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A B S T R A C T

Our reliance on the underground space to deliver critical civil engineering infrastructure is growing: to accommodate utility and transport infrastructure in urban 
environments, to provide innovative housing and commercial solutions, and to support proliferating renewable energy infrastructure, particularly offshore. Artificial 
intelligence (AI) is arguably the most promising enabler to transform geotechnical engineering by extracting knowledge from data to achieve step-change increases in 
efficiency, sustainability, reliability and safety. This paper seeks to develop a shared understanding of the state of the art of AI in geotechnics and to explore future 
developments. By way of example, specific popular use cases in geotechnics are considered to highlight current progress in AI applications including intelligent site 
investigation, predictive modelling for soil behaviour, and optimisation of design and construction processes. The paper then addresses key research challenges, such 
as data scarcity and interpretability, and discusses the opportunities that lie ahead in the integration of AI with geotechnical engineering. Finally, priority tech
nological enablers are identified for future transformations.

1. Introduction

The integration of artificial intelligence (AI) is already spurring 
transformative advancements in a range of domains. In healthcare, AI- 
driven diagnostic tools and predictive models have enhanced disease 

detection and treatment planning (Jiang et al. 2017). Applications in 
finance and economics have streamlined trading strategies, risk man
agement, and fraud detection (Goodell et al. 2021). AI technologies have 
also been used in the digital twinning of large infrastructures e.g. rail
way bridge and rail tracks (Febrianto et al., 2022; Sun et al., 2023). With 
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the recent rapid advancements in large language models (LLMs; e.g. 
ChatGPT; Vaswani et al. 2017), there has been a surge in motivation to 
explore the potential for AI to realise step-change increases in efficiency 
and innovation in geotechnics.

A key motivation for AI in geotechnical engineering stems from the 
pressing need to address the increasingly complex challenges faced in 
both underground infrastructure development (e.g. Sheil et al. 2020a, 
2020b), and offshore energy infrastructure development (e.g., Stuyts 
and Suryasentana, 2023). Subsurface ground conditions can be both 
highly complex and uncertain. Accurate prediction of soil behaviour is 
also highly challenging. Traditional analytical methods often struggle to 
cope with the intricacies and paradoxes of geotechnical data, leading to 
potential inaccuracies and inefficiencies in design and construction 
processes (Suryasentana and Sheil 2023). There is potential to leverage 
advanced machine learning (ML) algorithms and data-driven techniques 
to gain deeper insights from growing datasets, enabling more holistic 
and accurate predictive models and efficient processes. Importantly, 
many ML approaches can also be extended to capture model uncer
tainty, enhancing reliability in scenarios with complex or incomplete 
data.

This position paper synthesises key opportunities, challenges, and 
research needs for the application of AI in geotechnical engineering. 
Rather than providing an exhaustive review of historical literature, we 
highlight selected illustrative use cases, namely intelligent site investi
gation, predictive modelling of soil behaviour, and optimisation of 
design and construction processes, to support our arguments. However, 
each emerging theme identified is grounded in current evidence.

2. The rise of AI

The field of AI aims to create intelligent machines that can mimic 
human-like intelligence. Its fundamental goal is to enable machines to 
perceive the environment, reason, learn from experience, and make 
informed decisions based on data and patterns (Russell & Norvig 2010). 
AI is a broad umbrella term that encompasses ML, computer vison and 
robotics. Subfields within ML include deep learning (DL), reinforcement 
learning (RL), Bayesian variants, and natural language processing 
(NLP), each addressing specific aspects of intelligence emulation (see 

Fig. 1).
ML is a fundamental element of intelligent system development 

involving the development of algorithms and/or statistical models that 
allow machines to progressively improve their performance on a specific 
task, given training data. DL represents an additional subfield of ML that 
focuses on the design and training of artificial neural networks, inspired 
by the architecture and functioning of the human brain. DL leverages 
multiple layers (hence the term “deep”) of interconnected nodes or 
neurons to handle more complex tasks by using its hierarchical structure 
to automatically learn hierarchical representations of data, abstracting 
and extracting features at different levels of complexity. RL explores 
how ‘agents’ can learn to perform a task through repeated interactions 
with a given environment. The agent learns to optimise its behaviour 
over time by receiving feedback on decisions made, in the form of 
penalties or rewards. In contrast, NLP seeks to enable machines to un
derstand, analyse, and generate human language. This can extend 
beyond simple language recognition to include tasks such as sentiment 
analysis, language translation, and question answering. Bayesian vari
ants of ML are also popular for considering aleatoric and epistemic un
certainties in the analysis of the system of interest. In geotechnical 
applications, these might include model uncertainties, such as those 
related to the material (including spatial variability and uncertainties of 
material properties) and/or numerical model, along with uncertainties 
inherent to data quality and measurement systems (MacKay, 2003, 
Kennedy and O’Hagan, 2001, Girolami et al., 2021).

3. Recent progress in select popular AI applications in 
geotechnics

In this paper, we focus on recent progress in regression models and 
classifiers for (i) inversion (e.g. linking field data to geotechnical pa
rameters), (ii) predicting material responses (e.g. pile installation, 
foundation movements, landslides), (iii) predicting structural responses 
(e.g. TBM control), and (iv) improving the efficiency of deterministic 
approaches (e.g. constitutive models).

Intelligent site investigation and ground modelling
ML has been widely applied in geotechnics for data-driven ground 

modelling, helping to inform foundation design and identify optimal 

Fig. 1. Map of AI sub-fields.
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sampling locations for site investigation campaigns (Hu et al., 2021; 
Zhao and Wang, 2019; Yoshida et al. 2022). Data-driven ground models 
are usually constructed from geotechnical data such as cone penetration 
test (CPT) data or dynamic penetration test (DPT) data. These models 
involve two main predictive tasks: soil stratigraphy/layering identifi
cation and spatial interpolation/prediction of geotechnical properties.

