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ABSTRACT

Nitrous oxide (N20) emissions from wastewater treatment facilities pose a significant
environmental challenge. This study proposes a novel data-driven modelling approach
using emerging neural ordinary differential equations (NODE) to capture the complex

dynamics of N20 production in typical activated sludge processes.

The author established an experimental simulation platform, based on the BSM1
(benchmark simulation model no.1) plant, with the ASMG1 (activated sludge model
for greenhouse gases no.1) mathematical model. This platform generates simulated
monitoring data and validates the model. The author then proposes NODE-based
models, analogous to traditional biokinetic models, capable of capturing the complex
dynamics of N20O generation through learning from process monitoring data. However,

two primary challenges need to be overcome.

First, to address inherent stiffness in the underlying dynamics, the author proposes a
paired normalisation method for training stability. Additionally, an incremental
training strategy was introduced, starting from a collocation method to establish a
robust foundation, followed by refinement using the direct NODE method for

enhanced accuracy and efficiency.

Second, as monitoring data in wastewater plants typically contain confounding factors
from continuous influent variations and operational adjustments, representing
exogenous excitations to the dynamics to be captured, therefore the training

procedures was extended to account for these external influences.

The approaches were validated on the established platform. The results demonstrate
the effectiveness of the NODE-based model in capturing the intricate dynamics of N2O
production in wastewater treatment. This research presents a promising new avenue
for data-driven modelling of N20 in wastewater treatment, with the potential to improve

process optimisation and emission control strategies.

Keywords: neural ordinary differential equations (NODE), N2O emissions, wastewater

process, data-driven modelling.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Greenhouse gas emissions in wastewater treatment

Despite net zero initiatives implemented in many countries, the global warming trend
remains alarmingly accelerated. The World Meteorological Organization (WMO)
reported that human-induced climate change reached new heights in 2024, with a
global mean near-surface temperature of 1.55 + 0.13 °C above the 1850-1900 average
(WMO, 2025). This underscores the urgent need to fast-track commitments to slash

greenhouse gas (GHG) emissions and achieve carbon neutrality.

Wastewater treatment, a critical process in modern urban infrastructure, is essential
for protecting public health and the environment. These treatment processes involve
a complex series of physical, chemical, and biological operations designed to remove
contaminants from municipal and industrial wastewater before it is released back into
the environment. However, they also contribute to GHG emissions, including direction
emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N20) from the
treatment processes, and indirect emissions from plant operation, primarily electricity

consumptions.

CO2 emissions stemming from oxidation of wastewater organic matters are excluded
from GHG inventory by Intergovernmental Panel on Climate Change (IPCC), due to

their biogenic origins and non-anthropogenic contribution (Bartram et al., 2019).

CH4 is mainly generated under anaerobic conditions where organic contaminants
decompose. The pathway involves various types of anaerobic microorganisms
through four conversion steps: hydrolysis, acidogenesis, acetogenesis, and

methanogenesis, same as processes in anaerobic digester (Zhan, Hu and Wu, 2018).

N20 is a potent greenhouse gas, with an estimated global warming potential 265 times
greater than CO2 over a 100-year period (Bartram et al., 2019). Furthermore, it is a
detrimental substance and the largest donator to ozone depletion. In wastewater
treatment, N20 is a by-product of biological nitrogen removal processes, typically from
nitrification and denitrification, with more complicated mechanisms than CO2 and CHa4
generation (Zhan, Hu and Wu, 2018). N2O emissions exhibit significant spatiotemporal
variations, with magnitudes ranging from negligible to 25% of total influent nitrogen
(Ye, Porro and Nopens, 2022).
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In wastewater treatment plants (WWTPs), N2O emissions can account for up to 80%
of overall carbon footprint (Daelman et al., 2013), positioning WWTPs as the sixth
largest contributor of global emissions (Tchobanoglous et al., 2014). Figure 1.1
illustrates the percentages of the U.S. GHG emissions by gas and N20O emissions by
source based on the data from 1990 to 2022. Similarly, in the UK, the water sector
accounts for nearly a third of the industrial and waste process GHG emissions (Water
UK, Ricardo and Mott MacDonald, 2020).

U.S. GHG emissionsby gas N,O emissions by source

Figure 1.1 U.S. GHG emissions by gas (left) and nitrous oxide emissions by source
(right), based on data of 1990-2022, adapted from (U.S. EPA, 1993)

As the development of green electricity advances, direct emissions of N20O and CHya,
particularly N20, will become the dominant source of carbon emissions from WWTPs,
presenting a significant environmental concern (Valkova et al., 2020). Therefore,
studying and modelling N2O production is of great significance for minimizing the

carbon emissions of WWTPs.

1.2 Conventional N20O production modelling

Conventional models for wastewater processes, including those that account for N2O
generation, are typically biokinetics based (Ye, Porro and Nopens, 2022), such as
well-established Activated Sludge Model Series (ASM1, ASM2, and ASM3) and their
extensions. These models employ systems of ordinary differential equations (ODEs),
often represented in the form of Gujer matrix by water professionals (Henze et al.,
2000). They describe the biochemical dynamics among biomass and substrates based

on discovered mechanisms and pathways, utilising numerous kinetic coefficients and
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stoichiometric parameters that require calibration and validation to fit the local

conditions.

Research advancements have led to mechanistic models incorporating three major
pathways of N20 production: 1) hydroxylamine oxidation, 2) nitrifier denitrification, and
3) heterotrophic denitrification. When properly calibrated, these models can estimate

site-specific emissions and inform mitigation strategies.

Despite their advantages, current mathematical models face challenges in fully
elucidating the complex biological interactions and operational factors that govern N2O

emissions, due to key knowledge gaps that remain, including:

e The abiotic reaction pathway is still under debate (Stein, 2011; Su et al., 2019),

e The role of archaea and certain microorganism species requires further
clarification (Castellano-Hinojosa et al., 2018),

e The extent of contributions from different production pathways under varying

conditions is not fully understood.

N20 production during nitrogen removal is a complex and transient process involving
multiple interconnected pathways. These processes are influenced by several factors,
including microbial community composition, substrate availability, dissolved oxygen
levels, nitrite concentrations, pH, and temperature. However, these factors exhibit
significant variability due to ever-changing influent characteristics and periodic
operational adjustments, introducing uncertainty into the modelling process. The
intricate interplay of these factors makes it challenging to develop comprehensive
mathematical models that accurately capture the full range of N2O dynamics and

variations.

Furthermore, applying mathematical models necessitates validation and calibration of
numerous parameters, a challenging and time-consuming process due to inherent
non-linearity, processes interdependency, and measurement uncertainty (Belia et al.,
2009). Collecting reliable and accurate data, particularly from specifically designed lab
tests and field measurements, can be difficult and often expensive. Additionally, these

calibrations may not be easily transferable when scenarios change.

In summary, the practical application of the conventional mathematical modelling for

N20 prediction requires both accurate elaboration of the underlying mechanisms and



Chapter 1 Introduction

extensive experience and knowledge about process control. However, the increasing
complexity of industrial processes often makes such prerequisites difficult to satisfy in
real-world settings. Despite ongoing research to address these issues, the limitations
discussed hinder the accuracy, reliability and adaptability of conventional mechanistic
models, highlighting the need for innovative approaches or alternatives to modelling
N20 in wastewater treatment. Data-driven approaches, for instance, have the
capability to overcome some of these limitations by learning complex relationships
directly from process monitoring data (Haimi et al., 2013; Pisa, Santin, et al., 2019;
Sun and Ge, 2021), potentially capturing dynamics that are difficult to describe using

traditional mathematical modelling.

1.3 Data-driven modelling

Data-driven modelling offers a promising alternative for wastewater treatment. These
approaches have gained significant traction in recent years due to advancements in
data collection, storage capabilities, particularly computing power and sophisticated

artificial intelligence (Al) algorithms.

A variety of data-driven techniques can be employed in wastewater treatment, ranging
from soft sensor and fuzzy logic systems to earlier machine learning algorithms such
as principal component analysis (PCA), random forests, genetic algorithms, support
vector machine (SVM), multi-layer perceptron (MLP). More recently, applications of
deep learning (DL) have proliferated, including convolutional neural network (CNN),
recurrent neural network (RNN), generative adversarial network (GAN), transformers,
reinforcement learning (RL), outperforming these earlier methods (Asadi and
McPhedran, 2021; Ho et al., 2021; Khalil et al., 2023; Khalil et al., 2024).

Modern WWTPs can collect a wealth of information as online sensors continuously
monitor various parameters, including influent composition, dissolved oxygen levels,
and effluent quality. Today, many WWTPs are equipped with not only online sensors
at different locations of the process stages (see Figure 1.2), but also solenoid
actuators which can be controlled remotely. SCADA system samples and collects the
readings at a frequency like 5, 10 or 30 minutes, as well control signals are sent to
executors from SCADA as necessary. The WWTP data are often formed in time series,
reflecting yearly, seasonal, and diurnal cycles with some variations and turbulences

brought by environmental and operational changes.
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Figure 1.2 lllustration of typical WWTP instrumentation and monitoring parameters

The collected data serve as a rich resource for uncovering hidden patterns and

relationships within the treatment process. Data-driven approaches leverage these

large datasets, develop predictive models without relying solely on first-principles or

mechanistic understanding. They offer several advantages over conventional

mechanistic models (Khalil et al., 2023):

Reduced reliance on mechanistic understanding: Data-driven models do not
require a complete understanding of the underlying biological and chemical
pathways, which can be incomplete in complex systems.

Identification of complex relationships: They can uncover intricate, non-linear
relationships between process variables that may be difficult to capture with
traditional models.

Real-Time Process Monitoring: Data-driven models have the potential for real-
time predictions and control, allowing for proactive adjustments to optimise
treatment efficiency and minimize environmental impact.

Adaptability: These models can adapt to changing operational conditions and
influent characteristics by continuously learning from new data or through

retraining.

While data-driven models hold significant promise, there are challenges to consider (Newhart
et al., 2019):
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e Data Quality and coverage: The success of data-driven models hinges on the quality
and representativeness of the available data. Ensuring comprehensive and accurate data
collection is crucial.

e Model Interpretability: Understanding the rationale behind the model's predictions can

be difficult due to their black-box nature.

As sensor technology and data management practices continue to evolve, data-driven
models are poised to play an increasingly important role in the future of wastewater

treatment.

1.4 Neural ODE approach

Neural ordinary differential equations (NODEs) emerge as a powerful technique for
modelling dynamic systems within the realm of data-driven approaches. This method
leverages the strengths of both deep neural networks (DNNs) and traditional
mechanistic models. DNNs provide exceptional expressiveness, allowing NODEs to
capture complex non-linear system dynamics. Meanwhile, the mathematical
foundation of differential equations within NODEs offers valuable insights into the
underlying physical relationships that govern these dynamics. This marriage of DNNs
and differential equations positions NODEs as a promising tool for modelling dynamic

systems such as those encountered in wastewater treatment.

While neural networks are often criticized for their black-box nature, NODEs offer a
level of interpretability through their connection to differential equations. The learned
dynamics can be analysed in terms of rate of change and influences between variables,
potentially revealing interpretable causal mechanisms within the system (Zou et al.,
2024)

Unlike traditional machine learning methods constrained by fixed time steps, NODEs
excel at learning and representing complex temporal dynamics, regardless of irregular
or variable time intervals frequently encountered in actual data (Kidger et al., 2020).
The continuous nature allows NODEs to provide solutions at any arbitrary time point.
This capability makes them well-suited for modelling wastewater systems with such
real-world complexities, allowing them to effectively adapt to the inherent variability

and non-linearity present in wastewater treatment processes.
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While mechanistic modelling heavily relies on clear understanding of the underlying
dynamics and explicit mathematical expressions, conventional machine learning
methods like MLPs and RNNs act as black boxes, merely mapping the input and
output from large datasets without offering logical or causal interpretations. NODEs
bridge this gap by learning and extracting physical laws directly from monitored data,
creating continuous time series models that handle data with irregular intervals.
Moreover, NODEs often require less data compared to traditional methods and can
incorporate prior knowledge, further enhancing the interpretability of their outcomes.

Figure 1.3 compares the paradigms of these different modelling approaches.
( Mechanistic Modeling Neural ODE / PINN Deep Learning
L (white box) (grey box) (black box)

Data needed

Interpretability

Figure 1.3 paradigms of different modelling approaches

This study explores the capabilities of NODEs for data-driven modelling of wastewater
processes, particularly focusing on N20 production. Given the relative novelty of

NODEs, a dedicated chapter later will introduce their fundamental concepts.

1.5 Research objectives

The overarching aim of this research is to develop and implement NODE-based
models for data-driven modelling of wastewater treatment processes, with a specific
focus on nitrous oxide (N20) production dynamics. This aim encompasses
investigating and understanding the underlying mechanisms of N20O emissions and the
interactive effects of operational interventions, as well as addressing challenges
related to system stiffness, core algorithms, and training stability and efficiency.

To achieve this aim, the following objectives have been established:

e Objective 1: Elucidate the mechanisms and pathways of N20 emissions in
wastewater treatment processes and identify the factors influencing N20

production and emissions. Critically review the progress and limitations of current
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mathematical and data-driven modelling approaches for N20 production in
wastewater treatment.

e Objective 2: Develop solutions to address the issues of system stiffness, training
instability and divergence in NODE models. Ensure that the learning process can
be conducted smoothly and successfully.

e Objective 3: Develop and train NODE models using the proposed methods and
coded algorithms, ensuring they can produce reliable and accurate results.

e Objective 4: Validate and test the developed models under various scenarios,
evaluate and improve their performance, analyse their limitations, propose

improvement methods, and identify future research directions.

Through the accomplishment of these objectives, this research is expected to
contribute to the development of a practical and effective solution for modelling N20
production in wastewater treatment. This will ultimately aid in minimizing GHG
emissions and pave the way for the creation of low carbon "smart plants" in water

industry.

1.6 Research methodology overview

This research aims to develop and validate a data-driven NODE model for predicting
N20 production in WWTPs. The methodology undertaken in the research
encompasses several key phases, each designed to address specific objectives and

contribute to the overall goal of improving N20O modelling in wastewater treatment.

1) Critical literature review

The foundation of this research is built upon an extensive and critical literature review,

which serves multiple purposes:

e Understanding N20 production mechanisms: A thorough exploration of existing
literature will be conducted to understand the complex mechanisms and pathways
of N20 production, including the influence of operational factors.

e Mathematical and data-driven modelling assessment: The current state-of-the-art
in both mathematical and data-driven modelling approaches for N2O emissions
will be evaluated, identifying their strengths, limitations, and potential for

improvement.
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2)

NODE theory and applications: A detailed analysis of NODE theory, its
advancements, and existing applications will be undertaken. Given the relative
novelty of NODE, a particular focus will be placed on identifying potential gaps
and opportunities for contribution.

Continuous Literature Tracking: To ensure the research remains aligned with the
latest developments, a systematic approach to tracking new machine learning

algorithms and their potential application to N2O modelling will be implemented.

Experimental simulation platform

Following the literature review, the research will focus on establishing a robust

experimental simulation platform.

The decision to conduct research on a simulation platform, rather than using real-world

data, not only because lack of real-world data and research time is limited, but also for

the reason that NODE is a new approach, necessitating to start from simulation firstly

and prove its feasibility before applying to real-world cases. In fact, the use of a

simulation platform, rather than real-world data, offers several advantages:

Provides controlled conditions for testing and validation.

Allows for the generation of large, diverse datasets that might be impractical to
obtain from real WWTPs.

Enables the exploration of extreme or rare scenarios that are critical for
comprehensive model training.

Facilitates easy comparison with mathematical results to verify performance.

Key aspects of the simulation platform include:

Simulation platform development: An experimental simulation platform will be
constructed to replicate the complex dynamics of WWTPs. This platform will
enable controlled experimentation and comparison of model performance against
simulated and potentially real-world data.

Data generation: The simulation platform will generate synthetic datasets that
accurately represent the relevant processes and parameters influencing N20
production. This will provide a robust foundation for model development and

testing.
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3)

Validation framework: The developed platform shall be validated by reference
database system or assessed by wastewater theory and practice. The platform
also provides comparison of simulation results with established mathematical
models to ensure accuracy, and metrics for assessing the fidelity of the simulation
to real-world scenarios.

Addressing stiffness issue: It is crucial to overcome the obstacles associated with
training NODEs such as stiffness. This is the most challenging and time-
consuming phase, requiring significant coding effort and trial-and-error testing and
improvement based on the experience built upon failures. The solution will be

embedded in the platform to facilitate future experiments.

Model development and training

With the stiffness issues addressed, the research will proceed to construct and

implement NODE models for N2O production prediction:

4)

NODE model construction: Multiple NODE models will be developed,
incorporating different training datasets and architectural variations to explore the
optimal model configuration.

Model optimization: The developed NODE models will undergo extensive training
and tuning to achieve acceptable levels of accuracy in predicting N2O production.
This process will involve careful selection of hyperparameters, feature engineering,

and evaluation metrics.

Model Validation and Evaluation

Scenario Testing: The trained NODE models will be rigorously tested under
various simulated scenarios to assess their predictive performance and
generalizability.

Strengths and Weaknesses: A comprehensive analysis of the models' strengths,
weaknesses, and limitations will be conducted to identify areas for improvement
and potential applications.

Future Directions: Based on the evaluation results, recommendations for future

research and development of NODE-based N20 modelling will be provided.
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The methodological framework and hypothesised workflow for this research are

summarised in Figure 1.4.
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Figure 1.4 Overview of research methodology framework and workflow

1.7 Thesis outline

The thesis comprises seven main chapters and an extensive appendix.

Thesis structure outlining the objectives addressed is summarised in Table 1.1.
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Table 1.1 Thesis structure outlining the objectives addressed

Chapter Paper Title Objective met
1 Introduction
2 Literature review on N20 production modelling 1
3 NODE fundamentals 1
4 Experimental simulation platform 2
5 Yes Tackling stiffness for NODE models 2
6 Yes Implementation of NODE modelling of N20 in 3

BSM1 plant

Discussion and conclusion

Appendix

Reference

Each chapter is briefed as follows.

Chapter 1: Introduction

Highlight the concern over N20 emissions and their contribution to GHG
production in wastewater treatment.

Brief conventional N20 modelling methods, introducing data-driven NODE
approach.

State the research objective, methodology and thesis outline.

Chapter 2: Literature review on N20 production modelling

Discuss mechanisms and pathways of N2O emissions in wastewater treatment.
Review existing knowledge of factors influencing N2O production and emission.
Analyse current methods for N2O production modelling by both mathematical and
data-driven approaches.

Critically evaluate the limitations of existing methods and justify the use of NODE

models.

Chapter 3: NODE fundamentals

Explain the core concepts of NODE models.
Brief the detailed techniques and training steps of NODE models for dynamic

system modelling.

Chapter 4: Experimental simulation platform

12
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Describe the development or selection of the simulation platform and mathematic
model used for your experiments.

Explain how the platform is configured, and how to organise, process influent data
and generate training data including N20.

Validate the data generation process by comparing reference results and

wastewater theory.

Chapter 5: Tackling stiffness issue for NODE training

Define the concept of system stiffness and its challenges in training NODE models.
Explain the specific methods or techniques proposed and implemented to address
stiffness issue.

Validate the effectiveness of proposed approach and its impact on training stability.

Chapter 6: Implementation of NODE model in BSM1 plant

Explain how the NODE model is constructed and trained in the settings of BSM1
plant.

Present the results of model training with different data.

Evaluate the model’'s performance and analyse its behaviours in different

scenarios.

Chapter 7: Discussion and Conclusion

Discuss the overall performance of the NODE model in simulating N2O production.
Analyse the limitations of the model and potential areas for improvement.
Summarize the key findings of the research and its contribution to N2O modelling
in wastewater treatment.

Conclude by suggesting potential future research directions based on your

findings.

The appendix contains detailed training loss and logs, extended results and analyses,

comprehensive plots and visualisations, additional information and amendment. It

complements the main body of the thesis but doesn't directly affect the core arguments

or flow of the discussion.

Due to their length, code scripts are not included in the thesis itself but are provided

separately in electronic form for accessibility.
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1.8 Significance of the research

This research has the potential to significantly advance data-driven modelling of N2O

production in wastewater treatment facilities. Some of its key impacts include:

Improved accuracy and generalizability: By leveraging process monitoring data
and the flexibility of NODEs, the model could achieve more accurate predictions
of N20 productions compared to traditional methods. Additionally, the model's
ODE-based nature may allow for better generalizability to different plants and
operating conditions.

Enhanced understanding of N2O production: NODEs can capture the complex
relationships between various process parameters and N20 emissions. This
deeper understanding will provide valuable insights into the key factors influencing
N20 production, allowing for targeted mitigation strategies.

Practical process optimization: The model's ability can be used to optimize
wastewater treatment processes. This optimization can minimize N2O emissions
while maintaining treatment efficiency, leading to more sustainable and
environmentally friendly practices.

Paving the way for broader applications: The success of this data-driven
approach using NODEs could pave the way for its application to other
environmental modelling challenges within wastewater treatment, or beyond the
water field, such as chemical engineering, biomedical processes, environmental

science, efc.
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Chapter 2 Literature review: Modelling of N2O
production in wastewater treatment processes

Nitrous oxide (N20) is a byproduct of biological nitrogen removal processes in
wastewater treatment. The transformation of nitrogen within these processes is highly
complex, extending far beyond the conventional paradigms of nitrification and
denitrification. This complexity is largely due to the intricate microbial ecology involved

in these processes (Khalil et al., 2024).

While nitrification and denitrification are the two primary routes traditionally recognized
in nitrogen removal, recent research has revealed the existence of multiple "side
routes" or ancillary bioreactions occurring simultaneously (Ye, Porro and Nopens,
2022). These additional pathways contribute to the overall nitrogen transformation
process and N20 production, making the system more complex than previously

understood.

Identifying these complex microbial interactions and the various pathways of nitrogen
transformation is crucial for developing effective strategies to mitigate N2O emissions

from wastewater treatment plants.

2.1 Mechanism and pathway

The main methods for identifying N2O sources include isotope technology, inhibitor

methods, and enzyme assays.

e Isotope technology involves either adding isotopes or measuring the natural
abundance of stable nitrogen isotopes ('°N) in wastewater to trace N20O origins
(Wunderlin et al., 2013; Gruber et al., 2022). While the potential of isotope
technology is widely recognized, its application in quantifying N2O generation
pathways within wastewater treatment systems requires further refinement,
particularly in terms of accuracy and reliability (Duan et al., 2017).

e Inhibitor methods involve adding specific denitrification inhibitors to identify N2O
sources (Yang et al., 2022). By selectively inhibiting specific microbial processes,
researchers can determine the relative contributions of different pathways to N2O

production.
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e enzyme assays analyse the activity of denitrifying enzymes to determine N20
origins (Yang et al., 2022). This technique provides insights into the microbial

processes responsible for N2O generation.

Despite extensive research in the last decades, the mechanisms underlying N20
generation in wastewater treatment are still not fully understood, with multiple
generation pathways being interrelated and often context dependent. There remains
ongoing debate regarding the dominant N2O sources. Additionally, the relative
contribution of different N2O generation pathways can vary significantly under different
processes and operating parameters (Ye, Porro and Nopens, 2022). As shown in

Figure 2.1, to date, the widely accepted four major pathways are (Chen et al., 2020):

i) hydroxylamine (NH20H) oxidation or nitrifier nitrification (NN) pathway,
ii) nitrifier denitrification (ND) pathway,
iii) heterotrophic denitrification (HD) pathway, and

iv) abiotic pathway.

Nitrification
AMO HAO : NXR
NH; ———— NH,0H ——— NO; ——— NO;
@ V\NARNAP @T
NirS/
NirKlllNirK Electron cob
donor
NO «—
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Heterotrophic 1 <«
@ dentification pathway /ZNZO
- . Ky iNOS v
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2
N2Ogas 2 N, Denitrification

Figure 2.1 possible pathways of N2O emissions from biological wastewater treatment

process

During nitrification, ammonia (NHs3) is oxidized to nitrate (NO3") in two sequential steps:

first to nitrite (NO2’) via the intermediate hydroxylamine, primarily by ammonia-
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oxidizing bacteria (AOB), and then to NOs~ mainly by nitrite-oxidizing bacteria (NOB).
Other microorganisms capable of participating in the nitrification process include
ammonia-oxidizing archaea (AOA), heterotrophic nitrification-aerobic denitrification
(HN-AD) bacteria, and complete ammonia oxidation (comammox) microorganisms
(YU et al., 2019). During denitrification, NOs" is converted to nitrogen gas (N2) through
intermediates NO2, NO, and N20. Microorganisms involved include heterotrophic
denitrifying bacteria (HDB), AOB, anaerobic ammonium oxidation (anammox) bacteria,
and HN-AD bacteria (Hao et al., 2023). However, actual reactions might be incomplete,
and numerous side reactions can occur, reducing nitrogen removal efficiency and

generating N20O emissions.

2.1.1 Hydroxylamine oxidation pathway

Hydroxylamine is an obligatory intermediate in the initial step of nitrification, where
ammonia is converted to nitrite (Tchobanoglous et al., 2014). The production of N2O
via NH20H oxidation pathway primarily stems from transient NH2OH accumulation
caused by imbalances in the ammonia oxidation enzyme turnover (Cantera and Stein,
2007). During this process, AOB derive energy by oxidizing NHs to NO2~ through a
two-step reaction: first, NHs is oxidized to NH20H by the enzyme ammonia
monooxygenase (AMO), followed by the oxidation of NH20H to NO2~ by the enzyme
hydroxylamine oxidoreductase (HAO) (Domingo-Félez and Smets, 2019).

The electron flux generated from NH20H promotes NOz™ reduction. Nevertheless, due
to metabolic imbalances, a portion of the accumulated hydroxylamine can undergo
further oxidation to nitric oxide (NO), which is subsequently reduced to N2O by NorS,
a homologue of nitric oxide reductases (Stein et al., 2007). This mechanism is widely
accepted for the hydroxylamine oxidation pathway of N20O production. An alternative
hypothesis proposes that conversion of NH20H by HAO to a nitrosyl radical (NOH),
which subsequently decomposes chemically to form N2O (Poughon, Dussap and Gros,
2001).

Traditionally, NH20H was considered the sole intermediate. However, recent findings
suggest that NO may also play a role (Caranto and Lancaster, 2017). Notably, while
the aforementioned reactions predominantly occur under aerobic conditions during

nitrification, NH20H oxidation can also take place under anaerobic conditions. The
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direct conversion of NH20H to N20 by cytochrome P460 under anaerobic conditions

has been reported (Caranto, Vilbert and Lancaster, 2016).

Studies have demonstrated that the NH20OH oxidation pathway represents a
substantial N2O source in diverse wastewater treatment systems (Law et al., 2012;
White and Lehnert, 2016; Wrage-Monnig et al., 2018), including conventional activated
sludge (CAS) processes (Tumendelger, Alshboul and Lorke, 2019), the oxidation tank
of anoxic/aerobic processes (Guo et al., 2021), granular partial nitrification-anaerobic
ammonia oxidation processes (Liu et al.,, 2020), and membrane aerated biofilm
reactors (Liu et al., 2022). However, the relative contribution of this pathway to overall
N20 emissions can vary significantly depending on operational factors, such as
dissolved oxygen concentration, ammonium loading, and pH (Law et al., 2012;
Domingo-Félez and Smets, 2019). Further research is essential to elucidate the
precise mechanisms governing N20 formation through this pathway under different

operating conditions.

2.1.2 Nitrifier denitrification pathway

Nitrifier denitrification, primarily carried out by ammonia-oxidizing bacteria (AOB),
involves the reduction of NO2 to N20 via NO without requiring organic carbon. This
pathway is particularly prevalent under low DO conditions, where nitrite substitutes
oxygen as the electron acceptor (Zhu et al., 2013). Their biochemical reactions can

occur through two primary routes:

e Direct conversion of NO2  to N20: catalysed by isomeric nitrite reductase (Nir)
(Casciotti and Ward, 2001).

e A two-step process: where NOz2 is first converted to NO by nitrite reductase,
followed by the reduction of NO to N2O by NO reductase (Nor) and cytochrome
c554 (Beaumont et al., 2004; Kozlowski, Price and Stein, 2014).

A key distinction of AOB is their lack of N20 reductase (NOS) in their genomes,
preventing the further reduction of N2O to N2 (Kozlowski, Kits and Stein, 2016).
Consequently, N20 is the terminal product of this pathway. Nitrifier denitrification
occurs concurrently with ammonia oxidation under aerobic conditions and is amplified

in microaerobic environments.

18



Chapter 2 Literature review: Modelling of N20O production in wastewater treatment
processes

The precise role of nitrifier denitrification in AOB remains unresolved. Several

hypotheses have been proposed:

e Energy Conservation: Under oxygen-limited conditions, AOB might utilize nitrifier
denitrification to generate some energy for survival (Kozlowski, Price and Stein,
2014).

e Electron Dissipation: High NH4* influxes can lead to an excess of electrons.
Nitrifier denitrification could act as a mechanism to dissipate these electrons
(Domingo-Félez and Smets, 2019).

e Competition Control: By reducing NO2", AOB can gain a competitive advantage by
limiting the substrate for NOB (Poth and Focht, 1985).

e Detoxification: Nitrifier denitrification might serve as a detoxification mechanism
for AOB to remove excess NO2, which can be toxic at high concentrations
(Wrage-Monnig et al., 2018).

e Intermediate oxidation byproduct: Some studies suggest N20 production could be
an unintended consequence of AOB using NO as an electron sink to accelerate

NH20H oxidation during aerobic metabolism (Yu et al., 2018).

The relative dominance of nitrifier denitrification versus other N20 production
pathways (e.g., NH20H oxidation) is influenced by the concentrations of various
nitrogen species in the wastewater. Studies employing nitrogen isotope fractionation
analysis have indicated that nitrifier denitrification can be a dominant pathway for N2O
production in systems treating domestic wastewater (Wunderlin et al., 2013). However,
under conditions of high ammonia and low nitrite concentrations, the hydroxylamine

oxidation pathway may become increasingly relevant (Kozlowski, Kits and Stein, 2016).

Nitrifier denitrification has been identified as a significant source of N2O emissions in
various wastewater treatment processes (Kim et al., 2010; Zhu et al., 2013), including
sequencing batch reactors (SBRs) (Li et al., 2019; Liu et al., 2021), oxidation ditches
(Zhou et al., 2019), partial nitrification-anammox (Wan and Volcke, 2022), and the
anoxic phase of anaerobic/aerobic processes (Guo et al., 2021). Recent research
suggests that different operational conditions may favour the growth of specific AOB
strains with varying N20 production pathways (Stein, 2011). For instance, Law et al.
(2012) found that in an enriched AOB culture adapted to high levels of NH4* and NO2
(~500 mg N/L) and low DO concentrations (0.5-0.8 mg O2/L), the majority of N20O
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production was attributed to the chemical breakdown of the nitrosyl radical formed
during NH20H oxidation to NOz2".

