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EnVisionVR: A Scene Interpretation Tool for Visual
Accessibility in Virtual Reality
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Abstract—Effective visual accessibility in Virtual Reality (VR)
is crucial for Blind and Low Vision (BLV) users. However,
designing visual accessibility systems is challenging due to the
complexity of 3D VR environments and the need for tech-
niques that can be easily retrofitted into existing applications.
While prior work has studied how to enhance or translate
visual information, the advancement of Vision Language Models
(VLMs) provides an exciting opportunity to advance the scene
interpretation capability of current systems. This paper presents
ENVISIONVR, an accessibility tool for VR scene interpretation.
Through a formative study of usability barriers, we confirmed
the lack of visual accessibility features as a key barrier for
BLV users of VR content and applications. In response, we used
our findings from the formative study to inform the design and
development of ENVISIONVR, a novel visual accessibility system
leveraging a VLM, voice input and multimodal feedback for
scene interpretation and virtual object interaction in VR. An
evaluation with 12 BLV users demonstrated that ENVISIONVR
significantly improved their ability to locate virtual objects,
effectively supporting scene understanding and object interaction.

Index Terms—Virtual Reality (VR), Vision Language Models,
Visual Accessibility, Blind and Low Vision Users.

I. INTRODUCTION

V IRTUAL Reality (VR) is a primarily visual medium.
The centrality of visual perception in the VR experience

presents a major challenge when making the technology
accessible to Blind and Low Vision (BLV) users. While
screen readers and audio descriptions have played a crucial
role in enabling BLV users to access information from two-
dimensional (2D) screens, this accessibility issue persists for
three-dimensional (3D) spatial content. In contrast with how
screen readers and audio descriptions work on conventional
2D user interfaces, the current form of VR applications chal-
lenges the systematic organisation and delivery of 3D spatial
information in an intuitive and efficient format.

In an effort to address the exclusion of BLV users from VR
experiences, prior work has studied visual accessibility design
in virtual [47, 46] and augmented reality [19]. Wang et al. [40]
also studied VR accessibility practices among VR developers.
These efforts seeking to improve VR visual accessibility
have adopted different strategies, such as enhancing visual
information through view magnification, brightness/contrast
adjustment, object contour highlighting [47]; or converting
visual information to other forms like audio descriptions of
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virtual objects [47] or vibrotactile feedback [46]. With the
advent of Vision Language Models (VLMs), new opportunities
are emerging to generate vivid and detailed scene descriptions
based on the user’s field of view. Such capability can be
embedded in output modalities such as speech, audio, and
haptic cues to facilitate the user’s understanding of 3D scenes.

This paper presents ENVISIONVR, an integrated set of
VR scene interpretation and virtual object localization tools
that assist BLV users in navigating VR. The development
was guided by a formative usability study with eight BLV
participants, which provided empirical information on the
support required by BLV users and, particularly, the types
of accessibility features that support scene understanding and
interaction. ENVISIONVR was then implemented as a proof-
of-concept system to improve visual accessibility in VR by
providing (a) high-level natural language scene interpretation
powered by a VLM, and (b) detailed low-level object de-
scription and localization tools based on speech, audio, and
haptic cues. The system was evaluated in a user study with
12 BLV participants, who were asked to complete three tasks
related to scene understanding, object localization, and object
interaction with and without ENVISIONVR in a VR scene.
Participants achieved a significantly higher success rate when
locating virtual objects with ENVISIONVR.

This research makes three main contributions. First, the
formative study adds to the existing literature on accessibility
barriers for BLV users by emphasizing the lack of functions
for scene description and interaction support as a key concern.
Second, to the best of our knowledge, ENVISIONVR is the
first proof-of-concept system to incorporate detailed VLM-
based scene descriptions for real-time visual accessibility in
VR, through spatial audio, voice instructions, and speech-
based function activation methods. Third, we offer a set of
design implications derived from the system’s development
process and evaluation to inform visual accessibility design in
VR more extensively.

II. RELATED WORK

A. Visual Accessibility Design in VR

In a study conducted by Naikar et al. [34], 39 out of 106
inspected free VR experiences (36.8%) lacked accessibility
features. Furthermore, users may encounter multiple accessi-
bility barriers in the same context [11]. Anderton et al. [2]
categorized accessibility features in 330 VR applications,
while other works focused more specifically on visual acces-
sibility in VR to provide a more inclusive experience [10, 15].
Mostly, this has been approached through augmenting visual
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information [47, 31, 38] or translating it into audio or haptic
feedback [46, 25, 47, 22, 28].

Outstanding work in the area of augmenting visual infor-
mation includes the development of tools for magnification,
contrast adjustment, color correction, text and display size
adjustment, among others. Gear VRF Accessibility [38], for
instance, provided a framework for developers to adapt zoom,
invert colors, and add captions in a VR environment. VRi-
Assist [31] supported the user by offering visual assistance
based on eye tracking, providing tools like magnification,
distortion, color and brightness correction. SeeingVR [47]
involved a larger set of visual augmentation tools that proved
effective for task completion in VR (such as menu navigation,
visual search, and target shooting). Consistent with these
approaches, Ciccone et al. [9] recommended implementing
contrast adjustment controls, color correction controls, and
font and display size adjustments to increase information
visibility when designing for visual accessibility.

