Components deemed less 

relevant (such as alkalinity) or those exhibiting relative stability (e.g., biomass) were 

excluded from the model. 

The lower-dimensional model was trained using the first seven days of dry weather 

data and tested for predictions in the subsequent week. Figure 6.10 (see full results in 

appendix 8.5) demonstrates that the model effectively captured the dynamic trends of 

N2O emissions despite the significant reduction in input dimensions. This suggests the 

potential of using such simplified models for practical applications where complete 

data acquisition might be difficult. 
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Figure 6.10 testing of model with reduced dimensions 

While this study utilised a limited 14-day data timeframe, a small fraction of a typical 

wastewater treatment plant's operational timeline, it effectively demonstrates the 

feasibility of the NODE approach for data-driven modelling of wastewater processes. 

Notably, the model captured the dynamic behaviour of N₂O productions across 

different treatment stages, despite their significant variations. 

Further refinement of the model is possible by exploring tuning hyperparameters like 

batch size, number of node steps, and training iterations. Additionally, estimation of 

normalisation parameters (mean and standard deviation) can be enhanced by 

combining domain knowledge with site-specific data from the wastewater treatment 

plant. These enhancements could potentially lead to improved model accuracy. 

These findings suggest that the NODE approach, particularly with reduced dimensions, 

holds promise for practical applications in wastewater treatment process modelling. 

By balancing model complexity with data availability, this method could provide 

valuable insights into N2O productions and other critical parameters, even in scenarios 

where comprehensive measurements are challenging to obtain. 

6.5 Summary 

A NODE-based model for N2O production was implemented and tested under various 

operational scenarios at the BSM1 plant. The model demonstrated robust predictive 

capabilities for N2O behaviour across both anoxic and aerobic phases, accurately 

capturing even minute and transient N2O variations. Moreover, the model proved 

resilience to short-term operational disturbances and effectively predicated system 

responses under varying weather scenarios. These achievements are attributed to the 
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novel algorithm developed for handling exogenous factors, and the data normalization 

and incremental training strategy proposed for tackling model stiffness. 

The results underscore the potential of NODE models to accurately represent the 

complex dynamics of wastewater treatment processes and highlight its promise for 

optimising N2O mitigation strategies. Nevertheless, given the multifaceted nature of 

N2O production pathways and its spatial and temporal variability, comprehensive real-

world validation is imperative to refine the model and facilitate its broader application 

in practical wastewater treatment. 
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Chapter 7 Di cu  ion  nd conc u ion 

The preceding chapters comprehensively explored data-driven N2O modelling using 

NODEs, with a particular focus on addressing training instability arising from 

wastewater process stiffness. Through rigorous experimentation and analysis, 

valuable insights have been gained into NODE performance for capturing N2O 

production and emission patterns from monitoring data. This chapter delves deeper 

into the implications of these findings, situating them within the broader research 

context. By critically examining the strengths, limitations, and potential impact of this 

study, it is expected to provide a comprehensive discussion and draw meaningful 

conclusions, with summary of key contributions and outline of future research 

directions. 

7.1 Discussion 

The development and successful deployment of robust and effective machine learning 

models, such as NODEs, are contingent upon a confluence of factors that collectively 

influence model performance. While advancements in algorithm design and 

computational resources have propelled the field forward, several critical challenges 

persist. This section discusses four key areas significantly impacting NODE training 

and generalization: training instability, unforeseen data generalization, data quality 

and availability, and computational cost. A comprehensive understanding of these 

challenges is essential for developing effective strategies to mitigate their effects and 

ultimately enhance model performance. 

7.1.1 Training instability 

NODEs offer a promising approach to modelling complex systems by representing the 

dynamics as a continuous process. However, their training is notoriously unstable. 

This instability arises from several key factors: 

● Stiffness: Stiff systems exhibit widely varying timescales, making them 

challenging to solve numerically. NODEs often encounter stiffness, particularly 

when modelling complex systems. Standard solvers, like Euler or Runge-Kutta, 

struggle with stiff problems, leading to instability (Kim et al., 2021). 
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● Gradient explosion/vanishing: Similar to traditional neural networks, gradients 

can explode or vanish during backpropagation through the ODE solver. This can 

hinder convergence and destabilize training (Amari, 1993). 

● NODE solver choice: The choice of NODE solver significantly impacts stability. 

Implicit solvers are generally more stable for stiff problems but can be 

computationally expensive, while explicit solvers are faster but prone to instability 

for stiff systems. Unfortunately, NODE solvers are less developed compared to 

traditional ODE solvers (                   ,  0  ;        ,  z z    ł     

  ł ż ń   ,  0 0). 

● Initialization: Poor initialization of the neural network parameters can lead to 

unstable trajectories and divergent solutions (Glorot and Bengio, 2010). 

While sources of instability are multifaceted, stiffness is the most prominent and 

challenging issue in wastewater systems (Brown et al., 2021; Bradley et al., 2022). 

