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ABSTRACT

Our reliance on the underground space to deliver critical civil engineering infrastructure is growing: to accommodate utility and transport infrastructure in urban
environments, to provide innovative housing and commercial solutions, and to support proliferating renewable energy infrastructure, particularly offshore. Artificial
intelligence (AI) is arguably the most promising enabler to transform geotechnical engineering by extracting knowledge from data to achieve step-change increases in
efficiency, sustainability, reliability and safety. This paper seeks to develop a shared understanding of the state of the art of Al in geotechnics and to explore future
developments. By way of example, specific popular use cases in geotechnics are considered to highlight current progress in AI applications including intelligent site
investigation, predictive modelling for soil behaviour, and optimisation of design and construction processes. The paper then addresses key research challenges, such
as data scarcity and interpretability, and discusses the opportunities that lie ahead in the integration of Al with geotechnical engineering. Finally, priority tech-

nological enablers are identified for future transformations.

1. Introduction

The integration of artificial intelligence (AI) is already spurring
transformative advancements in a range of domains. In healthcare, Al-
driven diagnostic tools and predictive models have enhanced disease
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detection and treatment planning (Jiang et al. 2017). Applications in
finance and economics have streamlined trading strategies, risk man-
agement, and fraud detection (Goodell et al. 2021). AI technologies have
also been used in the digital twinning of large infrastructures e.g. rail-
way bridge and rail tracks (Febrianto et al., 2022; Sun et al., 2023). With
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the recent rapid advancements in large language models (LLMs; e.g.
ChatGPT; Vaswani et al. 2017), there has been a surge in motivation to
explore the potential for Al to realise step-change increases in efficiency
and innovation in geotechnics.

A key motivation for Al in geotechnical engineering stems from the
pressing need to address the increasingly complex challenges faced in
both underground infrastructure development (e.g. Sheil et al. 2020a,
2020b), and offshore energy infrastructure development (e.g., Stuyts
and Suryasentana, 2023). Subsurface ground conditions can be both
highly complex and uncertain. Accurate prediction of soil behaviour is
also highly challenging. Traditional analytical methods often struggle to
cope with the intricacies and paradoxes of geotechnical data, leading to
potential inaccuracies and inefficiencies in design and construction
processes (Suryasentana and Sheil 2023). There is potential to leverage
advanced machine learning (ML) algorithms and data-driven techniques
to gain deeper insights from growing datasets, enabling more holistic
and accurate predictive models and efficient processes. Importantly,
many ML approaches can also be extended to capture model uncer-
tainty, enhancing reliability in scenarios with complex or incomplete
data.

This position paper synthesises key opportunities, challenges, and
research needs for the application of Al in geotechnical engineering.
Rather than providing an exhaustive review of historical literature, we
highlight selected illustrative use cases, namely intelligent site investi-
gation, predictive modelling of soil behaviour, and optimisation of
design and construction processes, to support our arguments. However,
each emerging theme identified is grounded in current evidence.

2. The rise of Al

The field of Al aims to create intelligent machines that can mimic
human-like intelligence. Its fundamental goal is to enable machines to
perceive the environment, reason, learn from experience, and make
informed decisions based on data and patterns (Russell & Norvig 2010).
Al is a broad umbrella term that encompasses ML, computer vison and
robotics. Subfields within ML include deep learning (DL), reinforcement
learning (RL), Bayesian variants, and natural language processing
(NLP), each addressing specific aspects of intelligence emulation (see
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Fig. 1).

ML is a fundamental element of intelligent system development
involving the development of algorithms and/or statistical models that
allow machines to progressively improve their performance on a specific
task, given training data. DL represents an additional subfield of ML that
focuses on the design and training of artificial neural networks, inspired
by the architecture and functioning of the human brain. DL leverages
multiple layers (hence the term “deep”) of interconnected nodes or
neurons to handle more complex tasks by using its hierarchical structure
to automatically learn hierarchical representations of data, abstracting
and extracting features at different levels of complexity. RL explores
how ‘agents’ can learn to perform a task through repeated interactions
with a given environment. The agent learns to optimise its behaviour
over time by receiving feedback on decisions made, in the form of
penalties or rewards. In contrast, NLP seeks to enable machines to un-
derstand, analyse, and generate human language. This can extend
beyond simple language recognition to include tasks such as sentiment
analysis, language translation, and question answering. Bayesian vari-
ants of ML are also popular for considering aleatoric and epistemic un-
certainties in the analysis of the system of interest. In geotechnical
applications, these might include model uncertainties, such as those
related to the material (including spatial variability and uncertainties of
material properties) and/or numerical model, along with uncertainties
inherent to data quality and measurement systems (MacKay, 2003,
Kennedy and O’Hagan, 2001, Girolami et al., 2021).

3. Recent progress in select popular Al applications in
geotechnics

In this paper, we focus on recent progress in regression models and
classifiers for (i) inversion (e.g. linking field data to geotechnical pa-
rameters), (ii) predicting material responses (e.g. pile installation,
foundation movements, landslides), (iii) predicting structural responses
(e.g. TBM control), and (iv) improving the efficiency of deterministic
approaches (e.g. constitutive models).

Intelligent site investigation and ground modelling

ML has been widely applied in geotechnics for data-driven ground
modelling, helping to inform foundation design and identify optimal
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Fig. 1. Map of Al sub-fields.
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sampling locations for site investigation campaigns (Hu et al., 2021;
Zhao and Wang, 2019; Yoshida et al. 2022). Data-driven ground models
are usually constructed from geotechnical data such as cone penetration
test (CPT) data or dynamic penetration test (DPT) data. These models
involve two main predictive tasks: soil stratigraphy/layering identifi-
cation and spatial interpolation/prediction of geotechnical properties.