Various ML techniques have been employed for soil stratigraphy 
identification, such as Gaussian Process regression (GPR), which is 
mathematically equivalent to its predecessor, kriging (Li et al., 2016), 
Bayesian model class selection (Wang et al., 2013), changepoint detec
tion (Houlsby and Houlsby, 2013; Ching et al., 2015; Suryasentana et al., 
2023), Bayesian compressive sampling (Wang et al. 2020), random field 
approaches (Cao et al., 2019; Gong et al., 2020), lasso-based regression 
(Shuku et al. 2020), clustering (Hegazy and Mayne, 2002; Zhao and 
Wang, 2020) and more recently, deep learning (Zhou et al. 2024). Fig. 2
shows recent examples of the identification of soil layer boundaries 
using DPT and CPT data, respectively. Suryasentana et al. (2024)
showed that univariate Bayesian change point detection (BCPD) 
methods outperform multivariate approaches in delineating soil strata 
from CPT data. In particular, the composite soil behaviour index Ic yields 
more reliable boundary predictions than the joint analysis of cone 
resistance Qt and friction ratio Fr, likely due to the empirical calibration 
of Ic against established soil classification databases, which implicitly 
embed prior knowledge relevant to stratigraphic interpretation.

For spatial predictions of geotechnical properties, previous re
searchers have used kriging (Firouzianbandpey et al., 2015; Cai et al., 
2019; Hu et al., 2020; Rahman et al., 2021), random field approaches 
(Cai et al., 2019), Bayesian compressive sampling (Wang and Zhao, 
2017; Wang et al., 2020; Wang and Li, 2021; Zhao et al., 2020), multiple 
point statistics (Shi and Wang, 2021a), XGBoost (Shi and Wang, 2021b) 
and neural networks (Sauvin et al., 2019; Wu et al., 2021).

In addition, there has been recent increased interest in integrated 
ground modelling that combines multiple data sources, such as 
geophysical and geotechnical data. Fusing multiple types of data aims to 
produce more accurate and consistent ground models that leverage the 
strengths of each data source. Data fusion techniques have been used to 
learn the relationships between the different data sources and exploit 
them for sub-surface prediction. These techniques include co-kriging 
(Sauvin et al., 2019; Xie et al., 2022), random field approaches 
(Huang et al., 2018), multi-scale approaches (Ghose and Goudswaard 
2004), Bayesian inference (Wellmann et al., 2018; Medina-Cetina et al., 
2019), multi-source Bayesian compressive sampling (Xu et al., 2021, 

2022), random forests (Christensen et al., 2021) and neural networks 
(Sauvin et al., 2019; Chen et al., 2021; Coelho and Karaoulis, 2022).

Predictive modelling for soil behaviour.
Soils are complicated particulate materials that exhibit complex 

mechanical behaviours including critical state (Roscoe et al., 1958; 
Schofield and Wroth, 1968), state-dependency (e.g., Been and Jefferies 
1985), stress dilatancy (e.g., Reynolds, 1885; Taylor, 1948; Bolton 
1986), anisotropy (e.g., Bishop, 1966, Amarasinghe and Parry, 1975), 
destructuration (e.g., Burland, 1990, Leroueil and Vaughan, 1990, Liu 
et al. 2013), stress-path dependency (e.g., Lade and Duncan, 1976), 
time-dependency (e.g., Suklje, 1957, Bjerrum, 1967), and non-coaxiality 
(e.g., Roscoe et al., 1967). Such behaviours have motivated the devel
opment of a range of constitutive models to capture time-dependency (e. 
g., Kim and Leroueil, 2001, Yin et al. 2011), state-dependency (e.g., Su 
and Yang, 2019, Kang et al., 2019a), stress dilatancy (e.g., Wan and Guo, 
1988, Su et al., 2010), anisotropy (e.g., Dafalias, 1986, Yin et al., 2010, 
Kang et al., 2019b), stress-path dependency (e.g., Hu et al., 2018), non- 
coaxiality (e.g., Tian and Yao, 2017), and phase change (e.g., Zhou and 
Meschke, 2013).

In conventional constitutive modelling, a mathematical equation, 
with a set of parameters or variables, is hypothesised to capture the 
behaviour of the soil. However, the desire to capture advanced soil be
haviours has led to increasingly complex constitutive models with 
greater numbers of material parameters. For example, SANISAND 
(Dafalias and Manzari, 2004) incorporates multiple fabric tensors and 
internal variables, which, although successfully capturing complex soil 
behaviours, increase model calibration complexity and limit 
interpretability.

With the increasing availability of AI resources in the early 90s, 
several researchers began exploring the application of AI methods, and 
particularly neural networks (NN), as an alternative for modelling ma
terial behaviour (e.g., Ghaboussi et al., 1990, 1991). Ellis et al. (1992)
and Ghaboussi et al. (1990) pioneered NN constitutive models (NNCMs) 
for soils; a notable influx of AI-based constitutive models followed (e.g., 
Ellis et al., 1995; Ghaboussi and Sidarta, 1998; Penumadu and Zhao, 
1999). This evolution in constitutive modelling extended beyond NNs to 
include other AI-based techniques such as evolutionary regression 
(Javadi and Rezania, 2009a). More recently, research in this area has 
moved towards numerical implementation of these ‘intelligent’ material 
models (e.g., Shin and Pande, 2000, Lefik and Schrefler, 2003; Hashash 
et al., 2004, Javadi and Rezania, 2009b). However, the performance of 
these early purely data-driven AI-based constitutive models was mixed, 

Fig. 2. Predictions of soil layer boundaries using (a) DPT data (Suryasentana et al. 2023), and (b) CPT data (Zhou et al. 2024).
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owing to their lack of interpretability and requirements for big data for 
effective training. Importantly, these models exhibited poor general
isation (extrapolative capabilities) where predictive reliability deterio
rated outside the feature space of the training data.