While the understanding of nitrifier denitrification has improved, further research is
imperative to elucidate the precise mechanisms controlling this pathway's activation
and its contribution to N20 production under varying operational scenarios.
Additionally, exploring the impact of AOB strain diversity on N20 production pathways
could provide valuable insights for developing more effective mitigation strategies in

wastewater treatment systems.

2.1.3 Heterotrophic denitrification pathway

Heterotrophic denitrification is carried out by a diverse group of facultative
heterotrophic microorganisms capable of using O2, NO2, or NOs as electron
acceptors to degrade carbon sources and generate energy for growth (Mills, 2019).
This pathway involves the sequential reduction of NO3 to N2 through a series of
enzymatic reactions, with NOz2", NO, and N20O as intermediate products. The enzymes
responsible for these transformations are nitrate reductase (NaR), nitrite reductase
(NiR), nitric oxide reductase (NOR), and nitrous oxide reductase (NOS), respectively
(Hochstein and Tomlinson, 1988). Different redox active metals catalyse specific
enzyme for their reactions, for instance, molybdenum for NOs- reduction, iron or
copper for NO2" reduction, iron for NO reduction, and copper for N20 reduction
(Richardson et al., 2009).

While the complete denitrification pathway culminates in the production of harmless
N2, incomplete denitrification can lead to N2O accumulation. Several factors contribute
to this:

e Specific microbial group: Not all denitrifying bacteria possess all the necessary
enzymes for complete denitrification. Some lack NOS, resulting in N20O as the end
product (Hallin et al., 2018; Gao et al., 2019).

e Inhibitive environmental conditions: Factors such as low dissolved oxygen, high
organic loading, and pH can inhibit NOS activity, leading to N2O accumulation
(Pan et al., 2012).
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e Unbalanced enzyme kinetics: The relative rates of the different enzymatic steps
can influence the accumulation of N20. For instance, if NOS activity is slower than
NOR activity, N2O can accumulate (Pan, Ni and Yuan, 2013).

Notably, heterotrophic denitrification holds a unique position in wastewater treatment
processes as the only known biological sink for N2O (Chen et al, 2020). This
characteristic presents a promising opportunity for developing methods to reduce N20
emissions by leveraging this natural sink (Zhou et al., 2022). Recent research has
focused on identifying and harnessing new bacterial strains with enhanced N20
reduction potential, such as heterotrophic aerobic denitrifying bacteria (Rajta et al.,
2020). These novel strains offer innovative approaches for mitigating N2O emissions

in wastewater treatment systems.

While heterotrophic denitrification serves as a potential sink, studies have also
demonstrated that this pathway can be a significant source of N2O production in
certain processes, such as the anoxic zone of aerobic plus anaerobic ammonia
oxidation biofilters and nitrifying biofilters (Humbert et al., 2020; J. Li et al., 2022).

2.1.4 Abiotic pathway

In addition to biological processes, abiotic reactions contribute to N2O production in
wastewater treatment, often interacting with biotic mechanisms (Soler-Jofra et al.,
2016).

The most prominent abiotic pathway involves the reaction between NH20H and nitrous
acid (HNO2) (Falcone, Shug and Nicholas, 1963; Anderson, 1964). This process,
along with other generated intermediates, such as HNO and ONNO, through
spontaneous reactions or under catalysis of substances like manganese oxide and

ferrous ions, can lead to N20O generation (Yamazaki et al., 2014). Key reactions include:

NH,0H + HNO, — N,0 + 2H,0 Equation 2-1

2NH,0H + 0, —» N,0 + 3H,0 Equation 2-2

4NH,0H - 2NH3N,0 + 3H,0 Equation 2-3

2NH,0H + 2MnO, + 4H* - N,0 + 2Mn?* + 5H,0 Equation 2-4
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Other notable pathways include the reduction of HNO2 by Fe?* and the oxidation of
NH20H by Fe3* (Terada et al., 2017). These reactions are significantly influenced by
pH and substrate concentration, with N20 production increasing under acidic

conditions and high nitrite concentrations (Zhu-Barker et al., 2015; Su et al., 2019).
2HNO, + 4Fe** + 4H* - 4Fe3* + N,0 + 3H,0 Equation 2-5
4Fe3* + 2NH,O0H — 4Fe?** + N,0 + H,0 + 4H™ Equation 2-6

Intermediates such as nitroxyl (HNO) and hyponitrous acid (H2N202) can also

contribute to N20O generation through various reactions (Yamazaki et al., 2014):

NH3;0H* + HNO - N,0 + H,0 + H30% Equation 2-7
2HNO - N,0 + H,0 Equation 2-8
2H;N,0, - N,0 + H;0 Equation 2-9

The abiotic pathway, though typically accounting for a smaller portion of total N2O
production, can become substantial under certain conditions, particularly in the
presence of heavy metals (Zhu-Barker et al., 2015). Under these conditions, the
contribution of abiotic reactions to overall N2O emissions can increase significantly
(Harper et al., 2015).

2.2 Factors influencing N20 production

Researchers have conducted extensive laboratory testing (Chen et al., 2020; Guo et
al., 2021; Lee, Lin and Lei, 2022) and full-scale measurements in WWTPs (Foley et
al., 2010; Pan et al., 2016; Song et al., 2020; Khalil et al., 2024) to elucidate the
relationships between operational parameters and N20 production. Various analytical
techniques, including "black box" approaches (Song et al., 2020), sensitivity analyses
(Lancioni et al., 2024), and principal component analyses (Bellandi et al., 2020), have
been employed in these investigations. The studies have identified numerous
parameters influencing N20 production, such as nitrogen load (Song et al., 2020), DO
level (Aboobakar et al., 2013; Zhu et al., 2013), carbon-to-nitrogen (C/N) ratio (Yan et
al., 2021), nitrite concentration (Cantera and Stein, 2007; Terada et al., 2017),
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circulation ratio (Zhang et al., 2024), solids retention time (SRT) (Zhou et al., 2019),
pH (Pan et al., 2012), temperature (Li et al., 2019), and salinity (Zhao et al., 2014).
Among these, DO levels, carbon source availability, and microbial community
composition have been recognized as primary determinants of N2O production in
wastewater treatment processes (Mannina et al., 2018; Lee, Lin and Lei, 2022; Hao
et al., 2023).

It is important to note that these factors are intricately interconnected. For example,
DO concentrations and the availability of carbon and nitrogen sources affect NO2
accumulation, while recycle ratio and feeding regimes influence carbon and nitrogen
availability. Collectively, these factors impact microbial community distribution,
enzyme activity, and ultimately influencing N20 generation (Chen et al., 2019; Duan
et al., 2020; Ye, Porro and Nopens, 2022; Hao et al., 2023; Khalil et al., 2024). This
complex interplay of variables underscores the multifaceted nature of N2O production
in wastewater treatment processes and highlights the need for a comprehensive
approach to mitigate its emissions. This section summarizes the impacts on N20
generation from three categories: wastewater characteristics, process parameters,

and microbial populations.

Wastewater
Process characteristics
parameters (carbon source,
(DO, IRS ...) nitrogen source,
salinity ...)

N,O

generation

Microbial populations
(AOB, NOB, HDB ...)

Figure 2.2 Categories of factors influencing N2O generation in wastewater treatment
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2.2.1 Wastewater characteristics

Wastewater characteristics significantly influence N20 generation and emission.
Despite identical treatment processes, substantial variations in N20O emissions can
occur between different wastewaters (Song et al., 2020). Key characteristics include
carbon and nitrogen sources, temperature, pH and so on. As essential nutrients for
microbial growth, carbon and nitrogen sources impact microbial communities and
enzyme activity within the process. Temperature, pH, and other wastewater
components affect microbial activity and chemical reactions, indirectly influencing N2O

production.

2.2.1.1 Carbon source

The carbon source in wastewater significantly influences N20 production by
modulating denitrifying microbial growth and enzyme synthesis. Insufficient carbon
supply can lead to elevated N20 emissions due to incomplete denitrification, while
excessive organic loading can stimulate AOB activity, thereby increasing N20
production. The specific carbon source also affects denitrification efficiency and N2O

emissions (Chen et al., 2019).

Studies on anaerobic-anoxic-oxic (A20) (Yan et al., 2021), membrane bioreactor
(MBR) (Mannina et al., 2018), and SBR (Zhao et al., 2022) processes have identified
dissolved inorganic carbon concentration and specific ammonia oxidation activity are
two parameters most closely related to N2O emissions (Song et al., 2020). A strong
positive correlation exists between these parameters. High dissolved inorganic carbon
levels enhance AOB activity, consequently increasing N20 emissions. Similarly,
elevated organic loads are associated with higher N2O emissions (Thwaites et al.,
2021). Within anaerobic zones, low carbon-to-nitrogen ratios can decrease the
heterotrophic denitrification rate, promoting nitrate accumulation and the activity of
denitrifying phosphorus-accumulating organisms, thus promoting N20O production

during phosphorus removal (Mannina et al., 2018).

Acetic acid as a carbon source minimizes N20 emissions while maximizing total
nitrogen removal. Conversely, mixed acids promote AOB growth, leading to increased

N20 production (Yan et al., 2021). Although propionic acid results in lower N20O

24



Chapter 2 Literature review: Modelling of N20O production in wastewater treatment
processes

emissions compared to acetic acid, denitrification efficiency is reduced by 40% (Pan
et al., 2013; Li, Wang and Jia, 2022).

2.2.1.2 Nitrogen source

The concentration of various nitrogenous compounds in wastewater significantly
influences N20 production by affecting multiple N2O generation pathways and altering
microbial populations. The concentrations of nitrogen sources, particularly NH4* and
NOz, strongly impact N20O production (Law et al., 2012; Terada et al., 2017). As
substrates for the hydroxylamine oxidation pathway and the nitrifier denitrification
pathway, increased concentrations of NH4* and NO2 substantially promote N20
production. These compounds also directly facilitate the abiotic production of N20
(Harper et al., 2015).

The nitrogen loading of the influent affects the relative abundance of microbial
communities, thereby influencing N20 production. In low-nitrogen wastewater
treatment, N2O-reducing denitrifiers dominate the denitrifying community. Conversely,
as influent nitrogen strength increases, N2O-producing denitrifiers gradually become
dominant. Furthermore, the shift from AOA to AOB as the primary ammonia oxidizers

with increasing influent strength also promotes N20 production (Sun et al., 2022).

2.2.1.3 Salinity

Wastewater salinity can induce changes in microbial metabolic enzymes and cell
structure, significantly impacting denitrification efficiency and GHG emissions. The
relationship between salinity and N20 production follows a non-linear trend, initially
increasing and then decreasing as salinity rises. This trend is significantly negatively

correlated with the nitrogen removal rate (Shao et al., 2020).

In salinity shock experiments, increased salinity inhibits the activity of AMO and HAO,
thereby slowing the ammonia oxidation rate and NOz2 formation. Simultaneously,
nitrous oxide reductase is inhibited, leading to an increase in N2O production via the
hydroxylamine oxidation pathway and the heterotrophic denitrification pathway (P. Li
et al., 2023).

Under long-term salinity acclimation, the abundance of NOB decreases while that of
AOB increases. This shift in microbial community composition results in increased N20
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production through the nitrifier denitrification pathway and decreased N20 production

via the heterotrophic denitrification pathway (Zhao et al., 2014).

2.2.1.4 Others

In addition to carbon and nitrogen sources, N20 production is influenced by various
other factors, including temperature (Li et al., 2019; Humbert et al., 2020), pH (Su et
al., 2019; Kemmou and Amanatidou, 2023), and external additives (Caranto and
Lancaster, 2017; Terada et al., 2017).

Temperature: Within a certain range, microbial activity increases with rising
temperature. However, different microorganisms exhibit varying temperature
sensitivities, potentially leading to the accumulation of intermediate products in the
nitrogen conversion process or altering reaction equilibria, thereby affecting N20
production(Chen et al., 2019).

pH: The pH level influences both the form of substances in wastewater and microbial
activity (Pan et al., 2012; Su et al., 2019). Generally, alkaline conditions are believed

to reduce N20 production.

External Additives:

e Hydroxylamine: The addition of external NH20H disrupts the balance between
NH20H consumption and generation (Soler-Jofra et al., 2016; White and Lehnert,
2016). It strengthens the electron supply to AMO (Zhao et al., 2022), accelerates
the conversion of NH4* to NH20OH, and enhances the contribution of the NH20H
oxidation pathway to NO and N20 during the aerobic oxidation of NH4* (Zhao et
al., 2021).

e Hydrazine (N2H4): The addition of N2H4 can reduce N20 production by inhibiting
the activity of AOB and competing with NH20H for HAO (Zhao, Lei, et al., 2022).

2.2.2 Microbial populations

The microbial populations significantly influence N20 production. The relative
abundance of various nitrogen-removing microbial groups is a critical factor affecting
N20 generation. Previous studies have reported a positive correlation between N20
emissions and the abundance of AOB, while a negative correlation exists with AOA
and NOB (Duan et al., 2021). High AOB abundance promotes N20 production,
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whereas increased NOB abundance can effectively reduce nitrite accumulation,
thereby mitigating N20O generation. Studies have demonstrated that seasonal
increases in N20 emissions are associated with NOB decline, leading to NO2

accumulation (Gruber et al., 2021)

Denitrifying bacteria abundance markedly impacts final N2O emissions. The HD
pathway, the sole N20-consuming process in biochemical treatment, can eliminate
over 80% of N20 under sufficient carbon availability (Hink, Nicol and Prosser, 2017).
Remarkably, the N20 reduction capacity of the denitrifying microbial community
typically exceeds its N2O production ability by two to ten times. This characteristic
makes denitrification a potential N2O sink in wastewater treatment systems, capable
of reducing N20 not only from denitrification but also from other pathways (Bollon et
al., 2016).

N20 production levels vary significantly among different microorganisms. For instance,
AOA (Hink, Nicol and Prosser, 2017; Yin, Bi and Xu, 2018; Jung et al., 2019) and
Comammox (Kits et al., 2019) exhibit lower N2O emission levels compared to AOB.
Furthermore, variations exist among different strains of AOB. The AOA genome does
not encode typical nitric oxide reductase, and consequently, it cannot produce N20
through denitrification. It is hypothesized that AOA primarily produces N20 through
coupling with abiotic reactions (Stiegimeier et al.,, 2014). The chemical reaction
between NH20H and NO is considered the main source of N20 in AOA, resulting in
an overall lower N20 vyield compared to AOB (Hink, Nicol and Prosser, 2017).
Comammox bacteria, which lack genes related to nitrogen oxide (NOx) production,

also demonstrate lower levels of N20 production (Palomo et al., 2018).

2.2.3 Process parameters

Process parameters, particularly DO concentration and recirculation ratio, play crucial

roles in N20O production during wastewater treatment.

2.2.3.1DO

DO levels influence N20 formation in both aerobic and anaerobic zones.

Aerobic zone:
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e |ow DO (< 0.5 mg/L): inhibits NOB, leading to nitrite accumulation and enhanced
N20 production through AOB denitrification(Wunderlin et al., 2012; Castellano-
Hinojosa et al., 2018).

e Moderate DO (0.5-1.0mg/L): promotes N20 production via NH20H oxidation
pathway (Aboobakar et al., 2013; Peng et al., 2014).

e Higher DO (>1.0mg/L): No further promotion of NH20H oxidation pathway.
Elevated DO also stimulates NOB activity, reducing NO2~ accumulation and N20
production from AOB denitrification (Yue et al., 2018).

As AOB denitrification is a more substantial N2O source than NH20H oxidation
(Aboobakar et al., 2013; Peng et al., 2014), overall N2O production tends to decrease
with increasing DO within the range of 0.5 to 3.0 mg/L (Yan et al., 2019; He et al.,
2023).

Anaerobic zone:

e Presence of DO inhibits nitrous oxide reductase activity, resulting in incomplete
denitrification and increased N20 production through the HD pathway (Liang et al.,
2015; Yue et al., 2018).

e Strict anaerobic conditions allow complete heterotrophic denitrification, promote
sufficient reduction of N20, and therefore minimize N2O emissions (Zhu et al.,
2013; Yue et al., 2018).

2.2.3.2 Recirculation ratio

Recirculation ratio affects N2O production by altering carbon source and ammonium
(NH4*) concentrations, thereby influencing microbial activity. As the ratio gradually
increases within a certain range, the N20 release rate exhibits a trend of first

decreasing and then increasing from a certain point (Zhang et al., 2024).

e Low recirculation ratio: Insufficient dilution of NH4*, leading to high free
ammonia (FA) concentrations, which inhibits AOB and NOB activity, with NOB
being more severely affected NOB (Law, Lant and Yuan, 2011; Kinh et al., 2017).
Consequently, NH20H accumulates and is oxidized to N2O and HNO, in which
HNO further reacts to form N20 under low DO conditions through polymerization
and hydrolysis (Duan et al., 2021).

28



Chapter 2 Literature review: Modelling of N20O production in wastewater treatment
processes

e High recirculation ratio: can result in carbon source deficiency and nitrate
accumulation, leading to incomplete denitrification and increased N20 production
(Kemmou and Amanatidou, 2023).

e Optimal recirculation ratio: achieves low FA and low NOz2 levels, minimizing
N20 generation through NH20H oxidation pathway and ND pathway. Optimal
recirculation ratios enhance nitrogen removal while minimizing N20 release
(Zhang et al., 2024).

In summary, maintaining appropriate DO levels in both aerobic and anaerobic zones,
while finding the optimal recirculation ratio, can effectively reduce N20 production
through various pathways and enhance overall nitrogen removal efficiency.

2.3 Mechanistic N2.O modelling

Dynamic mechanistic N2O models based on the different generation pathways are

summarised in Table 2.1.

Table 2.1 NoO mathematical models based on generation pathways

Pathway Model characteristics Reference

NN Three-step NH3 oxidation via NH20H and NOH, (Law et al., 2012)
NOH chemically decomposes to N20.

Three-step NHs oxidation via NH20H and NO, NO  (Ni et al., 2013)
reduced to N20O; no oxygen inhibition.

ND Two-step NH3 oxidation, two-step NO2zreduction; (Ni et al., 2011)
oxygen inhibits the reduction of NO2 and NO.

Two-step NH3 oxidation, two-step NO2zreduction; (Pocquet,
FA and FNA as substrate for AOB growth; no Queinnec and
oxygen inhibition, with an added FA inhibition term. Spérandio, 2013)

One-step NH3 oxidation, two-step NOzreduction; no (Mampaey et al.,

oxygen inhibition. 2013)
One-step NH3 oxidation, two-step NO2zreduction; (Guo and
FA and FNA inhibit NH3 oxidation; oxygen inhibition ~Vanrolleghem,
represented by Haldane function. 2014)
NN Three-step NH3 oxidation, one-step NO2reduction;  (Ni et al., 2014)
+ introduction of electron carrier Mred and Mox;
ND simulating electron competition; no oxygen
inhibition; not considering cell growth.
Three-step NH3 oxidation, one-step NO2reduction; (Peng et al.,
introduction of electron carrier Mred and Mox; 2016)
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simulating electron competition; no oxygen
inhibition; not considering cell growth; introduction
of ATP/ADP linking energy synthesis and
consumption processes

2-P model, includes five consecutive enzymatic (Pocquet et al.,
reactions; oxygen inhibition represented by Haldane 2016)
function; describes the trend of NO/N20 changes;

predicts N20O emission factors.

Not considering NO production and consumption; (Ding et al.,
including AOB and NOB growth and decay; suitable 2018)
for very low DO conditions.

HD ASMN, coupling carbon oxidation and nitrogen (Hiatt and Grady,
oxide reduction; four-step denitrification. 2008)
ASM-ICE, coupling carbon oxidation and nitrogen (Pan, Ni and
oxide reduction; four-step denitrification; Yuan, 2013)

introduction of electron carriers.

Denitrification reaction rate analogous to electrical  (Domingo-Félez
current intensity through parallel resistors in a and Smets, 2020)
circuit; using fewer parameters.

Not considering NO, three-step denitrification; not  (Pavissich et al.,

considering the inhibitory effect of NO. 2012)
Extended ASM2d; three-step denitrification; added (Wisniewski,
NO2 Inhibition term. Kowalski and
Makinia, 2018)
Introduction of denitrifying polyphosphate- (Ren et al., 2023)

accumulating organisms (DPAOs) and denitrifying
glycogen-accumulating organisms (DGAOs) on N20
production during denitrifying phosphorus removal
(DPR) system; four-step denitrification; covering
N20 production, nitrogen oxide reduction,
phosphate release and uptake and intracellular
polymers turnover.

NN ASM2d-N20, combining the 2-P and ASMN models, (Massara et al.,
+ND expanding the ASM2d model, covering nitrogen, 2018)
+HD phosphorus, and organic matter removal as well as

N20 stripping; simulating different DO levels for N2O
emissions to determine the optimal aeration

strategy.
Combining the 2-P and ASMN models; adding TIC (Mampaey et al.,
component to describe the impact of CO2 2019)

absorption on pH; simulating the N20O production in
the SHARON reactor.

NN NDHA model, combining and revising the 2-P and  (Domingo-Félez
+ND ASMN models; NO as a precursor to N20 and Smets, 2016)
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+HD production; adding two abiotic pathways; calibrated
+abiotic  With a specific respiratory stoichiometry.

2.3.1 Modelling of N2O produced by AOB
Based on the two pathways of N20 production by AOB, namely the NN pathway and

the ND pathway, models of N20 production during nitrification process can be

classified as single-pathway and dual-pathway models.

2.3.1.1 Single pathway model

Several studies have proposed single-pathway models to explain N2O production
during AOB activity (Law et al., 2012; Mampaey et al., 2013; Ni et al., 2013; Pocquet,
Queinnec and Spérandio, 2013; Guo and Vanrolleghem, 2014). These models focus
on either the hydroxylamine oxidation pathway or nitrifier denitrification pathway,

therefore struggling to capture full complexity of the production.
hydroxylamine oxidation pathway

There are two primary models based on the incomplete oxidation of hydroxylamine:
the NH20H/NOH model (Law et al., 2012) and the NH20H/NO model (Ni et al., 2013).
In the former, N2O production results from the spontaneous chemical decomposition
of unstable NOH, bypassing the need for biological enzyme catalysis. Conversely, the
latter model proposes that NH20H serves as an electron donor for NO reduction to
N20, a process catalysed by biological enzymes. While these models effectively
describe N20 emissions under conditions of high DO and low NO2- accumulation, they

fall short in predicting the impact of elevated NO2 levels on N20 production.

Law et al. (2012) and Ni and Ye et al. (2013) proposed distinct models for the NH20H
oxidation pathway. Law et al. (2012) hypothesized that N2O production resulted from
the chemical decomposition of unstable NOH, an intermediate in NH20H oxidation. In
contrast, Ni and Ye et al. (2013) simulated NH20H oxidation as an electron donor
process, generating NO, which is subsequently reduced to N2O under the catalysis of
nitric oxide reductase. Notably, Ni and Yuan (2015).assumed that DO did not inhibit

NO reduction.

Nitrifier denitrification pathway
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Two primary models describe AOB denitrification: the four-step model (Ni et al., 2011)
and the three-step model (Mampaey et al., 2013). The former incorporates DO
inhibition on AOB-mediated NO2 and NO reduction, while the latter employs DO as a
substrate to investigate its impact on N20O and NO emissions but neglects NH20H

production, limiting its ability to explain N20O peaks associated with NH20H kinetics.

Ni et al. (2011) posits that NOz2 serves as the final electron acceptor, with NO being
an intermediate produced from NH20H oxidation. Conversely, Mampaey et al. (2013)
propose a coupled ammonia oxidation and denitrification process where NH3 is the

electron donor for NO2™ reduction.

A key distinction between the two models is the role of DO. Ni et al. (2011) incorporates
DO inhibition of AOB denitrification, while Mampaey et al. (2013) does not. Additionally,
Ni et al. (2011) distinguishes two steps in ammonia oxidation (NHs to NH20H, then to

NO2), whereas Mampaey et al. (2013) propose a direct conversion of NHs to NO2".

Subsequent research has expanded upon these foundational models. Building upon
four-step model (Ni et al., 2011), Pocquet, Queinnec and Spérandio (2013) proposed
a model that excludes DO inhibition while incorporating pH effects on AOB reaction
rates and considering FA and FNA as substrates for AOB denitrification. Guo and
Vanrolleghem (2014), in response to Mampaey et al. (2013) , incorporated DO
inhibition using the Haldane function for NO2- and NO reduction and included FA and
FNA inhibition on AOB activity.

Evaluation

Evaluations of single-pathway models by Ni and Yuan et al. (2013) and Spérandio et
al. (2016) using batch and long-term wastewater treatment plant data demonstrated
their ability to accurately predict NH4*, NO2", and NO3s™ concentrations. However, these
models consistently failed to reproduce measured N20 data, suggesting the
simultaneous occurrence of both NH20H oxidation and AOB denitrification pathways,
with their relative contributions varying under different operational conditions (Pocquet
et al., 2016).

Peng et al. (2015) further investigated the applicability of single-pathway models. Their
findings indicate that the NH20H oxidation model is suitable for high DO (>1.5 mg O2/L)
with low NO2" accumulation (0-5.0 mg N/L), while the AOB denitrification model is
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effective under low DO (<0.5 mg O2/L) with varying NO2" levels or high DO (>0.5 mg
O2/L) with NO2" accumulation exceeding 1.0 mg N/L at non-inhibitory concentrations

(note: NO2™ concentrations exceeding 50mg N/L inhibit AOB denitrification).

The limited scope of single-pathway models highlights the need for a unified multi-
pathway model to accurately capture the dynamic nature of N20O production by AOB

across different operation conditions.

2.3.1.2 Dual pathway model

The dual-pathway model of AOB addresses the limitations of single-pathway models
in comprehensively describing N20 production. This model incorporates two primary
approaches: the decoupling method based on electron carriers and the direct coupling

method.

Ni et al. (2014) pioneered a decoupling method that categorizes the complex
biochemical reactions and electron transfer processes in AOB metabolism into three
oxidation and three reduction reactions. By utilizing reduced mediator (Mred) and
oxidized mediator (Mox), this model decouples oxidation and reduction reactions. It
effectively predicts the relative contribution of AOB to total N2O production under

varying DO and NO2 concentrations, assuming constant inorganic carbon levels.

Building upon the previous work, Peng et al. (2016) proposed an enhanced decoupling
method based on electron and energy balance. This model incorporates adenosine
triphosphate (ATP) and adenosine diphosphate (ADP), linking biomass growth energy
with inorganic carbon fixation. As a result, it elucidates the impact of spatiotemporal
changes in inorganic carbon concentration on AOB growth and N20 production

through different pathways.

However, both models have limitations in describing NO production. They assume that
NO consumption occurs primarily within AOB cells without accumulation or release,
leading to inaccurate predictions of gaseous NO emissions (Ni et al., 2014).
Additionally, these models fail to account for the influence of pH on N2 production.

To address these shortcomings, Pocquet et al. (2016) developed the 2-P model (two-
pathway model), which directly couples the two AOB pathways and measures both

NO and N20 emissions. This model accurately predicts the combined effects of free
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nitrous acid (FNA) and DO, the impact of NO2 concentration changes on N20
production, and intermediate NO emission trends. It also compensates for the single-
pathway model's inability to predict changes in the NO/N20 ratio. However, the 2-P
model cannot describe N20 production under dynamically changing inorganic carbon

concentrations.

While dual-pathway models offer improved N20 production descriptions compared to
single-pathway models, they present challenges due to their numerous parameters
and calibration difficulties (Maktabifard et al., 2022). Single-pathway models may be
more suitable under specific conditions outlined in the previous chapter. For scenarios
outside these conditions, dual-pathway models offer a more accurate representation

of N20 production.

2.3.2 Modelling of N2O produced by HDB

The ASM1 model simplifies denitrification as a single-step process. While subsequent
advancements led to the development of multi-step models. Kotlar et al. (1996)
proposed two-step model but did not include the intermediate N20O. Pavissich et al.
(2012) introduced three-step model that incorporate N20O. However, this model did not
consider the inhibitory effects of NO on AOB and NOB. To overcome these limitations
and comprehensively understand the accumulation of all denitrification intermediates,

four-step denitrification models have been widely adopted.

Hiatt and Grady (2008) developed the activated sludge model for nitrogen (ASMN),
coupling nitrogen oxide reduction with organic carbon oxidation through a single redox
reaction. This model accounts for pH, temperature, and substrate inhibition (FA and
FNA), providing insights into activated sludge performance under high nitrogen
conditions. However, it overlooks the critical relationship between electron availability
from carbon oxidation and the electron demand of the four denitrification steps.
Insufficient electron supply can lead to electron competition, impacting N20

accumulation.

Pan, Ni and Yuan (2013) introduced the Activated Sludge Model with Indirect Coupling
of Electrons (ASM-ICE) model, incorporating electron carriers (Mred and Mox) to
indirectly couple carbon oxidation with nitrogen reduction. The model simulates

electron competition among denitrification processes by adjusting the affinity
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constants of these electron carriers. While this model can predict N2O accumulation,
its accuracy in predicting NO emissions is hindered by parameter uncertainties and
limited kinetic data for NO reduction. Although subsequent work by Pan et al. (2015)
demonstrated the ASM-ICE model's superiority in capturing electron competition and
intermediate accumulation compared to the ASMN model, and its increased
complexity due to additional parameters can pose challenges for calibration and may

lead to overparameterization.

Domingo- Félez and Smets (2020) proposed the Activated Sludge Model with Electron
Competition (ASM-EC) model, drawing an analogy between electron competition in
respiratory processes and electron distribution across multiple resistances. This model
effectively describes organic carbon oxidation and four-step denitrification with fewer
parameters than ASMN and ASM-ICE, providing accurate predictions of denitrification

intermediates and enabling optimization of carbon dosage.

All these models employ a four-step denitrification pathway, involving NOz2", NO, and
N20 as intermediates. Typically, NO inhibition is incorporated into kinetic rate
expressions using a term (Kino,n) (Mampaey et al., 2019). Recent empirical evidence
indicates negligible NO accumulation during anaerobic phases, allowing for the
simplification of the four-step model to a three-step process, directly reducing NOz" to
N20 (Pavissich et al., 2012; Wisniewski, Kowalski and Makinia, 2018).

While three-step model (Pavissich et al., 2012) addressed NO2~ and NO reduction, it
overlooked NO inhibition. Wisniewski, Kowalski and Makinia (2018) extended this
model, incorporating a NO2™ switch function into the ASM2d framework to account for
NOz inhibition. This refined model effectively predicts N20O and exhibits strong

agreement with effluent COD and PO4" concentrations (Hongbo et al., 2020).