Research focused on converting visual information into
other forms has also resulted in a variety of systems supporting
visual accessibility in VR. For instance, both Canetroller [46]
and VIVR [25] simulated the use of a white cane in the
virtual world. This included providing 3D spatial audio feed-
back, physical resistance, and vibrotactile feedback to simu-
late cane–virtual object interaction. The aforementioned See-
ingVR [47] also included text-to-speech and object recognition
from visual information to speech. In a more specialized
context, Dang et al. [12] outlined a multimodal-multisensor
VR system with spatial audio, audio descriptions, audio feed-
back, and vibrotactile feedback to enhance the experience of
BLV participants in immersive musical performances. Lança
et al. [28] studied different techniques to communicate the
position of buttons on a grid and found speech to be more intu-
itive over sonification in sharing the 2D grid position. Finally,
VRBubble [22] enhanced BLV users’ peripheral awareness
to facilitate social VR accessibility through audio alternatives
such as earcons, verbal notifications, and real-world sound.

Among both approaches, augmenting visual information
cannot support users who are blind or with very limited
visual perception. Thus, the work in this paper focuses on
integrating the relatively underexplored methods of converting
visual information into speech, audio cues, and haptics. We
investigate how VLMs could be incorporated to provide vivid
scene descriptions. By combining these multiple modalities,
we aim to provide users with a high-level understanding of
their surroundings, as well as a detailed understanding of
object-level information to support interaction.

B. Screen Readers and Web Accessibility

Screen readers are a well-established accessibility tool for
BLV users; their design concepts can provide valuable insights
for the design of visual accessibility in immersive environ-
ments. NVDA, JAWS, and VoiceOver are three of the most
commonly used screen readers for desktops and laptops [41].
While these different screen readers have distinct character-
istics, they share key design principles which underpin their
effectiveness. First, popular screen readers prioritize keyboard

navigation. Keyboard navigation allows users to navigate dig-
ital content without the need for a mouse, which is critical for
people with vision impairment [24]. Second, screen readers
focus on the semantic structure to facilitate smooth navigation
and ensure information accuracy. On this topic, a series of
works [48, 14, 42] have specifically focused on how to improve
the usability of screen readers by correctly and efficiently
conveying semantic details. Third, screen readers also provide
alternative text for images, which is a crucial step to help
convey non-textual content [43, 33]. Fourth, screen readers
use headings and landmarks to assist website navigation and
hierarchy [37]. Finally, screen readers also assist user input,
such as filling in and submitting forms and documents online,
an important part of web interaction [6].

ENVISIONVR takes inspiration from and expands on the
design principles and concepts of screen readers and audio
descriptions. Based on the above, we arrive at an interactive
design that uses speech commands as a parallel to keyboard
navigation, while constructing high-level scene information
and detailed object-level information for BLV users as a
parallel to the semantic structure processed by screen readers.
Furthermore, VLMs provide a highly efficient way to produce
audio scene descriptions, a parallel to explicit alternative text.

C. Powering Visual Accessibility with Artificial Intelligence

The emergence of powerful VLMs has enabled the auto-
mated generation of high-quality descriptions of visual in-
formation. Current VLMs [35, 8, 30, 5, 45] are capable of
jointly processing images and text data for image captioning,
visual question answering, and medical image analysis. These
models are now being deployed in a range of use cases to
power visual accessibility features. For example, De La Torre
et al. [13] demonstrated potential applications of their Large
Language Model (LLM)-based tool for 3D scene editing in
visual accessibility. Jiang et al. [23] highlighted the potential
of advanced AI models to enhance the quantity and quality of
audio descriptions.

For physical-world scenarios, Microsoft developed Seein-
gAI [32] to narrate the physical world for BLV users. Simi-
larly, Be My Eyes launched Be My AI [16], an AI assistant
powered by GPT-4, which provides detailed descriptions of
photos taken and uploaded by BLV users, and a braille
display for deaf-blind users. Vision-language models like
WorldScribe [7] and multimodal large language models like
VIAssist [44] generate live visual descriptions of the real world
for BLV users. Kuribayashi et al. proposed WanderGuide [27],
a robotic guide which assists recreational indoor exploration
for blind users by providing different levels of description
detail and verbal interaction. Specific use cases for scene
description in real-life scenarios have been identified through
a diary study [17], which highlights the effectiveness of
generative models for visual accessibility design.

The increasing attention to applying VLMs to interactions
in 3D content and accessibility design illustrates the strong
capability of such models, but there has been limited work
studying how these models could be applied in accessibility
design for VR immersive environments. Our work addresses
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this gap by leveraging the capabilities of VLMs for VR
scene interpretation. Existing physical-world vision-language
pipelines [32, 16, 7, 44, 27] highlight key implications includ-
ing the need for context-aware descriptions, spatialized cues,
and user-centered navigation support, which inform the design
of VLM-assisted visual accessibility systems in immersive
environments.

III. FORMATIVE STUDY

In the formative usability study, which involved eight BLV
participants, we sought to understand the accessibility barri-
ers encountered in consumer-based VR and AR technology.
Through this process, we studied the adaptations implemented
when facing such barriers, namely the way people with specific
access needs modified their behaviour or received assistance
from another non-disabled person to fully or partially over-
come these issues.