The results of this study demonstrate the proposed normalisation method effectively 

addresses instability and is easily implementable. Similar scaling method have also 

shown promise in the literature (Ji et al., 2021; Kim et al., 2021). However, other 

approaches with potential to mitigate stiffness exist, two have been identified for future 

exploration: 

● Gradient clipping:  

Gradient clipping is a regularization technique that addresses training instability 

by controlling the magnitude of gradients during backpropagation. If the norm of 

the gradient exceeds a predefined threshold, it's scaled down to meet that 

threshold. By imposing a threshold on the gradient norm, it prevents gradients 

from exploding, thereby enhancing stability. While commonly used in neural 

networks, this method is equally applicable to NODEs (J. Zhang et al., 2019). 

However, implementing gradient clipping requires careful parameter tuning. The 

clipping threshold, frequency, and choice of norm (e.g., L1, L2) significantly impact 

performance. Finding optimal values for these parameters can be challenging. 

Additionally, aggressive clipping may lead to information loss (Qian et al., 2021; 

Koloskova, Hendrikx and Stich, 2023).  

● Specialized solver:  
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While NODE and ODE solvers share similarities, they also exhibit distinct 

characteristics. Unfortunately, the development of NODE solvers, especially for 

stiff systems, remains limited. Developing specialized solvers tailored for NODEs, 

such as those incorporating adaptive step size methods (e.g. Dormand-Prince) 

(Kimura, 2009; Seen, Gobithaasan and Miura, 2014; Chalvidal et al., 2020; 

Zhuang et al., 2020; Kloberdanz and Le, 2023) or implicit schemes (Poli et al., 

2021; Baker et al., 2022; Pal, Edelman and Rackauckas, 2022), can significantly 

enhance stability. 

Ideal NODE solvers should prioritize the following objectives: 

1) Efficiency: The solver should be computationally efficient to handle large 

datasets and complex models. 

2) Stability: The solver should be robust to the inherent instability of neural 

networks. 

3) Accuracy: The solver should accurately approximate the solution of the ODE 

to ensure correct gradient computation. 

4) Differentiability: The solver should be differentiable to enable 

backpropagation. 

Based on the experience from ODE solver, the types of potential NODE solver 

may include: 

1) Adaptive step size solvers: Dynamically adjust the step size based on the 

estimated error, improving efficiency and stability. Examples include 

Dormand-Prince (Kimura, 2009), Runge-Kutta-Fehlberg (Seen, Gobithaasan 

and Miura, 2014). 

2) Implicit solvers: Effectively handle stiff ODEs, which can be applied in 

NODEs. However, they typically require iterative solution methods, increasing 

computational cost. Examples include Backward Euler (Skelboe and 

Andersen, 1989; Biswas et al., 2013), Implicit Runge-Kutta methods 

(Cartwright and Piro, 1992). 

3) Symplectic solvers: Preserve the symplectic structure of Hamiltonian 

systems (Leimkuhler and Skeel, 1994; Zhong, Dey and Chakraborty, 2019), 

which can be beneficial for certain types of physical systems. Examples 
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include Leapfrog method (Shampine, 2009), Verlet integration (Sanz-Serna, 

1992; Murua, 1999). 

4) Hybrid solvers: Combine the strengths of different solvers to achieve better 

performance. For example, using an implicit solver for stiff regions and an 

explicit solver for non-stiff regions (Shi et al., 2012; Tutueva et al., 2020). 

While gradient clipping offers a partial solution, specialized NODE solvers hold the 

most promise. By providing theoretical guarantees for stability and convergence of 

learning process, they can significantly advance the field of NODEs and expand their 

applicability. 

7.1.2 Out-of-distribution generalization 

Traditional machine learning models assume that training and test data are statistically 

similar, a condition known as independent and identically distributed (IID) (Cao, 2022). 

However, real-world data often deviates from this assumption, undergoing unexpected 

distributional changes. As a result, deployed models frequently exhibit significant 

performance degradation, a phenomenon known as out-of-distribution generalization 

problem (Hendrycks et al., 2021; Ye et al., 2021). NODEs, which rely on DNN to 

approximate dynamics, are similarly vulnerable to OOD challenges. 

This problem arises from distribution shift, where the statistical properties of training 

and test data differ (Fang et al., 2020). This discrepancy can be attributed to factors 

such as data scarcity or non-representative data selection during training. 

Leveraging neural networks as their core component, NODEs inherit both their 

capabilities and limitations (Elbrächter et al., 2019). Like other data-driven models, 

NODEs heavily rely on the quality and diversity of training data. Comprehensive data 

coverage is more critical than sheer data volume, as diverse scenarios within the data 

enhance the model's ability to generalise to unseen situations. Insufficient data 

coverage, where training data doesn't encompass the full range of possibilities, can 

lead to poor generalizability and unreliable predictions (Zhang et al., 2021). 

The results of this study exemplify this. Figure 7.1 illustrate the joint distribution of key 

components for dry, rain, and storm weather scenarios during two distinct periods: day 

0-8 and day 8-12, respectively. While the initial 8-day period shows no discernible 

differences, a clear divergence among weather scenarios emerges during days 8-12, 
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coinciding with rain and storm events. the reverse scenario validation results (section 

6.4.3) corroborate these findings. The dry weather data-trained model struggled to 

handle actual rain events due to the absence of rain information in its training data. 

