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Underground mining is developing towards deep and large scales; the safety production situation of mining becomes more and
more severe. The difficulty of early warning of rock mass instability has increased sharply. The rock shear-slip test is carried out
first, crack propagation features are investigated. Based on the idea of “the integrated development of deep learning technology and
mine rock mass monitoring,” an intelligent decision-making platform (IDMP) for the precursors of rock instability is proposed.
The results show that the crack network of marble specimens under the shear-slip test is composed of dominant and secondary
cracks. The intelligent identification model (IIM) of rock shear slip instability is constructed by the long short-term memory
network (LSTM), with 16 kinds of acoustic emission (AE) timing parameters as the input vectors and three states of no warning
[0, 0], first-level warning [1, 0], and second-level warning [1, 1] as the output ends. The instability IIM can effectively identify rock
shear-slip instability and determine the early warning level, and the recognition effect is good. Finally, based on the IIM, an IDMP
for rock instability precursors is constructed. IDMP consists of an early warning identification layer, an early warning analysis
layer, and an early warning decision-making layer, which can make intelligent decisions on whether to give early warning and
determine the level of early warning. The research results provide a new idea and method for the intelligent identification and early
warning release of rock mass instability early warning information.

Keywords: intelligent decision-making platform (IDMP); intelligent identification model (IIM); mining practice; precursors of
rock instability; rock mechanics

Summary

• Intelligent Decision-Making Platform (IDMP) for rock
instability precursors is constructed based on the Intelli-
gent Identification Model (IIM).

• IDMP is composed of an early warning identification
layer, an early warning analysis layer, and an early

warning decision-making layer, which makes the intelli-
gent decisions about the different kinds of warning levels.

1. Introduction

Large-scale underground mining sites have caused great stress
perturbations to the underground rock mass. It is essential to
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carry out the research on the real-timemonitoring of rockmass
and the early warning of its instability [1–3]. The early warning
of rock mass failure is extremely important and also a signifi-
cant challenge in the engineering and academic worlds [4–6].

Neural networks (NNs) have been used widely in the fields
of stability monitoring and early warning of rock mass. An
image identification model based on convolutional NN was
established for the seismic waveforms of microseismic (MS)
events and blasts, the accuracies ofMS events and blasts reached
99.46% and 99.33% [7]. Wu et al. [8] constructed a rockburst
intensity classification prediction model based on the principal
component analysis-probabilistic neural network (PCA-PNN)
principle, and verified that its prediction performance was
superior to the support vector machine (SVM) model and arti-
ficial neural network (ANN) model, with faster convergence
speed. Wu et al. [9] combined synthetic minority oversampling
technique (SMOTE) and convolutional neural networks
(CNNs) for landslide susceptibility assessment, reaching
89.50% model accuracy. Tian et al. [10] developed a rockburst
predictionmodel based on a deep neural network (DNN) incor-
porating Dropout and an improved Adam algorithm (DA-
DNN), achieving 98.3% accuracy with 289 engineering case
studies. Cuspmutation theory used to be a new integratedmodel
for rock instability prediction and early warning, this kind of
warning model performed better [11]. Feng et al. [12] reviewed
the recent achievements made by our team in the mitigation of
rockburst risk, included the application of NNmodeling and the
establishment of a quantitative warning method. Wang [13]
used the quiet period of AE and MS events to be an early
warning key point. Zhang et al. [14] adoptedCNN-LSTMmodel
for regression prediction of rock mass deformation and risk
warning classification. Wang et al. [15] adopt the back propaga-
tion neural network (BPNN) predictionmodel to provide a basis
for safely and efficiently predicting coal mine disasters, and it
obtained a good predictive performance. Huang et al. [16, 17]
reviewed several important uncertain issues of landslide suscep-
tibility prediction (LSP), and innovatively constructed the semi-
supervised imbalanced theory for reasonable LSP modeling. Ma
et al. [18] proposed aMS-based method and its implementation
steps for numerical simulation and the interpretation of hard
rock fracture. Li et al. [19] effectively proposed a novel hazard
classification safetywarning strategy for battery failure.Mao et al.
[20] developed efficient reduced-order models (ROMs) for

Underground hydrogen (H2) storage (UHS) in depleted natural
gas reservoirs using DNNs based on comprehensive reservoir
simulation data sets.