Various ML techniques have been employed for soil stratigraphy
identification, such as Gaussian Process regression (GPR), which is
mathematically equivalent to its predecessor, kriging (Li et al., 2016),
Bayesian model class selection (Wang et al., 2013), changepoint detec-
tion (Houlsby and Houlsby, 2013; Ching et al., 2015; Suryasentana et al.,
2023), Bayesian compressive sampling (Wang et al. 2020), random field
approaches (Cao et al., 2019; Gong et al., 2020), lasso-based regression
(Shuku et al. 2020), clustering (Hegazy and Mayne, 2002; Zhao and
Wang, 2020) and more recently, deep learning (Zhou et al. 2024). Fig. 2
shows recent examples of the identification of soil layer boundaries
using DPT and CPT data, respectively. Suryasentana et al. (2024)
showed that univariate Bayesian change point detection (BCPD)
methods outperform multivariate approaches in delineating soil strata
from CPT data. In particular, the composite soil behaviour index I, yields
more reliable boundary predictions than the joint analysis of cone
resistance Q; and friction ratio F,, likely due to the empirical calibration
of I, against established soil classification databases, which implicitly
embed prior knowledge relevant to stratigraphic interpretation.

For spatial predictions of geotechnical properties, previous re-
searchers have used kriging (Firouzianbandpey et al., 2015; Cai et al.,
2019; Hu et al., 2020; Rahman et al., 2021), random field approaches
(Cai et al., 2019), Bayesian compressive sampling (Wang and Zhao,
2017; Wang et al., 2020; Wang and Li, 2021; Zhao et al., 2020), multiple
point statistics (Shi and Wang, 2021a), XGBoost (Shi and Wang, 2021b)
and neural networks (Sauvin et al., 2019; Wu et al., 2021).

In addition, there has been recent increased interest in integrated
ground modelling that combines multiple data sources, such as
geophysical and geotechnical data. Fusing multiple types of data aims to
produce more accurate and consistent ground models that leverage the
strengths of each data source. Data fusion techniques have been used to
learn the relationships between the different data sources and exploit
them for sub-surface prediction. These techniques include co-kriging
(Sauvin et al., 2019; Xie et al.,, 2022), random field approaches
(Huang et al., 2018), multi-scale approaches (Ghose and Goudswaard
2004), Bayesian inference (Wellmann et al., 2018; Medina-Cetina et al.,
2019), multi-source Bayesian compressive sampling (Xu et al., 2021,
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2022), random forests (Christensen et al., 2021) and neural networks
(Sauvin et al., 2019; Chen et al., 2021; Coelho and Karaoulis, 2022).

Predictive modelling for soil behaviour.

Soils are complicated particulate materials that exhibit complex
mechanical behaviours including critical state (Roscoe et al., 1958;
Schofield and Wroth, 1968), state-dependency (e.g., Been and Jefferies
1985), stress dilatancy (e.g., Reynolds, 1885; Taylor, 1948; Bolton
1986), anisotropy (e.g., Bishop, 1966, Amarasinghe and Parry, 1975),
destructuration (e.g., Burland, 1990, Leroueil and Vaughan, 1990, Liu
et al. 2013), stress-path dependency (e.g., Lade and Duncan, 1976),
time-dependency (e.g., Suklje, 1957, Bjerrum, 1967), and non-coaxiality
(e.g., Roscoe et al., 1967). Such behaviours have motivated the devel-
opment of a range of constitutive models to capture time-dependency (e.
g., Kim and Leroueil, 2001, Yin et al. 2011), state-dependency (e.g., Su
and Yang, 2019, Kang et al., 2019a), stress dilatancy (e.g., Wan and Guo,
1988, Su et al., 2010), anisotropy (e.g., Dafalias, 1986, Yin et al., 2010,
Kang et al., 2019b), stress-path dependency (e.g., Hu et al., 2018), non-
coaxiality (e.g., Tian and Yao, 2017), and phase change (e.g., Zhou and
Meschke, 2013).

In conventional constitutive modelling, a mathematical equation,
with a set of parameters or variables, is hypothesised to capture the
behaviour of the soil. However, the desire to capture advanced soil be-
haviours has led to increasingly complex constitutive models with
greater numbers of material parameters. For example, SANISAND
(Dafalias and Manzari, 2004) incorporates multiple fabric tensors and
internal variables, which, although successfully capturing complex soil
behaviours, increase model calibration complexity and limit
interpretability.

With the increasing availability of Al resources in the early 90s,
several researchers began exploring the application of Al methods, and
particularly neural networks (NN), as an alternative for modelling ma-
terial behaviour (e.g., Ghaboussi et al., 1990, 1991). Ellis et al. (1992)
and Ghaboussi et al. (1990) pioneered NN constitutive models (NNCMs)
for soils; a notable influx of Al-based constitutive models followed (e.g.,
Ellis et al., 1995; Ghaboussi and Sidarta, 1998; Penumadu and Zhao,
1999). This evolution in constitutive modelling extended beyond NNs to
include other Al-based techniques such as evolutionary regression
(Javadi and Rezania, 2009a). More recently, research in this area has
moved towards numerical implementation of these ‘intelligent’ material
models (e.g., Shin and Pande, 2000, Lefik and Schrefler, 2003; Hashash
et al., 2004, Javadi and Rezania, 2009b). However, the performance of
these early purely data-driven Al-based constitutive models was mixed,
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Fig. 2. Predictions of soil layer boundaries using (a) DPT data (Suryasentana et al. 2023), and (b) CPT data (Zhou et al. 2024).
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owing to their lack of interpretability and requirements for big data for
effective training. Importantly, these models exhibited poor general-
isation (extrapolative capabilities) where predictive reliability deterio-
rated outside the feature space of the training data.