A. Method

Our study protocol evaluated the usability of representative
consumer-level, single-user VR experiences to identify the
types of barriers encountered. The majority of the experiences
represented content currently available in the market, while
others were included to cover the full range of usability
demands in VR, such as vision, hearing, touch and physical
movement, and interaction modes, such as controller-based
and hand-tracking. The study tasks and experiences became
progressively more complex as the study progressed. See the
Online Appendix for the complete set of experiences, tasks
and sub-tasks.

Meta Quest 2 was used. Tasks and experiences were de-
signed following the typical user journey; beginning with
wearing and fitting the VR hardware (VRH: Headset,
VRC: Controllers), followed by navigating the Meta Quest
universal menu to configure existing accessibility features
(VR1: Menu), and completing each of the selected experiences:
VR2: “As it is” 360° video1 (immersive video documen-
tary), VR3: Job Simulator2 (videogame simulating a cooking
scenario, using virtual hands to manipulate objects while
following cooking instructions), VR4: Moss3 (storyline-based
videogame where the user becomes a secondary character
that interacts with objects and controls other characters), and
VR5: Elixir4 (hand-tracking-based videogame where the user
manipulates virtual objects with their real hands). Sub-tasks
were basic commands revolving around specific steps required
to progress through each experience and explore available
features and interactables.

In total, participants completed 34 sub-tasks spread across
two VR hardware tasks and five VR experiences (e.g., ‘Adjust
the focal distance of the headset’, ‘Spot different visitors in the
scene, from those close by to those at a distance’). Participants
were asked to perform each sub-task while thinking aloud. A
researcher scored task success on a 0–3 scale (0 = unable

1Produced by 360 Labs
2Produced by Owlchemy Labs
3Produced by Polyarc
4Produced by Magnopus

to start or finish the task, even with adaptations, 1 = able
to start but unable to finish the task, even with adaptations,
2 = successful completion of the task with adaptations, and
3 = successful completion of the task without adaptations).
The concept of adaptation arose after a pilot study that
showed most sub-tasks were not achievable for multiple people
with access needs. Thus, we resolved to study adaptations
as either self-initiated unconventional behaviour (e.g., holding
a VR controller with two hands for pointing accuracy) or
assistance where the researcher supported the participant in
achieving their goals by mimicking plausible but unavailable
accessibility functionality (e.g., imitating a non-existent screen
reader feature).

The study was approved by the Ethics Committee of the
College of Engineering, Design and Physical Sciences, Brunel
University of London. The study session lasted approximately
120 minutes per participant. As shown in Figure 1, the sessions
were facilitated by a researcher experienced in providing BLV
accessibility support; they were in charge of observing, scoring
sub-tasks, and assisting the participants. A technician was in
charge of onboarding and looking after the technical elements.

Fig. 1. Setup of the formative and evaluative study.

Eight participants (2 female, 6 male) who self-reported as
blind or with low vision were recruited through an inclusive
research user panel (managed by Open Inclusion [21]). All
participants provided informed consent. Their ages ranged
from 27 to 68 (M = 43.63 years, SD = 13.96) and their
previous experience with VR technology ranged from novice
(1) to competent (3). For these participants, sight was classed
as the access need that impacted their lives most extensively.
These details are summarized in Table I. To distinguish from
participants in the study reported in Section V, participants in
the formative study are labelled PF1 to PF8.

B. Results

1) Task Success: This score indicates the level of success in
completing a sub-task. Each participant was presented with 34
sub-tasks in total (VRH: Headset = 4, VRC: Controllers = 6,
VR1: Menu = 6, VR2: 360° video = 7, VR3: Job Simula-
tor = 4, VR4: Moss = 5, VR5: Elixir = 2). 271 individual
scores were produced across the eight participants over the
seven VR tasks/experiences; one sub-task was not performed

https://www.youtube.com/watch?v=BE-irHmbQOY
https://jobsimulatorgame.com/
https://www.polyarcgames.com/games/moss
https://www.magnopus.com/projects/elixir
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TABLE I
PARTICIPANT DEMOGRAPHICS AND TASK SUCCESS SCORES IN THE FORMATIVE STUDY. VR EXPERTISE INDICATES SELF-REPORTED EXPERIENCE WITH

VR ON A SCALE FROM 1 (NOVICE) TO 5 (EXPERT). MEAN (M) AND STANDARD DEVIATION (S) ARE REPORTED FOR EACH TASK OR EXPERIENCE.

due to participant request (PF7, VRH-4). Mean scores are
summarized in Table I. The Menu (VR1) presented the lowest
overall mean score while the highest was observed in Job
Simulator (VR3). While low-vision participants were generally
able to fully or partially complete the sub-tasks in the Menu
(VR1) and 360° video (VR2), blind participants were largely
unable to initiate these tasks. This gap narrowed in subsequent
experiences (VR3: Job Simulator, VR4: Moss and VR5: Elixir),
although blind participants continued to score on the lower end
of the scale overall.