Conversely, the rain weather data-trained model performed adequately in dry weather 

scenarios, as it encompassed dry weather conditions. 
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Figure 7.1 Joint distribution of dry, rain, and storm weather data for day 0-8 (left) and 

day 8-12 (right) 

Solutions for OOD generalization issue can be from different aspects:  

● Data-centric approaches 

Augmenting training data with synthetic samples can mitigate data scarcity 

(Dupont, Doucet and Teh, 2019). Expanding the training data distribution to 

encompass diverse scenarios improves model robustness. OOD detection 

techniques, which identify data points outside the training distribution, can aid in 

data augmentation(Cui and Wang, 2022). Integrating wastewater theory and 

practice is crucial for ensuring that training data covers the full spectrum of 

potential wastewater conditions. Rigorous data cleaning and preprocessing are 

essential for data quality and consistency (Chu et al., 2016). 

● Model-centric approaches 

Exploring network architectures inherently resistant to distribution shifts is vital. 

Regularization techniques such as L1/L2 regularization (Girosi, Jones and Poggio, 

1995), dropout (Baldi and Sadowski, 2013), and early stopping (Mahsereci et al., 
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2017) can help prevent overfitting. Adversarial training enhances model 

robustness by exposing it to adversarial examples (Rani et al., 2024). Meta-

learning (Finn et al., 2019; Hospedales et al., 2021), continuous learning (Liu, 

2017), and transfer learning (Weiss, Khoshgoftaar and Wang, 2016) improve long-

term generalization by enabling the model to adapt to evolving data distributions. 

For instance, in wastewater treatment, equipment degradation, microbial changes, 

and operational variations can induce distribution shifts. Regularly updating the 

model with fresh data is essential to maintain performance. 

The optimal strategy for OOD generalization depends on the specific problem and 

dataset. A combination of data-centric and model-centric approaches is often 

necessary to achieve optimal performance. 

7.1.3 Data availability and quality 

Data is the fuel that powers machine learning models, including NODEs. Both data 

quantity and quality significantly impact model performance, accuracy, and reliability 

(McDonald, 2021; Budach et al., 2022; Yue Liu et al., 2023). The adage "garbage in, 

garbage out" is particularly applicable to data-driven models. High-quality data 

enables models to learn accurate patterns and relationships, leading to reliable and 

trustworthy predictions. Conversely, poor data quality can introduce biases, resulting 

in inaccurate or unfair outcomes. 

Obtaining qualified data in wastewater treatment is crucial for effective process 

monitoring, control, and optimization. Data collection methods in WWTP include: 

1) Sensor-based monitoring: Modern WWTPs increasingly utilize sensors to 

measure various parameters such as pH, temperature, dissolved oxygen, solids, 

and chemical concentrations. Regular sensor calibration and continuous data 

logging are essential for accurate monitoring. To account for rapidly changing 

wastewater characteristics due to factors like rainfall, industrial discharges, and 

seasonal variations, outlier and anomaly detection techniques can be employed 

(Zamora and Torres, 2014; Haimi et al., 2016). Given the potential for sensor drift 

over time, implementing calibration schedules and sensor replacement plans is 

crucial. 

2) Laboratory testing: Regular laboratory testing of wastewater samples is crucial 

for WWTPs to monitor parameters such as BOD, intermediate products, inhibitory 
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compounds, and fractionated components, which are often difficult to measure 

using online sensors (Pagga, Bachner and Strotmann, 2006). In addition, parallel 

testing data for normal parameters provide a benchmark for sensor calibration and 

validation. Adherence to stringent quality control procedures is essential to ensure 

the reliability of laboratory analysis results. 

3) Process control systems: Process control systems provide valuable data on air 

flow rates, pump speed, and valve positions, enabling in-depth analysis of process 

behaviour and optimization of control strategies (Moles et al., 2003). 

Data-driven approaches often demand substantial data volumes, which can be 

challenging to obtain solely through laboratory testing (Schneider et al., 2021). 

Consequently, the reliability of online sensors and the quality of generated data are 

critical for successful data-driven initiatives in WWTPs. Real-world plants often 

encounter sensor discrepancies, drifts, and malfunctions due to technical limitations, 

fouling, or harsh operating conditions, compromising data accuracy. While techniques 

such as mass balance calculations, statistical analysis, additional laboratory validation, 

and anomaly detection can mitigate these issues, prioritizing sensor maintenance, 

calibration, and testing is fundamental to ensure data integrity (Luca et al., 2019; 

Zhang, Tooker and Mueller, 2020). 

Surrogate parameters offer an alternative avenue for addressing the data 

requirements of emerging AI applications in wastewater treatment (Edzwald, Becker 

and Wattier, 1985). By developing cost-effective and reliable sensors employing 

technologies such as light, electronics, and wave-based measurements, it is possible 

to generate a richer dataset for wastewater characterization. While these surrogate 

parameters may not directly correspond to traditional analytical components, they can 

provide valuable insights for enhancing operational efficiency in WWTPs. 