The recent resurgence of Al in geotechnics has renewed momentum
in developing Al-based constitutive models, with physics-informed
machine learning (PIML) methods (Raissi et al., 2019, Masi et al.,
2021, Masi and Stefanou, 2022) emerging as a key trend in material
modelling. Recent studies have explored combining prior knowledge,
such as empirical expressions or physics-based laws, with ML to
constrain predictions within reasonable bounds (e.g. Weinan and Yu,
2018, Liu and Wang, 2019, Sun et al., 2020, Cuomo et al., 2022, Vlassis
and Sun, 2021, Flaschela et al., 2021). Whilst these advances have
achieved significantly improved generalisation, such hybrid models still
require large high-quality datasets to achieve predictive performance
that is competitive with conventional constitutive models.

These challenges have inspired interpretable ML-based approaches
which are suitable for training on sparse geotechnical datasets (Zhang
et al., 2023a). For example, Zhang et al. (2022a) incorporated three
different theoretical frameworks into a prior information based neural
network (‘PiNet’), including incremental nonlinearity, hyperelasticity
and elastoplasticity (see example in Fig. 3). The three PiNet models were
subsequently applied to simulate the behaviour of real soils in
conjunction with a multi-fidelity framework to maximise the impact of
(and therefore reduce the dependency on) sparse high-fidelity data. The
adopted strategy provided an efficient, accurate and general method of
modelling soil behaviour, hence demonstrating the potential of physics-
informed AI methods for soil constitutive modelling.

Optimisation of geotechnical design, construction processes and risk
assessment

The optimisation of geotechnical design and construction processes
has become a focal point in contemporary geotechnical engineering,
with a growing emphasis on leveraging Al technologies. Historically,
geotechnical design relied heavily on manual analyses, empirical

Computers and Geotechnics 189 (2026) 107604

methods, and simplified models (Das, 2021). While these approaches
demonstrated efficacy in numerous scenarios, their limitations in
addressing complex modern challenges have become increasingly
evident.

In foundation engineering, a range of ML algorithms have been
applied to the prediction of the capacity (e.g. Provenzano et al., 2004,
Shahnazari and Tutunchian, 2012, Tsai et al., 2013, Lawal and Kwon,
2023) and settlement (e.g. Shahin et al., 2002, 2003, Rezania and Jav-
adi, 2007, Samui and Sitharam, 2008, Zhang et al., 2022b) of shallow
footings. Similarly, researchers have leveraged Al techniques to refine
various elements of pile design including: (a) pile driveability (e.g.
Vergote and Raymackers, 2022, Buckley et al., 2023), (b) resistance to
vertical loading (e.g. Pal and Deswal, 2010, Alkroosh and Nikraz, 2011,
Kordjazi et al., 2014, Kardani et al., 2020, Alexander et al., 2024), (c)
resistance to lateral loading (e.g. Suryasentana et al., 2020, Muduli
etal., 2013, Taherkhani et al., 2023), (d) settlements and displacements
(e.g. Nejad et al., 2009, Jebur et al., 2018, Ge et al., 2023), and (e) group
effects (e.g. Khatti et al., 2023).

An example of the design method improvements that Al can facilitate
is presented in Fig. 4, in this instance for the pile driveability problem
(Buckley et al., 2023). The figure plots the error in pile driveability
predictions using the industry-standard Alm and Hamre (2001) model
and an ML-updated generalised model during driving of an offshore
production pile in transitional soils. It is worth noting that the IMPACT
wave-equation model serves as a key component of the ML framework,
and its internal parameters are not updated during learning. The results
show that the ML-updated generalised model achieves significantly
improved performance over Alm and Hamre (2001). Such an approach
is not limited to this problem and has also been successfully adopted for
pipe-jacking predictions (Sheil et al., 2022).

Slope stability design is another popular use-case for Al (Deng et al.,
2021; Xu et al., 2023). The literature has focused predominantly on the
optimisation of slope failure mechanisms and factor of safety estimates
(Luo et al., 2021, Mahmoodzadeh et al., 2022, Aminpour et al., 2023),
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Fig. 3. Adopted multi-fidelity modelling workflow in Zhang et al. (2023a) involving the combination of a data-driven neural network and conventional phenom-
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prediction of failure times (Zhang et al., 2022a), spatio-temporal land-
slide hazard mapping (Xiao et al., 2023), and data-driven surrogate
development (Guardiani et al., 2022). Recent work has also included the
development of stochastic methods boosted by ML algorithms (Lin et al.,
2018, He et al., 2020, Zeng et al., 2022). An emerging research area in
this field relates to the combination of ML and remote sensing tech-
nologies, such as interferometric satellite synthetic aperture radar
(InSAR), to forecast anomalous behaviours indicative of incipient
collapse (e.g. Novellino et al., 2021, Bayaraa et al., 2023).