2) VR Accessibility Barriers: Whenever a participant
scored 2 or less in Task Success in a sub-task, a usability
friction instance was logged and analyzed using thematic
analysis. A total of 127 instances of usability friction were
encountered. Most frictions were linked to a single barrier type
(n = 109), with others involving two (n = 17) or three types
(n = 1), totaling 146 barriers across 16 categories (see Online
Appendix). The most frequent barrier (32.19%, n = 47) con-
cerned challenging interactions in virtual environments relying
solely on visual cues (e.g, low-contrast graphic indicators).
This was followed by spatial navigation difficulties due to
absent spatial audio, tactile guidance, and visual landmarks,
and limited non-visual feedback for menu operation (14.38%,
n = 21 each). Of the 127 recorded frictions, 111 were resolved
through facilitator assistance, often involving a combination of
strategies. The most frequent support included providing ad-
hoc audio descriptions (n = 66) and guidance to direct the
participant (n = 65). In some cases, facilitators read on-screen
text to compensate for missing screen reader functionality
(n = 34).

3) Adaptations for Blind Participants: Blind participants
had difficulty with experiences that only provided single-
modality outputs. This issue was particularly notable when
information was communicated solely through visual means,
but participants also faced challenges interpreting information
provided in a single modality using either audio or haptics.

Audio descriptions of the play space, interactable objects and
pointer location were often necessary. This was more common
at the start of an experience and when haptic or audio cues
alone failed to convey object types (PF1, PF3, PF7).

Verbal guidance was helpful when friction occurred. On
most occasions, the facilitator guided participants on controller
use, for example, to explain how controllers were mapped to
interactions in a specific scene, or how to manipulate inter-
actables or control characters (PF1, PF3, PF7). In this regard,
PF3 highlighted the need for a directional cueing system that
could, for instance, guide them to move their controllers closer
to the menu. Audio and haptic cues combined were another
requirement identified throughout the study. When they were
provided conjointly (e.g., VR3: Job Simulator used haptics and
audio to simulate the opening of a virtual door), PF1 and PF3
could more easily perceive what was going on in the scene.
When such signals were poor or did not exist, it became more
difficult for participants to orient themselves (PF1, PF3, PF7).

4) Adaptations for Low-Vision Participants: Low-vision
participants, such as PF4, completed more sub-tasks than blind
participants but required longer periods to familiarize them-
selves with the virtual environments. Audio descriptions and
verbal guidance were important to clarify what participants
were partially seeing in a scene. PF8, for instance, benefited
from audio description in the 360° video (VR2). Detailed and
repeated instructions were helpful for PF2 in Elixir (VR5).
Existing multimodal feedback was helpful in some instances.
For example, multiple signals (i.e. peripheral vision, haptics
and sound) helped PF2 manipulate the interactable objects
in Job Simulator (VR3). However, the Menu’s (VR1) multi-
modal feedback did not suffice. In this case, PF2 struggled
operating it because the haptic feedback did not confirm
specific button interaction. Similarly, in Moss (VR4), several
participants struggled due to low color contrast and unclear
audio indicators of object interactivity (PF2, PF4, PF8).
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Practice Scene

Where am I? The scene in front of you shows 
a minimalist room with a blue 
cup on a white table flanked by a 
blue chair and a brown chair, 
two potted plants, and a small 
wooden box. The background 
includes a white wall with a door.

Golden Key

Test Scene - Anchor 1

What is near me?

Desk

Radio

Found Brew Button. 
One meter ahead.
<Beeping Sound and vibration>

Test Scene - Anchor 2

Where is the Brew Button?

Fig. 2. Examples of functions supported by ENVISIONVR to enhance the accessibility of VR experiences for BLV users. Left: The user can ask “Where am
I?” and the ENVISIONVR system reads out a detailed description of the user’s current field of view. Middle: The user can ask “What is near me?” and the
system reads out the names of the three main objects near the user with a spatial tone to indicate the object’s location. Right: The user can ask “Where is the
Brew Button?” and the system uses a beeping sound and directional instructions to communicate the distance to the Brew Button. When the user reaches the
Brew Button, the controller vibrates to inform the user.

5) Accessibility Feature Priorities: Through the think-
aloud process, participants consistently highlighted the need
for multimodal feedback to overcome the limitations of VR
environments only providing visual cues. This was supported
by the facilitator’s observations. Key recommendations in-
cluded integrating clear audio and haptic signals to indicate
interactable objects and menus (PF1, PF3); for example,
distinct audio tones should differentiate interface elements,
while haptic feedback can confirm successful interactions.
Continuous environment and object audio descriptions were
recommended by the facilitator, particularly during initial ori-
entation and when other cues proved insufficient. Additionally,
integrating screen reader compatibility for all on-screen text,
including menus and subtitles, was identified by the facilitator
as crucial BLV support. Desired features to avoid spatial
orientation and navigation difficulties included a directional
cueing system guiding hand controllers to interactive elements
(PF3), expanded menu targeting ranges (PF3, PF4, PF6, PF8),
and the use of binaural or 3D audio to convey spatial depth
(PF1, PF3, PF4). Additional environmental audio cues were
requested to enhance immersion and provide crucial feedback
(PF1, PF3).