Preliminary research has accumulated a lot of results,
including algorithms optimization, computational efficiency,
algorithm redundancy, and so on. However, the influencing
factors of rock mass stability are extremely complex. The selec-
tion of precursor early warning parameters depends on experi-
ence, and the monitoring accuracy and early warning accuracy
are still not guaranteed.

In this research, the rock shear-slip fracturing test is carried
out by acoustic emission (AE) monitoring. With the guiding
ideology of “integrated development of deep learning technol-
ogy and rockmass monitoring,” an intelligent decision-making
platform (IDMP) for rock instability precursors is constructed.
The digital level of monitoring is continuously improved, so as
to provide a solution to the difficulty of monitoring and early
warning.

2. Rock Shear Slip Test Scheme

2.1. Rock Specimen. The size of marble specimen is 150 mm×
150mm× 80mm3, and pre-cracked in 20mm length is set at
the position of 75mm on site, which is parallel to the direction
of shear load (Figure 1). Marble specimen with obvious natural
bedding structure is selected, the bedding dip α (Figure 1) is 0°
(Figure 2a), 20° (Figure 2b), 30° (Figure 2c), 60° (Figure 2d).

Marble specimen named is set as the forms of MRS-XX.
MRS means “marble shear-slip”. XX means “bedding dip α”,
MRS-00 is marble specimen in the dip 0°, MRS-20 is marble
specimen in the dip 20°, MRS-30 is marble specimen in the dip
30°, and MRS-60 is marble specimen in the dip 60°.

2.2. Test Equipments. Testing system is shown in Figure 3,
which is composed of a horizontal loading unit, a vertical load-
ing unit, a measurement control unit, etc. Testing system
(RLW-3000) is used here, which can provide a maximum axial
force of 3000kN and a maximum shear force of 1000 kN. AE
monitoring system (PCI-Express) produced by PAC in the
United States is chosen, and eight number of sensors are uti-
lized (Figure 2b). It is necessary to ensure that the data of the
loading equipment and the monitoring equipment are strictly
corresponded to the time, and the timing of each equipments is
synchronized.

150 mm

No. 1 No. 2

20 mmα

Front side

Precracked

No. 3No. 4

80 mm

15
0 

m
m

ðaÞ

No. 7

No. 6

No. 8

No. 8
Back side

Precracked

ðbÞ
FIGURE 1: The size of marble specimens. (a) front, (b) back.
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All rocks adopt the same equipment parameter settings as
following: (1) AE monitoring system, eight models of Nano-30
sensors are symmetrically arranged on the front and back sides
of the specimen, the sampling rate is 1MSPS, the threshold

value is 45 dB, and the preamplifier gain is 30dB; (2) HD cam-
era, sampling frequency is 2 frames/s.

2.3. Loading Path. Go enhance the comparability of the moni-
toring results of rock shear slip tests under different lithologies
and different bedding dips, same loading path is used for all
experiments in this study (Figure 4).

1. Shear failure stage: after the axial and shear loads are
preloaded to 50 kN. After the axial direction is loaded at
500N/s to 100 kN, the axial direction is set to a fixed

α = 0°

ðaÞ
α = 20°

ðbÞ

α = 30°

ðcÞ

α = 60°

ðdÞ
FIGURE 2: Marble specimens with different bedding dips. (a) MRS-00, (b) MRS-20, (c) MRS-30, and (d) MRS-60.
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FIGURE 3: Testing setup. Testing site and AE sensors arrangement.
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FIGURE 4: Schematic diagram of normal and shear loading paths.

International Journal of Energy Research 3

 ijer, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/er/9267226 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [01/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



boundary. The shear direction is loaded at 0.15mm/min
until the shear failure occurs, and the maximum load is
reached in the shear direction.