Popular applications to geotechnical construction processes pri-
marily relate to tunnelling activities, with the most prevalent being (a)
tunnel boring machine (TBM) performance prediction, (b) tunnel-
induced settlement prediction, (c) geological forecasting and (d) cut-
terhead design optimisation. Other research areas have included tunnel-
induced building damage prediction (Cao et al., 2020; Ninic et al.,
2024), TBM automation (Mokhtari and Mooney, 2019), tunnel condi-
tion assessment (Chen et al., 2019; Li et al., 2017; Zhu et al., 2020),
anomaly detection (e.g. Sheil et al., 2020c; Yu et al., 2018), tunnel
profile measurement (e.g. Xue and Zhang, 2019), resilience assessment

(e.g. Khetwal et al., 2019), structural defect identification (e.g. Ding
et al., 2019), tunnel face stability (e.g. Hayashi et al., 2019), rockburst
prediction (e.g. Liu and Hou, 2019) and intelligent building information
modelling (e.g. Zhao et al., 2019).

Finally, AI can be used to bridge different disciplines and allow the
application of advanced numerical models to regional-scale planning
procedures (Charles et al. 2023). This can be done by means of surrogate
models (e.g. Lambert et al. 2021; Previtali et al. 2022) that replicate the
output of a more complex and computationally intensive model at a
fraction of its cost. An example use-case is rockfall risk mitigation
(Fig. 5), where regional-scale hazard assessment is carried out by geol-
ogists, using tools such as Geographic Information Systems (GIS), field
investigations and remote sensing to inform rockfall propagation codes
(Lanfranconi et al. 2020). At this stage, measurement uncertainty and
natural variability is addressed by means of stochastic analysis, resulting
in hundreds of thousands of simulations, for which it would not be
feasible to apply standard numerical procedures.
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4. Key challenges for Al in geotechnics

Fig. 6 identifies key challenges for the proliferation of Al in geo-
technics. A cross-cutting challenge relates to how geotechnical AI ap-
plications fit into the wider context of ground engineering. Whilst there
are opportunities to share data and models towards a more holistic
perspective of the underground space, common ontologies and data
interoperability are required to curate a standardised framework for
data and model exchange. We elaborate below on these challenges and

offer viable solutions.

Challenge 1: Data scarcity and quality

All data-driven processes depend on the quantity and quality of
training data. Thus, one significant obstacle to AI prosperity in geo-
technics is scarcity of high-quality, annotated and diverse data.
Geotechnical datasets require meticulous annotation, where domain
experts label data points with accurate and detailed information about
soil properties, geological features, and engineering parameters, and
comment on test procedures. Limited data availability has been well-
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Potential Solutions

New ‘big data’ sensing technologies; increased collaboration; openaccess
datasets; data augmentation techniques

Model-agnostic tools and techniques for interpretability; physics-informed ML;
LLM for human-machine information exchange

Transfer learning; physics-informed ML; accessto large and diverse
geotechnical datasets

Probabilistic / Bayesian modelling; Monte Carlo dropout for neural networks;
ensemble methods; integration of geostatistical methods

Geotechnical-Al collaborations; hybrid physics-ML models; graph-based
representations/ontologies; Al upskilling

Cross-validation between geotechnics & Al; incorporation of interpretability
features; constrained Al models

Open reporting of failure cases; human-in-the-loop in safety-critical applications;
uncertainty quantification; rigorous benchmarking

Community-wide ethical discussions; human remaining ‘in the loop’; responsible
Al guidelines; greater levels oftransparency; new regulatory frameworks

Fig. 6. Identified Al challenges for future applications of Al in geotechnical engineering and potential solutions.

documented to have a major influence on the training of ML algorithms
(Bao et al. 2019) increasing the risk of inaccuracies, poor generalisation
and, in extreme cases, spurious predictions arising from overfitting.
There is a pressing need to establish unified standards for assessing
geotechnical data quality, distinguishing between tests of varying reli-
ability due to operator-dependence, testing procedures or instrumenta-
tion. Structured frameworks for assessing data quality in geotechnical
monitoring have recently been proposed (e.g. Jeong et al. 2019), and
data exchange standards such as AGS and DIGGS are gaining renewed
relevance. In low-data regimes, model developers often rely on proba-
bilistic surrogates (Suryasentana and Sheil, 2023), domain-informed
augmentation, or transfer learning.

To address this challenge, opportunities lie in federating trained
models owned by various stakeholders to overcome data-sharing con-
cerns within the geotechnical community. This typically involves
training a shared model across multiple decentralised datasets held by
different stakeholders, where each data owner trains the model locally
and only model updates (not raw data) are shared. A common set of
parameters and hyperparameters is used to coordinate training across
sites. This strategy also aligns with MLOps principles, which facilitate
traceable, reproducible and scalable model management. State-of-the-
art data collection methods will also help to alleviate data scarcity,
such as advanced sensing technologies (e.g. distributed fibre optic
sensing (Soga and Luo 2018), wireless mesh networks (Jeong et al.
2019)), and remote sensing (e.g. satellite InSAR (Bayaraa et al. 2022)).
Collaborative efforts to share anonymised datasets and establish stand-
ardised data formats can also enhance the availability of diverse data e.
g. the ‘DINGO’ pile load test database (Voyagaki et al. 2022). Further-
more, data science techniques such as data augmentation, transfer
learning, and synthetic data generation can be employed to amplify
existing datasets, enabling AI models to generalise better in diverse
geotechnical scenarios despite initial scarcity.