Ren et al. (2023) developed a model to elucidate the dynamic production of N20O within
denitrifying phosphorus removal (DPR) systems inhabited by denitrifying
polyphosphate-accumulating organisms (DPAOs) and denitrifying glycogen-
accumulating organisms (DGAOs). The model explores the interplay of competition
and cooperation among these microorganisms during the four-step denitrification
process, emphasizing the pivotal role of polyhydroxyalkanoate (PHA) and glycogen
storage and utilization in N20O generation. Incorporating four distinct denitrification
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pathways for both DPAOs and DGAOs, including (1) anoxic polyphosphate/glycogen
storage, (2) anoxic biomass growth, (3) anoxic endogenous respiration, and (4) anoxic
PHA respiration, the model accurately reproduced N20 production dynamics observed
in three DPR systems, highlighting the complex interactions between DPAOs and
DGAOs (Ren et al., 2023).

2.3.3 Models coupling AOB and HDB pathways

Recent studies have recognised the interplay between AOB and heterotrophic
denitrifiers in overall N2O production (Aboobakar et al., 2013; Ni et al., 2013;
Rodriguez-Caballero et al., 2013; Ni et al., 2015). Consequently, integrated models
that incorporate both processes have emerged and offer a more accurate description

of N20 production dynamics. These models can be categorized as follows:

1) ASM1-type Models: These models couple one of the single-pathway models of
AOB with the ASMN model (Ni et al., 2011; Pocquet, Queinnec and Spérandio,
2013; Guo and Vanrolleghem, 2014). They have successfully described N20
emissions in mixed culture nitrification-denitrification systems and determined the
relative contributions of AOB and heterotrophic denitrifying bacteria to N20
production.

2) Electron Balance-based Models: These models combine the dual-pathway
model of AOB with the ASMN model (Ni et al., 2015). They have proven effective
in describing N20 emissions in mixed culture systems.

3) Complete Electron Balance Models: These models integrate the dual-pathway
model of AOB with the ASM-ICE model (Wang et al., 2016). However, further
testing is required to validate their effectiveness.

4) NDHA Model: The NDHA (Nitrifier Nitrification, Nitrifier Denitrification,
Heterotrophic Denitrification, and Abiotic Reaction) model predicts dynamic
changes of NO and N20 under varying conditions of NH4*, NO2, and DO
(Domingo-Félez et al., 2017). It can qualitatively capture the distribution of NO and
N20 under high or low DO conditions and is calibrated by respiration
measurement to assess the uncertainty of N2O production.

5) ASM2d-N20 model: Massara et al. (2018) expanded the ASM2d model into the
ASM2d-N20 model by incorporating elements from the 2-P and ASMN models.

This comprehensive model simulates nitrogen, phosphorus, and organic matter
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removal while considering three biological N2O production pathways and N20
stripping. It offers a valuable tool for optimizing aeration strategies by predicting

N20 emissions under varying DO concentrations.

While these models provide valuable insights, they often overlook the role of
intracellular polymers, particularly PHA, in N2O accumulation during heterotrophic
denitrification under external carbon source limitation (Zhou et al., 2012). To address

this gap, updated models have been developed:

1) Liu et al. (2015) addressed this by linking heterotrophic growth with intracellular
polymers under external carbon source limitation and N20 generation and
consumption, though autotrophic pathway is not covered.

2) Dingetal. (2016) extended the ASM3 model to encompass N20 production during
both autotrophic nitrification and heterotrophic denitrification, including the

influence of intracellular polymers in the A20 process

In summary, mechanistic modelling of N20O has advanced considerably, enabling
qualitative analysis of production mechanisms and quantitative prediction of emissions
from wastewater treatment. Nevertheless, incomplete understanding of N20
generation processes hinders the development of a unified model structure and limits
the models' ability to accurately represent diverse operational conditions. Furthermore,
challenges in model calibration and validation compromise the reliability of quantitative
N20 emission predictions (Seshan et al., 2024). To date, the successful full-scale
implementation of mathematical N2O modelling in real WWTPs remains scare and

presents significant challenges (Khalil et al., 2024).

2.4 Data-driven N20 modelling

While mechanistic models have traditionally been employed to simulate N20
production and emissions in wastewater treatment, data-driven approaches offer a
complementary perspective. Unlike biokinetic models, which rely on theoretical
underpinnings, data-driven methods extract patterns and relationships directly from

process monitoring data, providing a more practical alternative.
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2.4.1 Types of data-driven methods used in wastewater

In recent years, advancements in machine learning (ML) and artificial intelligence (Al)
have significantly boosted the popularity of Al-based data-driven techniques, many of
which have demonstrated state-of-the-art performance (LeCun, Bengio and Hinton,
2015). Industries increasingly leverage 'big data' to construct data-driven models for

addressing critical challenges within their respective fields (Zhong et al., 2021).

Given the broad scope of machine learning and artificial intelligence, a wide range of
algorithms can be applied to data-driven approaches. To facilitate understanding
within this section, a brief overview of various algorithm types is provided below,

categorized by their nature and function.

e Fuzzy logic
Fuzzy logic techniques are based on fuzzy set theory, which allows for degrees of
truth rather than the classical binary logic. In wastewater treatment, these
techniques are often used in risk assessment models (Flores-Alsina et al., 2009).
Fuzzy logic controllers (FLC) use linguistic variables and if-then rules to make
decisions, mimicking human reasoning. This approach is well-suited for
wastewater treatment processes where precise mathematical models are difficult
to develop due to the system's complexity (Chiranjivi et al., 2024). Advantages
include the ability to handle nonlinearity, incorporate expert knowledge, and
operate effectively with noisy or incomplete data. Fuzzy logic has been applied in
various aspects of wastewater treatment, including aeration control, sludge
bulking prediction, and pH control (Nadiri et al., 2018). It can improve process
stability, reduce energy consumption, and enhance overall treatment efficiency.
However, limitations exist. Designing effective fuzzy rules requires expert
knowledge, which can be subjective; achieving optimal performance for complex
systems might be potentially difficult; and there is a lack of learning ability
compared to some machine learning techniques (Vijayaraghavan and
Jayalakshmi, 2015).
e Time series forecasting

Time series forecasting is a statistical technique used to predict future values
based on historical time-ordered data. In wastewater treatment, it can be applied

to predict various parameters such as influent flow rates, pollutant concentrations,
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or treatment efficiency over time (Berthouex and Box, 1996). The main advantage
of time series forecasting is its ability to capture temporal patterns, seasonality,
and trends in data, which is particularly useful in wastewater treatment where
many processes exhibit cyclical or seasonal variations (Q. Zhang et al., 2019).
Common methods include Autoregressive Integrated Moving Average (ARIMA),
exponential smoothing, and more advanced techniques like employing Long
Short-Term Memory (LSTM) neural networks (Lim and Zohren, 2021). These
models can help optimize treatment processes, predict potential system overloads,
detect fault or anomaly, and improve resource allocation. However, time series
forecasting has limitations: it assumes that past patterns will continue into the
future, which may not always hold true in dynamic wastewater systems.
Additionally, these models may struggle with sudden, unpredictable events or
changes in system behaviour (Kang et al., 2020). Despite these challenges, time
series forecasting remains a valuable tool in wastewater treatment, offering
insights for operational decision-making and long-term planning when used in
conjunction with domain expertise and other modelling approaches (Li and Wang,
2021).
e Non-neural-network ML

Often refer to conventional ML methods, such as PCA, K-means clustering,
decision trees, SVM, K-nearest neighbours (KNN), Random Forests (RF),
Gradient Boosting Machine (GBM) and Adaptive Boosting (AdaBoost). These
algorithms offer diverse approaches to data analysis and prediction in wastewater
treatment (Khalil et al., 2023). They excel in different areas: PCA for
dimensionality reduction and feature extraction (Tao et al., 2013; Abba, Elkiran
and Nourani, 2021); K-means for data clustering (Laili, Indrasti and Wahyudi,
2022); decision trees for interpretable rule-based decisions (Logan, Roberts and
Smith, 2024); SVM for robust classification and regression (Ribeiro, Sanfins and
Belo, 2013; Cheng et al., 2019); KNN for pattern recognition (Kim et al., 2016);
Random forests for ensemble learning and handling complex datasets (P. Zhou
et al., 2019); and GBM or AdaBoost for boosting weak learners (Bagherzadeh et
al., 2021; Gholizadeh et al., 2024). In wastewater treatment, these techniques
have been applied to various tasks such as process optimization, fault detection,

effluent quality prediction, and operational parameter estimation (Hafsa, Al-Yaari
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and Rushd, 2021). Advantages include their ability to handle non-linear
relationships, deal with high-dimensional data, and provide insights into feature
importance. Many of these methods also offer good interpretability, which is
crucial in process control and decision-making. However, limitations exist. They
might be less accurate than deep learning for complex patterns; some require
careful feature selection and parameter tuning; others may struggle with highly
imbalanced datasets or extrapolation beyond the training data range. Additionally,
the performance of these models can be sensitive to the quality and quantity of
available data (Hilal et al., 2022; Han et al., 2023).
e DNN-based models
Deep learning employs artificial neural networks with multiple layers to extract
complex patterns from data (Alvi et al., 2023). MLPs are foundational (Shen et al.,
2024), while Convolutional Neural Networks (CNNs) excel at spatial pattern
recognition data (Wenbing and ZHANG, 2020; Y. Li et al., 2023), and Recurrent
Neural Networks (RNNs) (Pisa et al., 2018; Wongburi and Park, 2023), including
LSTM and its variants (Pisa, Santin, et al., 2019; Yaqub et al., 2020; Farhi et al.,
2021; Xu et al., 2023), are particularly effective for time-series forecasting and
capturing long-term dependencies in process data. Neural ODEs offer continuous-
time modelling in wastewater treatment (Quaghebeur et al., 2022). DNN-based
models excel at predicting complex process dynamics, optimizing operations, and
detecting anomalies (Mamandipoor et al., 2020; G. Wang et al., 2022; J.-H. Wang
et al., 2022; Lin, Hanyue and Bin, 2022; Zhang et al., 2023; Shaban et al., 2024).
They can be also used in model predicative control (MPC) (Bernardelli et al., 2020;
Wang et al., 2020, 2023; He, Zhang and Li, 2021; Yuting Liu et al., 2023). Their
advantages include the ability to automatically extract relevant features, handle
large volumes of data, and adapt to changing conditions. However, it requires
substantial computational resources, large datasets, and careful hyperparameter
tuning. The black-box nature of deep models can hinder interpretability.
Additionally, overfitting and out-of-distribution (OOD) generalisation might be an
issue if training data are not sufficiently representative (Ng et al., 2020).
e Generative neural networks
Generative neural networks represent cutting-edge techniques in machine

learning with emerging applications in wastewater treatment. Generative

40



Chapter 2 Literature review: Modelling of N20O production in wastewater treatment
processes

Adversarial Networks (GANs) generate synthetic data for augmenting limited
datasets, simulating rare events in treatment processes, and improving model
performance (Asadi and McPhedran, 2021; Rani et al., 2024). Autoencoders learn
efficient data representations for anomaly detection, data denoising and feature
extraction (Ba-Alawi et al., 2021, 2022; Peng et al., 2022; Salles et al., 2022;
Zhang, Suzuki and Shioya, 2022). Transformers excel in capturing long-range
dependencies in time-series data, enabling advanced forecasting and process
optimization (Huang et al., 2021; Peng and Fanchao, 2022; Chang, Zhang and
Wang, 2023). LLMs can generate human-like text, potentially aiding in report
generation, knowledge management, and decision support (B. Xu, Wen, et al.,
2024; Liang et al., 2024). While these models offer immense potential for
improving wastewater treatment processes, challenges include data quality,
computational requirements, and model interpretability (B. Xu, Wen, et al., 2024).
e Genetic algorithm optimisation

Genetic Algorithm (GA) optimization and its variants like Simulated Annealing (SA),
Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) are
metaheuristic methods inspired by natural processes (Holenda et al., 2007; Huang
et al., 2015). GA mimics biological evolution, using selection, crossover, and
mutation to optimize solutions (Beraud, Lemoine and Steyer, 2009; Igbal and
Guria, 2009; Bagheri et al., 2015). SA is inspired by the annealing process in
metallurgy, gradually cooling a solution to reach an optimal state (Govindarajan,
Kumar and Karunanithi, 2005; Zeferino, Antunes and Cunha, 2009; Cunha and
Antunes, 2012). PSO simulates the social behaviour of birds flocking to find the
best position (Khoja et al., 2018; Ye et al., 2019; Lu et al., 2021; Su et al., 2022),
and ACO models the foraging behaviour of ants to find optimal paths (Verdaguer,
Clara and Poch, 2012; Verdaguer et al., 2014; Afshar et al., 2015; Verdaguer,
Molinos-Senante and Poch, 2016). They excel at optimising complex, non-linear,
and multi-objective problems, such as energy minimization, effluent quality
improvement, and process control. However, they can be computationally
expensive and sensitive to parameter tuning, requiring careful implementation and
problem-specific adaptations (Béraud et al., 2007; Igbal and Guria, 2009).

e Reinforcement learning
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Reinforcement learning (RL) is a machine learning paradigm where an agent
learns to make decisions by interacting with an environment and receiving rewards
or penalties. Key features include the use of value functions, policy gradients, and
model-free or model-based approaches (Hernandez-del-Olmo, Llanes and
Gaudioso, 2012). It has shown promise in wastewater treatment by optimizing
complex processes like aeration, chemical dosing, and energy management,
leading to enhanced treatment efficiency, reduced operational costs, and
improved compliance with environmental regulations (Chen et al., 2021; Yang et
al., 2021; Aponte-Rengifo et al., 2023). RL agents can learn optimal control
policies without explicit programming, adapting to dynamic conditions and
improving performance over time. However, RL requires significant computational
resources, data, and careful tuning of hyperparameters, and may suffer from
issues such as exploration-exploitation trade-offs and convergence difficulties
(Hernandez-del-Olmo et al., 2018; Yang et al., 2021).
e Hybrid models
Hybrid models in wastewater treatment combine mechanistic models, grounded
in process understanding, with machine learning models for data-driven insights
(Cheng et al., 2023). These models leverage the strengths of both approaches
and mitigate their weaknesses, offering enhanced predictive accuracy and
adaptability compared to standalone approaches (Lotfi et al., 2019; Quaghebeur,
Torfs, Baets, et al., 2022). By leveraging mechanistic knowledge, they provide
interpretable results, better generalization to new conditions and handle data
scarcity effectively (Bagheri et al., 2015; Mahjouri et al., 2017; Asadi and
McPhedran, 2021; Mehrani et al., 2022). By fitting data pattern, they enhance the
prediction accuracy, identify the key factors and offer practical solutions (Ye et al.,
2019; Heo et al., 2021; B. Xu, Pooi, et al., 2024; Lancioni et al., 2024). However,
they can be complex to develop and require careful integration of diverse
modelling techniques. Applications span process optimization, real-time control,
and effluent quality prediction, contributing to improved wastewater treatment
efficiency (Li et al., 2021; B. Xu, Pooi, et al., 2024).
e Auxiliary approaches
Auxiliary approaches like Computational Fluid Dynamics (CFD), Global Sensitivity

Analysis (GSA), and Monte Carlo simulation enhance data-driven wastewater
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treatment modelling by providing insights into process dynamics, parameter
sensitivity, and uncertainty quantification (Porro et al., 2019). CFD simulates fluid
flow and transport phenomena, offering detailed spatial and temporal information
on treatment processes (Le Moullec et al., 2010; Pishnamazi et al., 2012). It is
often used for optimizing reactor designs and flow patterns in wastewater (Porro
etal., 2019; Patziger, 2021). GSA helps identify key parameters influencing model
outputs, improving model understanding and simplification (Sin et al., 2011;
Cosenza et al., 2014; Baalbaki et al., 2017; Al et al., 2019). Monte Carlo simulation
assesses model robustness by propagating uncertainties through the model,
improving prediction reliability (Carrasco and Chang, 2005; Taheriyoun and
Moradinejad, 2015; Zhao et al., 2017; Long et al., 2019; Migdat et al., 2022). These
methods complement data-driven models by providing mechanistic understanding
and enhancing model interpretability, leading to improved process control,
optimization, and risk assessment in wastewater treatment (Samstag et al., 2016;
Hong et al., 2022).

2.4.2 Data-driven models for N2O simulation

Data-driven models are capable of solving classification and regression prediction
problems by learning implicit associations among variables within large datasets
(LeCun, Bengio and Hinton, 2015). Due to the numerous parameters and complex,
variable influencing factors inherent to wastewater treatment processes, data-driven
models offer substantial advantages for predicting system behaviours (Zhong et al.,
2021). In recent years, researchers have explored the application of data-driven
models for simulating wastewater treatment processes (Bahramian et al., 2023),
enabling model-based optimization of key processes, such as improving pollutant

removal efficiency and reducing energy consumption (Newhart et al., 2019).

As an intermediate product of nitrogen transformation in wastewater, N2O can also be
simulated and predicted using data-driven models (Hwangbo et al., 2021), provided
N20 concentration data are available. By predicting N2O production under varying
operating conditions, these models can inform strategies for N2O reduction or
minimization (Lu et al., 2023). Table 2.2 provides an overview of studies that have
applied data-driven models to N2O production and emissions in wastewater treatment

over the past decade.
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Table 2.2 Summary of studies on data-driven models including N-O in wastewater treatment

in last ten years

No Reference Modelling Function Claimed Results

methods

1 |(Liu etal., 2024) |SVR + ANN Prediction, |Hybrid model achieved

preprint analysis accurate N20 prediction with
R?=99.26% and
MAPE=0.49%
2 |(Rani et al., 2024) |Generative Fault Showcased in the WWTP
preprint adversarial detection N20 dataset, the GAWNO
wavelet neural approach holds promise for
operator fault detection.
(GAWNO)

3 |(X. Xu et al., 2024) |Basic RNN, Prediction |The optimal LSTM model

LSTM outperformed basic RNN
model with 19% improvement
in RMSE for N2O prediction

4 |(Daneshgar et al., |Flow sheet+ |Control Model based protocol

2024) CFD biokinetic achieved up to yearly 50%
+ risk reduction primarily in N2O
assessment emission in case study.
(fuzzy)

5 |(Khalil et al., 2024) |mRMR for Feature Balanced model complexity
feature selection and performance in a case
selection, and study with AdaBoost models
NSGA-II for hyperparam [for N2O emission prediction.
hyperparamete |eter
r optimisation |optimisation

6 |(Lancioni et al., ASM2d + MLP,|Real-time  |[The hybrid model support

2024) Global control operator to potentially reduce
sensitivity up to 21% GHG emissions
analysis while maintain effluent

standard

7 |(Tejaswini, Pl, MPC Control PI-MPC combination for NO2

Maheswari and Supervisory and DO control showed 25%

Ambati, 2024) fuzzy control reduction in total GHG
framework emission COmpared with

literature, while MPC-MPC
structure for DO control alone
resulted in 49% reduction.

8 |(Khalil et al., 2023) |Framework to |Model Showcased in the WWTP
balance model |selection N20 dataset that the best
complexity, performing models are
performance KNN(R?=0.88),
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and AdaBoost(R?=0.94) and
interpretability DNN(R?=0.90).

9 |(B. Szelag, K-means Model XGboost outperformed
Zaborowska and selection MARS, and SVM in predicting
Makinia, 2023) N20 emissions.

10 |(K. Li et al., 2022) |Modified ASM1 |Prediction |Hybrid model outperformed
+ teacher white-box and black-box
forcing LSTM models, with better capability

of predicting low N20
emission (93% increase in
overall performance).

11 |(Mehrani et al., Mechanistic  |Prediction |MLP outperformed SVM /
2022) model (GPS-X) GBM with R?=0.67 and 95%

+ MLP / SVM/ accuracy in N20 production
GBM prediction

12 |(Seshan et al., ASM type Prediction |ANN model outperformed
2022) biokinetic biokinetic model in N20
conference model prediction accuracy

(BioWin), ANN

13 |(Quaghebeur et  |Mechanistic + |Prediction |Hybrid model improves

al., 2022) Neural ODE predictive performance by
combining the strengths of
both mechanistic and data-
driven model

14 |(Asadi and GAN + non-  |Estimation [The hybrid model could
McPhedran, 2021) |linear reasonably determine GHG

regression, emission rate estimator.
and GA

15 |(Stentoft et al., Stochastic Control / lllustrated flexibility of the
2021) differential optimisation |proposed MPC algorithm

equations through comparison of
derived from different control performances
ASM1,

MPC

16 |(Hwangbo et al., |GSA, Prediction |LSTM model outperformed
2021) DNN, LSTM DNN model (R>>94%, 64%

reduced RMSE)

17 |(Bae et al., 2021) |Random forest |ldentification|RF model identified the
sOUR-ratio as the most
influential trigger of N2O
emissions.

18 |(Hwangbo, Al and |Integrated Prediction |Showcased the framework

Sin, 2020) framework well predicted N20O

including deep
learning (MLP)

concentration (R?>0.88)
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for process
modelling
19 |(Bellandi et al., PCA, Analysis All identified two main N20
2020) k-means, pathways (NN and ND)
agglomerative,
and HDBSCAN
clustering
20 |(Song et al., 2020) |Random forest |Identification|ldentified the most influential
, analysis from aerator: dissolved
inorganic carbon (DIC) and
specific ammonia oxidation
activity (sOURaos); from
anoxic: dissolved-organic-
carbon to NO2/NOs" ratio
21 |(Vasilaki, Conca, |Changepoint |ldentification|Changepoints coincide with
et al., 2020) detection, SVM|, estimation |changes of N20 emission
range and behaviour. SVM
model can detect high risk
N20 emission periods
22 |(Vasilaki et al. Changepoint |ldentification|Changepoints linked with
2020) detection, SVM|, estimation |changes of N20 fluxes; SVM
model can detect N2O
emission range.
23 |(Porro et al., 2019) |CFD + Control Hybrid model can assess the
conference biokinetic impact of different process
model + Fuzzy control strategies and mixing
logic control conditions on reactor GHG
production
24 |(Vasilaki et al., Changepoint |ldentification|Multivariate analysis revealed
2018) detection, , Analysis  |correlations between
Spearman's influential factors in N2O
rank dynamics
correlation, k-
means cluster,
PCA
25 |(Porro et al., 2018) |Fuzzy logic Online Integrated model predicts risk
conference and supervision |correlating to actual effluent
knowledge- and control |TSS concentration, and
based risk facilitate to make predictive
assessment based control scheme
model
26 |(Boiocchi, Gernaey|Fuzzy logic Control Drastic reduction of N2O

and Sin, 2017)

emission in ND pathway
dominant plants.
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27 |(Sweetapple, Fu  |Multi-objective |Optimisation |demonstrated the potential of
and Butler, 2014) |NSGA-II / control proposed control strategies
for the reduction of GHG
emissions in a cost-effective
manner, with trade-offs and
optimised solutions to
different problem.

A review of the literature reveals that data-driven models applied to N2O production

and emissions in wastewater treatment primarily serve three functions:

e Identification: Uncovering key factors influencing N20 generation and
consumption, while also implementing fault and anomaly detection, dimension
reduction, feature selection, and component analysis to support data validation
and the development of mitigation strategies (Bellandi et al., 2020).

e Prediction: Forecasting N20 production and/or emissions based on identified
input variables using a constructed or trained data-driven model and evaluating
N20 emissions during wastewater treatment system operation (Khalil et al., 2024).

e Control: Minimizing N20 emissions through model-based prediction or direct
optimisation algorithms using control methods such as traditional Proportion-
Integration (PI) control, FLC, MPC, and advanced multi-objective optimization

techniques like multi-agent deep reinforcement learning (MADRL) (Lu et al., 2023).

2.4.2.1 Identifying Key Influencing Factors of N2O production

Biological process in wastewater treatment plants is a major source of N2O emissions
(Vasilaki et al., 2019; Hongbo et al., 2020). Studies have shown that the release of
N20 in bioreactors is closely related to wastewater properties (such as COD, ammonia,
nitrite, nitrate, water temperature) and process operating parameters (such as aeration,
recirculation rate) (Kemmou and Amanatidou, 2023; Huang and Liu, 2024). Due to
numerous variables involved in the treatment processes, machine learning methods
can be used to identify the key influencing factors of N2O emissions, thereby providing
support for subsequent prediction and control.

To quantify the impact of various factors on N20O emissions, Song et al. (2020) used
the random forest method to analyse the emission mechanism and key influencing
factors of N20 in the activated sludge tank of a wastewater treatment plant. The results

showed that the dissolved inorganic carbon concentration and specific ammonia
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oxidation activity were most significantly correlated with N2O emissions in the aerobic
aeration tank; while in the anoxic tank, the ratio of dissolved organic carbon to nitrate
nitrogen had the greatest impact on N20 emissions. Bae et al. (2021) also used RF
method to analyse the correlation between N20 emissions and wastewater properties
in a real wastewater treatment plant. The results showed that microbial changes had
little impact on N20 emissions, while the ratio of oxygen utilization rate of AOB to NOB

had the greatest impact on N20O emissions.

In addition to RF method, Hwangbo et al. (2021) employed GSA based on a DNN to
identify the key parameters related to N2O emissions in WWTPs. GSA, using variance
decomposition to reveal how input variables of process conditions impact N20
emissions. Comparing Sobol and Kucherenko index methods (Cosenza et al., 2014),
Hwangbo et al. (2021) found temperature, nitrate, ammonia, and influent flow rate as
primary factors affecting liquid-phase N20O concentration using the Sobol index. The
Kucherenko index additionally highlighted the importance of air flow rate and dissolved
oxygen setpoint These complementary findings effectively identify crucial parameters

for N2O emission control in wastewater treatment.

Bellandi et al. (2020) developed a PCA model capable of distinguishing between NN
and ND pathways using two principal components. To automate the identification of
these pathways, three clustering methods were applied to the PCA scatterplot. While
K-means clustering provided a reasonable separation of the two primary pathways, it
encountered difficulties in classifying boundary points. Conversely, both
agglomerative and HDBSCAN (Hierarchical Density-Based Spatial Clustering of
Applications with Noise) clustering successfully differentiated between the NN and ND
pathways while effectively excluding outliers. Vasilaki et al. (2018) also employed PCA
and clustering techniques with multivariate statistical analysis to uncover correlations
between influential factors in N2O dynamics. Furthermore, Vasilaki et al. (2020)
applied changepoint detection techniques to SCENA (Short Cut Enhanced Nutrient
Abatement) process and Carrousel reactors respectively, demonstrating their

capability of pinpoint the N2O emission “hotspot” period.

The growing prevalence of online monitoring equipment and intelligent control
platforms enables continuous data collection on N20-related parameters. These

datasets serve as a foundation for developing data-driven N20O models. By employing
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data mining techniques, these models can identify crucial operational factors and
detect anomalies, thereby supporting the implementation of model predictive control

strategies to minimize N20 emissions in wastewater treatment.

2.4.2.2 Predicting N20O Emissions

Once key factors influencing N20 emissions are identified, they can be incorporated

as input variables into machine learning prediction models to forecast N2O emissions.

Earlier studies relied on limited data to estimate emission factors or their ranges. For
instance, Vasilaki and Conca et al. (2020) employed SVM to classify N2O variations
and predict N20 levels in side-stream SBRs. The SVM classifier categorized dissolved
N20 concentration ranges, while the regression model estimated average N20 levels.
In another study, Vasilaki and Danishvar et al. (2020) utilized SVM to identify
operational patterns in wastewater treatment systems and predict N2O emission
ranges, thereby providing reliable estimates of emission factors in the absence of real-

time N20O monitoring.

Given the scarcity of online N20O monitoring in some WWTPs, Asadi and McPhedran
(2021) employed GAN to generate additional virtual data related to N2O emissions.
Using temperature, DO, nitrite, nitrate, and ammonium concentrations as input
variables, nonlinear regression models provided reasonable N20 emission rate

estimates.

The increasing availability of process time-series data has driven a surge in studies
focused on dynamic point prediction using advanced data-driven algorithms like DNN-
based models, often achieving state-of-the-art performance (Hwangbo, Al and Sin,
2020; Khalil et al., 2024). Seshan et al. (2022) compared a biokinetic model and an
ANN-based model for a real WWTP. The biokinetic model utilized a commercial
software for simulation and a full year’s real data for calibration. The ANN model
employed relevant process parameters, including influent flowrate, and ammonium
concentration in the aerobic tank, as inputs to predict the gaseous N20 concentration.
Results indicated that the ANN model outperformed the mechanistic model in terms
of prediction accuracy.

Hwangbo, Al and Sin (2020) introduced an integrated framework incorporating a deep

learning model and demonstrated its application to an industrial wastewater treatment
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plant. The case study revealed that the optimally structured deep learning model
significantly outperformed conventional machine learning models, yielding superior
accuracy (R?>97.7%, RMSE=0.032). In subsequent research, Hwangbo et al. (2021)
employed the GSA method to identify key factors and subsequently utilized DNN and
LSTM models for N2O emission forecasting. DO, ammonia, nitrate, temperature,
influent flow rate, and air flow rate were selected as input variables, with N20
emissions as the target variable. Owing to its ability to capture long-term dependencies,
LSTM model exhibited superior predictive accuracy (R?> 94%, RMSE reduced by 64%)
compared to the DNN-based model (R>>90%).

Mehrani et al. (2022) developed a hybrid mechanistic and machine learning model for
N20 production forecasting in an experimental nitrifying SBR. The mechanistic model
built with a commercial simulation software, generated predicted data, including
ammonia, nitrite, nitrate concentrations, and MLSS, which were used as inputs
alongside online measurements of DO, pH, and temperature for the machine learning
models. Among the three ML models tested (ANN, SVM, and GBM), ANN

demonstrated superior performance in predicting dissolved N2O concentrations.

X. Xu et al. (2024) compared RNN and LSTM models for predicting N2O emissions
from a WWTP. They tuned six key hyperparameter to obtain an optimal model. Results
revealed that the LSTM model significantly outperformed the RNN model, achieving
an Explained Variance Score (EVS) of 93% compared to 85% for the RNN.
Additionally, the LSTM model demonstrated a 19% reduction in RMSE, indicating

superior prediction accuracy and robustness to sudden events.

Leveraging advanced algorithms on extensive monitoring data, data-driven models
are increasingly precise in predicting N2O emissions. By capturing the complex
relationships between operational parameters and N20 release, these models provide
a robust framework for controlling and mitigating N2O emissions in wastewater

treatment plants.