2. Slow slip stage: After the axial direction is increased
from 500N/s to 200 kN, the axial direction is set to a
fixed boundary. The shear direction slips 1.5mm at the
rate of 0.12mm/min.

3. Fast slip stage: After the axial direction is increased from
500N/s to 300 kN, the axial direction is set to a fixed
boundary. The shear direction slips 1.5mm at the rate of
0.3mm/min.

4. The end: Store test data and clean up the test site.

2.4. Test Results

2.4.1. Analysis of Final Failure Characteristics.With the same
loading path (Figure 4), final failure patterns of different bed-
ding marble specimens have the same place (Figure 5). Domi-
nant cracks (MM-01, Figure 5a; MM-21, Figure 5b; MM-31,
Figure 5c; MM-61, Figure 5d) divide rock specimen into upper
and lower blocks, and dominant cracks are mainly coalesced
along the pre-cracked. Secondary cracks are shown in (MS-02,
Figure 5a; MS-22, Figure 5b; MS-32, Figure 5c; MS-62,
Figure 5d). Rocks have obvious rock detachment, exposing
the inner rock area (MB-03, Figure 5a; MB-23, Figure 5b;
MB-33, Figure 5c; MB-63, Figure 5d). The surface of MRS-60
specimen also captures the spalling phenomenon (MC-64,
Figure 5d).

2.4.2. Analysis of Fracture Propagation. Figure 6 counts crack
morphology of marble specimens at different stages with dif-
ferent dips. Solid dark red lines indicate dominant crack, solid
orange lines indicate secondary crack, and pale red shaded
areas indicate areas of fragmentation formed after the rock
flakes are spalled or debris falls. The law of fracture propagation
at each stage is summarized as follows:

• Marble MRS-00 specimen (Figure 6a): In the shear fail-
ure stage (Figure 6a, left), the penetrating dominant
crack has been formed, the opening degree is not large,
and the consistency with the bedding trend is good, and
the rock is divided into upper and lower rock blocks.
Two secondary cracks appear in the lower half of the
rock. In the slow slip stage (Figure 6a, middle), the
through-type dominant crack opens, and the staggered
momentumof the upper and lower rock blocks along the
dominant crack increases. Secondary cracks are distrib-
uted above and below the dominant cracks, and rock
spalling appears in the middle of the right side. In the
rapid slip stage (Figure 6a on the right), the opening of
the penetrating dominant crack further increases, and
the sliding dislocation momentum of the upper and
lower rock blocks increases. The secondary crack con-
tinues to expand, and the fracture network formed
becomes more complex.

• Marble MRS-20 specimen (Figure 6b): In the shear fail-
ure stage (Figure 6b, left), a penetrating dominant crack
is formed along the bedding, and the dominant crack
does not penetrate at the preset fracture. Secondary
cracks are more developed than those of MRS-00. In
the slow-slip stage (Figure 6b), the opening of dominant
cracks further increases and the number of secondary
cracks increases. A large area of rock blocks in themiddle
of the left side is spalled, and dominant cracks and preset
cracks are connected by vertical fractures. In the rapid
slip phase (Figure 6b, right), dominant cracks continued
to open and the number of secondary cracks increase.
The spalling area of the rock block in the middle of the
left side is enlarged, and the spalling area is also formed
in the vertical crack on the right.

• Marble MRS-30 specimen (Figure 6c): In the shear fail-
ure stage (Figure 6c, left), penetrating dominant cracks

MS-02

MM-01

MB-03

ðaÞ

MM-21

MB-23

MS-22

ðbÞ

MM-31
MB-33

MS-32

ðcÞ

MB-63
MM-61

MS-62

MC-64

ðdÞ
FIGURE 5: Actual photos of shear-slip final fracture characteristics of rocks at different bedding dips. (a) MRS-00, (b) MRS-20, (c) MRS-30, and
(d) MRS-60.
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ðaÞ

ðbÞ

ðcÞ
FIGURE 6: Continued.
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are not formed, but two dominant cracks that are nearly
parallel along the bedding dip. Secondary cracks do not
haveMRS-00 andMRS-20 development. In the slow slip
stage (Figure 6c, middle), the opening of the dominant
crack does not increase, and a banded rock spalling area
appears in the middle of the two dominant cracks. In the
rapid slip stage (Figure 6c, right), two dominant cracks
are connected in the striped rock spalling area, and the
preset fractures in themiddle of the left and themiddle of
the right are spalled in a small area.