Challenge 2: Explainability and interpretability of blackbox models

Al (particularly DL) algorithms are commonly perceived as “black
boxes” that offer little insight into the underlying decision-making
process. In geotechnical engineering, where transparency and under-
standing of model predictions are crucial for informed decision-making,
the lack of explainability is a significant obstacle; new techniques are
required to extract meaningful insights from complex AI models. For

example, NLP can be used to learn geotechnical design codes for code
compliance checking. Additional techniques could include model-
agnostic interpretability tools, sensitivity analysis, and attention mech-
anisms to analyse model outputs and, in turn, identify influential factors
in geotechnical predictions. PIML also has potential to integrate domain
knowledge into Al models to leverage the relative strengths of physics-
based models and data-driven techniques to enhance both interpret-
ability and reliability of predictions (Vahab et al. 2023). Recent suc-
cesses in physics-informed constitutive models (e.g. Zhang et al. 2023a;
see Fig. 7) also demonstrate that data-driven modelling with physical
constraints can lead to more robust predictions, as shown in Fig. 8.
Dropout can act as a training-time regulariser as well as generate sto-
chastic samples at inference using the Monte-Carlo dropout formulation.
The resulting mean prediction and its variance respectively capture the
best estimate and the epistemic uncertainty of the model output.

There have been concerted efforts aimed at improving model inter-
pretability. Some of the proposed approaches include: (a) model
decomposition (Ribeiro et al. 2016), where complex models are broken
down into smaller, more understandable components; (b) rule extrac-
tion (Guidotti et al., 2018), where complex models are approximated by
rule-based models comprising if-then rules; (c) feature importance
(Lundberg and Lee, 2017), where technical frameworks such as SHAP
(SHapley Additive exPlanations) can highlight which features most
significantly impact model outputs, and (d) model cards reporting
(Mitchell et al., 2019), where documentation detailing the model
development, performance, and intended use cases are created
including full model versioning and development history tracking, as
enabled through MLOps pipelines.

Challenge 3: Generalisation across diverse geotechnical conditions

Generalising across a wide range of soil types, geological formations,
and environmental factors is a complex task. The challenge lies in
creating models that not only perform well on training data but also
demonstrate robustness when applied to new unseen conditions.
Transfer learning techniques are a promising solution to this challenge,
where models trained on data from one set of geotechnical conditions
are subsequently fine-tuned in a second stage to adapt to different sce-
narios. Zhou et al. (2024) already demonstrated the effectiveness of
these approaches for soil boundary detection where a generic open ac-
cess ‘source database’ was used for the first stage of model training with
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(b)

Fig. 7. Adopted modelling framework in Zhang et al. (2023b): (a) architecture showing model inputs and interaction between neural network outputs and physics
constraints (circled in red; using incremental nonlinear modelling in this example), and (b) one instance of severed neural connections during a Monte Carlo dropout
implementation of the neural network. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Comparison between model predictions and laboratory measurements of the triaxial stress—strain response of Toyora sand using an (a) ANN and (b) prior

information-based neural network (‘PiNet’) (Zhang et al. 2023b).

fine-tuning performed on the site-specific ‘target database’ (see frame-
work in Fig. 9). PIML can also enable models to encode fundamental
geotechnical mechanisms to reliably extrapolate to diverse conditions
(e.g. see Zhang et al. (2023b)). Ensuring training datasets are both
representative and sufficiently diverse is also crucial for improving
generalisation. Overcoming this challenge will enable more versatile,
reliable, and broadly applicable Al models for real-world geotechnical
engineering.

Challenge 4: Uncertainty in Al predictions

Given the cost of mistakes, uncertainty estimates are highly desirable

in geotechnical engineering. However, achieving such estimates from Al
models remains difficult. Probabilistic modelling, using Bayesian ML
techniques, offer a robust and principled means of capturing uncer-
tainty. In particular, GPR has already been shown to be highly adept at
modelling geotechnical uncertainty intrinsically (e.g. Sheil et al. 2020a,
Suryasentana and Sheil 2023; see Fig. 10). Even for deterministic Al
models, techniques exist to obtain estimates of epistemic uncertainty.
For example, in neural networks, Monte Carlo dropout is one of the most
common methods to test the sensitivity of model outputs to the exact
model architecture. Other popular options include ensemble methods,
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Fig. 10. Comparison of the measured axial strain for an undrained cyclic
triaxial test on clay and the forecasted axial strain (shaded bounds are the 95 %
confidence interval of the forecast) by the GP regression model predictions with
an LE + SE*PER covariance function; Suryasentana and Sheil (2023); SE =
squared exponential, LE = linear, PER = periodic.

such as bootstrapping.

Developing frameworks that integrate geostatistical methods with Al
models will also allow for a more comprehensive understanding of
spatial uncertainties. Recognising and accounting for uncertainty in Al
predictions will not only build confidence in these geotechnical models
but also provide engineers and decision-makers with valuable infor-
mation to make informed choices given highly uncertain subsurface
conditions.

Challenge 5: Linking Al with traditional geotechnical models and
empiricism

While Al can analyse large high-dimensional geotechnical datasets,
incorporation of domain expertise and contextual understanding is
crucial to realise accurate and meaningful interpretations. Ensuring that
Al models align with the community’s established engineering princi-
ples, design codes, and geotechnical theories represents another
important challenge. A promising future technique to address this issue
is automated code-compliance checking of any data-driven geotechnical
design e.g. Peng and Liu (2023). A multidisciplinary approach is also
necessary, involving collaboration between AI researchers and
geotechnical experts. Hybrid models that combine data-driven tech-
niques with physics-based principles can leverage the strengths of both
approaches, providing more interpretable and trustworthy results.
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Additionally, knowledge graph-based representations and ontologies
can be employed to explicitly encode and integrate domain-specific
knowledge into AI models. Effectively overcoming this challenge in
the longer term will likely require a degree of upskilling for the modern
geotechnical engineer such that one no longer analyses only the data,
but also the data-driven models fitted to the data. It is critical that AI
solutions are developed in a way that aligns with the nuanced under-
standing and valuable expertise of geotechnical engineers.