2.4.2.3 Controlling and mitigating N20 Emissions

Effective N20O emission control must be balanced with maintaining effluent quality and
minimizing costs, complicating the development of mitigation strategies. Optimization

approaches can be model-free or model-based, encompassing techniques such as

50



Chapter 2 Literature review: Modelling of N20O production in wastewater treatment
processes

traditional PI control, evolutionary algorithms, knowledge or Al-based fuzzy logic
control, model predictive control, and advanced reinforcement learning (Lu et al.,
2023).

Sweetapple, Fu and Butler (2014) employed the NSGA-II multi-objective evolutionary
algorithm to determine Pareto optimal control parameter sets for an activated sludge
process. They identified effective solutions to balance emission reduction with
competing objectives. Their findings demonstrate that multi-objective optimization can
substantially reduce greenhouse gas emissions without plant modifications. However,

trade-offs between different objectives must be carefully considered.

Fuzzy logic control is a widely adopted method for mitigating N2O emissions in
wastewater treatment plants (Lu et al,, 2023). Boiocchi, Gernaey and Sin (2017)
implemented an FLC strategy for a WWTP, utilizing the ammonium-to-nitrate ratio as
a control parameter to adjust aeration levels to inhibit N2O production. While effective
in processes with generation of N2O dominated by the ND pathway, this approach

demonstrated limitations in systems primarily influenced by the NN pathway.

Porro et al. (2018, 2019) developed a module adopting FLC as a core to regulate N2O
emissions. This module evolved from knowledge-based rules to an Al driven approach,
integrating biokinetic and CFD modelling. Knowledge-based approach effectively
elucidates GHG production pathways and key influential factors within wastewater
systems. By assigning risk coefficients to those factors, active pathways can be
identified, enabling the proposal of targeted mitigation strategies. (Ye, Porro and
Nopens, 2022). Hybrid modelling, combining Al-based FLC with mechanistic or CFD
models, facilitates the evaluation of various process control strategies and mixing

conditions on reactor greenhouse gas production (Porro et al., 2019).

Daneshgar et al. (2024) developed a hybrid model-based protocol integrating
flowsheet, CFD, and N20 risk assessment models. Tests across three case studies
demonstrated that their N20O risk model, grounded in fuzzy decision theory, effectively
identified high-risk conditions. This protocol provides a robust framework for WWTPs

to minimize carbon footprint while maintaining removal efficiencies.

The enhanced accuracy of data-driven models has significantly improved the

performance of model predictive control (MPC) (Lu et al., 2023). By accurately
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predicting N20O emissions under varying operating conditions, MPC enables targeted
process control to reduce N20 emissions. For instance, Stentoft et al. (2021)
developed an MPC algorithm optimizing wastewater treatment plants across multiple
objectives, including effluent quality, energy consumption, cost, and global warming
impact (incorporating direct N2O emissions and indirect carbon footprint). Prioritizing
global warming minimization led to a substantial 35-43% reduction in daily GHG
emissions. Lancioni et al. (2024) developed an early warning system based on MPC
to mitigate GHG emissions in WWTPs. Their model integrated the ASM2d mechanistic
model with a MLP deep learning model, using GSA to identify real-time biokinetic
patterns. Successfully applied in a real wastewater plant, the system enabled
operators to implement possible mitigation strategies that can reduce direct GHG

emissions by up to 21% without compromising effluent standard.

Tejaswini, Maheswari and Ambati (2024) developed an integrated supervisory control
framework on the BSM2G platform to evaluate the impact of different control strategies
on GHG emissions. Comparing PlI, MPC, and FLC controllers, they found that a
combined PI-MPC strategy for nitrate and DO control structure achieved the best
results, reducing total GHG emissions by 25% compared to literature. Additionally, an
MPC-MPC strategy solely for DO control led to a 49% reduction in GHG emissions

relative to previous studies.

2.4.3 Selection of data-driven models

The rapid advancement of machine learning has led to a proliferation of data-driven
modelling approaches. Selecting the optimal model for accurate performance is crucial.
Szelgg, Zaborowska and Makinia (2023) proposed an algorithm for selecting machine
learning models for N20O emission prediction in WWTPs. Employing k-means
clustering, they compared MARS, SVM, and XGBoost models, finding that prediction
accuracy varied based on input data variability. GSA revealed XGBoost as the only
model consistently capturing relationships between all input variables and N20

emissions.

Khalil et al. (2023) developed a comprehensive framework for selecting machine
learning algorithms for real-time N2O emission modelling, prioritising accuracy, model
complexity, computational efficiency, and interpretability. Their comparative analysis
of KNN, decision trees, ensemble learning, and DNN models identified KNN (R?=0.88),
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AdaBoost (R?=0.94), and DNN (R2=0.90) as top performers In subsequent research
(Khalil et al., 2024), they introduced an approach employing multi-objective
optimization with the NSGA-II genetic algorithm to optimize feature selection and
hyperparameters, resulting in computationally efficient online N20O emission models
for WWTPs.

Data-driven models excel at predicting N20 emission behaviour under specific
operating conditions. When provided with sufficient and representative data, these
models can generate highly accurate forecasts and adapt to process changes through
online updates. Data-driven models offer advantages over traditional mechanistic
models by mitigating issues such as over-parameterization, sensitivity to operating
conditions, and the need for extensive calibration and validation. Nevertheless, their
predictive capabilities are constrained under unforeseen circumstances. In such cases,
mechanistic models can be employed to augment the dataset. By harnessing their
complementary strengths, the integration of mechanistic models with data-driven
approaches offers promising avenues for improving N20O emission predictions in
wastewater treatment systems. This integrated approach has the potential to yield
more accurate, adaptable, and comprehensive modelling tools, thereby optimizing

wastewater treatment processes and minimizing GHG emissions (Khalil et al., 2024).

Quaghebeur et al. (2022) developed a framework that combines a neural differential
equation with a mechanistic ODE model. Their hybrid model, trained on dry weather
data but evaluated under rainy conditions, exhibited improved predictive performance
(RMSE=0.66) compared to the mechanistic model alone (RMSE=3.06), and enhanced
generalisation ability in extrapolating to unobserved rain event, a challenge

traditionally encountered by data-driven models (RMSE=5.75).

K. Lietal. (2022) developed a hybrid model for N2O emissions in wastewater treatment
plants, combining a first-principles model and a deep learning model. The first-
principles model (white-box) was adapted from the ASM model and implemented in a
simulation platform, while the DL model (black-box) employed a teacher-forcing LSTM
algorithm. Comparative analysis with black-box and white-box models demonstrated
the superior predictive accuracy of the hybrid approach. Furthermore, the study

evaluated the hybrid model's applicability and potential for identifying mitigation
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strategies, highlighting its promising generalizability and sensitivity to critical factors

influencing N20O emissions.

In summary, the convergence of burgeoning machine learning and Al algorithms with
the widespread adoption of online monitoring equipment and the growing volume of
process data has significantly advanced data-driven modelling for predicting and

understanding N20 generation and emissions in wastewater treatment plants.
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NODEs represent a novel approach to neural networks that replaces the discrete
layers of traditional architectures with a continuous transformation of data. This

transformation is governed by a system of ODEs (Chen et al., 2018).

The core concept of NODEs is that the hidden state of the network evolves over a
continuous time interval according to a differential equation. The initial state
corresponds to the input data, while the final state represents the output. This
continuous evolution allows for more expressive and flexible models compared to

traditional layer-based architectures (Kidger 2022).

While NODE can replace residual networks for supervised learning, or describe
continuous normalizing flows, or generate latent function for time-series forecasting,
this study emphasized the particular interest on the potential of NODEs in solving

dynamical systems, such as those encountered in wastewater treatment processes.

3.1 Concept and methodology

Using ODEs to describe dynamical systems is a fundamental approach across various
scientific and engineering fields (Gear, 1981; Hairer and Wanner, 1996). These
equations define the rate of change of key system variables, thereby expressing how
the system evolves with respect to time. Complex systems, such as wastewater
treatment processes, can be described using a system of mechanistic ODEs,
generally formalized in Equation 3-1
dfl—it) = f(Y(t),t) Equation 3-1

Where t denotes time; Y(t) represents the state vector, which evolves over time. f is
the core function defining the relationships between the states and their corresponding

derivatives.

Given an initial value, the evolution of the dynamical system can be visualized by
solving the ODEs. This scenario is often referred to as an initial value problem (IVP).
The solution to an IVP provides a trajectory of the system states over time, starting

from the specified initial condition (Postawa, Szczygiet and Kutazyniski, 2020).
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NODEs extend this concept by bridging the gap between ODEs and deep learning.
NODEs can be viewed as a continuous-time extension of residual neural networks
(ResNets). While standard neural networks consist of discrete layers that transform
the input, NODEs replace these discrete transformations with a continuous
transformation defined by ODEs (Chen et al., 2018).

The key innovation of NODEs is modelling the evolution of the hidden state as a
continuous-time dynamical system. A neural network is constructed to approximate
the function f that computes the derivative of the hidden states. Mathematically, a
NODE can be defined as:

dy(t .
% = NN(Y(t),t,0) Equation 3-2
where NN denotes the neural network, 8 represents the weight and bias parameters

of the neural network.

DNN have demonstrated remarkable expressive power in deep learning. These
programmable neural networks, with structured architectures and an increased
number of hidden layers, performs more accurately in predication tasks compared to
traditional machine learning (Wu et al. 2021; Vanrolleghem and Lee 2003). Their
exceptional approximation capability is formalised by the universal approximation
theorem (Kurt, Maxwell and Halbert, 1989; Pinkus, 1999; Elbrachter et al., 2019). This
theorem establishes that, under specific conditions, DNN with a single hidden layer
can approximate any continuous function to an arbitrary degree of accuracy, given
sufficient neurons in that layer. While practical limitations exist due to data availability,
quality, and computational constraints, advancements in neural networks
advancements continue to enable innovative applications like NODE (Chen et al.,
2018; Dupont, Doucet and Teh, 2019; Harry and Howe, 2021), which leverage DNN’s
function approximation capabilities to tackle complex differential equations.

As a data-driven approach, NODEs offer new opportunities to reveal the underlying
function f based on observed data. The core distinction between mechanistic ODE
and neural ODE lies in how they define the function f. Mechanistic models rely on
manually crafted formulas requiring significant domain expertise and tremendous

technical efforts. In contrast, NODE models discover this relationship from observed
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data Y (t) through a trainable neural network. This approach reduces the dependency

on explicit expert-derived formulas, allowing the model to adapt to real-world data.

3.2 Training of NODE

For many dynamical systems, only time-series data of Y (t) are typically measured (Wu
et al.,, 2021). Consequently, training of the neural network is designed to be
accomplished through integration of the ODEs. For example, in wastewater processes,
the state of wastewater can be monitored by measuring the concentrations of
fractioned components at various time points, such as active heterotrophic biomass
(XsH), readily biodegradable substrate (Ss), chemical oxygen demand (COD) and
ammonia. However, direct measurements of component reaction rates are often
unavailable. As a result, NODEs training is designed to utilize only component
concentration data. This process involves integrating ODEs from an initial condition
y(to), e.g., at the time when influent enters the bioreactor, to a final condition y(%),
e.g., at the end of hydraulic retention time (HRT) when the flow leaves the reactor as

effluent.

Y(t,) =Y(t) + J nNN(Y(t))dt Equation 3-3

= ODESolver(NN,Y(ty), (to, t,,), 0)

Where (%, ta) denotes the range of integration, Y(%y) represents initial condition, Y(t:)

denotes the states at time t,.

In practice, the solution is often obtained through numerical methods, with ODE
solvers playing a vital role in solving dynamical systems. Thanks to mathematical
advancements, various types of ODE solvers are now available (Postawa, Szczygiet
and Kutazynski, 2020). However, issues such as stiffness may still be encountered,

which will be discussed in subsequent chapters (Kushnir and Rokhlin, 2012).

In machine learning, training a neural network involves iterative update of its weights
and bias by reducing the discrepancy between the model’s prediction and true data.
This process is known as backpropagation (Amari, 1993).

A loss function, also named cost function or error function, is often defined to quantify
a model's performance on a given dataset (LeCun, Bengio and Hinton, 2015). It serves
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as a guiding metric in the learning process, directing the model toward improved
performance through iterative training. In the context of NODEs, the loss function L(#&)
can be defined similarly to conventional machine learning approaches. For example,

one common choice is the mean absolute error (MAE):

L(e) — % 2:1=1|Y(ti)NN _ Y(ti)observation|
L <n . Equation 3-4
== .,_1|ODESolver(NN,Y(to), (to, t,), 8) — Y (¢;)°Pscrvation|

Building upon the loss function, gradient descent algorithms can then be employed to
iteratively update and optimise the weights and biases of the neural network until
achieving the desired accuracy (Kingma and Ba, 2014; Finlay et al., 2020). The
primary technical challenge in training NODEs lies in backpropagation within gradient
descent algorithms. Gradient calculation can be performed via forward and reverse
mode differentiation. While forward pass is straightforward, it often incurs high memory
costs and introduces additional numerical errors (Chen et al., 2018). As a remedy, the
adjoint sensitivity method is thus employed by introducing the hidden states A(?) and

the adjoint a(%), which is the gradient of the loss with respect to the hidden state:

t) = oL E tion 3-5
a(t) = 9h(0) quation 3-

The weights and biases 6 of the neural network can then be optimised by computing

the gradient through the integration of 4(t) and a(?):

dL to dNN(h(t),t,0)
b T
10 a(t) 30 dt

tn

Equation 3-6

The adjoint method reduces memory cost and controls numerical error in exchange of
solving a reversing ODE, rather than directly differentiating the accumulated forward
pass operations (Chen et al., 2018). However, solver errors can propagate and amplify
into gradient flow, rending it ill-conditioned. Even minuscule errors in the forward route
can result in a pronounced deviation in the reversing solution (Kim et al., 2021). These

issues are exacerbated when the studied system already exhibits stiffness.

By employing modern ODE solvers and gradient descent algorithms, such as the

Adam (Adaptive Moment Estimation) optimizer used in the experiments (Kingma and
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Ba, 2014), the neural network’s weights and biases can be iteratively updated and

optimized until the level of desired accuracy is attained.

3.3 Development of NODE

While the concept of using differential equations in modelling has a long history, NODE

emerged as a groundbreaking concept with the publication of "Neural Ordinary

Differential Equations" by Chen et al. (2018). This work, which received the best paper

award at NeurlPS 2018, was hailed as a "radical new design" by MIT Technology

Review.

Since its inception, NODEs have rapidly evolved into a diverse family of neural

differential equations, spawning various extensions and modifications (Kidger, 2022):

Augmented neural ODEs (ANODEs): Address the limited expressiveness of
original NODEs by augmenting the state space with additional dimensions,
incorporating latent variables into the ODE system, enabling more complex data
modelling (Dupont, Doucet and Teh, 2019).

Neural controlled differential equations (NCDEs): Extend NODEs to handle
irregularly sampled time series data through the inclusion of control terms (Kidger
et al., 2020).

Neural stochastic differential equations (NSDEs): Introduce stochasticity into
NODEs to model uncertainty and noise inherent in real-world systems (Jia and
Benson, 2019; Tzen and Raginsky, 2019).

Neural partial differential equations (NPDEs): Apply the NODE framework to
partial differential equations, expanding its applicability to a wider range of
problems (Ruthotto and Haber, 2020; Sun, Zhang and Schaeffer, 2020).

Graph neural ODEs: Adapt NODEs for graph-structured data, enabling
continuous-time graph representation learning (J. Choi et al., 2022; Bergna et al.,
2023).

Physics-informed neural network (PINN): Incorporate physical laws and
domain knowledge into the NODE framework for improved accuracy and
interpretability in scientific modelling (Karniadakis et al., 2021; Kong et al., 2022).
Hamiltonian neural networks: Integrate principles from Hamiltonian mechanics
to improve energy conservation in physical systems modelling (Greydanus,
Dzamba and Yosinski, 2019).

59



Chapter 3 NODE fundamentals

e Spatial-temporal neural ODE: Extend NODEs to model both spatial and
temporal dynamics simultaneously (Zhou et al., 2021).

e Continuous normalizing flows: Apply NODEs to generative modelling, enabling
efficient sampling and density estimation of complex probability distributions
(Kobyzev, Prince and Brubaker, 2020).

These variants and extensions have significantly broadened the applicability of
NODEs across various domains, including time series analysis (Verma, Heinonen and
Garg, 2024), generative modelling (Garsdal, Sggaard and Sgrensen, 2022), and
physics-informed machine learning (Gabriel S Gusméao et al., 2022; Treibert and
Ehrhardt, 2022). The rapid development of NODE-based approaches demonstrates
their potential to revolutionize continuous-time modelling in artificial intelligence and

scientific computing.

3.4 NODE applications

In the real world, governing laws for most dynamical systems are often incompletely
or imperfectly understood. While it can be argued that NODE also lacks explicit closed-
form equations at the present, preventing direct symbolic representation of the
underlying law (although this might be feasible in the future through methods like
SINDy(sparse identification of nonlinear dynamics) (Kaheman, Kutz, and Brunton
2020), they can effectively approximate the practical results achieved by mechanistic
models (Xie, Parlikad and Puri, 2019; Esteve-Yague and Geshkovski, 2021; Zhou et
al., 2021; Garsdal, Sggaard and Sgrensen, 2022; Nufiez et al., 2023; Verma,
Heinonen and Garg, 2024). This capability makes NODEs applicable to processes
without established mechanistic models, as many systems exhibit analogous dynamic
patterns of growth and decay, such as those observed in bacterial and substrate

interactions in wastewater treatment.

Different from conventional machine learning, which merely maps the input and output
with discretised time series data at fixed intervals (Zhong et al., 2021), NODE is
continuously defined, enabling it to provide solutions at any arbitrary time (Zou et al.,
2024). This feature proves particularly valuable when dealing with intermediate

products such as N2O emissions.
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NODE presents distinct advantages and holds significant potential for dynamical
systems. Their applications have been seen in many science and engineering fields,

including:

1) Prediction: Flexible output and better generalisation (Dupont et al., 2019; Kidger
et al., 2020).

2) Parameter estimation: Determination of kinetic parameter solely from operational
monitoring data (Bradley and Yr, 2022; Kong et al., 2022).

3) Modelling: Accurate predicative modelling, with enhanced robustness through
integration with mechanistic model. (Quaghebeur et al., 2022)

4) Optimal control: Optimisation of dynamic systems (Sandoval, Petsagkourakis
and del Rio-Chanona, 2022).

5) Knowledge discovery: Unveiling insights through PINN with certain
interpretability and knowledge discovery potentials (Cuomo et al., 2022; Gusmao
et al., 2022; Karniadakis et al., 2021; Xue et al., 2021).

Despite rapid advancements in NODEs and their widespread adoption across various
fields, their application within the water sector remains notably limited. To date, only

two published studies have explored the use of NODEs for water-related systems.

The first study, conducted by De Jaegher et al. (2020), employed a neural differential
equation to model colloidal fouling in electrodialysis, a complex process that can be
used in both drinking water and wastewater treatment. Their study demonstrated the
model’s capacity to accurately predict fouling rates even with a limited set of
experimental data. Subsequent simulation study and sensitivity analysis validated the
model’s robustness, quantifying the relative contribution of crossflow velocity (40%),
current (20%), and salt concentration (13%) to fouling rates. The study concluded that
given sufficient high-quality data with a broad input range. The NODE model can
capture the system dynamics and generalize well to unseen conditions. The absence
of discontinuities or abrupt changes in model behaviour highlighted the suitability and
robustness of NODEs for this complex domain.

The second study by Quaghebeur et al. (2022) proposed a hybrid modelling approach
that integrates mechanistic physics-based models with data-driven NODE models.
When applied to wastewater treatment, this hybrid model demonstrated the NODE's

ability to compensate for knowledge gaps in the mechanistic model, leading to
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improved predictive performance. Complementarily, the mechanistic component
enhanced the model's capacity to extrapolate to unseen conditions compared to purely
data-driven models. The study concluded that this hybrid approach effectively
combines the strengths of both modelling paradigms while mitigating their individual

limitations, albeit at the cost of reduced model interpretability.

3.5 Opportunities and Challenges

NODE offer a promising approach to modelling complex dynamic systems, such as
wastewater treatment processes. By representing the system as a continuous-time
differential equation, NODE can capture non-linear relationships between input

variables, system states, and output parameters.

Their potential application in wastewater treatment can include:

e Process modelling: NODEs can accurately model the dynamics of biological
processes in wastewater treatment, such as activated sludge, membrane
bioreactors, and anaerobic digestion. This enables better understanding,
prediction, and control of these systems (Garsdal, Segaard and Sgrensen, 2022,
Zou et al., 2024).

e Real-time optimization and control: By integrating sensor data and real-time
predictions, NODEs can optimize operational parameters, such as aeration rate,
sludge retention time, and chemical dosage, to improve treatment efficiency,
reduce energy consumption and mitigate GHG emissions (Sandoval,
Petsagkourakis and del Rio-Chanona, 2022).

e Anomaly detection: Through continuous monitoring of system behaviour,
NODEs can identify abnormal patterns that indicate potential issues, such as
equipment failures or process upsets, allowing for early intervention and
prevention of treatment failures (Mamandipoor et al., 2020; Salles et al., 2022).

e Knowledge discovery: By learning the underlying dynamics of the wastewater
treatment process, NODEs can be used to estimate the kinetic parameters or
discover knowledge that may still be hidden from professionals (Champion et al.,
2019; Fasel et al., 2022).

While NODEs hold great promise, several challenges remain:
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e Computational efficiency: Training and inference can be computationally
expensive due to the need for ODE solvers, particularly for large-scale systems
(Golovanev and Hvatov, 2022).

e Stability: Ensuring the stability of the ODE system during training is crucial,
especially for stiff dynamical systems common in wastewater treatment (Tuor et
al., 2020).

e Interpretability: Fully unlocking the potential of NODEs for interpretability
requires further research to bridge the gap between mathematical representations
and real-world phenomena (Golovanev and Hvatov, 2022).

e Data quality and availability: The performance of NODEs heavily relies on the
quality and quantity of available data, which can be challenging to obtain in some
wastewater treatment contexts (Hansen et al. 2024; Bahramian et al. 2023;
Newhart et al. 2019).

Despite these challenges, the field of NODEs is rapidly evolving. Ongoing research is
dedicated to addressing these limitations and exploring novel applications across
various fields such as physics (Lee and Parish, 2021; M. Choi et al., 2022; Zakwan et
al., 2023; Kircher, Doppel and Votsmeier, 2024), biology (Giampiccolo et al., 2024;
Hossain et al., 2024; Xiang et al., 2024), and finance (Yang et al., 2023). Advances in
computational methods, such as adaptive ODE solvers and parallelization techniques
(Haque et al. 2023; Bosch et al. 2024), are continually improving the efficiency of

NODE implementations.

In summary, NODEs represent a powerful and flexible framework for deep learning,
offering new opportunities for modelling complex dynamics and systems. The
development of NODE variants and extensions is progressively expanding the
potential of this approach, while addressing current challenges will be key to its

widespread adoption and integration into practical applications.
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Chapter 4 Experimental simulation platform

A self-built simulation platform was developed to conduct experiments and facilitate
data-driven modelling of N20O in wastewater treatment by means of NODEs. This

approach was adopted due to the following considerations:

e Novelty and complexity: Due to the novelty of NODEs and the complexity of
wastewater treatment processes, preliminary experimentation with simulated data
was deemed essential before transitioning to real data or real-world applications.

¢ Experimental flexibility: The ability to generate and manipulate diverse datasets
is crucial for comprehensive experimentation. Simulated data provide precise
control and ground truth validation, which are often challenging with real-world
data.

¢ Integration requirements: Embedding NODEs neural network within an ODE
modelling framework is essential for this research. This integration is not feasible
with commercial simulation software due to lack of source code access.

e Data availability: The absence of suitable real-world datasets necessitated the

creation of a simulated environment for data generation.

MATLAB (The MathWorks Inc, 2024) served as the programming language for the

experiments. Two simulation approaches were employed using MATLAB:

e Simulink simulation: Used for generating simulated data intuitively.
e MATLAB code simulation: Implemented for Simulink results verification, model

validation, and NODE integration due to Simulink's limitations in this regard.

Simulink simulations offer a visual representation closely aligned with process flow,
enhancing comprehension. Nevertheless, constructing accurate models, particularly
for complex systems, can be challenging due to algebraic loop issues and the
complexities of S-function development (Chaturvedi, 2017).

MATLAB language simulation, while requiring programming proficiency, provide
greater flexibility and precision. Their higher-level language nature can hinder
accessibility for environmental science scholars without coding experience (David,
Vasel and Wouwer, 2009).
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Given the ease of integrating NODE into modules, MATLAB code simulation is the
primary focus of these experiments. Simulink simulations serve as a comparative

reference for validation purposes.

The ASMG1 model was selected as the primary mechanistic model for data generation.
However, ASM1 would be used initially before full ASMG1 implementation due to its

simplicity and available references for code verification and debugging.

The BSM1 plant model was chosen as a fully configured virtual wastewater treatment
plant for this study, given its status as a well-established benchmark in wastewater

treatment research.

4.1 N2O mechanistic model used

The ASMG1 mechanistic model was employed to generate observed data including
nitrous oxide production. The components of ASMG1 model were then adopted to

characterise the NODE model throughout the whole research.

The ASMG1 model extends existing activated sludge models by incorporating GHG
emissions, specifically N20. It was developed and incrementally refined through a

series of advancement by various researchers:

e Hiatt and Grady (2008): formulated ASMN model, introduced N20 with four-step
denitrification for carbon oxidation and nutrient removal and highlighted the role of
free ammonia and FNA as true substrates and inhibitors.

e Mampaey et al. (2013): Added an AOB denitrification pathway.

e Guo and Vanrolleghem (2014): Modified DO kinetic terms and validated the
model's performance.

e Flores-Alsina et al. (2014): Integrated the model into BSM2 (Corominas et al.,
2012), and evaluated its performance in full-scale plants from the viewpoint on
balance of effluent quality, economic cost and greenhouse gas emissions.

ASMG1 comprehensively integrates N20O production and consumption by mixed
cultures of AOB and heterotrophic de-nitrifiers. This model is temperature and pH
dependant, highlighting the role of free ammonia and free nitrous acid in N20
generation. Additionally, it refines the nitrifier-denitrification pathway by incorporating
Haldane kinetics to represent the influence of DO on N20 production, a key point of
mostly discussed (Guo & Vanrolleghem, 2014). This allows the model to capture
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seasonal variations in N20 emissions. Notably, the ASMG1 maintains simplicity,
excluding difficult-to-measure components like hydroxylamine, and comprises only 18

components and 15 reactions.

The ASMG1 model was further improved by the author in two aspects, based on the
latest version from the publications (Flores-Alsina et al., 2014; Guo and Vanrolleghem,
2014):

1) Rationalised Coefficients: Replaced all decimals with fractions (e.g., 8/7 instead
of 1.142857) for better continuity checks.

2) Corrected misprint or typo: In equation of “process rate 7, the concentration of
NOB should multiply right elements (last right bracket (“)”) should be at the end),
according to the appendix of the paper titled “Comparison of different modelling
approaches to better evaluate greenhouse gas emissions from whole wastewater
treatment plants” (Corominas et al., 2012).

3) Corrected error: In equation for alkalinity component concentration Saik, the
coefficient of the last adding element for “process rate 10”: (-ixs/14) should be

included. It should not stand alone among summary elements.

4.1.1 Gujer matrix and model equations

The details of the modified Gujer matrix and equations for ASMG1 are provided as

follows.

1) The intermediate symbols were defined firstly for brevity, shown in Table 4.1

Table 4.1 The intermediate symbols

Symbol Value
A = (-24+3-(-16)+8)/14+(-24+2-(-16)+8)/14=64/14-48/14=8/7
=16/7
= (-24-16)/14 = -40/14 = -20/7
= (-24+2-(-16)+8)/14 = -48/14 = -24/7
= Yuny
= (1-YunY) / (Yuny)
= YarNv.a0s
=-ix/14
W =F7/4

S| QMmO O|wm

2) The number for each process reaction the ASMG1 model is described Table 4.2

Table 4.2 Number of processes
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No Process

rl Aerobic growth of heterotrophs

r2 Anoxic growth of heterotrophs, reducing NOs™ to NOz
r3 Anoxic growth of heterotrophs, reducing NO. to NO

r4 Anoxic growth of heterotrophs, reducing NO to N:O

r5 Anoxic growth of heterotrophs, reducing N2O to N

ré Aerobic growth of AOB autotrophs

r7 Aerobic growth of NOB autotrophs

r8 Decay of heterotrophs

r9 Decay of AOB autotrophs

rl0 Decay of NOB autotrophs

rll Ammonification of soluble organic nitrogen

rl2 Hydrolysis of particulate organics

rl3 Hydrolysis of particulate organic nitrogen

rl4 Aerobic AOB nitrifier denitrification, reducing NO: to NO
rl5 Aerobic AOB nitrifier denitrification, reducing NO to N:O

3) The process rate equations were defined in the Table 4.3

Table 4.3 Process rate equations

No Process Rate p
rl M- Ss/(Ks1+Ss)-So/ (Ko +So)-Xer
r2 MrNgz-Ss/ (Ksz+Ss)-Snos/ (Knos+ Snos)-Kora/ (Korz + So)-Xer
r3 Mg Ss/(Ksat Ss)-Snoa/ (Knoa + Snoz)-Kora/ (Kors t So))- Kiano/(Kiano + Sno)-Xer
rd4 WrTga-Ss/ (Ksa+Ss)- Sno/ (Ko + Sno+ Sno’/ Kiano)- Kora/ (Kora + So)-Xen
r5 MrNgs-Ss/ (Kss +Ss)- Snzo/ (Knzot Snzo)-Kors/ (Kors + So)- Kisno/ (Kisno + Sno) - Xe
ré Mo Sea/(KeatSra+ Sea’/ Kisea)-So/ (Ko aos+So)- Kisean/ (Kisena+ Sea)-Xaos
r7 Poe-Sena/(Kena+ Sena+ Sena 7 Kisorna)-So/ (Ko_nos + So)-Kiora/ (Kiora+ Sea)-Xnoe
r8 br-Xer
r9 BaosXacs
rl0 Pros:Xnos
ril Ka-Sno Xer
ri2 K- (Xs/Xen)/ (Kx+Xs/Xen):(So/ (Kor+So) +1n- Ko/ (Kon+So)-Snox/ (Knos T Snox)) - Xan
rl3 r12-Xno/Xs
[aosTaosSof (Kso_aosdent +(1 -
rl4 2%(Kso_aosdent/ Kio_aosdent)”)-So+ S0’/ Kio_aosen)-Sea/ (Kra_aos + Sea): Seua/ (Kena aos+Senn)- Xaoe
Maos a0 So/ (Kso aosdenzt(1 -
rl5 2%(Kso_aosdenz/ Kio_aosdenz) ”)-So+ S0’/ Kio_aosdenz)-Sea (Kea aos+ Sea)-Sno/ (Kno_aos+Sno)-Xaos

4)

The stoichiometric matrix was defined in the Table 4.4
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4.1.2 Calculation of gaseous N2O flux

The flux of gaseous N20 emissions for a reactor is calculated using the Henry’s law
and the striping equation (Foley et al., 2010), based on the liquid N2O concentration

and aeration rate:
FluxNzo = _KLaNZO ’ (SNZOSClt - SNZO) ’ Vreactor Equation 4-1

Kianzois calculated using equations:

VDnz0 Equation 4-2
1/DOZ

and corrected for the current temperature from reference temperature, using standard

Kiay,0 = KLao,

factor 6:

K.ar = K Qremp ref @T-Temp_ref Equation 4-3
Where,
Fluxnzo: the flux of gaseous N20, (g/day)
KLaoz: the oxygen volumetric mass transfer coefficient, (/day)
Snzosat: the saturation concentration of N20 in water (g/m?3)
SN20: the concentration of dissolved N20 in water (g/m?3)
Vreactor: the volume of the reactor (m3)
KLaoz: the oxygen transfer coefficient (/day)
Do2: the diffusion coefficient of oxygen in water (m?/s)
Dn2o: the diffusion coefficient of nitrous oxide in water (m?/s)
T: the current temperature (K)
Temp_ref:  the reference temperature (K)

4.1.3 Stoichiometric and kinetic parameters

Stoichiometric parameters as shown in Table 4.4 describe the mass balance of various
components during biological processes. They essentially tell us how much of one

substance is consumed or produced for a given amount of another substance.