C. Summary

Results from the formative study revealed that BLV users
face various accessibility barriers in VR. Notably, partici-
pants were unable to complete tasks when interactions relied
solely on visual cues. Audio and haptic signals which were
insufficient to convey spatial layout or object interactivity
also prevented participantsThe lack of integrated screen reader
functionality and audio descriptions were identified as major
barriers preventing them from completing sub-tasks without
assistance. While low-vision participants required longer peri-
ods to familiarize themselves with the environments, or con-
crete audio descriptions to clarify the scenes, blind participants
were unable to carry out specific sub-tasks in Moss (VR4)
and Elixir (VR5) because there was no appropriate multimodal
feedback to, for instance, understand the location of objects.
In contrast, Job Simulator (VR3) offered helpful audio cues
when reaching interactable objects.

The provision of accessibility features was irregular across
the experiences, consistent with the findings of Naikar et
al. [34]. BLV participants continually struggled to complete
sub-tasks related to visual capability demands, revealing that
where visual accessibility features existed (e.g., colour contrast
adjustment, audio levels) these were insufficient. It was also
observed that isolated screen reader or audio description
implementations are unlikely to accommodate BLV users’
requirements. In contrast, a more complex system dedicated to
providing high-level descriptions of the virtual environments
coupled with detailed descriptions of interactable objects could
serve as an effective guide both for blind and low-vision users
facing difficulty with navigating VR experiences.

IV. DESIGN OF ENVISIONVR

The formative study suggests that BLV users require a scene
interpretation functionality which builds upon the principles
of screen readers and audio descriptions to incorporate spatial
elements to assist users to navigate and interact within the 3D
space. While prior work, such as SEEINGVR [47], has focused
on features that support visual perception (e.g. zooming,
contour highlighting), we pursue an alternative strategy and
seek to replicate and evaluate the familiar experience of using
a screen reader and listening to audio descriptions to provide
visual accessibility for 3D content.

In response to findings in the formative study, we developed
ENVISIONVR, a generalized visual accessibility framework
for VR applications. Table II provides a summary of how
findings from the formative study informed the design of
ENVISIONVR. This framework consists of: (i) the Scene De-
scription Function; (ii) the Main Objects Indication Function;
and (iii) the Object Localization Function. To minimize the
need for remapping controller buttons, these functions can be
activated by three simple speech commands, namely “Where
am I?”, “What is near me?”, and “Where is the <object
name>?”. For the implementation evaluated in this paper, the
user must first press Button A on the right handheld controller
to issue a voice command but this could in theory be changed
to a ‘wake’ word or remapped to any other button. The use
of these three functions is illustrated in Figure 2 and their
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TABLE II
ENVISIONVR DESIGN GOALS BASED ON FORMATIVE STUDY FINDINGS.

Formative Finding ENVISIONVR Design Goals

Multimodal feedback
overcomes visual-only
limitations

ENVISIONVR should convey information via
various modalities such as speech, audio, and
haptic vibrations.

Continuous descript-
ions enable scene
understanding

The system should support real-time scene de-
scriptions along with follow-up descriptions for
more precise object queries.

Binaural and 3D audio
convey spatial depth

Spatialized audio should guide users toward
objects with speech and/or audio cues.

Environmental audio
enhance immersion
and provide feedback

ENVISIONVR should enhance immersion and
address user needs for rich auditory feedback
by providing features such as scene-level de-
scriptions and object-level audio cues.

implementation is described in more detail in the remainder
of this section.

A. Scene Description – Where am I?

Issuing the “Where am I?” voice command triggers the
Scene Description Function, which describes the user’s field
of view in a few sentences. In line with Iachini et al. [20],
egocentric descriptions of the scene were provided instead of
allocentric descriptions to improve the cognition of BLV users
in large room-scale spaces. An overview of the implementation
of the Scene Description Function before and during runtime
is provided in Figure 3. Details of each step in the implemen-
tation are provided in the Online Appendix.

Step 1: Generate Pre-baked Scene Descriptions at Camera Anchor Points

Step 2: Match real-time camera with anchors to read out pre-baked descriptions

Obtain Anchor Screenshots
 

Generate screenshots at camera anchor 

positions defined by the developer* with 

orientations of 0, 45, …, 315 degrees.

Textual Prompt

Please describe the scene in no more than 

2 sentences or around 30 words. Start the 

description with "The scene in front of you".

GPT-4o

Real-Time Camera 

Position & 

Orientation

Real-Time Scene 

Descriptions
Audio Output

Match with Anchors Text-to-Speech

Pre-baked Scene Descriptions

Fig. 3. Overview of the Scene Description Function. Scene description is
provided in two steps. In Step 1, camera anchor positions are determined
by the developer or automatically by the system. Screenshots of the field
of view of these anchor points with orientations of 0, 45, ..., 315 degrees
along the horizontal plane together with a textual prompt are fed into GPT-
4o to generate pre-baked scene descriptions. In Step 2 during runtime, we
match the current camera position and orientation with the closest-matching
anchor position and orientation to read out the pre-baked descriptions via the
Microsoft text-to-speech (TTS) service.