Challenge 6: Benchmarking, standardisation and validation

The likelihood of encountering ‘over-fitting’, and thus generating
spurious predictions, is substantially greater for AI algorithms compared
to traditional design models owing to their highly nonlinear constituent
expressions. Unlike traditional numerical models, where engineers
cross-validate results with simplified analytical models to ensure
reasonability, Al models may lack a similar mechanism for validation.
Validation of Al models in geotechnics typically involves k-fold cross-
validation or hold-out testing, with performance metrics such as
RMSE, R2, MAE, and, increasingly, uncertainty bounds used to assess
generalisation. However, domain-specific challenges (e.g. spatial auto-
correlation in site data) require careful protocol design. Implementing
Al in geotechnics requires balancing accuracy, training time, and
computational resources which can also be significantly influenced by
hyperparameter tuning. Common parameters (e.g. learning rate, regu-
larisation terms, and architecture depth) require systematic tuning,
often via grid or Bayesian search. Simple models (e.g. tree-based or
linear) train quickly on standard laptops, while deep learning models (e.
g. for 3D data or physics-informed tasks) may need hours or days on
high-performance GPUs. Inference is usually fast, but training can be
costly for smaller organisations without pre-trained models or cloud
services.

Existing geotechnical models (e.g. modified Cam clay) are inherently
deterministic, yielding consistent results irrespective of the specific
training data used. Engineers can rely on the well-established principles
and mathematical formulations within these models to anticipate the
behaviour of geotechnical materials with a high degree of confidence.
This predictability allows practitioners to understand the strengths,
weaknesses, and applicable ranges of a given constitutive model,
enabling effective validation through comparison with experimental or
field data. In contrast, Al models, being data-driven and influenced by
the diverse datasets used during training, may exhibit variations in their
outputs, making it challenging to establish a universally reliable
framework. The stability and consistency inherent in constitutive
models are key factors contributing to their enduring value in
geotechnics.

To address this, establishing a framework for cross-validation be-
tween Al outputs and traditional geotechnical approaches is essential.
Such an approach may involve integrating Al as a complementary tool
rather than a standalone solution, allowing for constant comparison
with established engineering knowledge. Incorporating interpretability
features into AI models, such as explainability algorithms, can further
facilitate the identification of potential discrepancies and enhance trust
in Al-generated insights within the context of geotechnical engineering
practices. Another effective solution is to constrain the Al model with
known and well-accepted theoretical/empirical concepts.

Challenge 7: Practical limits and lessons from negative results

Published geotechnical Al studies rarely label outcomes as ‘failures’
yet the broader literature documents recurring failure modes that war-
rant explicit recognition: overfitting to small or homogeneous datasets;
performance collapse under domain shift (new soil types, stress paths, or
instrumentation); data leakage during cross-validation; mis-labelled or
weakly constrained training targets; hallucination or spurious reasoning
in LLM assistants; and the omission of governing physics leading to non-
physical extrapolation (Shahin et al., 2008; Baghbani et al., 2022;
Febrianto et al., 2022; Latif et al., 2023; Kumar, 2024; Suryasentana &
Sheil, 2023). The tendency to publish only positive results makes it
difficult to form a complete and accurate picture of model performance
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and highlights the importance of open and transparent reporting of
negative outcomes.

Thus, it is prudent to highlight areas where conventional approaches
may be preferable (today): (i) decision contexts governed by codes /
closed-form design methods with proven margins of safety; (ii) projects
with extremely sparse or heterogeneous data where rigorous model
validation is impossible; (iii) regulatory submissions requiring full
parameter traceability; (iv) extrapolation far outside the training enve-
lope (new geology, loading) without embedded physics constraints; and
(v) safety-critical real-time control decisions unless uncertainty bounds
are available and monitored.

Challenge 8: Ethical and legal considerations

Al models that are purely data-driven are particularly susceptible to
inadvertently perpetuating biases in the training data. It is also likely
that the topic of “accountability” will become a focal point in future
litigation and will play a crucial role in shaping the legal landscape
surrounding Al in geotechnics. It seems imperative that the geotechnical
community rapidly and proactively engages in ethical discussions sur-
rounding the use of Al in our teaching, research, and industrial practice.
Firstly, it is worth noting that the use of Al in geotechnics will involve a
human “in the loop” in the foreseeable future such that Al is used as a
tool rather than a fully autonomous agent. Nevertheless, guidelines will
be required outlining responsible approaches to Al use. It is also likely
that the use of Al will require significantly greater levels of transparency
to ensure predictions are interpretable and there is satisfactory
accountability. This evolving legal landscape will likely prompt the
development of regulations and guidelines that balance technological
advancements with ethical considerations.

5. Current technological enablers

Physics-constrained AI modelling

Physics-constrained Al modelling was identified as a promising so-
lution to many of the aforementioned challenges and is thus considered
a priority enabler. Fig. 11 summarises the various levels to which ML
models can be constrained by physical concepts ranging from pure data-
driven (no constraints) to pure model-driven (but with ML updating).
For example, in levels three and four, physical constraints can be weakly
or strongly enforced respectively, as shown in Fig. 12 for a neural
network implementation. It is also worth noting that advances in data-

Model type

ML-updated physical
models

Physics-constrained ML
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driven dynamics have recently been shown to be capable of solving
complex physics with limited measurement data e.g. Erichson et al.
(2020). Therefore, the degree to which a model should be constrained
will depend on several factors including the size and quality of training
data, the complexity of the problem to be modelled, the risk of spurious
predictions, and the degree to which the physical laws are accepted
within the geotechnical community. Recent work demonstrates the
feasibility of physics-informed neural networks for core geotechnical
tasks, e.g., 3-D Terzaghi consolidation (Yuan et al., 2025), drilled-shaft
capacity prediction (Ouyang et al., 2024), and seepage assessment of
cut-off walls (Chen et al., 2023). These studies report accuracy within
+5 % of numerical benchmarks while offering orders-of-magnitude
speed-ups.