Data preprocessing and cleaning are essential to minimize the impact of noise and 

outliers on model reliability (Chu et al., 2016). Techniques such as outlier detection 

(Corominas et al., 2011), noise reduction (Moravec et al., 2021), and smoothing 

methods (Ilyas and Rekatsinas, 2022) should be employed to ensure the model learns 

true underlying patterns rather than anomalies. 

By following these steps and addressing the specific challenges in data collection, 

high-quality data can be obtained to support effective data-driven process optimization. 
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7.1.4 Model reliability 

Model reliability is influenced by multiple factors. In real WWTPs, it is primarily 

influenced by data quality and coverage challenges. For example, although 

wastewater theories highlight the critical role of microbial communities and substrate 

composition in reaction kinetics, technological limitations prevent real-time 

measurements of these parameters. While surrogate parameters offer partial solutions, 

the inability to fully characterize the wastewater system state hinders the application 

of NODE models (Sundui et al., 2021). 

The complex nature of wastewater treatment processes demands a comprehensive 

dataset encompassing diverse influent characteristics, biological factors, and plant 

operational parameters to accurately capture system dynamics. To fully account for 

seasonal fluctuations and temperature-dependent processes, a dataset spanning at 

least one year is recommended. Practical implementation requires careful 

consideration of operational profiles and potential model limitations under specific 

conditions, aiding by investigation and data distribution analysis to identify possible 

edge cases where the model might struggle (Wang et al., 2021). 

Assuming optimal data quality, coverage, and out-of-distribution robustness, NODE 

models can demonstrate reliable performance. While model predictions may still be a 

subset of the mechanistic model due to data availability, they can suffice for routine 

operations under stable conditions. To enhance model reliability, integrating domain 

knowledge is essential. By assigning physical meaning to model parameters and 

incorporating physical laws and constraints, the model can improve the plausibility of 

predictions (Faisal et al., 2023). A combination of comprehensive data coverage, 

domain expertise, extended temporal datasets, operational considerations, and robust 

data preprocessing empowers NODE models to deliver reliable nitrous oxide 

production predictions in complex and dynamic wastewater treatment environments. 

7.1.5 Computational cost 

NODE models, due to their continuous dynamics modelling approach, incur significant 

computational costs. The experiments in this study using 14 days of data for the BSM 

plant modelling demonstrated NODE models exhibit an averagely 50-fold increase in 

training time compared to a collocation training under identical computational 

resources. 



Chapter 7 Discussion and conclusion 

 

137 

Several factors contribute to the computational expense of NODEs: 

● Numerical integration: Solving ODEs numerically requires iterative 

computations, which can be computationally intensive, especially for complex 

ODE systems. The choice of solver (e.g. Runge-Kutta) and step size significantly 

impacts the computational cost (Chalvidal et al., 2020; Dong et al., 2020). 

● Backpropagation: The backpropagation process through the ODE solver is 

complex and computationally demanding due to the non-differentiable nature of 

solver operations (Baker et al., 2022). 

● Memory consumption: Storing intermediate states of the ODE solver for 

backpropagation can lead to high memory usage, especially for long time horizons 

or complex systems (Finlay et al., 2020). 

Solutions to reduce NODE computational cost include: 

● Efficient NODE solvers: Adaptive step size solvers can optimize computational 

efficiency by adjusting step size based on solution behaviour (Zhuang et al., 2020). 

Alternatively, less accurate but computationally cheaper solvers can be employed 

during initial training stages or when precision is less critical (Roesch, Rackauckas 

and Stumpf, 2021). Specialized solvers designed for stiff systems can also 

improve efficiency (Kushnir and Rokhlin, 2012; Kloberdanz and Le, 2023). 

● Approximation techniques: Checkpoint-based saving of intermediate solver 

states can reduce memory consumption during backpropagation (Zhuang et al., 

2020). Discretizing the continuous NODE into a discrete-time system through finite 

differences can simplify computations but may introduce approximation errors 

(Kloberdanz and Le, 2023). 

● Hardware acceleration: Leveraging the parallel processing capabilities of GPUs 

(graphics processing units) or specialized hardware like TPUs (tensor processing 

units) can significantly accelerate numerical integration and backpropagation 

calculations (Shi et al., 2012; Seen, Gobithaasan and Miura, 2014). 

● Model architecture optimization: Simplify the neural network component of the 

ODE to reduce computational overhead (Golovanev and Hvatov, 2022). 

The choice of solutions depends on the specific problem and desired accuracy. Often, 

trade-off have to be considered between computational efficiency and the accuracy of 
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the solution (Khalil et al., 2024). Certainly, continuous research is expected for new 

techniques to improve the efficiency to be developed. 

By carefully considering these factors and applying appropriate strategies, it is 

possible to mitigate the computational cost of Neural ODEs and make them more 

practical for real-world applications. 