• Marble MRS-60 specimen (Figure 6d): Fracture propa-
gation is most affected by the rock bedding, andmultiple
dominant fractures are developed at the same dip as the
shear direction. In the shear failure stage (Figure 6d, left),
non-penetrating dominant cracks develop, and second-
ary cracks are distributed around the dominant cracks.
In the slow slip stage (Figure 6d), the nonpenetrating
dominant crack expands further, and secondary crack
expands along the dominant crack. Dominant cracks
are penetrated by secondary crack. In the rapid slip stage
(Figure 6d right), dominant crack in the leftmiddle spalls
off after penetration, and the secondary crack continues
to develop. Large rock chips that has fallen after peeling
appear in the lower part.

There are similar rules for crack propagation in marble
specimens with different bedding dips at different stages.
Under the condition of shear-slip loading, one or more domi-
nant fractures arranged in the same direction and multiple
secondary fractures distributed near the dominant fractures
are formed in marble specimens. As the loading progresses,
the fracture state is closely related to the fracture at previous
moment, that is, the fracture propagation follows the law of
“inheritance”. A number of dominant fractures arranged in the
same direction are distributed in a goose-shaped manner, and
the secondary fracture arrangement have a pinnate distribution
pattern; that is, the crack distribution law of “the whole size of
en echelon crack and the local region of pinnate crack” in terms
of spatial–temporal aspects [21].

3. Intelligent Identification of Rock Instability
Based on LSTM

3.1. Introduction to LSTM. Long Short-Term Memory Net-
work (LSTM) is a special type of Recurrent Neural Network
(RNN), which is commonly used to deal with long-term depen-
dency problems [22–24]. The LSTM consists of an input gate, a
forget gate, an output gate, and a memory cell (Figure 7). The
memory unit is used to save and update long-term dependent
information throughout the sequence processing process. The
input gate is used to decide which information to store in the
memory cell. The forget gate is used to decide what information
should be removed from the memory unit. The output gate is
used to decide which information will be output to the next
time step. Each gate uses a sigmoid activation function to deter-
mine the flow of information.

LSTM overcomes the gradient vanishing and gradient
explosion problems of traditional RNNs in long sequence learn-
ing. LSTM is of high flexibility. LSTM can process input series of
different lengths, which has been widely used in various fields,
such as financial market forecasting, meteorological forecasting,
earthquake prediction, and other time series forecasting.

ðdÞ
FIGURE 6: Actual photos of shear slip process of rocks at different bedding dips (from left to right, shear failure stage, slow slip stage, and fast
slip stage). (a) MRS-00, (b) MRS-20, (c) MRS-30, and (d) MRS-60.
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FIGURE 7: The schematic of LSTM structure.
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3.2. IIM Construction Based on LSTM

3.2.1. Learning Samples. Since the discovery of the Kaiser effect
in the 1950s, AE technology has gradually become an impor-
tant tool in the field of nondestructive monitoring. Goodman
experimentally confirmed that rocks also exhibit the Kaiser
effect [25], which laid the theoretical foundation for the further
development of AE technology in geotechnical mechanics. The
role of AE signals in analyzing the fracture process of rocks
under stress has been widely studied [26–29]. During the stress
process, the propagation and rupture of microcracks generate
AE signals, the characteristics of which are closely related to the
rock’s instability process. For instance, higher-frequency AE
signals typically reflect the early stages of crack propagation,
while during the instability process, both the frequency and
amplitude of the signals may change. By analyzing these AE
signals, it is possible to identify the instability state of the rock,
thereby providing early warning information.