Stoichiometric parameters ensure that the mass of elements (like carbon, nitrogen,
phosphorus) is conserved throughout the process, determine the yield coefficients of

different microbial groups (e.g., heterotrophs, autotrophs) in converting substrates into

69



Chapter 4 Experimental simulation platform

new cells, and predict the quantity of products (e.g., nitrate, nitrite, solids) generated

during the process (Hauduc et al., 2013).

Kinetic parameters describe the rate at which biological reactions occur. They quantify
the speed of microbial growth and decay, substrate utilization, and product formation.
Example of kinetic parameters include maximum specific growth rate (Pmax), half-
saturation coefficient (Ks), decay rate coefficient (bq), inhibition coefficients for toxic
substances. These parameters are crucial for understanding the dynamic behaviour

of wastewater treatment systems (Almeida, Reis and Carrondo, 1997).

In the experiments, the default values of stoichiometric and kinetic parameters for
ASMG1 model from literatures (Flores-Alsina et al., 2014) were adopted in the
experiments. Please refer to the cited literature or attached electronic file of source

code for details as this part is not the focus of this study.

4.2 BSM1 plant configuration

As shown in Figure 4.1, the BSM1 plant consists of five activated sludge reactor tanks
connected in series with a total volume of 6000 m?3, followed by a secondary clarifier.
The first two tanks are 1000 m® anoxic bioreactors with mixing devices, where
denitrification reactions mainly occur, while the remaining three are 1333 m? aerobic
bioreactors with oxygenation devices at the bottom, where carbon oxidation and
nitrogen nitrification reactions mainly take place. This configuration represents a
typical A/O process that combines nitrification with denitrification for efficient nutrient

removal.

The secondary clarifier consists of 10 uniform layers, each 0.4m high, with a total
volume of 6000 m3. Assumed as a non-reactive unit, there are no chemical reactions
inside, and it is mainly used for the precipitation of particulate components and sludge
recirculation operations. The inflow enters from the 6w layer, the 10w layer (top layer)
discharges the treated and settled wastewater, and the 1st layer (bottom layer) enables
sludge recirculation and waste sludge discharge. Takacs’ model with double
exponentially settling velocity method (Takacs, Patry and Nolasco, 1991) was adopted
for describing the secondary clarifier.

One key modification was made to the original components of the BSM1 plant: the
ASM1 (activated sludge model no. 1) was replaced with the ASMG1 model for
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bioprocess reactions. This modification allows for comprehensive modelling of

greenhouse gas production in the wastewater treatment process.

Biological Reactor Secondary Clarifier

Anoxic Section Aerated Section

Unit 1 Unit 2 Unit 3 Unit4 Unit 5

Effluent

v

AS influent

-

RAS Q.2, AS ©,2,

Figure 4.1 Overview of the BSM1 plant. Adapted from(Alex et al., 2018)

The operational parameter settings were adopted from the open-loop control
described in the BSM1 technical report (Alex et al., 2018). The recycling activated
sludge flowrate was set to match the influent flowrate, while the internal recirculation
flowrate was set at three times the influent flowrate. Waste sludge was discharged at
a constant rate of 385 m3/d. Minimal aeration was provided for the first two anoxic
tanks, with a Kua of 2/d, while the aeration rate for the remaining three oxic tanks was
set at a constant value of 240 /d. No external carbon source was added to the tanks.

The control parameter settings are summarized in Table 4.5.

Table 4.5 Experimental control settings

No Controls Settings

1 RAS flowrate 1 time of influent flowrate

2 IR flowrate 3 times of influent flowrate

3 WAS flowrate 385 (m3/d)

4 Aeration Kla for unit 1 ~ 5 2, 2, 240, 240, 240 (/d) respectively
5 External carbon addition none

For a more detailed description of the plant configuration, including specific parameter
values and operational ranges, please refer to the official BSM1 report (Alex et al.,
2018) and ASMG1 documents (Flores-Alsina et al., 2014; Guo & Vanrolleghem, 2014).
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These resources provide in-depth information on the plant structure, process

equations, and simulation protocols that form the foundation of this experimental setup.

4.3 Influent data

The BSM1 model provides three types of influent datasets to represent distinct
weather conditions, which significantly influence wastewater characteristics and flow

rates.

e Dry weather scenario: The dataset encompasses two weeks of dynamic dry
weather influent data, characterizing relatively smooth flow patterns and stable
microbial populations. This simulates routine and normal operations in a
wastewater treatment plant.

e Rain weather scenario: The dataset presents one week of dynamic dry weather
conditions followed by a prolonged rain event in the subsequent week. The rain
event results in a rapid increase in flow due to surface runoff and a concomitant
decrease in pollutant concentrations. This scenario may induce increased
hydraulic loading on treatment units and washout effects on settled solids.

e Storm weather scenario: The dataset combines one week of dry weather data
with two superimposed storm events. This reflects abrupt flow rate surges and
significantly reduced pollutant concentrations due to excessive dilution. Unlike the
rain weather scenario, these storm events are characterized by short duration and

rapid recovery to normal conditions.

To align with the ASMG1 model's requirements, this study extended the well-
established BSM1 influent dataset to include six additional components: nitrite (Snoz),
nitric oxide (Sno), nitrous oxide (Sn20), nitrogen (Snz2), NOB (Xnos), and Temperature.
Zeros were filled for five added components Sno2, Sno, Sn20, Sn2, Xnos. The
temperature is set at 15°c, and pH is at 7. The extended influent data in dry, rain, and

storm weather scenarios for ASMG1 based BSM1 model are visualised in Figure 4.2.
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Figure 4.2 ASMG1 influent data of dry, rain and storm weather scenarios

We used extended influent data of 14 days in dry, rain, and storm weather scenarios
as input, run the BSM1 plant simulation, and generated five sets of input data and

trajectory state data for each reactor tank, mimicking monitored data. Sampling point
were set at every 15 minutes.

Prior to initiating any scenario simulations, the system was stabilized for an initial
period of 100 days, as specified in BSM1 documentation. This stabilization phase

employed a constant input of average dry weather flow rate and flow-weighted
average influent concentrations.

4.4 N2O production simulation with Simulink

Simulink is a graphical programming environment employed for modelling, simulating,
and analysing dynamic systems. As part of the MATLAB suite, it provides a visual

approach to system design. Simulink models are constructed using interconnected

blocks that represent system components. These blocks can encapsulate

mathematical operations, physical systems, or other functions. Information is
transmitted between blocks via signals. Simulink leverages numerical solvers to

integrate differential equations and compute the system's behaviour over time.

74



Chapter 4 Experimental simulation platform

Running the model calculates the system's response to inputs within a specified
timeframe (Chaturvedi, 2017).

Given the complexity of wastewater process models like ASM1 or ASMG1, custom-
built blocks utilizing S-functions are often necessary. Typically programmed in C or
C++, S-functions offer custom algorithm, enhanced performance and flexibility for
intricate  models or real-time applications. The original BSM1 model already
incorporated S-functions for the ASM1 process, albeit with simplifications of real-world
plant conditions (Alex et al., 2018). Nevertheless, the generated reference results
demonstrated reasonable alignment with actual scenarios, establishing it as a suitable
benchmark for wastewater process simulation. Commercial simulation software has
adopted similar principles and frameworks, while potentially incorporating more

complex process reactions.

By creating core blocks with embedded S-functions for individual treatment units and
connecting them according to the plant's flow layout, a complete Simulink simulation
of the BSM1 plant can be constructed. Once the solver and environmental parameters

are defined, the model can be executed to generate results.

The overall simulation diagram of BSM1, incorporating ASMG1 model is presented in
Figure 4.3. The modular diagram for sub-system bioreactor, secondary clarifier and
hydraulic delay unit are presented in Figure 4.4, Figure 4.5, and Figure 4.6 respectively.

Hydraulic delay unit is designed to avoid algebraic loop issue.

G 13.99)
Simulation time
carb1 carb2 carb3 carbd. carb5
carb carb carb carb carb
42 R 21 21 21 21 21 21 21 21
21 Mux combiner_asmg1 1 1 = in out in out in out i QU e in oUL flow flow1 =
42 21 21 21 21 21 21 21 -
zém o Flow_comb2 Hyd_delay Ko ila e e KLa i I._. set 1 flow2 f—
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- Qintr Flow_splitter

RAS feed
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Figure 4.3 Simulation diagram of ASMG1 based BSM1 plant
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Figure 4.6 Modular diagram of hydraulic delay unit
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S-functions were developed for the ASMG1 model and integrated into the BSM1
framework, replacing the ASM1 model S-functions. These new S-functions were
embedded within the combiner and bioreactor blocks. The second clarifier component
was modified to accommodate ASMG1 components. The code underwent rigorous
debugging and was validated against wastewater theory and established treatment

practices by comparison with a MATLAB code version.

4.5 N20 production simulation with MATLAB code

The implementation of N2O production simulation in the BSM1 plant using MATLAB
language follows common wastewater modelling practices (David, Vasel and Wouwer,
2009; Chaturvedi, 2017). The simulation framework comprises three key modules: the
ASMG1 module, the BSM1 module, and the plant performance module. These
modules serve as the core components and function as the backbone for the

simulations.

4.5.1 Key modules
4.5.1.1 ASMG1 module

The ASMG1 module constitutes the core of the model, representing essential
bioprocess reactions based on given differential equations. The steps to structure the

module are as follows:

1) Specification of basic kinetic parameters.

2) Formulation of temperature- and pH-corrected kinetic parameters.

3) Calculation of free ammonia, free nitrous acid, and total oxidized nitrogen
concentrations, which impact N2O production, and are integrated into the process
rate equations.

4) Definition of 15 process rates as shown in Table 4.3, including:

e Aerobic growth and decay of HDB, AOB and NOB.
e Four-step heterotrophic denitrification reactions
e Two-step AOB nitrification reactions
e Soluble and particulate nitrogen decomposition
5) Calculation of reactions using equations from the stoichiometric matrix, with

predefined stoichiometric parameters.

77



Chapter 4 Experimental simulation platform

4.5.1.2 BSM1 module

BSM1, a benchmark model for activated sludge wastewater treatment, can be
efficiently implemented in MATLAB (The MathWorks Inc., 2024) due to its robust
numerical and computational strengths. Additionally, its matrix operations facilitate the
representation of complex reactor configurations and interconnections within the
BSM1 model. At its core, BSM1 is a system of differential equations describing the

dynamics of various components within the activated sludge process.

The mathematical framework of the BSM1 module is established through the following

steps:

1) Interpolation of influent flowrate and concentration at the given time (t).

2) Calculation of temperature-dependent parameters, particularly for gaseous
components NO, N20 and Noa.

3) Computation of inflow concentrations to activated sludge by mixing influent, RAS,
and IR flows. A hydraulic delay unit is added to avoid algebraic loop issue.

4) Core calculations involve evolution of components in five bioreactor tanks by
calling the ASMG1 module and determination of gaseous component emissions
using the method described in section 4.1.2.

5) Simulation of settling in the secondary clarifier for overflow of the top clean layer
as effluent and downflow of the bottom layer for recycling or discharge of the

concentrated activated sludge.

Once established, the BSM1 module can simulate the complete evolution trajectory
for various influent inputs using numerical solvers. Both steady-state and dynamic
simulations are feasible by giving different influent data and time periods. Among
various options that MATLAB offered for ODE solvers, the following two are adopted

for the experiments:

e (Ode45, based on the explicit Runge-Kutta (4,5) formula (Dormand-Prince pair), is
sufficient for constant influent input during stabilization.

e Ode15s, derived from the Gear method, is employed for dynamic simulations. The
model's stiffness, resulting from the wastewater treatment system's inherent

nature, can be addressed by this solver.
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MATLAB's symbolic math toolbox was utilized to derive and manipulate the system's

equations accurately, enhancing the model's overall precision and flexibility.

4.5.1.3 Plant performance assessment module

Plant performance assessment is typically conducted during the second week of
operation, as the system is presumed to have stabilized after initial fluctuations.
Evaluation is based on BSM1 criteria (Alex et al., 2018), with additional metrics for

N20 emissions.

Key performance indicators include:

e Effluent quality index (EQI): As defined in BSM1.

e Operational cost index (OCI): Calculated as the sum of daily pump, aeration, and
mixing energy costs, plus five times the daily sludge cost and three times the daily
carbon mass cost.

e Violations: Including time in violation, number of violations, and percentage of time
in violations, as defined in BSM1.

e 95u percentile effluent concentrations for ammonium, total nitrogen, and total
suspended solids.

e N20 emission rate: Calculated for each bioreactor, with summarized emissions for

nitrification and denitrification stages.

4.5.2 Simulated data verification

To validate the code, the ASM1 model was initially used to compare results with the
reference data in the BSM1 technical report. A 100-day stabilization with constant
influent input for steady state was conducted. The largest error of 0.002 for suspended
solids (Ss) in the steady state indicates a strong agreement between the MATLAB
code and Simulink simulation results, confirming the reliability of the coded model.
Figure 4.7 visually compares the effluent results for both simulations at steady states

after stabilization (non-reactive soluble inorganic compounds Si omitted).
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Figure 4.7 Effluent results of 100-day stabilisation obtained from MATLAB code

simulation and reference

Table 4.6 presents the steady-state results of five bioreactors after 100 days of
stabilization. The comparison with reference data indicates negligible errors,

suggesting a high degree of accuracy in the model.

Table 4.6 Steady state results of five bioreactors after 100-day stabilisation

Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5
Components
simulated | reference | simulated | reference | simulated | reference | simulated | reference | simulated | reference

Si (mgll) 30 30 30 30 30 30 30 30 30 30

Ss (mgll) 2.8099 2.8099 1.4598 1.4598 1.1501 1.1501 0.9957 0.9957 0.8899 0.8899
Xi (mg/l) 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6 1148.6
Xs (mg/l) 82.151 82.151 76.4121 76.4121 64.8723 64.8724 55.7056 55.7057 49.3171 49.3171
Xan (mgfl) 2551.2 2551.2 2552.8 2552.8 2556.5 2556.5 2558.6 2558.6 2558.7 2558.7

Xea (mgfl) 147.5533 | 147.5532 | 147.4722 | 147.4721 | 148.1007 | 148.1007 | 148.6848 | 148.6848 | 148.9546 | 148.9545

Xp (mgfl) 448.1451 | 448.1451 | 448.8150 | 448.8150 | 449.7093 | 449.7093 | 450.6044 | 450.6044 | 451.4996 | 451.4996
So (mg/l) 0.0043 0.0043 6.3037e-5 | 6.3037e-5 1.7272 1.7272 2.4331 24331 0.4884 0.4884
So (mgfl) 5.3355 5.3355 3.6288 3.6288 6.4984 6.4984 9.2540 9.2540 10.3720 10.3720
Sk (mg/l) 7.9586 7.9586 8.3852 8.3852 5.5988 5.5988 3.0210 3.0210 1.7834 1.7834
Sno (mg/l) 1.2166 1.2166 0.8818 0.8818 0.8290 0.8290 0.7670 0.7670 0.6884 0.6884
Xno (mg/l) 5.2858 5.2858 5.0306 5.0306 4.3934 4.3934 3.8796 3.8796 3.5278 3.5278
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Sack (mol/m3) 4.9331 4.9331 5.0855 5.0855 46815 4.6815 4.3005 4.3005 4.1322 4.1322

Table 4.7 presents the steady-state concentrations of solids and soluble components
in the secondary clarifier after 100 days of stabilization. A close agreement was

observed between these results and the reference data.

Table 4.7 Steady state results in secondary clarifier after 100-day stabilisation

TSS (mgll) Si(mgll) Ss (mg/l) So (mgll) Sno (mglfl) Swu (mgll) Swo (mgll) Satk (mol/m3)
Layer

sim ref sim ref sim ref sim ref sim ref sim ref sim ref sim ref

10 |12.4935| 125 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3709| 104 |1.7846 | 1.73 |0.6884 | 0.688 |4.1324 | 4.13

9 [18.1094| 181 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3711| 104 |1.7844 | 1.73 |0.6884 | 0.688 |4.1324 | 4.13

8 [29.5345 29.5 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3713| 104 |1.7842| 1.73 |0.6884 | 0.688 |4.1323 | 4.13

7 (68.9607| 69.0 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3715| 104 |1.7839 | 1.73 |0.6884 | 0.688 |4.1323 | 4.13

6 |355.921| 356 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3717| 104 |1.7837 | 1.73 |0.6884 | 0.688 |4.1323 | 4.13

5 |3556.922| 356 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3719| 104 |1.7835| 1.73 |0.6884 | 0.688 |4.1323 | 4.13

4 |355.921| 356 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3717| 104 |1.7837 | 1.73 |0.6884 | 0.688 |4.1323 | 4.13

3 |355.922| 356 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3715| 104 |1.7840 | 1.73 |0.6884 | 0.688 |4.1323 | 4.13

2 |355.921| 356 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3713| 104 |1.7842| 1.73 |0.6884 | 0.688 |4.1323 | 4.13

1 | 6390 | 6394 30 30 |0.8899 | 0.889 | 0.4883 | 0.491 |10.3711| 104 |1.7844 | 1.73 |0.6884 | 0.688 |4.1324 | 4.13

*Note: sim: simulated; ref: reference

Although no reference data exists for direct comparison with ASMG1 results, the
outcomes were validated against established wastewater theory and treatment
practices. The results were deemed to fall within reasonable ranges, rendering them

suitable for subsequent experiments.

The visualisation of simulated data generated using the ASMG1 based BSM1 model
under various weather conditions can be found in figures of model predications for
comparison. Additionally, the appendix 8.1 includes a plant performance assessment

for the various weather scenarios achieved with the model.

81



Chapter 5 Tackling stiffness in NODE models

Chapter 5 Tackling stiffness in NODE models

Wastewater treatment processes inherently exhibit stiffness, which poses challenges
for numerical simulation. This issue is exacerbated when such systems are integrated
with neural networks. Stiffness has emerged as a primary obstacle to applying NODE

in N20 modelling within wastewater treatment.

5.1 Background

Despite promises in diverse scientific and engineering fields, NODEs have seen
limited application in wastewater treatment. Successful NODE implementation hinges
on effective training using monitoring data that represent the system's dynamics.
However, challenges arose when applying NODEs to a simple wastewater model like
ASM1 using the torchdiffeq package in Python (Chen, 2018) and following the author's
methods (Chen et al., 2018). Training consistently failed (Figure 5.7 and Figure 5.8).
Similar difficulties were encountered when capturing the dynamics of rapidly changing
components (e.g., N20O, see Figure 5.15 and Figure 5.16) using the dlode45 function
in MATLAB (The MathWorks Inc, 2023). Stiffness has been recognised as a key culprit
behind these setbacks (Kim et al., 2021), and overcoming it is the main objective of

this chapter.

Stiffness arises when fast and slow components in the dynamics are presented at
largely separated scales. Traditional mathematical modelling approaches utilise
adaptive or implicit solvers to address stiffness in ordinary differential equations (ODES)
effectively. However, when these solvers are applied to stiff NODEs trained through
gradient-descent based optimisations, their efficacy diminishes. The combination of
stiff ODEs and neural networks can lead to two undesirable outcomes: (1) high
computational costs due to extremely small time-steps required for numerical stability,
and (2) pathological gradients in the loss function, potentially hindering training

convergence.

Few existing studies propose methods for mitigating stiffness in NODEs. For example,
Kim et al. (2021) illustrated that proper equation and loss function scaling produced
good results for two benchmarking stiff problems. However, the experiments utilising
this approach for wastewater process modelling frequently encountered underflow

errors during training, leading to premature termination.
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As stiffness is often peculiar to the studied system, this work is motivated to analyse
the underlying cause and find solutions to address the stiffness issue in data-driven

wastewater process modelling with NODEs.

5.1.1 Stiffness in mechanistic ODEs

Most real-world systems of ODEs require numerical methods, as analytical solutions
are often unavailable or impractical. Stiffness arises when certain numerical methods
fail to provide stable solutions unless the step size to be taken is extremely small
(Hairer and Wanner, 1996). This phenomenon is an intrinsic property of the differential
systems and is surprisingly common in many real-life problems (Kushnir and Rokhlin,
2012). Despite its prevalence, a rigorous mathematical definition for stiffness remains
elusive (Kushnir and Rokhlin, 2012).

The “stiffness ratio” is sometimes utilised to quantify system stiffness, defined as the
product of the time span and the ratio of the real part of the fastest eigenvalue (1) and

slowest eigenvalue (1) of the ODE system’s Jacobian:

, . |Re)] _ .
Stiffness Ratio = IRe)] (t1 — tg) Equation 5-1

Empirically, stiff systems often exhibit significant disparities in the rate of change
among various components. This disparity manifests as one component evolving
slowly over time while another undergoes abrupt or swift changes, attributable to the
system’s distinctive chemical or biological kinetics. Apparently, the time span plays a
crucial role in the issue. For long-time simulations, the issue can become severely

problematic.

Wastewater processes exemplify these disparities in scales and dynamic behaviours.
They encompass components with high concentrations that undergo slow changes
(e.g., heterogeneous biomass) and transient components or intermediate products
with low concentrations that exhibit rapid fluctuations (e.g., dissolved oxygen, soluble
substrate, hydroxylamine). Given the typical HRT of bioreactors ranging from 4 to 20

hours, the stiffness of these systems becomes evident.

Given an example from the ASM1 model, to obtain a stable solution within acceptable

tolerances, it is advised (Mogens, Willi, Takashi and Mark, 2000) that when applying
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numerical methods to the model implementation, the maximum time step size should

be less than:

At < 28 0, Equation 5-2

Where 1 is the volume of reactor compartment %. Ckri, Ori, and Kr: are the
concentration, output transport terms, and consumption terms of component 4 in
reactor compartment % respectively. The term 6x: is the mean residence time of
component 4 in compartment £ at steady state. With default values, 6+ is of the order
of ten minutes for XsH, XBa, Xp, Xs and Xnp, of one minute for Ss, Snp, SnH, Sak but of
one second for So (Mogens, Willi, Takashi and Mark, 2000). The time step adopted in
ODE solver typically ranges from 5-20% of the advised maximum step for a trade-off
between sufficient accuracy and acceptable computational cost. If it is large than 64,

the correctness of the results cannot be guaranteed.

Figure 5.1 illustrates a continuous stirred-tank reactor (CSTR) example modelled
using ASM1, evolving from an initial concentration (see Table 5.1) over 6 hours, with
consistent DO control at 2 mg/l. It demonstrates the rapid evolution of various
components and their first-order derivatives with rates of change ranging from
approximately -0.02 mg/(l-d) to 8000 mg/(l-d). Additionally, the figure highlights the
asynchronous occurrence of steep and flat segments for each component curve,

indicating differing temporal dynamics.

Table 5.1 Initial condition defined in the experiment of ASM1 model

Component Ss Xs Xen Xea Xp So Sno Sh Sno Xno Sak Skz
Unit mg COD/l | mg COD/I | mg COD/I |mg COD/l{/mg COD/lf mg Oa/l | mgN/l | mgN/A | mgN/l | mgN/I | eqALK/A | mgNI/
Value 59.8 260.1 2552 148 449 2 0 23 18 78 0.007 0
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Figure 5.1 Components concentration (solid line) and their reaction rate (dot line) in a
CSTR of ASM1 model with constant DO control at 2mg/|

The stiffness issue can be further intensified in more complex models, such as the
ASM2d-N20 model (Massara et al., 2018), which encompasses more volatile and
intermediate components and more intricate reactions. For instance, the consumption
rate of fermentable substrate (Sr), can rapidly decline from 9000 mg/(I-d) to nearly zero
within one minute, while oxygen uptake rate (OUR) may fluctuate around 6000 mg/(I-d).
In contrast, nitric oxide (Sno) evolves considerably slowly, ranging between 0 and 5

x10-4 mg/l throughout the entire period.

Differential algebraic equations (DAEs) present another source of stiffness. In
wastewater modelling, process controls variables, such as aeration and external
carbon input, are often expressed in algebraic form, making the use of DAEs inevitable.
Recognized as a form of infinite stiffness (Linda, 1982; Hairer and Wanner, 1996),

DAEs pose compatibility challenges for certain ODE solvers.

Stiffness remains a significant challenge in numerical analysis of differential equations
(Postawa et al., 2020). While advancements in computing power and novel algorithms
offer promising solutions, the effectiveness of solvers varies greatly. Modern solvers
employing adaptive or implicit methods, such as MATLAB's ode15s, can effectively
tackle stiff ODEs. However, other solvers may struggle or fail entirely when applied to
different stiff systems. This highlights that there is no single "best" algorithm for all stiff
problems (Kushnir & Rokhlin, 2012). Instead, solver suitability depends on the
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characteristics the specific system. Consequently, researchers often resort to trial-
and-error methods to identify an appropriate solution based on solver features and the

studied system's behaviour.

5.1.2 Stiffness in data-driven NODEs

Despite employing a carefully chosen solver, known to be effective for the stiff
mechanistic ODEs, training of the corresponding NODEs with the same solver remains
a challenging task. This discrepancy arises due to the inherent differences in stiffness

between NODESs and their mechanistic counterparts.

Similar to traditional DNNs, NODEs are typically initialized with random weights. These
random starting points can lead to regions where the neural network - approximated
ODEs exhibit vastly different rates of change — especially if not regularised. This
disparity in rates can further exacerbate stiffness issues. To mitigate this issue, it is
crucial to adopt schemes that reduce the variance in initial gradients, thereby

lessening the likelihood of encountering extreme stiffness.

Meanwhile, during each training iteration, the solver interacts with the neural networks,
which approximates a callable ODE function. However, this function is constantly
evolving due to the changing network parameters (weights and biases) during
optimisation. As a result, the Jacobian of the approximated ODEs experiences
variations with a degree of randomness throughout training, stemming from the
stochastic nature of gradient descent. Essentially, the solver tackles a different ODE
with potentially disparate stiffnesses at every iteration. This randomness can lead to
high variance in neural network outputs, amplifying the stiffness and creating
difficulties for the solver, potentially causing instability, errors or even training

divergence.

The adjoint method, commonly used for backpropagation in NODEs, requires multiple
ODE solver calls in exchange for reduced memory cost. However, this approach may
significantly increase the risk of encountering stiffness in the adjoint calculations,

potentially leading to numerical blow-up (Kim et al., 2021).

Moreover, real-world measurement data inevitably contains noise, disrupting
smoothness and exacerbating derivative estimation errors. It is well-established that

minor discrepancies in an ODE initial state can result in substantial divergences over
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time due to the accumulation of truncation and round-off errors (Gear, 1981; Hairer
and Wanner, 1996). In the realm of NODEs, data-induced noise can exhibit similar
behaviour. A tiny error may propagate and amplify through subsequent steps,
potentially causing model instability after a certain period. Consequently, training stiff

NODEs with noisy data presents an additional challenge.

In summary, the intrinsic stiffness of the modelled system, compounded by the
inherent randomness of neural networks - stemming from initial weight values and/or
the stochasticity of calculated gradients during training - poses significant challenges

for data-driven modelling using NODEs.

5.2 Methodologies

Stiffness challenges in NODEs are often problem-specific, demanding empirical
solutions through experimentation. The crux of successfully training stiff NODEs lies
in maintaining stable gradient computations and avoiding ill-conditioned gradients.
After extensive exploration and experimentation, the following approaches were

proposed to tackle these issues:

1) Normalisation method: normalisation, a well-established technique in
conventional machine learning, was adapted for seamless integration within the
neural network architecture of NODEs. This approach tackles the root cause of
the difficulty by scaling the neural network outputs, alleviating the burden on the
ODE solver.

2) Collocation method: This alternative approach bypasses the stiffness by
employing non-ODE-solver-based collocation techniques. Through directly
interpolating and regressing the derivatives at desired points, it obviates the need
for costly ODE solvers, offering a faster solution.

3) Incremental training strategy: This practical strategy firstly employs collocation
method for training, followed by direct NODEs training with normalisation based
on the previously trained result. Adopting this strategy for training not only largely
stabilises the learning process by addressing stiffness but also saves time and
refines the results to a higher level compared to utilising the methods alone.
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5.2.1 Normalisation method

In machine learning regression tasks, data transformation through scaling is often
imperative. This is because algorithms used in the training process, such as gradient
descent adopted in the NODEs training, are sensitive to feature variance (Amari, 1993).
Scaling or normalisation transforms data to be dimensionless and/or have comparable
distribution scales. This ensures each feature contributes equally, prevents features
with higher magnitudes from dominating, speeds up the convergence of optimisation
algorithms, and improves the learning process performance. Lack of data
normalisation can lead to slow convergence, inaccurate models, poor generalisability,

and even complete failure (Bhanja and Das, 2018; Cabello-Solorzano et al., 2023).

In NODEs, the neural network maps input state variables (let’'s say X) to their time
derivatives (X’). The proposed normalisation method for NODEs utilises a pair of
normalization and de-normalization layers to wrap the deep neural network of NODE

architecture (see Figure 5.2).