The recent resurgence of AI in geotechnics has renewed momentum 
in developing AI-based constitutive models, with physics-informed 
machine learning (PIML) methods (Raissi et al., 2019, Masi et al., 
2021, Masi and Stefanou, 2022) emerging as a key trend in material 
modelling. Recent studies have explored combining prior knowledge, 
such as empirical expressions or physics-based laws, with ML to 
constrain predictions within reasonable bounds (e.g. Weinan and Yu, 
2018, Liu and Wang, 2019, Sun et al., 2020, Cuomo et al., 2022, Vlassis 
and Sun, 2021, Flaschela et al., 2021). Whilst these advances have 
achieved significantly improved generalisation, such hybrid models still 
require large high-quality datasets to achieve predictive performance 
that is competitive with conventional constitutive models.

These challenges have inspired interpretable ML-based approaches 
which are suitable for training on sparse geotechnical datasets (Zhang 
et al., 2023a). For example, Zhang et al. (2022a) incorporated three 
different theoretical frameworks into a prior information based neural 
network (‘PiNet’), including incremental nonlinearity, hyperelasticity 
and elastoplasticity (see example in Fig. 3). The three PiNet models were 
subsequently applied to simulate the behaviour of real soils in 
conjunction with a multi-fidelity framework to maximise the impact of 
(and therefore reduce the dependency on) sparse high-fidelity data. The 
adopted strategy provided an efficient, accurate and general method of 
modelling soil behaviour, hence demonstrating the potential of physics- 
informed AI methods for soil constitutive modelling.

Optimisation of geotechnical design, construction processes and risk 
assessment

The optimisation of geotechnical design and construction processes 
has become a focal point in contemporary geotechnical engineering, 
with a growing emphasis on leveraging AI technologies. Historically, 
geotechnical design relied heavily on manual analyses, empirical 

methods, and simplified models (Das, 2021). While these approaches 
demonstrated efficacy in numerous scenarios, their limitations in 
addressing complex modern challenges have become increasingly 
evident.

In foundation engineering, a range of ML algorithms have been 
applied to the prediction of the capacity (e.g. Provenzano et al., 2004, 
Shahnazari and Tutunchian, 2012, Tsai et al., 2013, Lawal and Kwon, 
2023) and settlement (e.g. Shahin et al., 2002, 2003, Rezania and Jav
adi, 2007, Samui and Sitharam, 2008, Zhang et al., 2022b) of shallow 
footings. Similarly, researchers have leveraged AI techniques to refine 
various elements of pile design including: (a) pile driveability (e.g. 
Vergote and Raymackers, 2022, Buckley et al., 2023), (b) resistance to 
vertical loading (e.g. Pal and Deswal, 2010, Alkroosh and Nikraz, 2011, 
Kordjazi et al., 2014, Kardani et al., 2020, Alexander et al., 2024), (c) 
resistance to lateral loading (e.g. Suryasentana et al., 2020, Muduli 
et al., 2013, Taherkhani et al., 2023), (d) settlements and displacements 
(e.g. Nejad et al., 2009, Jebur et al., 2018, Ge et al., 2023), and (e) group 
effects (e.g. Khatti et al., 2023).

An example of the design method improvements that AI can facilitate 
is presented in Fig. 4, in this instance for the pile driveability problem 
(Buckley et al., 2023). The figure plots the error in pile driveability 
predictions using the industry-standard Alm and Hamre (2001) model 
and an ML-updated generalised model during driving of an offshore 
production pile in transitional soils. It is worth noting that the IMPACT 
wave-equation model serves as a key component of the ML framework, 
and its internal parameters are not updated during learning. The results 
show that the ML-updated generalised model achieves significantly 
improved performance over Alm and Hamre (2001). Such an approach 
is not limited to this problem and has also been successfully adopted for 
pipe-jacking predictions (Sheil et al., 2022).

Slope stability design is another popular use-case for AI (Deng et al., 
2021; Xu et al., 2023). The literature has focused predominantly on the 
optimisation of slope failure mechanisms and factor of safety estimates 
(Luo et al., 2021, Mahmoodzadeh et al., 2022, Aminpour et al., 2023), 

Fig. 3. Adopted multi-fidelity modelling workflow in Zhang et al. (2023a) involving the combination of a data-driven neural network and conventional phenom
enological models.
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prediction of failure times (Zhang et al., 2022a), spatio-temporal land
slide hazard mapping (Xiao et al., 2023), and data-driven surrogate 
development (Guardiani et al., 2022). Recent work has also included the 
development of stochastic methods boosted by ML algorithms (Lin et al., 
2018, He et al., 2020, Zeng et al., 2022). An emerging research area in 
this field relates to the combination of ML and remote sensing tech
nologies, such as interferometric satellite synthetic aperture radar 
(InSAR), to forecast anomalous behaviours indicative of incipient 
collapse (e.g. Novellino et al., 2021, Bayaraa et al., 2023).