Before runtime, camera anchor points5 are determined
manually by the developer. As shown in Figure 4, upon
specifying the camera anchor points, a script is executed to
automatically capture eight screenshots of the user field of
view at each anchor point with orientations of 0, 45, ..., 315
degrees. These screenshots are then sent to a vision language
model (VLM) together with a textual prompt, and a short
scene description is obtained for each camera anchor position
and preset orientation. For example, if four camera anchor
positions are determined, 4 × 8 = 32 scene descriptions are
generated. We used GPT-4o as the VLM and used the textual
prompt “Please describe the scene in no more than 2 sentences
or around 30 words. Start the description with ‘The scene in
front of you”’ to generate the scene descriptions. The scene
descriptions are stored locally in a CSV file. As the scene
descriptions are generated before users execute the application,
we refer to these descriptions as ‘pre-baked’6.

Z

X

Anchor 1

Anchor 2

Anchor 3

Anchor 4

Current 
Camera

0°
45°

90°135°

180°

225°
270°

315°

Reads scene 
description of 

closest-matching
{Camera 4, 90°}

3-i
3-ii

3-iii
3-iv

3-v
3-vi

3-vii
3-viii

3-i 3-ii 3-iii 3-iv

3-v 3-vi 3-vii 3-viii

Fig. 4. Top-down view of camera anchor positions in a VR escape room and
the user field of view in eight directions for each anchor point. At each field
of view, a screenshot is taken to generate the pre-baked scene description.
Example field-of-view screenshots taken at Anchor 3 are provided in the
bottom images.

During runtime, the Scene Description Function processes
the current user position and orientation to find the anchor
point with the closest matching position and orientation and
reads out its ‘pre-baked’ scene description using the Microsoft
Azure text-to-speech (TTS) service. As the scene descriptions
have been generated by the VLM before runtime, this mapping

5We define anchor points as a list of (x, y, z) coordinates which define the
position, but not the orientation, for the user camera to be placed in the scene,
such that the user camera placed at all anchor points, with eight different
orientations each, capture user field of views with all of the important objects
in the scene.

6Currently, scene descriptions are generated prior to users executing the
application (i.e. pre-baked). If the VR scene is modified during runtime the
scene descriptions will not be accurate.
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process allows scene descriptions to be read out to the user
with very low latency, usually within tens of milliseconds
(M = 19.8, SD = 19.5) based on data from our user study.

B. Main Objects Indication – What is near me?

Issuing the “What is near me?” voice command triggers
the Main Objects Indication Function, which announces the
names of three key objects near the user (not necessarily in the
field of view), each followed by a short spatial tone to indicate
the object’s location relative to the user headset. Exactly which
objects are read out is determined by a ‘runtime importance
value’. This value is proportional to a preset importance value,
and inversely related to the distance between the object and the
user camera. Here, the preset importance value for all objects
can be determined automatically by ENVISIONVR based on
the presence of rendering components (such as Mesh Renderer
components attached to the game object in Unity), or specified
manually by the developer. If an object has been previously
announced, its runtime importance value is reduced to allow
other objects to be announced in subsequent activations of the
function. Further details are provided in the Online Appendix.

C. Object Localization – Where is the <object name>?

Issuing the “Where is the <object name>?” voice com-
mand triggers the Object Localization Function, which starts
a beeping sound with the beeping frequency inversely pro-
portional to the distance between the right controller and the
object. Directional and distance information (e.g., ‘1 meter
ahead’) is also provided at regular time intervals to guide
the user. When the controller is close enough to the object
to interact with it, the controller vibrates. If the object is
interactable and can be held, the system will also announce
“holding <object name>” when it is picked up. More imple-
mentation details are provided in the Online Appendix.

V. EVALUATION STUDY

To evaluate the potential benefits of ENVISIONVR, we
conducted a user study with 12 BLV participants. Participants
completed three types of prescribed tasks in VR both with
ENVISIONVR and without. The without condition represented
the default experience available to BLV users with no dedi-
cated visual accessibility features. The study was approved by
the research ethics committee in the Department of Engineer-
ing at the University of Cambridge.

A. Method

A within-subjects design was adopted to evaluate the perfor-
mance of ENVISIONVR (abbreviated in Section VI as EVR)
and the no accessibility features condition (abbreviated in
Section VI as NVR). The order of conditions was counterbal-
anced. For each condition, participants were first familiarized
with the available functions in a practice scene (see Figure 2
left image). Participants were encouraged to use all available
functions and the experimenter gave examples of the types
of tasks they would be asked to complete. After completing
familiarization, participants were transported to the test scene.

The test scene, a VR Escape Room [39], featured familiar
objects (e.g., table, key, shelf) as well as several fantasy objects
(e.g., cauldron, potion bottles) arranged within a wooden
cabin. This scene was chosen for several key reasons. First, it is
a tutorial scene made freely available by Unity and so provides
an example of the type of existing VR experience that may
require retrofitting of accessibility features. Second, it contains
rich objects and scene elements. Third, it supports different
interactions with virtual objects (such as grabbing objects
and pressing buttons). We define two study anchor points
in this scene (see Figure 2 middle and right image) and the
combination of condition and anchor point is balanced across
participants. At the given study anchor point, participants then
completed the tasks described in the following subsection.

B. Tasks and Measures

The degree to which ENVISIONVR supports BLV users
in perceiving and interacting with the virtual environment
is evaluated across the three tasks summarized below. A
complete list of questions and tasks for the two anchor points
in the test scene is provided in the Online Appendix.