7.2 Benefits of NODE approach 

The NODE approach offers several key advantages for modelling wastewater 

treatment processes: 

1. Physical interpretation: NODE models maintain compatibility with the physical 

meaning inherent in traditional mathematical models. This allows for a more 

intuitive understanding of the modelled processes (Zou et al., 2024). 

2. Data-driven dynamics learning: NODEs can implicitly capture complex system 

dynamics directly from monitoring data without requiring explicit knowledge of 

underlying physical equations. This makes them particularly well-suited for 

complex wastewater systems where deriving these equations might be 

challenging (Zakwan et al., 2023). 

3. Enhanced generalization: By learning the underlying differential equations, 

NODE models can generalize better to unseen data compared to models trained 

only on discrete time points. This allows for more accurate predictions under 

varying conditions (Garsdal, Søgaard and Sørensen, 2022; Kircher, Döppel and 

Votsmeier, 2024). 

4. Unveiling system insights: By analysing the trained neural network, researchers 

can gain valuable insights into the key factors influencing the system's dynamics. 

This knowledge can be used to optimize wastewater treatment processes and 

improve overall efficiency (Zakwan et al., 2023). 

5. Continuous-time modelling: NODE models naturally handle data that evolve 

continuously over time, offering more accurate and realistic representation of real-

world wastewater treatment processes compared to discrete-time models 

(Garsdal, Søgaard and Sørensen, 2022). 

6. Flexibility: NODE models easily handle irregularly sampled time series data, 

making them adaptable to practical scenarios where uniform measurement is not 

feasible or available (Esteve-Yagüe and Geshkovski, 2021). 
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These benefits position the NODE approach as a powerful tool for wastewater process 

modelling, offering an optimal balance between data-driven insights and physical 

interpretability. By leveraging these capabilities, researchers and practitioners can 

develop more accurate, flexible, and insightful models for complex wastewater 

treatment systems, potentially leading to improved process understanding and 

optimisation. 

7.3 Challenges of NODE approach 

Despite its potential, NODE approach faces several significant challenges, particularly 

when dealing with complex processes like N2O production: 

1. Training Instability: The most significant challenge in implementing the NODE 

approach is the instability of the training process. This issue is particularly 

pronounced in stiff, complex, and chaotic systems, as well as over long-time 

horizons. This instability can stem from various factors, including poor 

initializations, gradient noise, and the inherent complexity of the system itself 

(Finlay et al., 2020; Golovanev & Hvatov, 2022). Maintaining stability in the 

numerical integration of ODEs is crucial, as instabilities can lead to divergent 

solutions and unreliable models. Careful selection of integration methods and step 

sizes is necessary to ensure stability while balancing accuracy and computational 

efficiency (Dikeman, Zhang and Yang, 2022). 

2. Computational Cost: Training NODE models can be computationally expensive 

compared to traditional machine learning methods. This is partly linked to the need 

for smaller integration steps to maintain stability, leading to a higher number of 

calculations (Golovanev and Hvatov, 2022). 

3. Solver Limitations: While numerous mature ODE algorithms and solver libraries 

exist for mathematical dynamical systems, NODE solvers capable of handling 

massive stiffness are still rare. This limitation is particularly evident in real-world 

applications with complex dynamics (Baker et al., 2022). 

4. Immature Ecosystem: While recent advancements have seen libraries like 

PyTorch, TensorFlow, and MATLAB incorporate support for NODEs, the 

surrounding ecosystem and tooling remain less mature compared to those for 

conventional neural networks. This relative infancy can result in instability and 

computational inefficiency, particularly when tackling real-world problems 
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involving stiff equations or high-dimensional systems within current library 

frameworks. These limitations can translate into practical implementation hurdles, 

hindering the practical application of NODEs despite their theoretical promise. 

These challenges highlight the need for continued research in several areas: 

● Development of more robust and efficient NODE solvers, particularly for stiff and 

high-dimensional systems. 

● Improvement of training stability techniques for complex, chaotic systems. 

● Optimization of computational methods to reduce resource requirements. 

● Expansion and maturation of the NODE ecosystem and tooling. 

The NODE approach holds promise for wastewater treatment process modelling, but 

addressing these challenges is crucial for its practical implementation. Overcoming 

these hurdles will pave the way for the broader adoption of NODE models in real-world 

wastewater treatment applications. 

7.4 Conclusion 

This study demonstrates the potential of NODE models in capturing the complex and 

nonlinear dynamics of wastewater treatment processes, with a specific focus on the 

challenging area of N2O production. Despite the inherent difficulties in modelling N2O 

due to its diverse production pathways and significant spatiotemporal variations, the 

proposed methodologies empowered the NODE model to effectively represent these 

intricate and disparate system behaviours. 

1) To address the critical challenge of stiffness, this study proposes a novel 

normalisation method that effectively stabilizes the training process. By enabling 

smoother gradient descent and balancing optimization across disparate system 

scales, this readily implementable method facilitates accurate data-driven 

modelling of wastewater processes. 