Popular applications to geotechnical construction processes pri
marily relate to tunnelling activities, with the most prevalent being (a) 
tunnel boring machine (TBM) performance prediction, (b) tunnel- 
induced settlement prediction, (c) geological forecasting and (d) cut
terhead design optimisation. Other research areas have included tunnel- 
induced building damage prediction (Cao et al., 2020; Ninić et al., 
2024), TBM automation (Mokhtari and Mooney, 2019), tunnel condi
tion assessment (Chen et al., 2019; Li et al., 2017; Zhu et al., 2020), 
anomaly detection (e.g. Sheil et al., 2020c; Yu et al., 2018), tunnel 
profile measurement (e.g. Xue and Zhang, 2019), resilience assessment 

(e.g. Khetwal et al., 2019), structural defect identification (e.g. Ding 
et al., 2019), tunnel face stability (e.g. Hayashi et al., 2019), rockburst 
prediction (e.g. Liu and Hou, 2019) and intelligent building information 
modelling (e.g. Zhao et al., 2019).

Finally, AI can be used to bridge different disciplines and allow the 
application of advanced numerical models to regional-scale planning 
procedures (Charles et al. 2023). This can be done by means of surrogate 
models (e.g. Lambert et al. 2021; Previtali et al. 2022) that replicate the 
output of a more complex and computationally intensive model at a 
fraction of its cost. An example use-case is rockfall risk mitigation 
(Fig. 5), where regional-scale hazard assessment is carried out by geol
ogists, using tools such as Geographic Information Systems (GIS), field 
investigations and remote sensing to inform rockfall propagation codes 
(Lanfranconi et al. 2020). At this stage, measurement uncertainty and 
natural variability is addressed by means of stochastic analysis, resulting 
in hundreds of thousands of simulations, for which it would not be 
feasible to apply standard numerical procedures.

(a).

Fig. 4. (a) Workflow for an ML-updated generalised prediction model and (b) the corresponding pile driveability prediction error plotted during the driving of an 
unseen offshore pile compared to those obtained using the industry-standard Alm and Hamre (2001) model (Buckley et al., 2023). *relative error is defined as the 
difference between predicted and measured pile penetration normalised by the measured value.
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4. Key challenges for AI in geotechnics

Fig. 6 identifies key challenges for the proliferation of AI in geo
technics. A cross-cutting challenge relates to how geotechnical AI ap
plications fit into the wider context of ground engineering. Whilst there 
are opportunities to share data and models towards a more holistic 
perspective of the underground space, common ontologies and data 
interoperability are required to curate a standardised framework for 
data and model exchange. We elaborate below on these challenges and 

offer viable solutions.
Challenge 1: Data scarcity and quality
All data-driven processes depend on the quantity and quality of 

training data. Thus, one significant obstacle to AI prosperity in geo
technics is scarcity of high-quality, annotated and diverse data. 
Geotechnical datasets require meticulous annotation, where domain 
experts label data points with accurate and detailed information about 
soil properties, geological features, and engineering parameters, and 
comment on test procedures. Limited data availability has been well- 

Fig. 5. (a) Flowchart for the use of AI-based surrogate models to bring the accuracy of advanced numerical models to the efficiency standards required by large-scale 
planning, (b) example results from a surrogate model against the standard 500 kJ energy threshold (Previtali et al. 2022).
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documented to have a major influence on the training of ML algorithms 
(Bao et al. 2019) increasing the risk of inaccuracies, poor generalisation 
and, in extreme cases, spurious predictions arising from overfitting. 
There is a pressing need to establish unified standards for assessing 
geotechnical data quality, distinguishing between tests of varying reli
ability due to operator-dependence, testing procedures or instrumenta
tion. Structured frameworks for assessing data quality in geotechnical 
monitoring have recently been proposed (e.g. Jeong et al. 2019), and 
data exchange standards such as AGS and DIGGS are gaining renewed 
relevance. In low-data regimes, model developers often rely on proba
bilistic surrogates (Suryasentana and Sheil, 2023), domain-informed 
augmentation, or transfer learning.

To address this challenge, opportunities lie in federating trained 
models owned by various stakeholders to overcome data-sharing con
cerns within the geotechnical community. This typically involves 
training a shared model across multiple decentralised datasets held by 
different stakeholders, where each data owner trains the model locally 
and only model updates (not raw data) are shared. A common set of 
parameters and hyperparameters is used to coordinate training across 
sites. This strategy also aligns with MLOps principles, which facilitate 
traceable, reproducible and scalable model management. State-of-the- 
art data collection methods will also help to alleviate data scarcity, 
such as advanced sensing technologies (e.g. distributed fibre optic 
sensing (Soga and Luo 2018), wireless mesh networks (Jeong et al. 
2019)), and remote sensing (e.g. satellite InSAR (Bayaraa et al. 2022)). 
Collaborative efforts to share anonymised datasets and establish stand
ardised data formats can also enhance the availability of diverse data e. 
g. the ‘DINGO’ pile load test database (Voyagaki et al. 2022). Further
more, data science techniques such as data augmentation, transfer 
learning, and synthetic data generation can be employed to amplify 
existing datasets, enabling AI models to generalise better in diverse 
geotechnical scenarios despite initial scarcity.

Challenge 2: Explainability and interpretability of blackbox models
AI (particularly DL) algorithms are commonly perceived as “black 

boxes” that offer little insight into the underlying decision-making 
process. In geotechnical engineering, where transparency and under
standing of model predictions are crucial for informed decision-making, 
the lack of explainability is a significant obstacle; new techniques are 
required to extract meaningful insights from complex AI models. For 

example, NLP can be used to learn geotechnical design codes for code 
compliance checking. Additional techniques could include model- 
agnostic interpretability tools, sensitivity analysis, and attention mech
anisms to analyse model outputs and, in turn, identify influential factors 
in geotechnical predictions. PIML also has potential to integrate domain 
knowledge into AI models to leverage the relative strengths of physics- 
based models and data-driven techniques to enhance both interpret
ability and reliability of predictions (Vahab et al. 2023). Recent suc
cesses in physics-informed constitutive models (e.g. Zhang et al. 2023a; 
see Fig. 7) also demonstrate that data-driven modelling with physical 
constraints can lead to more robust predictions, as shown in Fig. 8. 
Dropout can act as a training-time regulariser as well as generate sto
chastic samples at inference using the Monte-Carlo dropout formulation. 
The resulting mean prediction and its variance respectively capture the 
best estimate and the epistemic uncertainty of the model output.