1) Scene Understanding Task: Participants are asked to
rate a statement to evaluate their understanding of the
scene from 1 (very unlikely to be true) to 5 (very likely
to be true). For example, at Anchor 1 (see Figure 2
middle image), participants are asked to judge whether
the statement “This is a scene of a classroom with a
desk and a chair” is likely to be true or not.

2) Object Localization Task: Participants are asked to turn
to face a specified object in the scene, such that the
object is in the field of view but not necessarily directly
in front of the user. For example, they are asked to turn
to face the radio at Anchor 1. The task completion status
was recorded as a yes/no binary value.

3) Object Interaction Task: Finally, participants are asked
to interact with an object in the scene. For example,
they are asked to push the “Brew Button” at Anchor 2
(see Figure 2 right image). Again, we record their task
completion status as a binary value.

Participants also rated the difficulty they encountered in
each task from a scale of 1 to 5. The performance measures
for all three tasks above, together with the perceived difficulty,
number of function activations, and qualitative comments from
post-study interviews form the measures captured in the eval-
uative study. These are subsequently analyzed in Section VI.

C. Participants

We recruited a new participant sample with the assistance
of Open Inclusion [21]. All participants provided informed
consent. The sample consisted of 12 participants, of which
three reported being blind and nine reported having low vision.
All three blind participants reported regular use of screen
readers or other forms of assistive technology. Among the nine
participants who reported having low vision, five participants
reported regular use of assistive technology, yielding a total
of eight participants who regularly use assistive technology.
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TABLE III
PARTICIPANT DEMOGRAPHICS FOR THE EVALUATIVE STUDY WITH BLV USERS.

Participant Age Gender Education VR Experience Vision From
Birth

Vision Description Assistive Technology Regular
Use

P1 58 Female Masters Inexperienced Blind No Sighted in the past but have no
usable vision today.

Voiceover and Jaws as screen
readers; Other tech with audio

assistance at home.

Yes

P2 21 Female A levels Inexperienced Low
Vision

Yes Born with cataracts and glaucoma,
able to see a decent amount with

glasses.

Uses phone and screen magnifiers to
zoom in.

No

P3 73 Male GCSE Highly
Inexperienced

Blind No Lost sight gradually, totally blind for
the past 2 years.

Uses screen reading software: JAWS,
NVDA, Voiceover.

Yes

P4 50 Female Higher
National
Diploma

Inexperienced Low
Vision

No Stargardt’s which affects central
vision.

Uses Voice Over and Zoom Text. Yes

P5 79 Male GCSE Highly
Inexperienced*

Blind No Lost sight during a degree course. Siri, Alexa, Be My Eyes, JAWS,
Voiceover, and other screen readers.

Yes

P6 36 Male College Neither
inexperienced nor

experienced

Low
Vision

N/A Can see 1 meter ahead, central vision
in one eye only.

Phone has voice over - Apple
iPhone. Windows PC, Samsung

tablet. Talking TV. Uses Seeing AI -
to read bus numbers.

Yes

P7 58 Male Postgraduate
degree

Inexperienced Low
Vision

N/A No sight in left eye, limited central
vision (3/60) in right eye. Has

ADHD.

Screen magnification user on the
computer

No

P8 36 Female AS Level Highly
Inexperienced

Low
Vision

N/A Has light perception and no residual
vision. Difficulties in reading if the

text is not in the right format.

Uses screen reader on a daily basis.
NVDA on laptop. Talkback on

Android. Previously iPhone.

Yes

P9 41 Male Bachelor’s
degree

Highly
Experienced

Low
Vision

N/A Little vision in right eye, can see
light and dark and the shape of

things.

Text enlarger on mobile and
computer, and Dragon Naturally
Speaking for speech input and

feedback

No

P10 45 Male Bachelor’s
degree

Highly
Inexperienced

Low
Vision

N/A Zero sight in left eye, right eye is a
prosthetic, 6/36 vision with changing

field. Only sees shape and colour.

Has used lots of tech. Doesn’t use an
actual screen reader. Has reading

glasses and uses audiobooks a lot.

Yes

P11 54 Female Bachelor’s
degree

Highly
Inexperienced

Low
Vision

N/A Sight in right eye, no sight in left
eye. Born with cataracts. Can read

some print with glasses.

Does not use audio on the computer.
Does not use specific software. Can

enlarge print.

No

P12 57 Female Entry level 2
English

Highly
Inexperienced

Low
Vision

N/A No central vision and a tiny bit of
peripheral vision. Can see light, dark,

and some outlines.

NVDA, Alexa in the house, Android
mobile with Synaptec for screen

reader.

Yes

* P5 was new to the concept of VR. He connected VR with soundscapes and gave himself a rating of ‘Neither inexperienced nor experienced’. He also said
that he had never used technology of this kind later in the testing session, suggesting that an accurate rating could have been ‘Highly inexperienced’.

Table III provides a summary of the collected demographic
information of all 12 participants. To differentiate from the
formative study, participants are labeled as P1 to P12.