Learning samples are related to the redundancy of the input
vectors of the model, which is an important part of improving
the recognition accuracy and optimizing the learning perfor-
mance of the NN. Rock fracture AE data has a large short-term
volume, a vast amount of information and high dimensionality,
which is exactly aligned with the concept of big data (Appendix
Tables A1–A4). According to the AE timing information
obtained from the experiment (Figure 8), there are 16 eigen-
vectors, including rise time, count, energy, duration, amplitude,

average frequency, RMS, ASL, peak frequency, threshold, back-
calculated frequency, initial frequency, signal intensity, abso-
lute energy, center frequency, and peak frequency. The learning
sample is composed of these 16 eigenvectors.

The IIM proposed in this paper is based on the concept of
big data, which no longer cleans the data, and uses all the
collected effective feature information for the input layer fea-
ture vector.

3.2.2. Model Construction. The input vector is composed of 16
parameters of rock failure AE timing (Figure 8), and there are
three states of the output vector, namely, no warning, first-level
warning, and second-level warning. Suppose “00” does not give
an early warning, “10” gives a first-level warning, and “11” gives
a second-level warning. The input vector consists of 16 AE
timing parameters normalized (rise time, count, energy, dura-
tion, amplitude, average frequency, RMS, ASL, peak frequency,
threshold, back-calculated frequency, initial frequency, signal
strength, absolute energy, center frequency, peak frequency).
The output vector is represented by [00,10,11].

3.2.3. Model Training. The dataset (Table 1) is divided into a
training set (Table 2) and a test set (Table 3). The training set is
used for model training, and the test set is used to evaluate the
performance of the model. The initial learning rate of the train-
ing is set to 1× 10−4, the training batch size is set to 32, the total
number of training rounds is set to 100 epochs, the loss
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FIGURE 8: Feature dataset of learning samples.

TABLE 1: Statistical table of rock specimens.

Specimen
number

Instability
time tw

(s)

Data of
input
layer
/group

Data of output layer

No
warning
[0,0]
/group

Level 1 warning [1,0] Level 2 warning [1]

Number
/group

Start of
early

warning t1
(s)

Duration
of warn-
ing ΔT1

Lead rate of
early warn-
ing K1

Number
/group

Start of
early

warning
t2 (s)

Duration
of warn-

ing
ΔT2

Lead rate
of early
warning

K2

MRS00-1 1011.29 210,202 189,603 14,357 596.47 125.2 58.98 6242 978.21 11.98 96.73
MRS20-1 1149.09 204,709 204,157 385 527.12 346.15 45.87 167 1089.55 13.19 94.82
MRS30-1 1291.79 277,469 277,213 208 718.57 164.34 55.63 48 1116.70 12.52 86.45
MRS60-1 2213.55 259,234 257,631 1210 1846.40 143.71 83.41 393 2165.75 24.81 97.84

Note: K1 ¼ t1
tw
× 100%, K2 ¼ t2

tw
× 100%.
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function is Binary Cross-Entropy Loss (BCE Loss), and the
optimizer is Adam optimizer, so that the model can dynami-
cally adjust the learning rate to optimize the training effect.
Lead rate of early warning (K) represents the percentage of
start of early warning time relative to the instability time,
reflecting the system’s capability to provide prewarning dura-
tion for preventing property loss and ensuring safety. Analyz-
ing the training effect from the values of the loss function, the
loss function value decreases as the number of epochs increases
(Figure 9). Finally, it tends to stabilize and converge, which
indicates the effectiveness of the training.