2) This study introduces an incremental training strategy for NODE models that 

leverages the efficiency and noise resilience of the collocation method to bypass 

the initial stiffness hurdle. The initial solution is subsequently refined using the 

direct NODE approach to enhance accuracy. This combined methodology 

underscores the importance of adapting modelling techniques to specific problem 

stages. 
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3) The developed algorithm effectively addresses the impact of exogenous factors 

and external influences on the data. This enables the model to learn the underlying 

intrinsic dynamics from real-world composite data that incorporates both external 

perturbations and internal process interactions. 

4) This study emphasizes the critical role of data quality and comprehensive data 

coverage in successful data-driven modelling of wastewater processes using 

NODEs. Additionally, it underscores the necessity of developing specialized 

solvers tailored to this specific application. 

This study demonstrated that the model effectively predicts system behaviour under 

both anoxic and aerobic conditions, accurately capturing even subtle and transient 

N2O fluctuations. Its robustness is further evidenced by its resilience to short-term 

disturbances and its ability to predict system responses under varying weather 

conditions. These findings underscore the potential of data-driven NODE modelling 

for optimizing N2O mitigation strategies in wastewater treatment plants. 

In summary, while acknowledging the challenges of training and hyperparameter 

tuning, NODE models demonstrate significant potential for wastewater treatment 

modelling due to their ability to handle complex, continuous-time processes. This study 

introduces novel methodologies to address key challenges in NODE training, including 

normalization, incremental training strategy, and algorithms handling exogenous 

factors. These contributions represent substantial advancements and facilitate 

broader adoption of NODE models in wastewater treatment plants, enabling more 

efficient and data-driven management strategies. Future research with extensive real-

world validation is essential for further refining and promoting the widespread 

application of NODE models in practical settings. 
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Chapter 8 A   ndix 

8.1 Plant performance under varying weather scenarios 

Table 8.1 Plant performance assessment under varying weather scenarios 

Performance Unit Dry Rain Storm 

Overall plant performance assessment during period day 7-14 7-14 7-14 

Influent average concentrations     

Flow rate m3/d 18446.3875 24201.7981 21047.0253 

SI g COD/m3 30 22.8657 26.2931 

SS g COD/m3 69.5046 52.9758 60.9164 

XI g COD/m3 51.2085 39.0307 52.5648 

XS g COD/m3 202.3243 154.2097 185.4121 

XBH g COD/m3 28.1703 21.4711 26.4419 

XAOB g COD/m3 0 0 0 

XP g COD/m3 0 0 0 

SO g -COD/m3 0 0 0 

SNO3 g N/m3 0 0 0 

SNH g N/m3 31.5563 24.052 27.6571 

SND g N/m3 6.9505 5.2976 6.0916 

XND g N/m3 10.5903 8.0719 9.9406 

SALK mol HCO3/m3 7 7 7 

SNO2 g N/m3 0 0 0 

SNO g N/m3 0 0 0 

SN2O g N/m3 0 0 0 

SN2 g N/m3 0 0 0 

XNOB g COD/m3 0 0 0 

     

Kjeldahl nitrogen g N/m3 54.5923 41.6097 49.1172 

Total nitrogen g N/m3 54.5923 41.6097 49.1172 

Total COD g COD/m3 381.2077 290.553 351.6284 

BOD g BOD/m3 193.5346 147.5103 175.9258 

     

Influent average load     

SI kg COD/day 553.3916 553.3916 553.3916 

SS kg COD/day 1282.1096 1282.1096 1282.1096 

XI kg COD/day 944.6124 944.6124 1106.3336 

XS kg COD/day 3732.1519 3732.1519 3902.3736 

XBH kg COD/day 519.6401 519.6401 556.5226 
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XAOB kg COD/day 0 0 0 

XP kg COD/day 0 0 0 

SO kg -COD/day 0 0 0 

SNO3 kg N/day 0 0 0 

SNH kg N/day 582.1005 582.1005 582.1005 

SND kg N/day 128.211 128.211 128.211 

XND kg N/day 195.3534 195.3534 209.2192 

SALK kmol HCO3/day 129.1247 169.4126 147.3292 

SNO2 kg N/day 0 0 0 

SNO kg N/day 0 0 0 

SN2O kg N/day 0 0 0 

SN2 kg N/day 0 0 0 

XNOB kg COD/day 0 0 0 

     

Kjeldahl nitrogen kg N/day 1007.0307 1007.0307 1033.7716 

Total nitrogen kg N/day 1007.0307 1007.0307 1033.7716 

Total COD kg COD/day 7031.9057 7031.9057 7400.7312 

BOD kg BOD/day 3570.0148 3570.0148 3702.7147 

     