Extended neural network with normalisation pair to approximate ODE function

NODEs deep neural network
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|
ODE Solver

Figure 5.2 lllustration of NODEs normalisation pair layout

The normalisation layer is applied to the neural network input, using standardisation
(Z-score normalisation), a common technique in machine learning (Shanker M, Hu M
Y and Hung M S, 1996). This transforms the data to have a zero mean and unit
standard deviation.
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o X Mx

i 5 Equation 5-3
X

where, ux and dx denote the mean and standard deviation of the component state data

sequence X, respectively.

The de-normalisation layer is then applied to the neural network output to restore

the state derivative data to its normal range.
X, =X;"* 8y + py Equation 5-4

where, ux and dx denote the mean and standard deviation of the state derivative data

sequence X, representing biokinetic rate.

Max-Min normalization is not recommended due to its sensitivity to outliers, which may
be present in estimated state derivatives. Standardization offers better robustness in

such cases.

It is crucial to note that the normalisation and de-normalisation layers must be applied
together within the ODE solver, wrapping the neural network. Unlike conventional
machine learning, where data preprocessing occurs at the beginning, it cannot be
applied outside the solver. This is because the component states and their derivatives
carry physical meaning in the dynamics addressed by the solver. Scaling the data
outside the solver would skew the relationships and interplay of the components,

substantially distorting the problem to be solved.

From Equation 5-3 and Equation 5-4, it can be seen that four sets of mean value and
standard deviation are required. The mean and standard deviation for input can be
calculated straightforwardly with the monitored time-series component state data.
However, the derivative data sequence X’ are not available explicitly. To estimate the
mean and standard deviation of X’, difference quotients can be employed to be applied

to the state data sequence X, such as the single-sided difference method.

X' = (X3 — X1, X3 — X3, ..., Xy — Xp_1) */AL Equation 5-5

Or central difference:
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X' = (x3—x1, (Xx3—%2)/2, .., (X — Xn_2)/2,(xp,

Equation 5-6
— Xn-1))/At

Experiments show that single-sided and central differences yield similar results (see
Table 5.2). Although the approximation tends to be more accurate with densely

sampled state datasets, a relatively small number of discretisation often suffices.

Table 5.2 Comparison of single-sided and central difference quotient method in
correlation ratio and accuracy under different numbers of samplings for a 6-hour
running CSTR in ASM1 model

Correlation coefficient Average accuracy
Number of samplings

Single-sided Central Single-sided Central

5 75.9% 72.3% 49.6% 50.5%
10 87.1% 83.6% 61.2% 66.3%
20 96.0% 93.1% 71.2% 78.2%
30 98.5% 97.8% 76.8% 83.8%
50 99.0% 99.7% 81.6% 88.0%
100 99.71% 99.98% 86.0% 90.4%
300 99.97% 100% 89.6% 91.5%
500 99.99% 100% 90.4% 91.6%
1000 100% 100% 91.0% 91.6%

In practice, the mean and standard deviation of component reaction rates can also be
estimated or corrected by experienced operators from other sources, such as routine
operation records, site measurements, established mechanistic models, and digital

twin outputs.

As demonstrated in the Experiments and results section, normalisation acts as a
preconditioner in NODEs, significantly improving training stability and efficiency. The
paired normalisation and de-normalisation layers stabilise gradients, leading to faster
convergence and improved training smoothness and efficiency. Notably, the
associated computational overhead is minimal, even practically negligible.

5.2.2 Collocation method

While the normalisation method utilises four parameters pre-obtained from the training
dataset, the collocation method employs the entire trajectory of the observational
training dataset. It estimates the complete trajectory of the corresponding derivatives
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using traditional mathematical regression methods, then trains the neural network
against the collocated pairs of state input data and estimated state derivatives. This

approach eliminates the need for an ODE solver, thereby avoiding the stiffness issue.

In NODEs, the direct approach calls out the ODE solver for derivative calculations at
every training step, with derivative computation remaining implicit or hidden to user.
Conversely, the collocation method explicitly approximates all the derivatives using
kernel functions and interpolation / regression methods prior to the training procedure.
Although both methods involve optimisation by gradient descent, training of the neural
network in collocation method is simpler as it does not need to go through ODE solver
at each step, while direct approach must. Consequently, it can be extremely fast and

robust to noise. Figure 5.3 illustrates the different strategies of these two methods.

Estimate X and X'
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Figure 5.3 Different training strategies by direct NODE and collocation method

The first step of collocation method entails estimating state variables, let's say X(t),
and their derivatives, let’'s say X'(t), from sampled observations (Y1, Yz, ..., Yn), at the

time points (ty, tz, ..., tn), with measurement errors (e1, ez, ..., en), then:
Yi=X({t)+e i=1,..,n Equation 5-7

To derive X(t) and X'(t) from Yi, a common practice is to use non-parametric local

linear regression for X(t), and local polynomial (often quadratic) regression for X'(t).
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This approach is based on Talay’s formular and criterion of minimizing locally weighted
least-squares. Liang and Wu (2008) gave a complete deduction process in their paper.

The results were briefed as follows.

X(t) =&} (T W, T1)7 T} WY Equation 5-8
X'(t) = &} (T3 W, T, ) 1 T5 WY Equation 5-9
where,
0
& = [1] &y = [1] Equation 5-10
0
0
1 t;—t 1 t;—t (t;—1t)?
— _ _ 2
T,=|1 2771, =1 -t &-0 Equation 5-11
1 t,-t l1 t,—t (t,—t)%]
Kn(t; —t) 0 0
W, = 0 Kh(t? -0 0 Equation 5-12
0 0 0 Kn(t,—1t)]

Where K(-) is a symmetric kernel function. Given an example of Epanechnikov kernel

function, so that:

t: —
Kp(t;—1t) = K( lh )/h Equation 5-13
Where h is a bandwidth:
h= (n75) (n73)((log(n)) 1) Equation 5-14

The choice of kernel function depends on the observation data characteristics. For
instance, cubic spline is preferred for less noisy or relatively sparse data, while B-

spline or Epanechnikov kernel is suitable for noisier datasets.

Due to boundary restriction, derivative estimations at both ends are often inaccurate.
This can be mended by excluding data at both ends, to achieve smoother results and
reduce excessive changes at the boundaries.
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Proper data preprocessing can alleviate subsequent burdens and minimise errors in
the training process. To enhance the accuracy of estimated X and X', it is advisable to
smooth the noisy observation Y before applying the collocation method. This may
involve outlier detection, smoothing techniques and cross validation based on

wastewater system knowledge.

The next step involves training the neural network with the estimated X(t) and X'(t)
pairs. This process is straightforward, similar to conventional machine learning. The
MAE loss function can be constructed as:

n

1 - —
L(O) = HZ|NN9(X,-) - X' Equation 5-15
i=1

The accuracy of the collocation method depends on the characteristics of
observational data and estimation methods. While it can be high if the adopted
methods and data align well, the results often require further refinement using more

elaborate algorithms.

5.2.3 Incremental training strategy

In practice, the results from the collocation method are often “rough” and not
sufficiently accurate, although they may be close to the global minima and less prone
to local minimum (Rackauckas et al., 2020). To improve the model fidelity to the
optimal level, further training using finer or more elaborate methods, such as local
minimum algorithms or direct NODEs approach, is expected. Since the collocation
method provides a good initial result, subsequent optimisation will experience reduced
stiffness and increased effectiveness. In this way, the model fidelity is incrementally

improved.

We refer to this practice - applying a coarse method followed by a finer method that
builds upon the results of the previous method - as the incremental training strategy.
The idea is to first provide a rough estimation using the collocation method to narrow
the approximated range for the result, then refine it locally by the direct NODE method
to chieve higher fidelity. Figure 5.4 illustrates the steps of the incremental strategy.
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Figure 5.4 incremental strategy

5.3 Experiments and results

Data-driven modelling using NODEs primarily involves the repeated solving of IVPs.
To demonstrate the feasibility and efficiency of the proposed methods in training
NODE models for wastewater process modelling, two experiments were conducted.
Both experiments focused on an IVP in a CSTR using ASM1 and ASM2d-N20,
respectively.

For comparison purposes, simulated trajectory data generated from these
mathematical models were utilised to train the NODEs models. This allows for a direct

assessment of the NODE performance against well-established wastewater treatment
models.

5.3.1 ASM1 model

The ASM1 is one of the simplest models for wastewater biological process modelling.
Introduced in 1987 and revised over the years, it has been widely for simulating
organic matter and nitrogen removal in wastewater treatment. The version used
consists of 15 components (including two additional components Sn2 and Xinorg for N
balance and TSS calculation) and 8 reactions (Mogens, Willi, Takashi and van
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Loosdrecht Mark, 2000). Default values for stoichiometric and kinetic parameters were

adopted. For detailed model information, please refer to the cited document.

We generated trajectory data of 1000 points using the ASM1 mathematical model,
simulating a CSTR from a defined initial state with a fixed dissolved oxygen level of 2
mg O2/I over 6 hours. The initial values (see Table 5.1) were adapted from the steady
state of the bioreactor in BSM1 (Alex et al., 2018). Figure 5.5 illustrate the maximum
eigenvalues of the Jacobian over the IVP solution trajectory, showing peak stiffness

at approximately 1.7 hours.
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Figure 5.5 Maximum eigenvalues of the Jacobian over the IVP solution trajectory

5.3.1.1 Training options
We conducted experiments using Python 11 and the torchdiffeq package (Chen, 2018).

After testing various solvers from both torchdiffeq and the SciPy package (Virtanen et
al., 2020), dopri5 was selected for the experiments. The tests revealed minimal
differences between loss functions, with Huber loss performing slightly better.
However, MAE was deemed sufficient for process modelling and thus adopted in the

experiments.

The neural network for the NODEs was constructed as a multilayer perceptron with
four layers and 50 nodes in each hidden layer, using activation functions between the
layers. While Chen et al. (2018) used the Tanh activation function in most of his NODE

examples, Gelu activation function was also tested. Gelu, a relatively new function,
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bridges stochastic regularisers with non-linearities, distinguishing it from other
activation functions (Hendrycks and Gimpel, 2016). It has demonstrated higher

accuracy compared to ReLU, and ELU (Devlin et al., 2019).

The experiments showed that Gelu outperforms Relu and Tanh in NODEs training for
wastewater modelling. Figure 5.6 compares Gelu and Tanh functions in loss changes
for the IVP trajectory training based on ASM1 model, clearly indicating considerably
enhanced performance with Gelu. It is worth noting that despite nearly 102 orders of
magnitude loss decline activated by Gelu without normalisation as shown in Figure

5.6, the results remained unsatisfactory.

Tanh Gelu

Not normalised

Normalised

Figure 5.6 Comparison of activation functions in training loss for an ASM1 IVP, with
different configurations (top left: Tanh without normalisation; top right: Gelu without
normalisation; bottom left: Tanh with normalisation; bottom right: Gelu with

normalisation)

The NODEs were trained using the ADAM optimiser (Kingma and Ba, 2014) with a
varying learning rate, as shown in the Figure 5.6. The training began with a high
learning rate 0.1 to harness speed advantages, then switched to a lower rate 0.001 to
refine results in response to loss function changes. Training was conducted for 2000
iterations with a sampling batch size of 512 and 16 steps of the interval calculated
each time by the solver. For brevity, three non-reactive components (Si, Xi, Xinorg) and

constant DO are not shown in the following results.
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5.3.1.2 Normalisation

The efficacy of the proposed method is assessed by comparing the trained model
predictions against ground truth trajectories generated by the mathematical model
under identical initial conditions. Figure 5.7 illustrates a representative training
example without normalisation. The results indicate that the neural network fails to
effectively learn from the data, as evidenced by the loss function plateauing after an
initial rapid decrease within the first few iterations. The gradient norm exhibits a
pathological pattern, remaining at a consistently low level, which reflects the
stagnation of the loss throughout the training process. Consequently, the predicted
component curves do not align well with the ground truth, resulting in a high overall
RMSE of 62.51.
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Figure 5.7 NODE training without normalisation (a) training results (b) loss (c) grad

norm

The normalisation method is then applied with the estimated mean and standard
deviation of the derivatives sequence using single-sided difference quotient. The
neural network was wrapped by the normalisation and de-normalisation pair with the
estimated parameters. As illustrated in Figure 5.8, this normalisation technique yields

significant improvements. The predicted trajectory curves now closely align with the
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ground truth, resulting in a substantially reduced overall RMSE of 1.73. Moreover, the
loss function exhibits a gradual decrease throughout the training iterations, while the

gradient norm demonstrates stable behaviour.
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Figure 5.8 NODE training with normalisation (a) training results (b) loss (c) grad norm

5.3.1.3 Incremental strategy

The incremental strategy was implemented by first training the normalised model using
the collocation method, followed by direct NODE training. Figure 5.9 and Figure 5.10
illustrate the results of the collocation method utilising the Epanechnikov kernel
function, comparing the ground truth with the collocated trajectory and its derivatives.
The smoothed trajectory demonstrated a close fit to the ground truth, as evidenced by
a low RMSE of 6.39. However, the derivatives exhibited significant disparity, with a

high RMSE of 325.5, indicating challenges in accurate estimation.
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Figure 5.11 illustrates a representative result from the model through NODE prediction
after trained on collocated dataset in the collocation training stage. As the number of
iterations increases, the loss consistently decreases, while the gradient norm remains
stable. Despite this apparent progress, the RMSE remains high at 31.44 after 2,000
iterations. This persistent discrepancy can be attributed to substantial errors in

derivative estimation using the collocation method.
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Figure 5.12 displays the results of the subsequent direct NODEs training stage.
Throughout this stage, the loss exhibits a generally consistent decrease, while the

gradient norm maintains stability at a relatively low level compared to collocation

training phase.
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Due to the stochastic nature of neural networks, results may vary slightly across
different training runs. To assess efficiency, this study conducted 100 trials of each
training method, each comprising 2,000 iterations under identical conditions. The tests
were performed on a computer with an Intel® Core™ i7 CPU (2.8 GHz), 16 MB RAM,
without a dedicated GPU. The test program was executed within the VSCode IDE on
a Windows 10 64-bit operating system.

Figure 5.13 presents the results of this efficiency test (detailed data available on the
project's GitHub repository). The analysis reveals that the incremental training strategy,
compared to the NODE-only training, consumes 24.3% less time on average and
yields a 24.7% lower RMSE. Notably, when collocation training precedes NODE
training, the resulting RMSE demonstrates a smaller standard deviation (1.2)
compared to the method without collocation integration (1.4), suggesting enhanced

training stability.
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Figure 5.13 Distribution of time consumption and RMSE for 100 times running by
different training methods. (I-Coll: Incremental collocation training part, I-NODE:
Incremental NODE training part)

5.3.2 ASM2d-N20 model

The growing concern over climate change has intensified focus on greenhouse gas
emissions from wastewater treatment plants, particularly nitrous oxide (N20). Recent

research (Ye, Porro and Nopens, 2022) identifies four potential pathways for N20O
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generation during biological nitrogen removal in wastewater treatment: (i)
hydroxylamine oxidation, (ii) nitrifier denitrification, (iii) heterotrophic denitrification,
and (iv) abiotic reactions. While these pathways may coexist at varying ratios, the

significance of the fourth pathway remains under debate.

This experiment employs the ASM2d-N20 model, an extension of the ASM2d model
that incorporates N20 emissions. This comprehensive model describes 40 reactions
involving 24 fractionated components, encompassing the biological removal of carbon,
nitrogen, and phosphorus, including the three major N2O emission pathways. The
experiments utilised the stoichiometric and kinetic parameters reported in the original

paper (Massara et al., 2018).

The model's complexity arises from its inclusion of greenhouse gas emissions like N2O
and other transient, low-concentration byproducts such as nitric oxide. Additionally, it
represents complex biochemical reactions. These factors collectively contribute to a
significant degree of stiffness in the system due to the vast differences in scales and
magnitudes between various components. This characteristic makes the ASM2d-N20

model a suitable test case for evaluating the proposed solutions.

MATLAB was employed as the programming language for this experiment. This choice
was motivated by the desire to leverage the latest NODE techniques, as commercial
platforms typically update their products more frequently than open-source
alternatives. The data originated from an ASM2d-N20 model simulation of a CSTR for
six hours under constant dissolved oxygen control at 2 mg/L. The simulation began
from an initial condition detailed in Table 5.3. The generated trajectory data for the IVP

was discretised into 1000 points.

Table 5.3 Initial condition defined in experiment of ASM2d-N20 model

Component Unit Value Component Unit Value
So2 mg 02/l 2 Sn2 mg N/l 0

Sk mg COD/I 48.5 Xi mg CODI/I 404

Sa mg COD/I 32.3 Xs mg COD/ 202
Snr4 mg N/ 20 X mg COD/ 2500
SnH20H mg N/ 0 Xpao mg COD/ 250
Sh2o mg N/l 0 Xep mg P/I 70
Sno mg N/ 0 XpHA mg CODI/I 100
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Snoz mg N/l 0 Xaos mg CODI/I 200
Snos mg N/l 2.6 Xnos mg CODI/I 100
Spos mg P/I 9 Xrss mg TSS/I 189

Si mg CODII 48.5 XMeOH mg TSSII 50
Savk mol HCOs/m3 5 Xwep mg TSS/I 220

To simulate the real situation and evaluate how the proposed methods behave on
noisy monitoring data, four datasets were prepared for this experiment. One set
contained the original, noise-free data. The remaining three datasets were
contaminated with varying levels of white noise, each with a different standard
deviation (SD) amplitude: 0.01, 0.05, and 0.1. To mitigate the effect of noise on training,
a Gaussian filter was applied with a window size of 50 for smoothing before training
the models. Figure 5.14 illustrates the generated ground truth data, the data corrupted

with noise, and the smoothed data.
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Figure 5.14 Ground truth, noised and smoothed trajectory data of ASM2d-N.O model

5.3.2.1 Training options

MATLAB offers a comprehensive suite of ODE solvers yet currently provides only one
solver specifically designed for Neural ODE (NODE) problems. This limitation reflects
the relative novelty of the NODE approach, underscoring the need for further

development in this area. Despite the dlode45 solver being documented as well-suited
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for non-stiff problems (MATLAB, 2024), it was employed in this specific case for

experimentation.

For the NODE model, this study constructed a MLP architecture with two hidden layers,
each containing 50 nodes. The Gelu activation function was employed between layers
for improved performance. Xavier Glorot initialization was utilised for the weight
matrices within the neural network to address vanishing/exploding gradients. The MAE
served as the loss function throughout the experiments, aiming to minimise the

absolute difference between predicted and ground truth values.

The NODEs were trained using the Adamupdate optimiser (Kingma and Ba, 2014)
with a gradient decay factor of 0.9, a squared gradient decay factor of 0.999, and a
global learning rate of 0.01. Custom loops were implemented to manage the training
process. The collocation training stage utilised 3000 iterations, followed by 1000
iterations for direct NODE training (or 3000 iterations if used independently). A batch

size of 200 and time steps of 800 were employed during training.

5.3.2.2 Normalisation

We initially evaluated the performance of direct NODE training without normalization.
To validate the results, the predictions from the trained model were compared with
solutions generated by the mathematical model for the same IVP. Figure 5.15 presents
a typical example of training with data containing 0.05 SD noise and without
normalization. While the model successfully describes the trajectory of most
components, it struggles to capture the trajectories of low-valued scaled components,

such as Sno, which have magnitudes on the order of 10 mg/L.
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Figure 5.15 result of training without normalisation with data containing 0.05 SD noise

Following this observation, the normalisation method was implemented. Figure 5.16

illustrates the results of direct NODE training with normalisation-denormalisation pair.

For the normalisation layer, the mean and standard deviation were directly calculated

from the smoothed component state data sequence. Differently, the denormalisation

layer employed the differential quotient method to estimate the mean and standard

deviation of the derivative data sequence from the smoothed dataset. Although some

turbulences are still evident, the predicted trajectory progressively improves in

smoothness with increasing training iterations. Importantly, the model now captures

the trajectories of low-valued scaled components like Sno, leading to more satisfactory

overall results.

105



Chapter 5 Tackling stiffness in NODE models

S, |RMSE=0.10

o, S, | RMSE=3.98 S, | RMSE=2.77 Sy, |RMSE=0688 = Sy, o IRMSE=060 Sy o [RMSE=0.16
®_ 50 w_40 20 5 2
® 22 £ Noise £ ® o™ ™
’\E\ E\ ——— Pred E £ £ |f, £ 3
ON 2 o 0201 Z 10 = 1/\\ 1)
~ = = = I
5 18 =3 Lf\»— g | ° 1\ NN

0
0 2 4 6h 0

0 = 0
__6h 0 6h 0 2 4 6h 0 2 4 6h
SN%hRMSE= 0.00 SN02 | RMSE— 0.38 SNO | RMSE 1. 3 S | RMSE 0.44

PO, S | RMSE= 2.34 SALK | RMSE=0.19
™
4 10 ) 6
c =
S M E A 2 E 55 o
= | ANt =21\ = = 5 a o 4
= N < \ Z 10 a Q T
[S \\ v o \ (=) (=2 8 =
0 - % T o % © g 2
0 2 4 6h 6h 2 4 6h 0 2 4 6h
N2 | RMSE= 0.05 X | RMSE 3.29 X | RMSE 6. 80 H | RMSE 129 90 X PAO | RMSE= 12.85 XPP | RMSE= 4.04
3000 100
o 1 e 7 200 % g o
= 60 A = =
= o m] (o)) =
Z05 o o 100 o 2500 02 o 80
= 5] o s) S
0 m40 c'; O m c:

60
6h 0 2 4 6h

| RMSE 3.28 X | RMSE= 10.16
«_ 250
[S

O 2 4 6

h
Xona | RMSE= 4.46 X 08 |RMSE 10. 36 XNOB |RMSE 4. 93 Xiss |RMSE 10. 93

250
el ™
£ 100 £ E g 250
[a)] a U)
90 O 200 o 100 200
80 o o
> = 0’ 150

0 2 4 6h

MOH

=

% 200
=3

O’

=
@
gﬁ

g(CoD

g(TSS

=

0 2 4 6h
Figure 5.16 result of training with normalisation with data containing 0.05 SD noise
5.3.2.3 Incremental strategy

We evaluated the performance of incremental training strategies using data
contaminated with normally distributed noise at three SD levels: 0.01, 0.05, and 0.1.
The training process consisted of two stages: first, the model was trained using the
collocation method, followed by further training with the direct NODE method. The
neural network employed Z-score normalisation at the input layer and de-

normalisation at the output layer. An Epanechnikov kernel function was chosen for
data collocation.

The collocation training exhibited a fast and stable convergence process, requiring
3000 iterations. Subsequent direct NODE training also demonstrated good

convergence, achieving satisfactory results with only 300 iterations, although 1000
iterations were used for further refinement.

As illustrated in Figure 5.19, Figure 5.18 and Figure 5.19, the predictions were
compared to the observations after training with the same number of iterations on data
with noise levels of 0.01, 0.05, and 0.1 SD, respectively. The results clearly
demonstrate that the accuracy deteriorates as the noise level increases. Lower noise
levels yield better results, as evidenced by the RMSE values of 5.56, 27.28, and 55.52
for noise levels of 0.01, 0.05, and 0.1 SD, respectively. This reinforces the importance
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of minimising noise through data smoothing techniques before training to avoid
training instability and ensure optimal performance.
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Figure 5.17 Validation of training by incremental strategy with data containing 0.01 SD
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noise
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The comparison demonstrates that the incremental approach of collocation training
followed by the direct NODE method improved the result and enhanced the training
stability and speed. Regardless of the chosen approach, normalisation remains crucial

for successful training of stiff neural ODE models for wastewater process modelling.

5.4 Summary

Training NODEs on the stiff dynamics of wastewater treatment processes presents
substantial challenges. This study proposed a novel normalization method to stabilize
the training process by addressing the disparate scales inherent in wastewater data.
By facilitating smoother gradient descent, this approach enables more accurate data-

driven wastewater process modelling.

To expedite training, this study developed an incremental strategy combining the
efficiency of collocation methods with the precision of direct NODE training. This hybrid

approach effectively overcomes initial stiffness and improves overall model accuracy.

However, the sensitivity of NODEs to noise necessitates careful data preprocessing.
Data smoothing is highly recommended to attenuate noise amplification and enhance

model robustness.
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The findings demonstrate the potential of NODEs for extracting underlying
mechanisms from wastewater monitoring data. The proposed normalization and
incremental training methods offer practical solutions for overcoming stiffness
challenges, thus expanding the applicability of NODEs in wastewater treatment plants.
These advancements contribute to more efficient and data-driven wastewater

management.
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Chapter 6 Implementation of NODE modelling of N2O in
BSM1 plant

Nitrous oxide (N20) emissions from wastewater treatment plants (WWTPs) pose a
significant environmental threat due to their 265-fold greater global warming potential
than carbon dioxide and detrimental effects on the ozone layer depletion (WMO, 2024).
Accurate modelling of N2O production is crucial for improved understanding, predicting,

and ultimately mitigating emissions.

6.1 Background

Data-driven modelling, fuelled by advancements in computing and sophisticated Al
algorithms, offers a promising alternative (Guo et al., 2020; Ji et al., 2021; Cuomo,
Cola, et al., 2022; Kong et al., 2022). This study focuses on emerging NODEs (Chen
et al., 2018), a novel method that combines the expressive power of neural networks
with the continuous integration capabilities of ODEs. This combination allows NODE
to capture the intrinsic dynamics that of mathematical models attempt to describe.
Consequently, NODEs can effectively adapt to the inherent variability and non-linearity
in wastewater treatment systems. Additionally, unlike traditional machine learning
methods constrained by fixed time steps, NODEs excel at learning and representing
complex temporal dynamics regardless of irregular or variable time intervals frequently
encountered in wastewater treatment data (Kidger et al., 2020). This makes NODEs

a well-suited tool for modelling wastewater systems with such real-world complexities.

The core objective is to train a DNN that can approximate the dynamics in the form of
ODEs from process monitoring data. However, two challenges must be overcome.
The first lies in learning the intrinsic dynamics from the monitoring data that contain
external influences, such as changes from the continuous influent input or/and
operational control adjustment. Mathematically, this translates to solving a system of
NODE with exogenous excitement (Bottcher and Asikis, 2022). To address this an
updated training algorithm that can separate the intrinsic dynamics from the data with
external factors was developed. Secondly wastewater mechanistic ODEs often exhibit
stiffness, a property that can hinder training stability (Kim et al., 2021). Preceding
section already tested the proposed normalisation method and incremental training

strategy and proved their effectiveness in tackling the stiffness.
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The proposed methods successfully trained NODE models using data simulated with
the ASMG1 model (Guo and Vanrolleghem, 2014) on BSM1 plant scenarios (Alex et
al., 2018). Validation results were impressive, particularly regarding prediction of

minutely scaled nitrous oxide, indicating potential for real-world applications.

6.2 Methodologies

BSM1 plant time series data, simulated using a self-built experimental platform,
replicates real-world monitoring data from a plug-flow A/O process. However, the data
is a composite of underlying intrinsic reactions and exogenous factors. Consequently,
the initial step involves developing an algorithm to address exogenous excitation,

followed by handling the stiffness issue during the training process.

6.2.1 NODE with exogenous excitation

NODEs have demonstrated effectiveness in learning dynamics across various
systems, including time series prediction tasks such as weather forecasting (Verma,
Heinonen and Garg, 2024), electricity demand prediction (Xie, Parlikad and Puri,
2019), and COVID-19 spread modelling (Berkhahn and Ehrhardt, 2022). They excel
at identifying dynamical patterns and trends within data, regardless of the specific
context or the underlying driving forces. Even for complex systems like wastewater
treatment, NODE models can be powerful tools. For instance, they could predict future
effluent quality based solely on historical time-series effluent data, assuming a

consistent influent pattern.

Intrinsic dynamics represent the inherent relationships with the system, enabling
generalisation. These dynamics capture the autonomous rise and fall of biomass and
substrates within a reactor, driven by their intrinsic biochemical properties and physical
propensity towards equilibrium (Mogens, Willi, Takashi and van Loosdrecht Mark,
2000).

Real WWTPs experience continuous influent flow and operational adjustments for
optimal efficiency. Observed monitoring data reflects a combination of:

e Intrinsic biochemical reactions: Represented by the function f in mechanistic
models.

e External influences: Continuous influent input and operational control settings.
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Figure 6.1 Derivation of intrinsic biochemical reaction rates from observations

including exogenous inputs for NODE model training.

As illustrated in Figure 6.1, it can be generalised in equations.

dYtotal(t) — inntrinsic(t) + innput(t)

Equation 6-1
dt dt dt

dYtotal(t) inntrinsic(t)

where represents the total of rate of change observed, represents

input(t)

: e . av :
biochemical intrinsic dynamics, and ” captures exogenous perturbations.

The aim is to capture the intrinsic biochemical dynamics, represented by function f in
mechanistic ODE model. This necessitates differentiating between intrinsic dynamics
and variations caused by influent changes in the observed data. Mathematically, this

translates to solving a NODE with an exogenous excitation term.

The training procedure must be extended to distinguish between external input effects
and intrinsic dynamics. At each step of the ODE solver, the influence of the external
inputs is subtracted from the data, ensuring that only the intrinsic time-series trajectory
data are utilised for training the neural network. This approach aligns with established

practices in mathematical modelling.

This approach enables the NODE model to learn intrinsic biochemical dynamics while
accounting for exogenous excitations, potentially improving its generalisation

capability and applicability to real-world WWTP scenarios.
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6.2.2 Tackling stiffness issue

Stiffness arises in dynamical systems when processes occur at vastly disparate time
scales (Hairer and Wanner, 1996). This phenomenon is commonly observed in
wastewater treatment processes. For instance, heterotrophic biomass, operating on a
magnitude of 103, exhibits relatively steady behaviour, while N2O generation, a
transient intermediate product, occurs on a much smaller scale around 10 and

changes rapidly.

In NODE models, the inherent stiffness in wastewater mechanistic ODE, is further
amplified by the stochastic nature of neural networks. This amplification originates
from the randomness in weight and bias initialisation, as well as their updates during
gradient descent algorithms used for training (Kim et al., 2021). Conventional stiff ODE
solvers cannot effectively handle this combined stiffness, posing a significant

challenge for training NODE.

To address this issue, a novel normalisation method and an incremental training
strategy were proposed and tested in previous chapter. This implementation adopted

these methodologies to tackle stiffness issue.

The NODE model training consists of two main stages:

1. Collocation Method: Initially, employing collocation method (Roesch,
Rackauckas and Stumpf, 2021) , which uses local polynomial regression to
generate time series pairs of smoothed states Y and estimated derivatives Y'. This
method provides a preliminary result and helps optimize the neural network
parameters in the first stage. By training on these collocated data, this method
effectively mitigates stiffness during the initial training phase.