There have been concerted efforts aimed at improving model inter
pretability. Some of the proposed approaches include: (a) model 
decomposition (Ribeiro et al. 2016), where complex models are broken 
down into smaller, more understandable components; (b) rule extrac
tion (Guidotti et al., 2018), where complex models are approximated by 
rule-based models comprising if-then rules; (c) feature importance 
(Lundberg and Lee, 2017), where technical frameworks such as SHAP 
(SHapley Additive exPlanations) can highlight which features most 
significantly impact model outputs, and (d) model cards reporting 
(Mitchell et al., 2019), where documentation detailing the model 
development, performance, and intended use cases are created 
including full model versioning and development history tracking, as 
enabled through MLOps pipelines.

Challenge 3: Generalisation across diverse geotechnical conditions
Generalising across a wide range of soil types, geological formations, 

and environmental factors is a complex task. The challenge lies in 
creating models that not only perform well on training data but also 
demonstrate robustness when applied to new unseen conditions. 
Transfer learning techniques are a promising solution to this challenge, 
where models trained on data from one set of geotechnical conditions 
are subsequently fine-tuned in a second stage to adapt to different sce
narios. Zhou et al. (2024) already demonstrated the effectiveness of 
these approaches for soil boundary detection where a generic open ac
cess ‘source database’ was used for the first stage of model training with 

Fig. 6. Identified AI challenges for future applications of AI in geotechnical engineering and potential solutions.
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fine-tuning performed on the site-specific ‘target database’ (see frame
work in Fig. 9). PIML can also enable models to encode fundamental 
geotechnical mechanisms to reliably extrapolate to diverse conditions 
(e.g. see Zhang et al. (2023b)). Ensuring training datasets are both 
representative and sufficiently diverse is also crucial for improving 
generalisation. Overcoming this challenge will enable more versatile, 
reliable, and broadly applicable AI models for real-world geotechnical 
engineering.

Challenge 4: Uncertainty in AI predictions
Given the cost of mistakes, uncertainty estimates are highly desirable 

in geotechnical engineering. However, achieving such estimates from AI 
models remains difficult. Probabilistic modelling, using Bayesian ML 
techniques, offer a robust and principled means of capturing uncer
tainty. In particular, GPR has already been shown to be highly adept at 
modelling geotechnical uncertainty intrinsically (e.g. Sheil et al. 2020a, 
Suryasentana and Sheil 2023; see Fig. 10). Even for deterministic AI 
models, techniques exist to obtain estimates of epistemic uncertainty. 
For example, in neural networks, Monte Carlo dropout is one of the most 
common methods to test the sensitivity of model outputs to the exact 
model architecture. Other popular options include ensemble methods, 

Fig. 7. Adopted modelling framework in Zhang et al. (2023b): (a) architecture showing model inputs and interaction between neural network outputs and physics 
constraints (circled in red; using incremental nonlinear modelling in this example), and (b) one instance of severed neural connections during a Monte Carlo dropout 
implementation of the neural network. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Comparison between model predictions and laboratory measurements of the triaxial stress–strain response of Toyora sand using an (a) ANN and (b) prior 
information-based neural network (‘PiNet’) (Zhang et al. 2023b).
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such as bootstrapping.
Developing frameworks that integrate geostatistical methods with AI 

models will also allow for a more comprehensive understanding of 
spatial uncertainties. Recognising and accounting for uncertainty in AI 
predictions will not only build confidence in these geotechnical models 
but also provide engineers and decision-makers with valuable infor
mation to make informed choices given highly uncertain subsurface 
conditions.

Challenge 5: Linking AI with traditional geotechnical models and 
empiricism

While AI can analyse large high-dimensional geotechnical datasets, 
incorporation of domain expertise and contextual understanding is 
crucial to realise accurate and meaningful interpretations. Ensuring that 
AI models align with the community’s established engineering princi
ples, design codes, and geotechnical theories represents another 
important challenge. A promising future technique to address this issue 
is automated code-compliance checking of any data-driven geotechnical 
design e.g. Peng and Liu (2023). A multidisciplinary approach is also 
necessary, involving collaboration between AI researchers and 
geotechnical experts. Hybrid models that combine data-driven tech
niques with physics-based principles can leverage the strengths of both 
approaches, providing more interpretable and trustworthy results. 

Additionally, knowledge graph-based representations and ontologies 
can be employed to explicitly encode and integrate domain-specific 
knowledge into AI models. Effectively overcoming this challenge in 
the longer term will likely require a degree of upskilling for the modern 
geotechnical engineer such that one no longer analyses only the data, 
but also the data-driven models fitted to the data. It is critical that AI 
solutions are developed in a way that aligns with the nuanced under
standing and valuable expertise of geotechnical engineers.