Multi-fidelity modelling

The premise of multi-fidelity modelling is to leverage both (i) low-
fidelity datasets, such as simplified expression or numerical analyses,
which may lack some degree of accuracy but can cheaply generate large
training datasets and (ii) high-fidelity datasets, such as field/laboratory
measurements, which have the highest level of accuracy but are insuf-
ficient on their own for Al training due to the typically small and
expensive datasets (see Table 1). It is also notable that further sub-
classifications of fidelity exist within these broad classifications (e.g.
fidelity level 1 subclassifications will depend on test and material type).
Multi-fidelity models can take many forms but commonly involve
training one model directly on the low-fidelity data and tasking a second
model to learn the relationships between the low- and high-fidelity
datasets, as illustrated in Fig. 13. While Fig. 13 presents a sequential
two-stage process for clarity, contemporary multi-fidelity methods
frequently employ richer interactions. Common enhancements include:
(i) co-training or hierarchical residual learning, where the high-fidelity
model learns corrections to the low-fidelity output recursively (e.g.
Perdikaris et al., 2017); (ii) Bayesian fusion methods that propagate
uncertainty from both fidelities into the combined prediction (e.g. Le
Gratier and Garnier, 2014); (iii) deep-operator frameworks that learn
mappings across fidelities in a single network (e.g. Xu et al., 2024); and
(iv) iterative feedback loops that alternate training phases to improve
consistency and calibrate uncertainty bounds (e.g. Lam et al., 2015).
These advanced patterns enable more robust generalisation and quan-
tification of predictive confidence in complex geotechnical settings.
Future developments in this area may involve refining techniques for

Description

Model is physics based; ML used only to update input parameters to
better capture observations.

Physical concepts are hard-coded into the model architecture and
thus physical constraints are strongly enforced.

Model architecture resembles that of a conventional data-driven

Physics-informed ML

model except loss functions now have physics-based terms; physical

constraints are weakly enforced.

Pre-trained ML

Pure data-driven ML

Model is pre-trained using data generated from a physics-based
model. No further constraints are applied to subsequent training.

No physics-based constraints. Model predictions are based on
training data only.

Fig. 11. Varying degrees to which ML models can be constrained with physical principles.
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Fig. 12. Schematic illustration of (a) physics-informed (weakly constrained) ML model and (b) physics-constrained (strongly constrained) ML model.

Table 1
Exemplar fidelity levels for geotechnical engineering.

Fidelity level Description

1 (highest) High-quality field measurements
High-quality laboratory measurements
3D numerical analysis

2D numerical analysis

1D numerical analysis

Empirical ‘rules of thumb’

U hAWN

seamlessly coupling different fidelity models, optimising their integra-
tion through ML algorithms, and developing adaptive strategies that
dynamically allocate computational resources based on the specific re-
quirements of a given problem.

Recent geotechnical demonstrations include a multi-fidelity Deep-
ONet that fuses process-oriented FE simulations (low fidelity) with
sparse field monitoring (high fidelity) for real-time settlement predic-
tion in mechanised tunnelling (Xu et al., 2024); a multi-scale GAN that
reconstructs subsurface profiles from blended low- and high-fidelity
exploration datasets (Zhou and Shi, 2025); and physics-informed mul-
tifidelity residual networks that leverage mechanistic simulations plus
limited laboratory data to model hydromechanical response and
constitutive soil behaviour (Zhang et al., 2022¢; He et al., 2023; Zhang
et al., 2024).

Knowledge discovery

Data-driven knowledge discovery holds significant promise for
transformative advancements in geotechnics. Two popular techniques in
this area include data-driven dynamics (Brunton et al. 2016) and PIML.
For example, Zhang et al. (2023c) recently demonstrated the ability of
PIML to discover Terzaghi consolidation theory directly from consoli-
dation measurements. Fig. 14 illustrates an inverse modelling workflow
based on PiNet, in which a governing partial differential equation is first

11

recovered from data and then solved to infer unknown parameters (in
this case, the coefficients of consolidation). This process is iterative and
leverages the physics-informed loss function to minimise prediction
error across the spatio-temporal domain. As access to geotechnical data
continues to increase, there will be increasing opportunities to extract
new insights, patterns, and mechanical laws from complex geotechnical
processes which are currently only captured by empiricism.

Digital twinning

Digital twinning seamlessly integrates digital and physical systems,
creating a real-time digital replica of a physical asset for simulation and
scenario forecasting. Physical sensing keeps the digital twin updated,
enabling health diagnostics and virtual control. ML supports autono-
mous updates and predictions, making twin systems central to future site
robotics and automation. In geotechnics, this will evolve into federated
digital twins, integrating models of ground, foundations, utilities, and
structures, to enable holistic understanding of system interactions and
dependencies (see Fig. 15).