2. Direct NODE Training: Following the collocation stage, the model was refined
through direct NODE training with proposed normalisation method (Finlay et al.,
2020). This second stage builds upon the preliminary results, incrementally

improving model fidelity.
This incremental training approach offers several advantages:

e Reduced computational load: The collocation method provides a computationally

efficient starting point, reducing the overall training time.
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e Mitigated stiffness: By avoiding stiffness in the initial stage, a more stable
foundation was created for subsequent direct NODE training.
e Enhanced convergence: The pre-trained model from the collocation stage often

leads to faster and more reliable convergence during direct NODE training.

The results demonstrate that this incremental strategy significantly improves the
training process, particularly for stiff systems prevalent in N2O emission modelling. It
allows for more efficient use of computational resources while maintaining model

accuracy.

6.3 Implementation settings

The implementation was setup on the self-built environment as described in Chapter
4. The experimental environment was based on the BSM1 plant, a well-established
platform in wastewater treatment research. ASMG1 mathematical model was
employed to replace the ASM1 to generate observed data including nitrous oxide
production. The core components of ASMG1 were then adopted to characterise the
NODE model of N20 production implemented in BSM1 plant. MATLAB (The

MathWorks Inc., 2024) served as the programming language for the implementation.

6.3.1 Training options

The selection of the training hyperparameters was based on empirical experimentation.

The choices are detailed as follows.

ODE solver: dlode45 function was selected for the experiments, as it is the only
available solver for NODE in MATLAB (MATLAB, 2024) so far, despite it is not

recommended for stiff problems.

Structure of neural network: The neural network architecture plays a crucial role in
encapsulating the model's dimensional complexity and the reaction dynamics. The test
used a MLP with four hidden layers, each containing 50 nodes. While deeper
structures (e.g. 5-6 layers, 100-200 nodes) could enhance representation, they are
computationally expensive. Conversely, a two-layer model was considered

insufficiently expressive.
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Activation function: After evaluating Tanh and RelLU functions, the GELU
(Hendrycks and Gimpel, 2016) was chosen for its efficiency in propagating gradients

between layers.

Initiation of the network parameters: Xavier Glorot initialization (Glorot and Bengio,
2010) was used for weight matrices to mitigate vanishing or exploding gradients and
therefore enhance the speed and stability of the training process. Kaiming He
initialization (He et al., 2015) is also a viable option, but it is particularly fit for ReLU

activations.

Normalisation parameters: In some experiments, the mean and standard deviation
used for normalization are calculated directly from the training data and through
difference quotient method. Other experiments define these parameters as fixed
values (see Table 6.1) based on observations of the training dataset and

considerations from wastewater treatment theory and practice.

Table 6.1 fixed values for normalisation parameters for BSM1 plant

Component Unit yMean yStd Unit dyMean dyStd
Si mg COD/I 30 10 mg COD/I/d 0 0
Ss mg COD/I 1.6 2 mg COD/I/d -200 400
Xi mg COD/ 1160 300 mg COD/I/d 0 0
Xs mg CODI 60 100 mg COD/I/d -500 500

Xen mg COD/ 2400 500 mg COD/I/d 150 500
Xaos mg COD/I 128 20 mg COD/I/d 20 20
Xp mg COD/I 420 80 mg COD/I/d 58 5
So mg COD/I 2 2 mg COD/I/d -800 800
Snos mg N/ 12 5 mg N/l/d 0 200
S mg N/ 6 6 mg N/I/d -80 100
Sno mg N/ 0.6 0.2 mg N/I/d -20 60
Xnp mg N/ 5 3 mg N/I/d -40 50
Sak mol /m3 4.5 1 mol/m3/d 0 30
Snoz mg N/l 0.1 0.2 mg N/I/d 5 20
Sno mg N/ 0.005 0.005 mg N/I/d 0.2 1
Sn2o mg N/ 0.004 0.002 mg N/I/d 0.2 1
Snz mg N/ 135 1 mg N/I/d 60 100
Xnos mg CODI/I 44 2 mg N/I/d 5 5
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Loss function: The mean absolute error (MAE) served as the loss function throughout
the experiments, guiding the optimization process towards minimising the absolute

difference between predicted and actual values.

Gradient descent optimisation: Training was conducted using the adaptive moment
estimation (Adam) optimiser (Kingma and Ba, 2014), an advanced variant of
stochastic gradient descent (SGD) known for its adaptive learning rate capabilities.
The configuration of the Adam optimizer was set with a gradient decay factor of 0.9, a
squared gradient decay factor of 0.999, and a learning rate of 0.01, consistent with

common practices.

Iteration, batch size and NODE steps: The number of training iterations depend on
the algorithm, computational efficiency, and desired error threshold. In this case,
custom loops were implemented to manage the training process. The training
consisted of two stages: a collocation training stage utilising 3000 iterations, followed
by a direct NODE training stage for 1000 iterations. Batch size is not suggested below
the 10% of the total discretised trajectory points. Longer NODE steps improve
prediction accuracy but increase solver difficulty. A batch size of 20% was employed
and a single time step was used within the NODE solver, balancing accuracy with
computational limitations. While larger batch sizes and extended time steps could

improve accuracy, they exponentially increase computational demands.

6.3.2 Experiments

Four sets of experiments were conducted to evaluate the proposed algorithms and

methods:

1) Prediction ability assessment: This study examined the prediction accuracy of the
trained model on identical dry weather scenario.

2) Cross-scenario performance: This study assessed the model's generalisation
ability by testing its performance on three different weather scenarios after training
it with only the first twelve days of rainy data.

3) Reverse scenario validation: This study tested how a model, which were trained
with all dry weather data, performed in rain weather scenario, and vice versa, how
a model, which were trained with all rain weather data, performed in dry weather

scenario.
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4) Reduced dimension modelling: This study explored the feasibility of using the
model with potentially incomplete data. A NODE model with reduced dimensions
was trained and tested, acknowledging that not all component data in the model

may be available in real-world scenarios.

Selecting an optimal metric for model evaluation presents challenges, and there is no
single perfect metric. While this study employed Root Mean Squared Error (RMSE)
and coefficient of determination (R-squared) for assessment, these metrics have
limitations. They can be informative and provide valuable insight, but also misleading,

particularly when comparing results derived from datasets with different lengths.

6.4 Results

6.4.1 Prediction on identical scenario

A NODE model was trained using data from the first seven days of the dry weather
scenario. Figure 6.2 and Figure 6.3 depict the training loss curves for the collocation

and direct NODE training stages, respectively, showcasing a steady decrease in error.
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Figure 6.2 Collocation training loss curve Figure 6.3 NODE training loss curve

The trained model was then used to predict system behaviour for the subsequent
seven days (days 7-14) on the same dry weather scenario. Figure 6.4 (see full results
in appendix 8.2) compares the predictions with the original simulated data, showing
that the model generally captured the dynamic trends, including N2O generations

across all five reactors. Notably the model performed best for reactors four and five.
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Figure 6.4 Testing in predication of day 7 - 14 in dry weather scenario

Table 6.2 summarise the RMSE for both training and testing stages. The overall RMSE
for the training stage (days 0-7) was 1.18, while for the testing stage (days 7-14), it

was 1.11, indicating good agreement between predictions and actual data and
consistent performance across both phases.

Table 6.2 Summary of RMSE in dry weather scenario

Stage

Day

Reactor 1

Reactor 2

Reactor 3 Reactor 4 Reactor 5 Overall

Training

0-7

2.58

0.36

0.31

0.20

0.15

1.18

Testing

7-14

243 0.39

0.32 0.21 0.16

1.11

We then used the trained NODE model to assess plant performance for days 7-14

under dry weather conditions. Table 6.3 presents the results for N2O emissions during
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nitrification/denitrification, comparing the NODE model predictions with those of the
ASMG1 model. The NODE model predicted slightly lower N2O emissions in anoxic
reactors and higher emissions in oxic reactors, resulting in a 2.44% higher total N2O

emission prediction compared to the ASMG1 model.

Table 6.3 Assessment of N.O emissions for day 7-14 of dry weather scenario

N20 emissions (kg N-N20/d) N20 emissions (kg N20/d)
Reactor difference
ASMG1 model NODE model ASMG1 model NODE model

Anoxic 1 0.010455 0.010418 0.016429 0.01637 -0.35%

Anoxic 2 0.011148 0.011089 0.017518 0.017426 -0.53%
Oxic 1 1.2195 1.2514 1.9164 1.9665 2.62%
Oxic 2 0.60874 0.62763 0.9566 0.98628 3.10%
Oxic 3 0.2772 0.27856 0.4356 0.43774 0.49%
Total 21271 217N 3.3426 3.4243 2.44%

It's important to note that the dissolved oxygen (So) levels in anoxic reactors one and
two did not visually align well with the observed data. This discrepancy stems from the
significant scale difference in dissolved oxygen levels between anoxic and oxic tanks.
The So in reactor two ranged from 0 to 6 x 10~ mg/L, while reactor five exhibited levels
from 0 to 6 mg/L — a thousandfold difference. This scale disparity exceeded the
precision achievable by the loss function, given the limited number of training iterations

used in the experiments.

In practical wastewater treatment applications, on-site dissolved oxygen
measurements are typically around to a precision of 0.1 mg/L due to instrument
limitations and wastewater inhomogeneity (Roman M. D., 2014). Given these real-
world constraints, this study did not prioritise improving dissolved oxygen level
predictions in anoxic tanks for this study, as further refinement would offer minimal

practical benefit.

6.4.2 Cross-scenario performance

To evaluate the model's generalization ability, a new model was trained using the first
12 days of data from rain weather scenario, which included a rain event between days
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8 and 12. Then this model's performance was assessed on days 12 to 14 across three

weather scenarios.

Figure 6.5, Figure 6.6 and Figure 6.7 (see full results in appendix 8.3) illustrate the
model's performance on day 12 to 14 in dry, rain, and storm weather scenarios,

respectively. The results demonstrate that the trained model generalizes well across

various conditions, indicating its broad applicability to unseen data. Notably, the model

effectively captured the underlying system dynamics,
production, across all scenarios.

Test ===+ Pred Testing | Dry weather | Reactor 1 | RMSE=0.21 | R?=100.0% | Overall RMSE= 0.23 | Overall R?= 100.0%
X | RMSE=0.18 | R?=100.0%

Xgyy | RMSE=0.83 | R?=100.0% Xgp | RMSE=0.04 | R?=99.9%
— 100 - 130
6 a 3 2500 =)
<] 9 Q
4 E /\/ O 2400 3
o o °
5 £ E
12 13 12
o = - o = -99.99

Sg | RMSE=0.07 | R=99.6%

144 12 13

13 14d 12 13 14d

— 2283 29,
Sy, | RMSE=0.00 | R*-83.2%

%10

mg N/l

Testing | Dry weather | Reactor 2 | RMSE=0.14 | R?=100.0% | Overall RMSE= 0.23 | Overall R?= 100.0%

Sg | RMSE=0.02 | R?=99.6% Xg | RMSE=0.16 | R?=100.0%

22100.09
Xgy | RMSE=0.52 | R?=100.0%

X | RMSE=0.03 | R?=100.0%
— — 100 -
a a Q 2500 5
o 25 o o
© 2 o 02400 5]
ES ES >
Eis £ 50 2300 E st
12 13 14d 12 13 13 14d
- 225029 - 2_83.19
410° So, | RMSE=0.00 | R?=-6693.0% Sy | RMSE=0.06 | R?=99.9% Sno, | RMSE=0.00 R*=80.2% o7 Onjo | RMSE=0.00 [R7=83.1%
5 M < W /\J
I3 z
3 E
o E
E
13 14d

Testing | Dry weather | Reactor 3 | RMSE=0.35 | R?=100.0% | Overall RMSE= 0.23 | Overall R?= 100.0%

Sg | RMSE=0.04 | R?=96.8% Xg | RMSE=0.15 | R?=100.0%

o Xgy, | RMSE=1.50 | R?=100.0% Xg | RMSE=0.02 | R?=100.0%
= <80 < 2600 =130
815 g = /NS 8 o 8 2500 8
S A \ = S 2400 S
g £ £ E s
12 13 14d 12 13 14d 12 13 14d 12 13 14d
- 229979 - 2-g0.89
S, | RMSE=0.04 | R?=99.5% Sy | RMSE=0.10 | R%=99.7% Sno, | RMSE=0.00R"=09.7% a0®  Snjo| RMSE=000]R=00.8%
=3 1
=} s s 02 s
IS z z H
O, > 5 ©0.1 o
=3 E 13 E
E -
1 13 1ad 12 13 1ad 12 13 144

SM\J
13 14d

Testing | Dry weather | Reactor 4 | RMSE=0.22 | R?=100.0% | Overall RMSE= 0.23 | Overall R?= 100.0%

Sg | RMSE=0.02 | R?=99.0% X | RMSE=0.39 | R?=99.7%

Xgyy | RMSE=0.85 | R?=100.0% Xgy | RMSE=0.03 | R?=100.0%

=15 - = < 2600 =
8 g g 2500 8"
3 350 5
21 =3 mZdQCI =
£ . g0 g,
2 13 14d 12 13 13 14d
S, | RMSE=0.07 | R?=99.5%

- 2-90.5 - 290,59
Sy | RMSE=0.06 | R?=99.8% Sio, | RMSE=0.00 R"=09.6% S0 | RMSE=0.00| R*=99.5%

s
) 510
01
0.05
12 13 14 12 13 14d

Testing | Dry weather | Reactor 5 | RMSE=0.15 | R?=100.0% | Overall RMSE= 0.23 | Overall R?= 100.0%
Sg | RMSE=0.02 | R?=97.9% Xg | RMSE=0.24 | R?=99.8%

8% Xgyy | RMSE=0.58 | R?=100.0% X, | RMSE=0.03 | R?=99.9%
- _ 60 — 2600 -
2 s 3 3 130
g - 850 & 2500 g
S < 3] 3 3,
° N 240 o
Eos E E
13

mg CODA
mg NI
mg NIl
mg NIl

2400

14d 12 13 13 14d 12

13 14d
S | RMSE=0.13 | R*=98.6%

Figure 6.5 testing in dry weather scenario

120

including accurate N20



Chapter 6 Implementation of NODE modelling of N20O in BSM1 plant

Testing | Rain weather | Reactor 1 | RMSE=0.23 | R2=100.0% | Overall RMSE= 0.30 | Overall R

Sg | RMSE=0.08 | R?= Xg | RMSE=0.23 | R?=100.0%

=100.0%
9.4%

Xgyy | RMSE=0.84 | R?=100.0%
= 2500

3
8 2400
E3
£ 2300

12

44 12 13

Sy, o | RMSE=0.00 | R?=54.9%
x10% N0

Testing | Rain weather | Reactor 2 | RMSE=0.22 | R2=100.0% | Overall RMSE= 0.30 | Overall R?= 100.0%
X | RMSE=0.33 | R?=99.9%

Xy, | RMSE=0.72 | R%=100.0% X, | RMSE=0.04 | R2=99.8%
s s 100 5 2500
25
8, W 3 M/\ o 2400 122 Wﬂm
> >
g, . £ 5 22300
12 13 14d 12 13 14d

Sg | RMSE=0.04 | R?=98.8%

mg COD/I

13

= 2-62.8%
52107 S | RMSE=0.00 | R?=-6348.4% Sy | RMSE=0.07 | R?=99.8% Sno, | RMSE=0.00 | R*<62.8%

s 10
H
>
E
12 13 14d

Testing | Rain weather | Reactor 3 | RMSE=0.49 | R2=99.9% | Overall RMSE= 0.30 | Overall R?= 100.0%
X | RMSE=0.36 | R?=99.8%

_ mgcoon

Sg | RMSE=0.08 | R?=86.7%

Xgyy | RMSE=2.02 | R?=99.9%

X | RMSE=0.04 | R=99.9%
= 2500 <125
3 3
8 2400 8
> >
£ 2300 Bz
1 144 12 13 14d 12

13
| RMSE=0.12 | R%=99.6%

- 2.
Sy, 0| RMSE=0.00 | R

6.0%
x10%

Testing | Rain weather| Reactor 4 | RMSE=0.24 | R?2

=100.0% | Overall RMSE=0.30 | Overall R“=

=100.0%
s | RMSE=0.23 | R?=99.9% Xgyy | RMSE=0.99 | R?=100.0% Xgp | RMSE=0.02 | R?=100.0%
= = 2500 <128
Se0 3 3
850 8 2400 8
D ) )
E E 2300 €120
12 13 14d 12 13 14d
S, | RMSE=0.06 | R2=99.6% Syo, | RMSE=0.01| R?=96.0% N | RMSE=0.00 | R%=98.3%
NH ) 2 *10
4
s s s
H E B
=3 =3 o2
£ E £ = .
12 13 14d 12 13 14d
Testing | Rain weather | Reactor 5 | RMSE=0.18 | R2=100.0% | Overall RMSE= 0.30 | Overall R?= 100.0%
Sg | RMSE=0.04 | R?=93.8% Xg | RMSE=0.40 | R*=99.6% Xgyy | RMSE=0.63 | R?=100.0% Xgp | RMSE=0.03 | R?=99.9%
- <60 = 2500 =
=P 3 5 124
8 O 2400 o123
o040 o o
E E 2300 g1
12 13 14d 12 13 14d 12 13 14d
Sy | RMSE=0.08 | R?=98.7% Sno, | RMSE=0.00 | R=06.2%
=6 4 2
8 ! 5
O4 = =2
=3 E
E
12 13 14d 12 13
Figure 6.6 testing in rain weather scenario

Testing | Storm weather | Reactor 1 | RMSE= 0.86 | R2=99.8% | Overall RMSE= 0.59 | Overall R%= 99.9%

Sg | RMSE=0.14 | R%=98.2% X | RMSE=1.70 | R?=97.9%

Xgyy | RMSE=2.98 | R?=99.8% Xgp | RMSE=0.12 | R?=99.0%
< 100 = 2600 =
[=} - a Q125
8 O 2500 8
E’ 52400 g‘ 120
12 13 144 12 13 144 2 13 14d 1 13 144
S | RMSE=0.05 | R?=-2040.5% Sy | RMSE=0.09 | R*=99.7%
3 =10 <022
0 0.05 z z
3] ° > 02 SRS
o E
£ 5 I ] 0182~ i
12 13 14d 12 13 14d 12 13 14d
Testing

| Storm weather | Reactor 2 | RMSE=0.69 | R2=99.9% | Overall RMSE= 0.59 | Overall R%= 99.9%
X | RMSE=1.45 | R%=98.1%

Sg | RMSE=0.17 | R*=79.9%

» 2-99.9%
Xgy | RMSE=2.36 | R*=99.9%

Xg, | RMSE=0.11 | R%299.2%
= = 2600 =
D Q125
8 M/\ /\_/ 3 QSOOM 8
-] 22400 2 ;
E E 120
12 13 1ad
- 2, )9
107 SolRMSE=0.00| R%=-6710.6% S\ | RMSE=0.26 | R?=97.6% Sno, | RMSE=0.02 | R™=-265.9%

5 - _oz

3 s 502

S = 2021

2 £ E oo .

12 13 144 1
Testing | Storm weather | Reactor 3 | RMSE= 0.43 | R2=100.0% | Overall RMSE= 0.59 | Overall R?= 99.9%
S | RMSE=0.12 | R=63.3% Xg | RMSE=1.46 | R?=97.4% Xgy, | RMSE=0.87 | R?=100.0% X | RMSE=0.06 | R=99.8%
- < 2600 =
3 3
S o 2500 g
2 B’zaou g
E E 120
14d 12

13
= 2291 59
Syo, | RMSE=0.02 | R?=01.5%




Chapter 6 Implementation of NODE modelling of N20 in BSM1 plant

Testing | Storm weather | Reactor 4 | RMSE= 0.37 | R2=100.0% | Overall RMSE= 0.59 | Overall R%= 99.9%
X | RMSE=131| R?=97.0% Xgyy | RMSE=0.61 | R?=100.0%

- < 2600 =
3 “ « 3
g% ey 2 Qas00
> \ >
€40 22400
1 2 13 144

2 13 14d 1

S | RMSE=0.06 | R?=89.0% Xgu | RMSE=0.07 | R%=99.7%

mg COD/I

125
120
12 13 144

— 2293 3
103 Sy, | RMSE=0.00 | R*-93.3%

» 223 19
Syo, | RMSE=0.01 | R*=83.1%
\

Testing | Storm weather | Reactor 5 | RMSE=0.43 | R2=100.0% | Overall RMSE= 0.59 | Overall R%=99.9%

S | RMSE=0.06 | R?=84.6% Xg | RMSE=1.07 | R?=97.0%

- 2-100.09 = 2-98.39
Xgy | RMSE=1.02 | R?=100.0% Xga | RMSE=0.15 | R?=98.3%

— 2600 - - S
3 S 126

Q 2500 9

(; 3124

22400 2.

12 13 144 12 13 144

Sy | RMSE=0.20 | R?=93.6%

4
s =
22
£
1

12 13 14d

— 2-g6.79
Sy, | RMSE=0.00 | R*-86.7%

» 2275 69
Syo, | RMSE=0.01 | R*<75.6%

Figure 6.7 testing in storm weather scenario

Table 6.4 summarises the RMSE values for the model's performance under dry, rainy,
and stormy weather conditions. The general trend indicates that the model performs
best in reactors four and five across all scenarios. However, there are no statistically
significant differences between reactors or scenarios. This indicates the model's broad
applicability to various weather conditions.

The overall RMSE values for the dry, rain, and storm scenarios were 0.23, 0.30, and
0.59, respectively. While the model's performance slightly degraded in more extreme
weather conditions, it maintained reasonable accuracy across all scenarios. This
robust performance across varied weather conditions underscores the model's
potential for practical applications in wastewater treatment processes, where

adaptability to changing environmental conditions is crucial.

Table 6.4 RMSE of the model testing in dry, rain and storm scenarios

Scenario Day Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5 Overall
Dry 12-14 0.21 0.14 0.35 0.22 0.15 0.23
Rain 12-14 0.24 0.22 0.49 0.24 0.18 0.30

Storm 12-14 0.86 0.69 0.43 0.37 043 0.59

6.4.3 Reverse-scenario validation

We evaluated the model's generalisation ability through reverse scenario validation.
Two separate models were trained: a dry weather model tested in rain weather

scenario, and a rain-weather model tested in dry weather scenario.
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e Dry Weather Model: This model was trained using data from all 14 days in the

dry weather scenario, representing the system's typical operation. These data

excluded disruptions caused by extreme events such as rain or storms. The model

was then tested on rain weather data, particularly focusing on its performance

during the rain event period between day 8 to day 12.

e Rain Weather Model: This model was trained using data from all 14 days in the

rain weather scenario. These data encompassed both normal operating

conditions (day 1 to 8) and interruptions caused by rain (day 8 to 12).

Subsequently, the model was tested on dry weather data to assess its prediction

accuracy.

Figure 6.8 (see full results in appendix 8.4) illustrates that the dry weather data trained

model performed well for normal operation conditions (day 1 to 8) in the rain weather

scenario. However, its performance faltered during the rain event period (day 8 to 12).

This is reflected by a drop in the overall R-squared value to 44.9% and an increase in

the overall RMSE to 37.49. Conversely, as shown in Figure 6.9 (see full results in

appendix 8.4), the rain weather data trained model maintained good performance

throughout the entire dry weather scenario. This is evident from the high overall R-

squared value of 99.7% and the low RMSE of 1.44.
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Figure 6.8 testing dry weather data-trained model in rain weather scenario
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Figure 6.9 testing rain weather data trained model in dry weather scenario

124



Chapter 6 Implementation of NODE modelling of N20 in BSM1 plant

6.4.4 NODE model with reduced dimensions

In real-world applications, directly measuring all components used in the ASMG1
model can be challenging. To address this limitation, a NODE model with reduced
dimensions was explored. Four carbonaceous substrates were consolidated into total
COD (Tcob), and ammonia, both soluble and particulate organic nitrogen, were
combined into Kjeldahl nitrogen (KN). Key components crucial to N2O generation
(Tchobanoglous et al., 2014), including dissolved oxygen (So), ammonium (SnH,),
nitrate (Sno.), and nitrite (Sno,), were retained in the model. Components deemed less
relevant (such as alkalinity) or those exhibiting relative stability (e.g., biomass) were

excluded from the model.

The lower-dimensional model was trained using the first seven days of dry weather
data and tested for predictions in the subsequent week. Figure 6.10 (see full results in
appendix 8.5) demonstrates that the model effectively captured the dynamic trends of
N20 emissions despite the significant reduction in input dimensions. This suggests the
potential of using such simplified models for practical applications where complete
data acquisition might be difficult.
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While this study utilised a limited 14-day data timeframe, a small fraction of a typical
wastewater treatment plant's operational timeline, it effectively demonstrates the
feasibility of the NODE approach for data-driven modelling of wastewater processes.
Notably, the model captured the dynamic behaviour of N,O productions across

different treatment stages, despite their significant variations.

Further refinement of the model is possible by exploring tuning hyperparameters like
batch size, number of node steps, and training iterations. Additionally, estimation of
normalisation parameters (mean and standard deviation) can be enhanced by
combining domain knowledge with site-specific data from the wastewater treatment

plant. These enhancements could potentially lead to improved model accuracy.

These findings suggest that the NODE approach, particularly with reduced dimensions,
holds promise for practical applications in wastewater treatment process modelling.
By balancing model complexity with data availability, this method could provide
valuable insights into N2O productions and other critical parameters, even in scenarios

where comprehensive measurements are challenging to obtain.

6.5 Summary

A NODE-based model for N2O production was implemented and tested under various
operational scenarios at the BSM1 plant. The model demonstrated robust predictive
capabilities for N20O behaviour across both anoxic and aerobic phases, accurately
capturing even minute and transient N2O variations. Moreover, the model proved
resilience to short-term operational disturbances and effectively predicated system

responses under varying weather scenarios. These achievements are attributed to the

126



Chapter 6 Implementation of NODE modelling of N20 in BSM1 plant

novel algorithm developed for handling exogenous factors, and the data normalization

and incremental training strategy proposed for tackling model stiffness.

The results underscore the potential of NODE models to accurately represent the
complex dynamics of wastewater treatment processes and highlight its promise for
optimising N20O mitigation strategies. Nevertheless, given the multifaceted nature of
N20 production pathways and its spatial and temporal variability, comprehensive real-
world validation is imperative to refine the model and facilitate its broader application

in practical wastewater treatment.
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Chapter 7 Discussion and conclusion

The preceding chapters comprehensively explored data-driven N2O modelling using
NODEs, with a particular focus on addressing training instability arising from
wastewater process stiffness. Through rigorous experimentation and analysis,
valuable insights have been gained into NODE performance for capturing N20
production and emission patterns from monitoring data. This chapter delves deeper
into the implications of these findings, situating them within the broader research
context. By critically examining the strengths, limitations, and potential impact of this
study, it is expected to provide a comprehensive discussion and draw meaningful
conclusions, with summary of key contributions and outline of future research

directions.

7.1 Discussion

The development and successful deployment of robust and effective machine learning
models, such as NODEs, are contingent upon a confluence of factors that collectively
influence model performance. While advancements in algorithm design and
computational resources have propelled the field forward, several critical challenges
persist. This section discusses four key areas significantly impacting NODE training
and generalization: training instability, unforeseen data generalization, data quality
and availability, and computational cost. A comprehensive understanding of these
challenges is essential for developing effective strategies to mitigate their effects and

ultimately enhance model performance.

7.1.1 Training instability

NODEs offer a promising approach to modelling complex systems by representing the
dynamics as a continuous process. However, their training is notoriously unstable.

This instability arises from several key factors:

e Stiffness: Stiff systems exhibit widely varying timescales, making them
challenging to solve numerically. NODEs often encounter stiffness, particularly
when modelling complex systems. Standard solvers, like Euler or Runge-Kutta,

struggle with stiff problems, leading to instability (Kim et al., 2021).
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Gradient explosion/vanishing: Similar to traditional neural networks, gradients
can explode or vanish during backpropagation through the ODE solver. This can
hinder convergence and destabilize training (Amari, 1993).

NODE solver choice: The choice of NODE solver significantly impacts stability.
Implicit solvers are generally more stable for stiff problems but can be
computationally expensive, while explicit solvers are faster but prone to instability
for stiff systems. Unfortunately, NODE solvers are less developed compared to
traditional ODE solvers (Kushnir and Rokhlin, 2012; Postawa, Szczygiet and
Kutazynski, 2020).

Initialization: Poor initialization of the neural network parameters can lead to

unstable trajectories and divergent solutions (Glorot and Bengio, 2010).

While sources of instability are multifaceted, stiffness is the most prominent and

challenging issue in wastewater systems (Brown et al., 2021; Bradley et al., 2022).

The results of this study demonstrate the proposed normalisation method effectively

addresses instability and is easily implementable. Similar scaling method have also

shown promise in the literature (Ji et al., 2021; Kim et al., 2021). However, other

approaches with potential to mitigate stiffness exist, two have been identified for future

exploration:

Gradient clipping:

Gradient clipping is a regularization technique that addresses training instability
by controlling the magnitude of gradients during backpropagation. If the norm of
the gradient exceeds a predefined threshold, it's scaled down to meet that
threshold. By imposing a threshold on the gradient norm, it prevents gradients
from exploding, thereby enhancing stability. While commonly used in neural

networks, this method is equally applicable to NODEs (J. Zhang et al., 2019).

However, implementing gradient clipping requires careful parameter tuning. The
clipping threshold, frequency, and choice of norm (e.g., L1, L2) significantly impact
performance. Finding optimal values for these parameters can be challenging.
Additionally, aggressive clipping may lead to information loss (Qian et al., 2021;
Koloskova, Hendrikx and Stich, 2023).

Specialized solver:
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While NODE and ODE solvers share similarities, they also exhibit distinct
characteristics. Unfortunately, the development of NODE solvers, especially for
stiff systems, remains limited. Developing specialized solvers tailored for NODEs,
such as those incorporating adaptive step size methods (e.g. Dormand-Prince)
(Kimura, 2009; Seen, Gobithaasan and Miura, 2014; Chalvidal et al., 2020;
Zhuang et al., 2020; Kloberdanz and Le, 2023) or implicit schemes (Poli et al.,
2021; Baker et al., 2022; Pal, Edelman and Rackauckas, 2022), can significantly

enhance stability.

Ideal NODE solvers should prioritize the following objectives:

1) Efficiency: The solver should be computationally efficient to handle large
datasets and complex models.

2) Stability: The solver should be robust to the inherent instability of neural
networks.

3) Accuracy: The solver should accurately approximate the solution of the ODE
to ensure correct gradient computation.

4) Differentiability: The solver should be differentiable to enable

backpropagation.

Based on the experience from ODE solver, the types of potential NODE solver

may include:

1) Adaptive step size solvers: Dynamically adjust the step size based on the
estimated error, improving efficiency and stability. Examples include
Dormand-Prince (Kimura, 2009), Runge-Kutta-Fehlberg (Seen, Gobithaasan
and Miura, 2014).