Challenge 6: Benchmarking, standardisation and validation
The likelihood of encountering ‘over-fitting’, and thus generating 

spurious predictions, is substantially greater for AI algorithms compared 
to traditional design models owing to their highly nonlinear constituent 
expressions. Unlike traditional numerical models, where engineers 
cross-validate results with simplified analytical models to ensure 
reasonability, AI models may lack a similar mechanism for validation. 
Validation of AI models in geotechnics typically involves k-fold cross- 
validation or hold-out testing, with performance metrics such as 
RMSE, R2, MAE, and, increasingly, uncertainty bounds used to assess 
generalisation. However, domain-specific challenges (e.g. spatial auto
correlation in site data) require careful protocol design. Implementing 
AI in geotechnics requires balancing accuracy, training time, and 
computational resources which can also be significantly influenced by 
hyperparameter tuning. Common parameters (e.g. learning rate, regu
larisation terms, and architecture depth) require systematic tuning, 
often via grid or Bayesian search. Simple models (e.g. tree-based or 
linear) train quickly on standard laptops, while deep learning models (e. 
g. for 3D data or physics-informed tasks) may need hours or days on 
high-performance GPUs. Inference is usually fast, but training can be 
costly for smaller organisations without pre-trained models or cloud 
services.

Existing geotechnical models (e.g. modified Cam clay) are inherently 
deterministic, yielding consistent results irrespective of the specific 
training data used. Engineers can rely on the well-established principles 
and mathematical formulations within these models to anticipate the 
behaviour of geotechnical materials with a high degree of confidence. 
This predictability allows practitioners to understand the strengths, 
weaknesses, and applicable ranges of a given constitutive model, 
enabling effective validation through comparison with experimental or 
field data. In contrast, AI models, being data-driven and influenced by 
the diverse datasets used during training, may exhibit variations in their 
outputs, making it challenging to establish a universally reliable 
framework. The stability and consistency inherent in constitutive 
models are key factors contributing to their enduring value in 
geotechnics.

To address this, establishing a framework for cross-validation be
tween AI outputs and traditional geotechnical approaches is essential. 
Such an approach may involve integrating AI as a complementary tool 
rather than a standalone solution, allowing for constant comparison 
with established engineering knowledge. Incorporating interpretability 
features into AI models, such as explainability algorithms, can further 
facilitate the identification of potential discrepancies and enhance trust 
in AI-generated insights within the context of geotechnical engineering 
practices. Another effective solution is to constrain the AI model with 
known and well-accepted theoretical/empirical concepts.

Challenge 7: Practical limits and lessons from negative results
Published geotechnical AI studies rarely label outcomes as ‘failures’ 

yet the broader literature documents recurring failure modes that war
rant explicit recognition: overfitting to small or homogeneous datasets; 
performance collapse under domain shift (new soil types, stress paths, or 
instrumentation); data leakage during cross-validation; mis-labelled or 
weakly constrained training targets; hallucination or spurious reasoning 
in LLM assistants; and the omission of governing physics leading to non- 
physical extrapolation (Shahin et al., 2008; Baghbani et al., 2022; 
Febrianto et al., 2022; Latif et al., 2023; Kumar, 2024; Suryasentana & 
Sheil, 2023). The tendency to publish only positive results makes it 
difficult to form a complete and accurate picture of model performance 

Fig. 9. Transfer learning framework for soil boundary detection adopted in 
Zhou et al. (2024).

Fig. 10. Comparison of the measured axial strain for an undrained cyclic 
triaxial test on clay and the forecasted axial strain (shaded bounds are the 95 % 
confidence interval of the forecast) by the GP regression model predictions with 
an LE + SE*PER covariance function; Suryasentana and Sheil (2023); SE =
squared exponential, LE = linear, PER = periodic.
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and highlights the importance of open and transparent reporting of 
negative outcomes.

Thus, it is prudent to highlight areas where conventional approaches 
may be preferable (today): (i) decision contexts governed by codes / 
closed-form design methods with proven margins of safety; (ii) projects 
with extremely sparse or heterogeneous data where rigorous model 
validation is impossible; (iii) regulatory submissions requiring full 
parameter traceability; (iv) extrapolation far outside the training enve
lope (new geology, loading) without embedded physics constraints; and 
(v) safety-critical real-time control decisions unless uncertainty bounds 
are available and monitored.

Challenge 8: Ethical and legal considerations
AI models that are purely data-driven are particularly susceptible to 

inadvertently perpetuating biases in the training data. It is also likely 
that the topic of “accountability” will become a focal point in future 
litigation and will play a crucial role in shaping the legal landscape 
surrounding AI in geotechnics. It seems imperative that the geotechnical 
community rapidly and proactively engages in ethical discussions sur
rounding the use of AI in our teaching, research, and industrial practice. 
Firstly, it is worth noting that the use of AI in geotechnics will involve a 
human “in the loop” in the foreseeable future such that AI is used as a 
tool rather than a fully autonomous agent. Nevertheless, guidelines will 
be required outlining responsible approaches to AI use. It is also likely 
that the use of AI will require significantly greater levels of transparency 
to ensure predictions are interpretable and there is satisfactory 
accountability. This evolving legal landscape will likely prompt the 
development of regulations and guidelines that balance technological 
advancements with ethical considerations.