Recent work is beginning to operationalise digital twins for under-
ground and geotechnical systems. Related civil-infrastructure studies
such as the statFEM twin of a self-sensing railway bridge (Febrianto
et al,, 2022) illustrate transferable, uncertainty-aware data-physics
fusion relevant to geotechnical assets. Latif et al. (2023) streamed TBM
operating data into an ML-enabled twin for real-time performance
prediction and visualisation. Apoji et al. (2023) outlined Al-assisted
decision layers for future mechanised tunnelling based on big data. Zhao
et al. (2024) explored how digital-twin functions support construction,
safety and lifecycle management for tunnels.

Human-machine interaction via large language models

LLMs (e.g. GPT-4) offer significant potential for advancing human-
algorithm interaction in geotechnics. Building on earlier NLP models,
they enable deeper insights from text and open new possibilities for
expert-Al collaboration. LLM-driven interfaces promise more intuitive
and dynamic deployments (e.g. Fig. 16). Generic LLMs often falter on
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Fig. 15. Illustration of a federated underground twin system.

niche geotechnical queries that lie outside their pre-training data. This
limitation can be mitigated via lightweight fine-tuning or retrieva-
l-augmented generation (RAG) on an expert corpus curated and peri-
odically reviewed by a specialist panel. Early feasibility studies show
that GPT-4 can answer textbook-level geotechnical questions with ~70
% accuracy and draft ground-investigation specifications (Chen et al.,
2024). Kumar (2024) demonstrated reliable geotechnical interpretation
via carefully engineered prompts, while Xu et al. (2025a) introduced
GeoLLM, a specialised LLM fine-tuned for intelligent geotechnical design
automation. Recent studies have explored the application of LLM tech-
niques such as RAG and few-shot learning in various geotechnical en-
gineering tasks, including automated site planning (Qian and Shi, 2025),
geological modelling (Li and Shi, 2025), and foundation design (Xu
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whilst also highlighting prompt-engineering and hallucination chal-
lenges to be managed.

Generative modelling

Generative Al, founded by generative adversarial networks (GANS;
Goodfellow et al., 2014) and advanced by diffusion models (Song et al.,
2020), offers three main opportunities for geotechnics. First, it can
generate realistic synthetic datasets to enhance multi-fidelity modelling
and simulation. Second, it enables automated, constraint-driven design
workflows that rapidly explore and evaluate geotechnical layouts,
shortening iteration cycles and revealing novel solutions. Third, by
learning from historical and site-specific data, generative models can
anticipate failure modes and inform proactive risk-mitigation strategies.
Together, these capabilities promise faster, more innovative, and safer
geotechnical engineering practice.

Recent domain-specific  adaptations include  SchemaGAN
(Montero et al. 2025) which produces realistic geotechnical subsurface
schematisations directly from sparse CPT data and outperforms kriging-
based interpolation. Zhou and Shi (2025) employed a multi-scale GAN to
fuse multi-fidelity exploration data for 2-D profile reconstruction with a
significant reduction in mean-squared error versus classical inversion
benchmarks. For time-series problems, Ge et al. (2024) introduced
RGAN-LS, a recurrent GAN that augments scarce displacement records
and improves landslide-displacement prediction accuracy by up to 18 %
in blind tests.

Operator learning and graph-based simulators

Neural-operator frameworks, such as the Wavelet Neural Operator
and the Physics-Informed Geometry-Aware Neural Operator, have
recently been adapted for computational mechanics, achieving mesh-
independent speed-ups of 50-100 times over the finite element
method (FEM) while retaining physics consistency (Tripura & Chakra-
borty 2023; Zhong and Meidani, 2025). Parallel advances in graph
neural network (GNN) simulators enable computationally efficient
particle-scale representations of granular flows. Jiang et al. (2024)
showed that GNN simulators can accurately predict granular collapse
dynamics and efficiently optimise DEM parameters. In more recent
work, a differentiable GNN surrogate replicated multi-layered slope run-
out dynamics with 145 x speed-up over the material point method
whilst also supporting inverse parameter identification (Choi et al.,
2025). These operator-learning and graph-based approaches open a
pathway to real-time, differentiable multi-scale geomechanical
simulations.

6. Closure

This paper has described the potential of integrating Al into
geotechnical engineering, driven by the need to address intricate chal-
lenges in various complex interactions between soils, groundwater,
structures and the environment. Highlighted recent advancements in
popular geotechnical applications for Al including intelligent site
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Fig. 16. Conceptualisation of an LLM-based interface between human and AI system.
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geotechnical design processes, demonstrated how Al is already facili-
tating more accurate predictive models and streamlined operations.
These selected use cases provide tangible evidence of how Al can deliver
benefits today.

However, to fully realise the future potential Al, several key chal-
lenges specific to geotechnics were identified. Data scarcity remains a
key challenge and risks hampering ML training due to the complex in-
teractions in any geotechnical project. The complexity of applying Al to
geotechnics rigorously was also linked to model interpretability,
generalisation across diverse conditions, and uncertainty integration.
Bridging AI with traditional geotechnical models and establishing
benchmarks becomes crucial for ensuring the alignment of Al models
with established engineering knowledge, overcoming potential biases
and enhancing trust within the geotechnical community.

Finally, the paper also explored priority technological developments
in geotechnical Al including human-machine interaction through large
language models, multi-fidelity modelling, knowledge discovery, digital
twinning, generative modelling, operator learning and graph-based
simulators. To achieve advancements in this area which align with
established engineering principles, this paper considered it necessary to
pursue a multidisciplinary approach involving collaboration between Al
researchers and geotechnical experts. The ethical dimensions, particu-
larly addressing bias and accountability, highlight the importance of
responsible Al use within legal frameworks.
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