Effluent average concentrations     

Flow rate m3/d 18061.3875 23816.7981 20662.0253 

SI g COD/m3 30 22.8334 26.302 

SS g COD/m3 1.2306 1.3296 1.3382 

XI g COD/m3 4.7093 6.0951 5.9409 

XS g COD/m3 0.22347 0.32654 0.31418 

XBH g COD/m3 9.8367 12.865 11.7737 

XAOB g COD/m3 0.52118 0.66315 0.59528 

XP g COD/m3 1.7191 2.1841 1.9625 

SO g -COD/m3 3.5196 3.4175 3.3628 

SNO3 g N/m3 14.7321 12.1225 13.0126 

SNH g N/m3 1.6763 1.7814 1.8529 

SND g N/m3 0.56057 0.59055 0.59629 

XND g N/m3 0.016472 0.023513 0.023094 

SALK mol HCO3/m3 3.8121 4.5443 4.2251 

SNO2 g N/m3 0.027773 0.027325 0.031487 

SNO g N/m3 0.001912 0.0019047 0.0021444 

SN2O g N/m3 0.0010255 0.001018 0.0011531 

SN2 g N/m3 13.3997 13.3094 13.3283 

XNOB g COD/m3 0.18092 0.23132 0.20673 
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Kjeldahl nitrogen g N/m3 3.5454 4.0756 4.028 

Total nitrogen (limit = 18 g N/m3) g N/m3 18.3082 16.2283 17.0753 

Total COD (limit = 100 g COD/m3) g COD/m3 48.4213 46.5281 48.4336 

BOD (limit = 10 g/m3) g BOD/m3 2.7874 3.5787 3.3055 

     

Effluent average load     

SI kg COD/day 541.8415 543.8175 543.4534 

SS kg COD/day 22.2272 31.6675 27.65 

XI kg COD/day 85.0563 145.1649 122.7518 

XS kg COD/day 4.0362 7.7772 6.4916 

XBH kg COD/day 177.6636 306.4021 243.2688 

XAOB kg COD/day 9.4133 15.794 12.2997 

XP kg COD/day 31.0494 52.0177 40.5501 

SO kg -COD/day 63.5685 81.3935 69.4823 

SNO3 kg N/day 266.0821 288.7198 268.8662 

SNH kg N/day 30.2762 42.4283 38.2837 

SND kg N/day 10.1247 14.0649 12.3205 

XND kg N/day 0.29751 0.56001 0.47718 

SALK kmol HCO3/day 68.8526 108.2298 87.2981 

SNO2 kg N/day 0.50162 0.6508 0.65059 

SNO kg N/day 0.034533 0.045365 0.044307 

SN2O kg N/day 0.018522 0.024245 0.023825 

SN2 kg N/day 242.0169 316.9865 275.39 

XNOB kg COD/day 3.2676 5.5092 4.27 

     

Kjeldahl nitrogen kg N/day 64.0343 97.0668 83.2257 

Total nitrogen kg N/day 330.6711 386.507 352.8106 

Total COD kg COD/day 874.5551 1108.15 1000.7369 

BOD kg BOD/day 50.3451 85.2334 68.2986 

     

Sludge average concentrations     

Flow rate m3/d 385 385 385 

SI g COD/m3 30.0003 24.8983 26.966 

SS g COD/m3 1.2397 1.2846 1.3219 

XI g COD/m3 2261.7603 2179.1299 2398.219 

XS g COD/m3 100.8052 103.3403 107.6986 

XBH g COD/m3 4730.8012 4612.8182 4774.5945 

XAOB g COD/m3 250.317 237.9036 243.2574 
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XP g COD/m3 825.4722 784.8628 804.4082 

SO g -COD/m3 3.4699 3.4899 3.369 

SNO3 g N/m3 14.8122 13.13 13.4838 

SNH g N/m3 1.6373 1.6677 1.8303 

SND g N/m3 0.56304 0.57617 0.59202 

XND g N/m3 7.5158 7.6141 8.0248 

SALK mol HCO3/m3 3.7975 4.3061 4.1337 

SNO2 g N/m3 0.026558 0.025106 0.031012 

SNO g N/m3 0.0018433 0.0017588 0.0021052 

SN2O g N/m3 0.00098837 0.00093729 0.0011295 

SN2 g N/m3 13.3989 13.3256 13.3427 

XNOB g COD/m3 86.8904 83.0029 84.5029 

     

Kjeldahl nitrogen g N/m3 636.0123 616.9779 646.4774 

Total nitrogen g N/m3 650.8538 630.1357 659.9955 

Total COD g COD/m3 8287.2861 8027.2406 8440.9684 

BOD g BOD/m3 1191.1532 1160.9129 1200.7967 

     

Sludge average load     

SI kg COD/day 11.5501 9.5858 10.3819 

SS kg COD/day 0.47728 0.49459 0.50892 

XI kg COD/day 870.7777 838.965 923.3143 

XS kg COD/day 38.81 39.786 41.464 

XBH kg COD/day 1821.3585 1775.935 1838.2189 

XAOB kg COD/day 96.372 91.5929 93.6541 

XP kg COD/day 317.8068 302.1722 309.6971 

SO kg -COD/day 1.3359 1.3436 1.2971 

SNO3 kg N/day 5.7027 5.055 5.1913 

SNH kg N/day 0.63038 0.64205 0.70467 

SND kg N/day 0.21677 0.22182 0.22793 

XND kg N/day 2.8936 2.9314 3.0895 

SALK kmol HCO3/day 1.462 1.6578 1.5915 

SNO2 kg N/day 0.010225 0.009666 0.01194 

SNO kg N/day 0.0007097 0.00067716 0.00081051 

SN2O kg N/day 0.00038052 0.00036085 0.00043484 

SN2 kg N/day 5.1586 5.1304 5.1369 

XNOB kg COD/day 33.4528 31.9561 32.5336 

     