5. Current technological enablers

Physics-constrained AI modelling
Physics-constrained AI modelling was identified as a promising so

lution to many of the aforementioned challenges and is thus considered 
a priority enabler. Fig. 11 summarises the various levels to which ML 
models can be constrained by physical concepts ranging from pure data- 
driven (no constraints) to pure model-driven (but with ML updating). 
For example, in levels three and four, physical constraints can be weakly 
or strongly enforced respectively, as shown in Fig. 12 for a neural 
network implementation. It is also worth noting that advances in data- 

driven dynamics have recently been shown to be capable of solving 
complex physics with limited measurement data e.g. Erichson et al. 
(2020). Therefore, the degree to which a model should be constrained 
will depend on several factors including the size and quality of training 
data, the complexity of the problem to be modelled, the risk of spurious 
predictions, and the degree to which the physical laws are accepted 
within the geotechnical community. Recent work demonstrates the 
feasibility of physics-informed neural networks for core geotechnical 
tasks, e.g., 3-D Terzaghi consolidation (Yuan et al., 2025), drilled-shaft 
capacity prediction (Ouyang et al., 2024), and seepage assessment of 
cut-off walls (Chen et al., 2023). These studies report accuracy within 
±5 % of numerical benchmarks while offering orders-of-magnitude 
speed-ups.

Multi-fidelity modelling
The premise of multi-fidelity modelling is to leverage both (i) low- 

fidelity datasets, such as simplified expression or numerical analyses, 
which may lack some degree of accuracy but can cheaply generate large 
training datasets and (ii) high-fidelity datasets, such as field/laboratory 
measurements, which have the highest level of accuracy but are insuf
ficient on their own for AI training due to the typically small and 
expensive datasets (see Table 1). It is also notable that further sub
classifications of fidelity exist within these broad classifications (e.g. 
fidelity level 1 subclassifications will depend on test and material type). 
Multi-fidelity models can take many forms but commonly involve 
training one model directly on the low-fidelity data and tasking a second 
model to learn the relationships between the low- and high-fidelity 
datasets, as illustrated in Fig. 13. While Fig. 13 presents a sequential 
two-stage process for clarity, contemporary multi-fidelity methods 
frequently employ richer interactions. Common enhancements include: 
(i) co-training or hierarchical residual learning, where the high-fidelity 
model learns corrections to the low-fidelity output recursively (e.g. 
Perdikaris et al., 2017); (ii) Bayesian fusion methods that propagate 
uncertainty from both fidelities into the combined prediction (e.g. Le 
Gratier and Garnier, 2014); (iii) deep-operator frameworks that learn 
mappings across fidelities in a single network (e.g. Xu et al., 2024); and 
(iv) iterative feedback loops that alternate training phases to improve 
consistency and calibrate uncertainty bounds (e.g. Lam et al., 2015). 
These advanced patterns enable more robust generalisation and quan
tification of predictive confidence in complex geotechnical settings. 
Future developments in this area may involve refining techniques for 

Fig. 11. Varying degrees to which ML models can be constrained with physical principles.
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seamlessly coupling different fidelity models, optimising their integra
tion through ML algorithms, and developing adaptive strategies that 
dynamically allocate computational resources based on the specific re
quirements of a given problem.

Recent geotechnical demonstrations include a multi-fidelity Deep
ONet that fuses process-oriented FE simulations (low fidelity) with 
sparse field monitoring (high fidelity) for real-time settlement predic
tion in mechanised tunnelling (Xu et al., 2024); a multi-scale GAN that 
reconstructs subsurface profiles from blended low- and high-fidelity 
exploration datasets (Zhou and Shi, 2025); and physics-informed mul
tifidelity residual networks that leverage mechanistic simulations plus 
limited laboratory data to model hydromechanical response and 
constitutive soil behaviour (Zhang et al., 2022c; He et al., 2023; Zhang 
et al., 2024).

Knowledge discovery
Data-driven knowledge discovery holds significant promise for 

transformative advancements in geotechnics. Two popular techniques in 
this area include data-driven dynamics (Brunton et al. 2016) and PIML. 
For example, Zhang et al. (2023c) recently demonstrated the ability of 
PIML to discover Terzaghi consolidation theory directly from consoli
dation measurements. Fig. 14 illustrates an inverse modelling workflow 
based on PiNet, in which a governing partial differential equation is first 

recovered from data and then solved to infer unknown parameters (in 
this case, the coefficients of consolidation). This process is iterative and 
leverages the physics-informed loss function to minimise prediction 
error across the spatio-temporal domain. As access to geotechnical data 
continues to increase, there will be increasing opportunities to extract 
new insights, patterns, and mechanical laws from complex geotechnical 
processes which are currently only captured by empiricism.

Digital twinning
Digital twinning seamlessly integrates digital and physical systems, 

creating a real-time digital replica of a physical asset for simulation and 
scenario forecasting. Physical sensing keeps the digital twin updated, 
enabling health diagnostics and virtual control. ML supports autono
mous updates and predictions, making twin systems central to future site 
robotics and automation. In geotechnics, this will evolve into federated 
digital twins, integrating models of ground, foundations, utilities, and 
structures, to enable holistic understanding of system interactions and 
dependencies (see Fig. 15).

Recent work is beginning to operationalise digital twins for under
ground and geotechnical systems. Related civil‑infrastructure studies 
such as the statFEM twin of a self‑sensing railway bridge (Febrianto 
et al., 2022) illustrate transferable, uncertainty‑aware data‑physics 
fusion relevant to geotechnical assets. Latif et al. (2023) streamed TBM 
operating data into an ML‑enabled twin for real‑time performance 
prediction and visualisation. Apoji et al. (2023) outlined AI‑assisted 
decision layers for future mechanised tunnelling based on big data. Zhao 
et al. (2024) explored how digital‑twin functions support construction, 
safety and lifecycle management for tunnels.

Human-machine interaction via large language models
LLMs (e.g. GPT-4) offer significant potential for advancing human- 

algorithm interaction in geotechnics. Building on earlier NLP models, 
they enable deeper insights from text and open new possibilities for 
expert-AI collaboration. LLM-driven interfaces promise more intuitive 
and dynamic deployments (e.g. Fig. 16). Generic LLMs often falter on 

Fig. 12. Schematic illustration of (a) physics-informed (weakly constrained) ML model and (b) physics-constrained (strongly constrained) ML model.