3.3. IIM of Rock Shear-Slip Instability Based on LSTM. Mean
absolute error (MAE) and root mean square error (RMSE) are
selected to evaluate the performance of the model as the evalu-
ation indexes [30]. MAE is the average value of the absolute
error between the predicted value and the true value
(Equation (1)). It provides a direct measure of the average
magnitude of errors in the model’s predictions, without con-
sidering the direction of the error. A lower MAE indicates
better performance, reflecting fewer discrepancies between pre-
dicted and true values. RMSE is the square root of the average
of all errors squared (Equation (2)). RMSE givesmore weight to
larger errors due to the squaring of the differences, making it

sensitive to outliers. A lower RMSE suggests that the model’s
predictions are more accurate overall, particularly in terms of
handling larger deviations from the true values. BothMAE and
RMSE are important for understanding different aspects of
model performance. While MAE is more straightforward and
interprets the error as an average, RMSE highlights the signifi-
cance of larger errors. Together, these indices provide a com-
prehensive view of the model’s performance. The closer the
evaluation index value is to 0, the better the model perfor-
mance.

MAE¼ 1
n
∑
n

i¼0
byi − yij j; ð1Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼0
byi − yið Þ2

r
; ð2Þ

where n is the number of samples, byi is the predicted value, yi
is the true value.

Table 4 shows that the constructed intelligent early warning
information identification model can effectively identify the
rock shear slip instability and determine the early warning level
by the collected rock AE time series information, and the rec-
ognition effect is good.

4. IDMP for the Precursors of Rock Instability

The effective security early warning and the alarm technology
provide comprehensive information, such as the security levels,
violation components, and the security trend of the system
before a fault occurs [21, 31]. Figure 10 is a schematic diagram
of the rock instability precursor IDMP, which is mainly used
for intelligent early warning identification and early warning
decision-making of instability information, and the platform
comprises three modules, namely early warning identification
layer, early warning analysis layer and early warning decision-
making layer.

TABLE 2: Model training statistics.

Filename
Enter layer
data/group

Output layer data Training data

No warning [0,0]
/group

Level 1 early
warning [1,0]/group

Level 2 early
warning [1]/group

Loss
function

Training
duration (s)

Loss curve
convergence

Train.xlsx 862,502 845,534 11,931 5037
Binary cross-entropy

loss function
1668 Convergence

TABLE 3: Model test statistics.

Filename
Enter layer
data/group

Output layer data
Evaluation
indicators

No warning [0,0]
/group

Level 1 early
warning [1,0]/group

Level 2 early
warning [1]/group

MAE RMSE

Text.xlsx 89,112 83,070 4229 1813 0.08 0.19

100806040200

0.04

0.06

0.08

Lo
ss

Epoch

FIGURE 9: The variation of Loss with Epoch.
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• Early warning identification layer: The input vector of
LSTM is formed after the normalized processing of the
collected monitoring information, that is intelligent
identification layer of early warning information.
According to the idea of big data, the input layer directly
normalizes the collectedmonitoring information to form
the input vector of LSTM ½x1; x2;…; xi;…xN � :, and no
longer selects feature data. The IIM is constructed
through the LSTM NN, and the recognition accuracy
and efficiency of the model are optimized from multiple
perspectives, and the output is a representation vector
containing early warning information [0,0,1,0] and [1].

• Early warning analysis layer: Based on the early warning
identification results, the analysis line is designed to pro-
vide early warning information for the early warning
decision-making layer. When output [0,0], k0close,
k1、k2 open, green light on. When output [1,0],k1
closed, k0、k2 is open, a red light is on, that is level
1warning. When output [1], k1、k2 is closed, k2 is
open, two red lights are on, that is level 2 warning.

• Early warning decision-making layer: Based on the out-
put results of the line analyzed by the early warning
analysis layer, the early warning level is determined by
the decision-maker D. If the output result does not have
1, no warning will be given, and the decision will be
‘normal production’. When output is 1, enter the early
warning mode, [1, 0] is the first level of early warning,
and the decision is ‘production, focusing on the change

of monitoring information’; [1, 1] is a second-level early
warning, and the decision is to ‘stop production, do a
good job of pressure relief, supporting the key areas’.