Kjeldahl nitrogen kg N/day 242.8576 235.6191 246.9416 
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Total nitrogen kg N/day 248.5716 240.6849 252.1462 

Total COD kg COD/day 3190.6052 3090.4876 3249.7728 

BOD kg BOD/day 458.594 446.9515 462.3067 

     

Quality index     

Influent quality index (IQI) kg poll.units/d 52177.4614 52177.4613 54167.1531 

Effluent quality index (EQI) kg poll.units/d 6028.3727 7884.0201 6974.4052 

     

Sludge production     

Sludge production for disposal kg SS 16462.1091 15536.2085 17433.8839 

Average sludge production for disposal per day kg SS/day 2355.2347 2222.766 2494.2665 

Sludge production released into effluent kg SS 1627.6277 2792.33 2252.2199 

Average sludge production released into effluent / day kg SS/day 232.8648 399.4988 322.2252 

Total sludge production kg SS 18089.7369 18328.5384 19686.1038 

Total average sludge production per day kg SS/day 2588.0995 2622.2648 2816.4918 

     

Energy/chemical consumption     

Average aeration energy kWh/day 4283.3778 4283.3778 4283.3778 

Average pumping energy kWh/day 388.1777 503.286 440.1905 

Average carbon source addition  kg COD/day 0 0 0 

Average mixing energy kWh/day 0.35768 0.35768 0.35768 

     

Operational cost index     

Sludge production cost index  11776.1734 11113.8302 12471.3327 

Aeration energy cost index  4283.3778 4283.3778 4283.3778 

Pumping energy cost index  388.1777 503.286 440.1905 

Carbon source dosage cost index  0 0 0 

Mixing energy cost index  0.35768 0.35768 0.35768 

Total operational cost index   16448.0866 15900.8516 17175.2587 

     

N2O emissions during nitrification/denitrification     

Anoxic tank 1 kg N2O/day 0.010774 0.0099702 0.01027 

Anoxic tank 2 kg N2O/day 0.011361 0.010932 0.010878 

Aeration tank 1 kg N2O/day 1.1921 1.0593 1.18 

Aeration tank 2 kg N2O/day 0.54236 0.4993 0.57496 

Aeration tank 3 kg N2O/day 0.23629 0.23716 0.26871 

Total kg N2O/day 1.9929 1.8167 2.0448 

     

95% percentile for effluent     
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SNH (Ammonia95) g N/m3 4.7423 4.8048 4.9255 

TN (TN95) g N/m3 20.7636 20.214 20.6124 

TSS (TSS95) g SS/m3 15.8608 23.2378 22.5545 

     

Violation of effluent total nitrogen level (18 g N/m3)     

Operating time length day 3.3333 2.6771 2.9687 

Percentage of the operation time % 47.69% 38.301% 42.4739% 

Number of occasions that violated the limit pcs 8 6 10 

     

Violation of effluent ammonia level (4 g N/m3)     

Operating time length day 0.70833 0.67708 0.75 

Percentage of the operation time % 10.1341% 9.687% 10.7303% 

Number of occasions that violated the limit pcs 5 5 5 

 

8.2 Results of prediction in dry weather scenario 

 



Chapter 8 Appendix 

 

148 

 

 

 



Chapter 8 Appendix 

 

149 

 

Figure 8.1 Training result using first 7-day dry weather data 
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Figure 8.2 Testing results for day 7-14 of dry weather scenario 

8.3 Results of cross scenario validation 

 

Figure 8.3 Collocation training loss on first 12-day rain weather data 
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Figure 8.4 NODE training loss on first 12-day rain weather data 
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Figure 8.5 Training results using first 12-day rain weather data 
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Figure 8.6 Testing results for day 12-14 of dry weather scenario 

 



Chapter 8 Appendix 

 

157 

 

 

 



Chapter 8 Appendix 

 

158 

 

Figure 8.7 Testing results for day 12-14 of rain weather scenario 
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Figure 8.8 Testing results for day 12-14 of storm weather scenario 

8.4 Results of reverse-scenario validation 
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Figure 8.9 Testing dry weather data-trained model in rain weather scenario 
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Figure 8.10 Testing rain weather data-trained model in dry weather scenario 

8.5 Results of NODE with reduced dimensions 

 

Figure 8.11 Collocation training loss on first 7-day dry weather scenario with reduced 

dimensions 
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Figure 8.12 NODE training loss on first 7-day dry weather scenario with reduced 

dimensions 
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Figure 8.13 Training results using first 7-day dry weather data with reduced 

dimensions 

 

 

 

 

 

Figure 8.14 Testing results for day 7-14 of dry weather scenario with reduced 
dimensions 
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