Table 1 
Exemplar fidelity levels for geotechnical engineering.

Fidelity level Description

1 (highest) High-quality field measurements
2 High-quality laboratory measurements
3 3D numerical analysis
4 2D numerical analysis
5 1D numerical analysis
6 Empirical ‘rules of thumb’
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Fig. 13. Schematic illustration of one simplified instance of a sequential multi-fidelity modelling workflow.

Fig. 14. Example data-driven discovery of Terzaghi consolidation theory using physics-informed neural networks (Zhang et al. 2023c).
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niche geotechnical queries that lie outside their pre‑training data. This 
limitation can be mitigated via lightweight fine‑tuning or retrieva
l‑augmented generation (RAG) on an expert corpus curated and peri
odically reviewed by a specialist panel. Early feasibility studies show 
that GPT-4 can answer textbook-level geotechnical questions with ~70 
% accuracy and draft ground-investigation specifications (Chen et al., 
2024). Kumar (2024) demonstrated reliable geotechnical interpretation 
via carefully engineered prompts, while Xu et al. (2025a) introduced 
GeoLLM, a specialised LLM fine-tuned for intelligent geotechnical design 
automation. Recent studies have explored the application of LLM tech
niques such as RAG and few-shot learning in various geotechnical en
gineering tasks, including automated site planning (Qian and Shi, 2025), 
geological modelling (Li and Shi, 2025), and foundation design (Xu 
et al., 2025b). These studies confirm the practical potential of LLMs, 

whilst also highlighting prompt-engineering and hallucination chal
lenges to be managed.

Generative modelling
Generative AI, founded by generative adversarial networks (GANs; 

Goodfellow et al., 2014) and advanced by diffusion models (Song et al., 
2020), offers three main opportunities for geotechnics. First, it can 
generate realistic synthetic datasets to enhance multi-fidelity modelling 
and simulation. Second, it enables automated, constraint-driven design 
workflows that rapidly explore and evaluate geotechnical layouts, 
shortening iteration cycles and revealing novel solutions. Third, by 
learning from historical and site-specific data, generative models can 
anticipate failure modes and inform proactive risk-mitigation strategies. 
Together, these capabilities promise faster, more innovative, and safer 
geotechnical engineering practice.

Recent domain-specific adaptations include SchemaGAN 
(Montero et al. 2025) which produces realistic geotechnical subsurface 
schematisations directly from sparse CPT data and outperforms kriging- 
based interpolation. Zhou and Shi (2025) employed a multi-scale GAN to 
fuse multi-fidelity exploration data for 2-D profile reconstruction with a 
significant reduction in mean-squared error versus classical inversion 
benchmarks. For time-series problems, Ge et al. (2024) introduced 
RGAN-LS, a recurrent GAN that augments scarce displacement records 
and improves landslide-displacement prediction accuracy by up to 18 % 
in blind tests.

Operator learning and graph-based simulators
Neural-operator frameworks, such as the Wavelet Neural Operator 

and the Physics-Informed Geometry-Aware Neural Operator, have 
recently been adapted for computational mechanics, achieving mesh- 
independent speed-ups of 50–100 times over the finite element 
method (FEM) while retaining physics consistency (Tripura & Chakra
borty 2023; Zhong and Meidani, 2025). Parallel advances in graph 
neural network (GNN) simulators enable computationally efficient 
particle-scale representations of granular flows. Jiang et al. (2024)
showed that GNN simulators can accurately predict granular collapse 
dynamics and efficiently optimise DEM parameters. In more recent 
work, a differentiable GNN surrogate replicated multi-layered slope run- 
out dynamics with 145 × speed-up over the material point method 
whilst also supporting inverse parameter identification (Choi et al., 
2025). These operator-learning and graph-based approaches open a 
pathway to real-time, differentiable multi-scale geomechanical 
simulations.

6. Closure

This paper has described the potential of integrating AI into 
geotechnical engineering, driven by the need to address intricate chal
lenges in various complex interactions between soils, groundwater, 
structures and the environment. Highlighted recent advancements in 
popular geotechnical applications for AI including intelligent site 
investigation, soil behaviour modelling, and optimisation of 

Fig. 15. Illustration of a federated underground twin system.

Fig. 16. Conceptualisation of an LLM-based interface between human and AI system.
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geotechnical design processes, demonstrated how AI is already facili
tating more accurate predictive models and streamlined operations. 
These selected use cases provide tangible evidence of how AI can deliver 
benefits today.

However, to fully realise the future potential AI, several key chal
lenges specific to geotechnics were identified. Data scarcity remains a 
key challenge and risks hampering ML training due to the complex in
teractions in any geotechnical project. The complexity of applying AI to 
geotechnics rigorously was also linked to model interpretability, 
generalisation across diverse conditions, and uncertainty integration. 
Bridging AI with traditional geotechnical models and establishing 
benchmarks becomes crucial for ensuring the alignment of AI models 
with established engineering knowledge, overcoming potential biases 
and enhancing trust within the geotechnical community.

Finally, the paper also explored priority technological developments 
in geotechnical AI, including human–machine interaction through large 
language models, multi-fidelity modelling, knowledge discovery, digital 
twinning, generative modelling, operator learning and graph-based 
simulators. To achieve advancements in this area which align with 
established engineering principles, this paper considered it necessary to 
pursue a multidisciplinary approach involving collaboration between AI 
researchers and geotechnical experts. The ethical dimensions, particu
larly addressing bias and accountability, highlight the importance of 
responsible AI use within legal frameworks.
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