2) Implicit solvers: Effectively handle stiff ODEs, which can be applied in
NODEs. However, they typically require iterative solution methods, increasing
computational cost. Examples include Backward Euler (Skelboe and
Andersen, 1989; Biswas et al, 2013), Implicit Runge-Kutta methods
(Cartwright and Piro, 1992).

3) Symplectic solvers: Preserve the symplectic structure of Hamiltonian
systems (Leimkuhler and Skeel, 1994; Zhong, Dey and Chakraborty, 2019),

which can be beneficial for certain types of physical systems. Examples
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include Leapfrog method (Shampine, 2009), Verlet integration (Sanz-Serna,
1992; Murua, 1999).

4) Hybrid solvers: Combine the strengths of different solvers to achieve better
performance. For example, using an implicit solver for stiff regions and an

explicit solver for non-stiff regions (Shi et al., 2012; Tutueva et al., 2020).

While gradient clipping offers a partial solution, specialized NODE solvers hold the
most promise. By providing theoretical guarantees for stability and convergence of
learning process, they can significantly advance the field of NODEs and expand their

applicability.

7.1.2 Out-of-distribution generalization

Traditional machine learning models assume that training and test data are statistically
similar, a condition known as independent and identically distributed (IID) (Cao, 2022).
However, real-world data often deviates from this assumption, undergoing unexpected
distributional changes. As a result, deployed models frequently exhibit significant
performance degradation, a phenomenon known as out-of-distribution generalization
problem (Hendrycks et al., 2021; Ye et al., 2021). NODEs, which rely on DNN to

approximate dynamics, are similarly vulnerable to OOD challenges.

This problem arises from distribution shift, where the statistical properties of training
and test data differ (Fang et al., 2020). This discrepancy can be attributed to factors

such as data scarcity or non-representative data selection during training.

Leveraging neural networks as their core component, NODEs inherit both their
capabilities and limitations (Elbrachter et al., 2019). Like other data-driven models,
NODEs heavily rely on the quality and diversity of training data. Comprehensive data
coverage is more critical than sheer data volume, as diverse scenarios within the data
enhance the model's ability to generalise to unseen situations. Insufficient data
coverage, where training data doesn't encompass the full range of possibilities, can
lead to poor generalizability and unreliable predictions (Zhang et al., 2021).

The results of this study exemplify this. Figure 7.1 illustrate the joint distribution of key
components for dry, rain, and storm weather scenarios during two distinct periods: day
0-8 and day 8-12, respectively. While the initial 8-day period shows no discernible

differences, a clear divergence among weather scenarios emerges during days 8-12,
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coinciding with rain and storm events. the reverse scenario validation results (section
6.4.3) corroborate these findings. The dry weather data-trained model struggled to
handle actual rain events due to the absence of rain information in its training data.
Conversely, the rain weather data-trained model performed adequately in dry weather

scenarios, as it encompassed dry weather conditions.
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Figure 7.1 Joint distribution of dry, rain, and storm weather data for day 0-8 (left) and

day 8-12 (right)

Solutions for OOD generalization issue can be from different aspects:

Data-centric approaches

Augmenting training data with synthetic samples can mitigate data scarcity
(Dupont, Doucet and Teh, 2019). Expanding the training data distribution to
encompass diverse scenarios improves model robustness. OOD detection
techniques, which identify data points outside the training distribution, can aid in
data augmentation(Cui and Wang, 2022). Integrating wastewater theory and
practice is crucial for ensuring that training data covers the full spectrum of
potential wastewater conditions. Rigorous data cleaning and preprocessing are
essential for data quality and consistency (Chu et al., 2016).

Model-centric approaches

Exploring network architectures inherently resistant to distribution shifts is vital.
Regularization techniques such as L1/L2 regularization (Girosi, Jones and Poggio,

1995), dropout (Baldi and Sadowski, 2013), and early stopping (Mahsereci et al.,
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2017) can help prevent overfitting. Adversarial training enhances model
robustness by exposing it to adversarial examples (Rani et al., 2024). Meta-
learning (Finn et al., 2019; Hospedales et al., 2021), continuous learning (Liu,
2017), and transfer learning (Weiss, Khoshgoftaar and Wang, 2016) improve long-
term generalization by enabling the model to adapt to evolving data distributions.
For instance, in wastewater treatment, equipment degradation, microbial changes,
and operational variations can induce distribution shifts. Regularly updating the

model with fresh data is essential to maintain performance.

The optimal strategy for OOD generalization depends on the specific problem and
dataset. A combination of data-centric and model-centric approaches is often

necessary to achieve optimal performance.

7.1.3 Data availability and quality

Data is the fuel that powers machine learning models, including NODEs. Both data
quantity and quality significantly impact model performance, accuracy, and reliability
(McDonald, 2021; Budach et al., 2022; Yue Liu et al., 2023). The adage "garbage in,
garbage out" is particularly applicable to data-driven models. High-quality data
enables models to learn accurate patterns and relationships, leading to reliable and
trustworthy predictions. Conversely, poor data quality can introduce biases, resulting

in inaccurate or unfair outcomes.

Obtaining qualified data in wastewater treatment is crucial for effective process

monitoring, control, and optimization. Data collection methods in WWTP include:

1) Sensor-based monitoring: Modern WWTPs increasingly utilize sensors to
measure various parameters such as pH, temperature, dissolved oxygen, solids,
and chemical concentrations. Regular sensor calibration and continuous data
logging are essential for accurate monitoring. To account for rapidly changing
wastewater characteristics due to factors like rainfall, industrial discharges, and
seasonal variations, outlier and anomaly detection techniques can be employed
(Zamora and Torres, 2014; Haimi et al., 2016). Given the potential for sensor drift
over time, implementing calibration schedules and sensor replacement plans is
crucial.

2) Laboratory testing: Regular laboratory testing of wastewater samples is crucial

for WWTPs to monitor parameters such as BOD, intermediate products, inhibitory
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compounds, and fractionated components, which are often difficult to measure
using online sensors (Pagga, Bachner and Strotmann, 2006). In addition, parallel
testing data for normal parameters provide a benchmark for sensor calibration and
validation. Adherence to stringent quality control procedures is essential to ensure
the reliability of laboratory analysis results.

3) Process control systems: Process control systems provide valuable data on air
flow rates, pump speed, and valve positions, enabling in-depth analysis of process

behaviour and optimization of control strategies (Moles et al., 2003).

Data-driven approaches often demand substantial data volumes, which can be
challenging to obtain solely through laboratory testing (Schneider et al., 2021).
Consequently, the reliability of online sensors and the quality of generated data are
critical for successful data-driven initiatives in WWTPs. Real-world plants often
encounter sensor discrepancies, drifts, and malfunctions due to technical limitations,
fouling, or harsh operating conditions, compromising data accuracy. While techniques
such as mass balance calculations, statistical analysis, additional laboratory validation,
and anomaly detection can mitigate these issues, prioritizing sensor maintenance,
calibration, and testing is fundamental to ensure data integrity (Luca et al., 2019;
Zhang, Tooker and Mueller, 2020).

Surrogate parameters offer an alternative avenue for addressing the data
requirements of emerging Al applications in wastewater treatment (Edzwald, Becker
and Wattier, 1985). By developing cost-effective and reliable sensors employing
technologies such as light, electronics, and wave-based measurements, it is possible
to generate a richer dataset for wastewater characterization. While these surrogate
parameters may not directly correspond to traditional analytical components, they can

provide valuable insights for enhancing operational efficiency in WWTPs.

Data preprocessing and cleaning are essential to minimize the impact of noise and
outliers on model reliability (Chu et al., 2016). Techniques such as outlier detection
(Corominas et al., 2011), noise reduction (Moravec et al., 2021), and smoothing
methods (llyas and Rekatsinas, 2022) should be employed to ensure the model learns
true underlying patterns rather than anomalies.

By following these steps and addressing the specific challenges in data collection,
high-quality data can be obtained to support effective data-driven process optimization.
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7.1.4 Model reliability

Model reliability is influenced by multiple factors. In real WWTPs, it is primarily
influenced by data quality and coverage challenges. For example, although
wastewater theories highlight the critical role of microbial communities and substrate
composition in reaction kinetics, technological limitations prevent real-time
measurements of these parameters. While surrogate parameters offer partial solutions,
the inability to fully characterize the wastewater system state hinders the application
of NODE models (Sundui et al., 2021).

The complex nature of wastewater treatment processes demands a comprehensive
dataset encompassing diverse influent characteristics, biological factors, and plant
operational parameters to accurately capture system dynamics. To fully account for
seasonal fluctuations and temperature-dependent processes, a dataset spanning at
least one year is recommended. Practical implementation requires careful
consideration of operational profiles and potential model limitations under specific
conditions, aiding by investigation and data distribution analysis to identify possible

edge cases where the model might struggle (Wang et al., 2021).

Assuming optimal data quality, coverage, and out-of-distribution robustness, NODE
models can demonstrate reliable performance. While model predictions may still be a
subset of the mechanistic model due to data availability, they can suffice for routine
operations under stable conditions. To enhance model reliability, integrating domain
knowledge is essential. By assigning physical meaning to model parameters and
incorporating physical laws and constraints, the model can improve the plausibility of
predictions (Faisal et al., 2023). A combination of comprehensive data coverage,
domain expertise, extended temporal datasets, operational considerations, and robust
data preprocessing empowers NODE models to deliver reliable nitrous oxide

production predictions in complex and dynamic wastewater treatment environments.

7.1.5 Computational cost

NODE models, due to their continuous dynamics modelling approach, incur significant
computational costs. The experiments in this study using 14 days of data for the BSM
plant modelling demonstrated NODE models exhibit an averagely 50-fold increase in
training time compared to a collocation training under identical computational

resources.
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Several factors contribute to the computational expense of NODEs:

Numerical integration: Solving ODEs numerically requires iterative
computations, which can be computationally intensive, especially for complex
ODE systems. The choice of solver (e.g. Runge-Kutta) and step size significantly
impacts the computational cost (Chalvidal et al., 2020; Dong et al., 2020).
Backpropagation: The backpropagation process through the ODE solver is
complex and computationally demanding due to the non-differentiable nature of
solver operations (Baker et al., 2022).

Memory consumption: Storing intermediate states of the ODE solver for
backpropagation can lead to high memory usage, especially for long time horizons

or complex systems (Finlay et al., 2020).

Solutions to reduce NODE computational cost include:

Efficient NODE solvers: Adaptive step size solvers can optimize computational
efficiency by adjusting step size based on solution behaviour (Zhuang et al., 2020).
Alternatively, less accurate but computationally cheaper solvers can be employed
during initial training stages or when precision is less critical (Roesch, Rackauckas
and Stumpf, 2021). Specialized solvers designed for stiff systems can also
improve efficiency (Kushnir and Rokhlin, 2012; Kloberdanz and Le, 2023).
Approximation techniques: Checkpoint-based saving of intermediate solver
states can reduce memory consumption during backpropagation (Zhuang et al.,
2020). Discretizing the continuous NODE into a discrete-time system through finite
differences can simplify computations but may introduce approximation errors
(Kloberdanz and Le, 2023).

Hardware acceleration: Leveraging the parallel processing capabilities of GPUs
(graphics processing units) or specialized hardware like TPUs (tensor processing
units) can significantly accelerate numerical integration and backpropagation
calculations (Shi et al., 2012; Seen, Gobithaasan and Miura, 2014).

Model architecture optimization: Simplify the neural network component of the

ODE to reduce computational overhead (Golovanev and Hvatov, 2022).

The choice of solutions depends on the specific problem and desired accuracy. Often,

trade-off have to be considered between computational efficiency and the accuracy of
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the solution (Khalil et al., 2024). Certainly, continuous research is expected for new

techniques to improve the efficiency to be developed.

By carefully considering these factors and applying appropriate strategies, it is

possible to mitigate the computational cost of Neural ODEs and make them more

practical for real-world applications.

7.2 Benefits of NODE approach

The NODE approach offers several key advantages for modelling wastewater

treatment processes:

1.

Physical interpretation. NODE models maintain compatibility with the physical
meaning inherent in traditional mathematical models. This allows for a more
intuitive understanding of the modelled processes (Zou et al., 2024).
Data-driven dynamics learning: NODEs can implicitly capture complex system
dynamics directly from monitoring data without requiring explicit knowledge of
underlying physical equations. This makes them particularly well-suited for
complex wastewater systems where deriving these equations might be
challenging (Zakwan et al., 2023).

Enhanced generalization: By learning the underlying differential equations,
NODE models can generalize better to unseen data compared to models trained
only on discrete time points. This allows for more accurate predictions under
varying conditions (Garsdal, Segaard and Sgrensen, 2022; Kircher, Déppel and
Votsmeier, 2024).

Unveiling system insights: By analysing the trained neural network, researchers
can gain valuable insights into the key factors influencing the system's dynamics.
This knowledge can be used to optimize wastewater treatment processes and
improve overall efficiency (Zakwan et al., 2023).

Continuous-time modelling: NODE models naturally handle data that evolve
continuously over time, offering more accurate and realistic representation of real-
world wastewater treatment processes compared to discrete-time models
(Garsdal, Sggaard and Sgrensen, 2022).

Flexibility: NODE models easily handle irregularly sampled time series data,
making them adaptable to practical scenarios where uniform measurement is not

feasible or available (Esteve-Yague and Geshkovski, 2021).
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These benéefits position the NODE approach as a powerful tool for wastewater process

modelling, offering an optimal balance between data-driven insights and physical

interpretability. By leveraging these capabilities, researchers and practitioners can

develop more accurate, flexible, and insightful models for complex wastewater

treatment systems, potentially leading to improved process understanding and

optimisation.

7.3 Challenges of NODE approach

Despite its potential, NODE approach faces several significant challenges, particularly

when dealing with complex processes like N2O production:

1.

Training Instability: The most significant challenge in implementing the NODE
approach is the instability of the training process. This issue is particularly
pronounced in stiff, complex, and chaotic systems, as well as over long-time
horizons. This instability can stem from various factors, including poor
initializations, gradient noise, and the inherent complexity of the system itself
(Finlay et al., 2020; Golovanev & Hvatov, 2022). Maintaining stability in the
numerical integration of ODEs is crucial, as instabilities can lead to divergent
solutions and unreliable models. Careful selection of integration methods and step
sizes is necessary to ensure stability while balancing accuracy and computational
efficiency (Dikeman, Zhang and Yang, 2022).

Computational Cost: Training NODE models can be computationally expensive
compared to traditional machine learning methods. This is partly linked to the need
for smaller integration steps to maintain stability, leading to a higher number of
calculations (Golovanev and Hvatov, 2022).

Solver Limitations: While numerous mature ODE algorithms and solver libraries
exist for mathematical dynamical systems, NODE solvers capable of handling
massive stiffness are still rare. This limitation is particularly evident in real-world
applications with complex dynamics (Baker et al., 2022).

Immature Ecosystem: While recent advancements have seen libraries like
PyTorch, TensorFlow, and MATLAB incorporate support for NODEs, the
surrounding ecosystem and tooling remain less mature compared to those for
conventional neural networks. This relative infancy can result in instability and

computational inefficiency, particularly when tackling real-world problems
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involving stiff equations or high-dimensional systems within current library
frameworks. These limitations can translate into practical implementation hurdles,

hindering the practical application of NODEs despite their theoretical promise.

These challenges highlight the need for continued research in several areas:

e Development of more robust and efficient NODE solvers, particularly for stiff and
high-dimensional systems.

e Improvement of training stability techniques for complex, chaotic systems.

e Optimization of computational methods to reduce resource requirements.

e Expansion and maturation of the NODE ecosystem and tooling.

The NODE approach holds promise for wastewater treatment process modelling, but
addressing these challenges is crucial for its practical implementation. Overcoming
these hurdles will pave the way for the broader adoption of NODE models in real-world

wastewater treatment applications.

7.4 Conclusion

This study demonstrates the potential of NODE models in capturing the complex and
nonlinear dynamics of wastewater treatment processes, with a specific focus on the
challenging area of N20 production. Despite the inherent difficulties in modelling N2O
due to its diverse production pathways and significant spatiotemporal variations, the
proposed methodologies empowered the NODE model to effectively represent these

intricate and disparate system behaviours.

1) To address the critical challenge of stiffness, this study proposes a novel
normalisation method that effectively stabilizes the training process. By enabling
smoother gradient descent and balancing optimization across disparate system
scales, this readily implementable method facilitates accurate data-driven
modelling of wastewater processes.

2) This study introduces an incremental training strategy for NODE models that
leverages the efficiency and noise resilience of the collocation method to bypass
the initial stiffness hurdle. The initial solution is subsequently refined using the
direct NODE approach to enhance accuracy. This combined methodology
underscores the importance of adapting modelling techniques to specific problem

stages.
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3) The developed algorithm effectively addresses the impact of exogenous factors
and external influences on the data. This enables the model to learn the underlying
intrinsic dynamics from real-world composite data that incorporates both external
perturbations and internal process interactions.

4) This study emphasizes the critical role of data quality and comprehensive data
coverage in successful data-driven modelling of wastewater processes using
NODEs. Additionally, it underscores the necessity of developing specialized

solvers tailored to this specific application.

This study demonstrated that the model effectively predicts system behaviour under
both anoxic and aerobic conditions, accurately capturing even subtle and transient
N20 fluctuations. Its robustness is further evidenced by its resilience to short-term
disturbances and its ability to predict system responses under varying weather
conditions. These findings underscore the potential of data-driven NODE modelling

for optimizing N20O mitigation strategies in wastewater treatment plants.

In summary, while acknowledging the challenges of training and hyperparameter
tuning, NODE models demonstrate significant potential for wastewater treatment
modelling due to their ability to handle complex, continuous-time processes. This study
introduces novel methodologies to address key challenges in NODE training, including
normalization, incremental training strategy, and algorithms handling exogenous
factors. These contributions represent substantial advancements and facilitate
broader adoption of NODE models in wastewater treatment plants, enabling more
efficient and data-driven management strategies. Future research with extensive real-
world validation is essential for further refining and promoting the widespread

application of NODE models in practical settings.
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Chapter 8 Appendix

8.1 Plant performance under varying weather scenarios

Table 8.1 Plant performance assessment under varying weather scenarios

Performance Unit Dry Rain Storm
Overall plant performance assessment during period day 7-14 7-14 7-14
Influent average concentrations
Flow rate m3/d 18446.3875 | 24201.7981 | 21047.0253
Si g COD/m? 30 22.8657 26.2931
Ss g COD/m3 69.5046 52.9758 60.9164
Xi g COD/m3 51.2085 39.0307 52.5648
Xs g COD/m3 202.3243 154.2097 185.4121
XeH g COD/m3 28.1703 21.4711 26.4419
XaoB g COD/m3 0 0 0
Xp g COD/m3 0 0 0
So g-COD/m3 0 0 0
Snos g N/m?3 0 0 0
Sk g N/md 31.5563 24.052 27.6571
Shp g N/m3 6.9505 5.2976 6.0916
XND g N/m3 10.5903 8.0719 9.9406
Sak mol HCO3/m3 7 7 7
Snoz g N/m3 0 0 0
Sno g N/m3 0 0 0
Sn20 g N/m3 0 0 0
Sk2 g N/md 0 0 0
Xnos g COD/m?3 0 0 0
Kjeldahl nitrogen g N/m3 54.5923 41.6097 49.1172
Total nitrogen g N/m3 54.5923 41.6097 49.1172
Total COD g COD/m? 381.2077 290.553 351.6284
BOD g BOD/m? 193.5346 147.5103 175.9258
Influent average load
Si kg COD/day 553.3916 553.3916 553.3916
Ss kg COD/day 1282.1096 | 1282.1096 1282.1096
Xi kg COD/day 944.6124 944.6124 1106.3336
Xs kg COD/day 37321519 | 3732.1519 3902.3736
Xen kg COD/day 519.6401 519.6401 556.5226
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XaoB kg COD/day 0 0 0

Xp kg COD/day 0 0 0

So kg -COD/day 0 0 0
Snos kg N/day 0 0 0

Sk kg N/day 582.1005 582.1005 582.1005
Sno kg N/day 128.211 128.211 128.211
Xnp kg N/day 195.3534 195.3534 209.2192
Sak kmol HCOs/day | 129.1247 169.4126 147.3292
Sno2 kg N/day 0 0 0

Sno kg N/day 0 0 0
Sn20 kg N/day 0 0 0

Sne kg N/day 0 0 0
Xnos kg COD/day 0 0 0
Kjeldahl nitrogen kg N/day 1007.0307 | 1007.0307 1033.7716
Total nitrogen kg N/day 1007.0307 1007.0307 1033.7716
Total COD kg COD/day 7031.9057 | 7031.9057 7400.7312
BOD kg BOD/day 3570.0148 | 3570.0148 3702.7147
Effluent average concentrations

Flow rate m3/d 18061.3875 | 23816.7981 | 20662.0253
Si g COD/m? 30 22.8334 26.302
Ss g COD/m? 1.2306 1.3296 1.3382
Xi g COD/m? 4.7093 6.0951 5.9409
Xs g COD/m? 0.22347 0.32654 0.31418
Xen g COD/m? 9.8367 12.865 11.7737
Xaos g COD/m? 0.52118 0.66315 0.59528
Xp g COD/m3 1.7191 2.1841 1.9625
So g -COD/m? 3.5196 3.4175 3.3628
Snos g N/m? 14.7321 12.1225 13.0126
S g N/m? 1.6763 1.7814 1.8529
Snp g N/m3 0.56057 0.59055 0.59629
Xnp g N/m3 0.016472 0.023513 0.023094
Sak mol HCO3/m3 3.8121 45443 4.2251
Sno2 g N/m3 0.027773 0.027325 0.031487
Sno g N/m3 0.001912 0.0019047 0.0021444
Sh2o g N/m3 0.0010255 0.001018 0.0011531
Skz g N/m3 13.3997 13.3094 13.3283
Xnos g COD/m? 0.18092 0.23132 0.20673
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Kjeldahl nitrogen g N/m3 3.5454 40756 4.028
Total nitrogen (limit = 18 g N/m3) g N/m3 18.3082 16.2283 17.0753
Total COD (limit = 100 g COD/m?) g COD/m? 48.4213 46.5281 48.4336
BOD (limit = 10 g/m3) g BOD/m3 2.7874 3.5787 3.3055
Effluent average load

S kg COD/day 541.8415 543.8175 543.4534
Ss kg COD/day 222272 31.6675 27.65
Xi kg COD/day 85.0563 145.1649 122.7518
Xs kg COD/day 4.0362 7.7772 6.4916
Xen kg COD/day 177.6636 306.4021 243.2688
Xaos kg COD/day 9.4133 15.794 12.2997
Xp kg COD/day 31.0494 52.0177 40.5501
So kg -COD/day 63.5685 81.3935 69.4823
Snos kg N/day 266.0821 288.7198 268.8662
Sk kg N/day 30.2762 42.4283 38.2837
Sno kg N/day 10.1247 14.0649 12.3205
Xnp kg N/day 0.29751 0.56001 0.47718
Sak kmol HCOs/day 68.8526 108.2298 87.2981
Sno2 kg N/day 0.50162 0.6508 0.65059
Sno kg N/day 0.034533 0.045365 0.044307
Sh20 kg N/day 0.018522 0.024245 0.023825
Skz kg N/day 242.0169 316.9865 275.39
Xnos kg COD/day 3.2676 5.5092 4.27
Kjeldahl nitrogen kg N/day 64.0343 97.0668 83.2257
Total nitrogen kg N/day 330.6711 386.507 352.8106
Total COD kg COD/day 874.5551 1108.15 1000.7369
BOD kg BOD/day 50.3451 85.2334 68.2986
Sludge average concentrations

Flow rate m3/d 385 385 385

Si g COD/m? 30.0003 24.8983 26.966
Ss g COD/m? 1.2397 1.2846 1.3219
Xi g COD/m? 2261.7603 | 2179.1299 2398.219
Xs g COD/m? 100.8052 103.3403 107.6986
Xen g COD/m? 4730.8012 | 4612.8182 4774.5945
Xaos g COD/m? 250.317 237.9036 243.2574
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Xp g COD/m? 825.4722 784.8628 804.4082
So g -COD/m? 3.4699 3.4899 3.369
Snos g N/m3 14.8122 13.13 13.4838
Sk g N/md 1.6373 1.6677 1.8303
Snp g N/m3 0.56304 0.57617 0.59202
Xnp g N/m? 7.5158 7.6141 8.0248
Sak mol HCOa/m3 3.7975 4.3061 41337
Sno2 g N/m3 0.026558 0.025106 0.031012
Sno g N/m3 0.0018433 | 0.0017588 0.0021052
Sn2o g N/m3 0.00098837 | 0.00093729 | 0.0011295
Sk2 g N/m3 13.3989 13.3256 13.3427
Xnos g COD/m? 86.8904 83.0029 84.5029
Kjeldahl nitrogen g N/m3 636.0123 616.9779 646.4774
Total nitrogen g N/m3 650.8538 630.1357 659.9955
Total COD g COD/m3 8287.2861 8027.2406 8440.9684
BOD g BOD/m? 1191.1532 1160.9129 1200.7967

Sludge average load

Si kg COD/day 11.5501 9.5858 10.3819
Ss kg COD/day 0.47728 0.49459 0.50892
Xi kg COD/day 870.7777 838.965 923.3143
Xs kg COD/day 38.81 39.786 41.464
XeH kg COD/day 1821.3585 1775.935 1838.2189
Xaos kg COD/day 96.372 91.5929 93.6541
Xp kg COD/day 317.8068 302.1722 309.6971
So kg -COD/day 1.3359 1.3436 1.2971
Snos kg N/day 5.7027 5.055 5.1913
Sk kg N/day 0.63038 0.64205 0.70467
Shp kg N/day 0.21677 0.22182 0.22793
XND kg N/day 2.8936 29314 3.0895
Sak kmol HCOs/day 1.462 1.6578 1.5915
Sno2 kg N/day 0.010225 0.009666 0.01194
Sno kg N/day 0.0007097 | 0.00067716 | 0.00081051
Sh2o kg N/day 0.00038052 | 0.00036085 | 0.00043484
Sh2 kg N/day 5.1586 5.1304 5.1369
Xnos kg COD/day 33.4528 31.9561 32.5336
Kjeldahl nitrogen kg N/day 242.8576 235.6191 246.9416
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Total nitrogen kg N/day 248.5716 240.6849 252.1462
Total COD kg COD/day 3190.6052 | 3090.4876 3249.7728
BOD kg BOD/day 458.594 446.9515 462.3067
Quality index

Influent quality index (IQl) kg poll.units/d | 52177.4614 | 52177.4613 | 54167.1531
Effluent quality index (EQI) kg poll.units/d | 6028.3727 | 7884.0201 6974.4052
Sludge production

Sludge production for disposal kg SS 16462.1091 | 15536.2085 | 17433.8839
Average sludge production for disposal per day kg SS/day 2355.2347 2222.766 2494.2665
Sludge production released into effluent kg SS 1627.6277 2792.33 2252.2199
Average sludge production released into effluent / day kg SS/day 232.8648 399.4988 322.2252
Total sludge production kg SS 18089.7369 | 18328.5384 | 19686.1038
Total average sludge production per day kg SS/day 2588.0995 2622.2648 2816.4918
Energy/chemical consumption

Average aeration energy kWh/day 4283.3778 | 4283.3778 4283.3778
Average pumping energy kWh/day 3881777 503.286 440.1905
Average carbon source addition kg COD/day 0 0 0
Average mixing energy kWh/day 0.35768 0.35768 0.35768
Operational cost index

Sludge production cost index 11776.1734 | 11113.8302 | 12471.3327
Aeration energy cost index 4283.3778 4283.3778 4283.3778
Pumping energy cost index 388.1777 503.286 440.1905
Carbon source dosage cost index 0 0 0
Mixing energy cost index 0.35768 0.35768 0.35768
Total operational cost index 16448.0866 | 15900.8516 | 17175.2587
N20 emissions during nitrification/denitrification

Anoxic tank 1 kg N2O/day 0.010774 0.0099702 0.01027
Anoxic tank 2 kg N2O/day 0.011361 0.010932 0.010878
Aeration tank 1 kg N2O/day 1.1921 1.0593 1.18
Aeration tank 2 kg N2O/day 0.54236 0.4993 0.57496
Aeration tank 3 kg N2O/day 0.23629 0.23716 0.26871
Total kg N2O/day 1.9929 1.8167 2.0448

95% percentile for effluent
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S (Ammonia95)

g N/m3

4.7423

4.8048

4.9255

TN (TN95)

g N/m3

20.7636

20.214

20.6124

TSS (TSS95)

g SS/m?3

15.8608

23.2378

22.5545

Violation of effluent total nitrogen level (18 g N/m3)

Operating time length

day

3.3333

2.6771

2.9687

Percentage of the operation time

%

47.69%

38.301%

42.4739%

Number of occasions that violated the limit

pcs

8

6

10

Violation of effluent ammonia level (4 g N/m3)

Operating time length

day

0.70833

0.67708

0.75

Percentage of the operation time

%

10.1341%

9.687%

10.7303%

Number of occasions that violated the limit

pcs

5

5

5

8.2 Results of prediction in dry weather scenario

Training | Dry weather | Reactor 1 | RMSE=2.58 | R?=99.2% | Overall RMSE= 1.18 | Overall R%=99.8%
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Training | Dry weather | Reactor 5 | RMSE= 0.15 | R%=
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Figure 8.1 Training result using first 7-day dry weather data
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Testing | Dry weather | Reactor 2 | RMSE=0.39 | R2=100.0% | Overall RMSE= 1.11 | Overall R
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Testing | Dry weather | Reactor 5 | RMSE=0.16 | R2=100.0% | Overall RMSE= 1.11 | Overall R%=99.8%
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Figure 8.2 Testing results for day 7-14 of dry weather scenario

8.3 Results of cross scenario validation
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Figure 8.3 Collocation training loss on first 12-day rain weather data
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Figure 8.4 NODE training loss on first 12-day rain weather data
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Figure 8.5 Training results using first 12-day rain weather data
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Figure 8.6 Testing results for day 12-14 of dry weather scenario
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Figure 8.7 Testing results for day 12-14 of rain weather scenario
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Figure 8.8 Testing results for day 12-14 of storm weather scenario

8.4 Results of reverse-scenario validation
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Figure 8.9 Testing dry weather data-trained model in rain weather scenario
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Figure 8.10 Testing rain weather data-trained model in dry weather scenario

8.5 Results of NODE with reduced dimensions
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Figure 8.13 Training results using first 7-day dry weather data with reduced

dimensions
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Figure 8.14 Testing results for day 7-14 of dry weather scenario with reduced
dimensions
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