Through the whole process of “Early warning identification
layer→Early warning analysis layer→Early warning decision-
making layer”, the IDMP for rock instability precursors con-
structed in Figure 10 is used to intelligently identify the AE
timing information of rock specimens RSLT-1, RSLT-3, RSLT-
4 and RSLT-5, which is effectively used for the intelligent iden-
tification of rock instability precursor information. This plat-
form can be practically applied in various scenarios, such as
monitoring rock instability in mining operations, providing
early warnings in underground tunnel construction to prevent
accidents, and supporting geotechnical engineers in evaluating
potential landslides or rockfalls in mountainous regions. The
intelligent identification of rock instability precursor informa-
tion plays a crucial role in ensuring the safety and stability of
structures in these environments.

However, while this study demonstrates the effectiveness of
the IDMP in rock instability early warning through laboratory
experiments, it is important to note that there are significant
differences between laboratory experiments and real-world
engineering scales. Due to the small scale of the experiments
and relatively simple environmental factors (such as stress dis-
tribution, temperature, and humidity), the results from the lab
may not fully reflect the complex conditions encountered in
actual engineering scenarios. At the engineering scale, varia-
tions in rock stress responses and geological conditions may

TABLE 4: Statistics of intelligent identification results.

Specimen
number

Instability
time tw

(s)

Data of
input
layer
/group

Output layer data

No
warning
[0,0]
/group

Level 1 early warning [1,0]/group Level 2 early warning [1]/group

Number
/group

Start of
early

warning
t1 /s

Duration
of warn-
ing ΔT1

Lead rate
of early
warning

K1

Number
/group

Start of
early

warning
t2 (s)

Duration
of warn-
ing ΔT2

Lead rate
of early
warning

K2

RSLT-1 1108.51 79,105 77,317 1768 462.89 79.82 41.76 20 1048.12 10.67 94.55
RSLT-3 1092.26 2777 2584 180 632.91 134.54 57.94 13 999.65 20.19 91.52
RSLT-4 1121.34 36,316 36,189 113 702.26 100.74 62.63 14 1000.12 29.25 89.19
RSLT-5 990.93 39,120 38,447 662 589.54 176.67 59.49 11 950.76 15.23 95.95

Input vector
[x1, x2, ..., xi, ..., xN]

Early warning
identifcation layer

Input
layer

x1

x2

xi

xN

Hidden
layer #1

Hidden
layer #2

Output
layer

[0, 0]

k1

k0

k2

[1, 0]
[1, 1]

Early warning
analysis layer

k0 close. k1, k2 open

No warning

N

Y

Include “1” or Not

D

D

Warning
level

First-level

[0, 0] Normal production

Production, focusing on the
change of monitoring

information

Stop production, do a good job
of pressure relief, supporting

the key areas

[1, 0]

[1, 1] Second-level

k1 close. k0, k2 open

k1,k2 close. k0, k2open

Early warning decision-making
layer

Bias
inputs

FIGURE 10: Intelligent decision-making platform for rock instability precursors.
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lead to different prediction outcomes than those observed
under laboratory conditions. Therefore, scale effects could
impact the prediction accuracy of the platform, especially in
practical applications like mining, tunnel construction, and
landslides in mountainous regions. To further verify the reli-
ability of this decision-making platform in large-scale engineer-
ing applications, future research should consider applying the
platform in larger-scale experiments or field tests and address
prediction errors caused by scale effects. This will not only
improve the platform’s versatility but also enhance its safety
and accuracy in practical applications.

5. Conclusions

1. The fracture network of marble specimens under
shear slip is composed of dominant crack and sec-
ondary cracks. Dominant cracks have a global scale,

the secondary cracks belong to a local scale, and the
secondary cracks are distributed around the domi-
nant fractures.

2. Based on LSTM, an IIM of rock shear-slip instability is
constructed. LSTM IIM effectively identify the rock
shear slip instability and determine the early warning
level, and fits recognition effect is good.

3. According to the early warning information, the early
warning analysis layer sends out the corresponding
early warning signal. The early warning decision-
making layer determines the early warning level and
makes early warning decisions based on the early
warning signals.

Appendix A

10 International Journal of Energy Research
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