D. Apparatus

During the experiment, participants wore a Meta Quest 3
headset and held the right controller. Participants completed
all tasks while remaining seated in a swivel chair. The headset
was connected to a Windows 11 laptop in wired ‘link’ mode.
Similar to the formative study, a facilitator observed, recorded
scores, took notes, and assisted participants, as shown in
Figure 1. A second researcher managed technical components.
The risks associated with simulator sickness and cognitive
burden were mitigated by providing regular experimental
breaks and allowing participants to pause or withdraw from
the study at any time.

VI. RESULTS

In this section, we first present the results of 12 participants
for each task outlined in Section V-B together with effect sizes
and p-values. We also report observations of ENVISIONVR
usage behavior in Section VI-D, and summarize qualitative
feedback in post-study interviews in Section VI-E, as recom-
mended for accessibility-focused HCI research [29].

A. Scene Understanding Task

In the Scene Understanding Task, participants responded
to the given statement on a scale from 1–“very unlikely” to
5–“very likely”. Since at one anchor location, the statement
was false, we converted these raw responses such that a
higher score indicates a closer match to the correct answer.
Figure 5 (left) plots the scene understanding score of all
participants in the NVR (M = 3.67, SD = 1.44) and EVR
(M = 4.08, SD = .793) conditions. In Figure 5 we also
make a distinction between whether participants regularly use
screen readers or other assistive technology. This roughly
groups the full participant group into two subsets based on
the degree to which they can directly perceive visual content.
P3, P4, P5 and P12 who regularly use assistive technology
gained a better understanding of the scene with ENVISIONVR
compared with the condition without any accessibility features.
P1, P2, P6, and P10 were able to understand the scene better
without ENVISIONVR, while P7, P8, P9, and P11 achieved
the same level of scene understanding with and without the
tool. The decrease in scene understanding performance was
due to different reasons such as a lack of attention to long
descriptions and failure to capture keywords to support user
judgment (P1), or the lack of evidence to convince them to
negate the statement which claims the escape room is a class-
room (P2, P6). The first-person view descriptions provided
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Fig. 6. Distribution of the perceived difficulty (higher score indicates lower perceived difficulty) in the Scene Understanding Task (left), Object Localization
Task (middle), and Object Interaction Task (right) for the NVR and EVR conditions for participants who regularly use assistive technology and for those
who do not. Black squares indicate the mean value.

only fragments of information about objects around the user,
which was insufficient to infer high-level information such as
the type and purpose of the scene (P10).

A Wilcoxon Signed-Rank test did not indicate a significant
difference in scene understanding scores (W = 24.0, p =
.43, |r| = .33) between the NVR and EVR conditions. Fig-
ure 6 (left) presents boxplots of the perceived difficulty ratings
(higher score indicates lower perceived difficulty) of the scene
understanding question for the NVR (M = 2.00, SD = 1.35)
and EVR condition (M = 3.25, SD = 1.29). The diffi-
culty ratings are grouped for participants who regularly use
assistive technology (NVR: M = 1.75, SD = 1.16; EVR:
M = 3.25, SD = 1.49) and participants who do not (NVR:
M = 2.50, SD = 1.73; EVR: M = 3.25, SD = .957). A
Wilcoxon Signed-Rank test did not indicate a significant dif-
ference in perceived difficulty (W = 46.0, p = .06, |r| = .67)
between the NVR and EVR conditions.

B. Object Localization Task

Figure 5 (middle) summarizes the completion status of the
object localization task for all participants. Six participants
were able to complete the object localization task to turn to

face a specified object in the NVR condition, while the other
six participants were not. In the EVR condition, five of the
participants who were unable to complete the task in the NVR
condition were able to complete the object localization task.
Only one participant (P1) was still unable to complete the
task in the EVR condition, and none of the participants had a
worse performance with ENVISIONVR. Most participants (3
out of 4) who do not regularly use assistive technology were
able to complete the object localization task with or without
ENVISIONVR, and ENVISIONVR was able to help four out
of five participants who do regularly use assistive technology,
and who could not locate the virtual object in the NVR
condition to complete the task. Overall, object localization
task completion results show a 91.7% − 50% = 41.7%
improvement in task success rate with EVR compared with
NVR. As the object localization task has binary performance
data, a McNemar’s test was adopted. The test indicated a
significant difference (χ2 = 5.0, p < .05, Cohen’s g = .42)
between the NVR and EVR task completion status, suggesting
that ENVISIONVR significantly improved participants’ ability
to locate virtual objects.

Figure 6 (middle) presents box plots of the perceived



10

difficulty of the task for the NVR (M = 2.42, SD = 1.51)
and EVR (M = 3.83, SD = 1.34) conditions. A Wilcoxon
Signed-Rank test did not indicate a significant difference
(W = 54.0, p = .07, |r| = .64) between the NVR and EVR
condition for all participants.

C. Object Interaction Task

Figure 5 (right) shows the completion status of the object
interaction task. Six participants were able to interact with
a virtual object (such as picking up a key or pressing a
button) under the NVR condition, while the other six were
not. Among those who were unable to interact with virtual
objects, five participants were able to complete the task with
ENVISIONVR, while one participant (P12) was still unable
to complete the task. It is worth noting that P12 reported a
secondary access need based on her learning disability, and
this may have contributed to the difficulty they experienced
in completing the task. Among the six participants who were
able to complete the interaction task under the NVR condition,
five were still able to complete the task with ENVISIONVR.
However, P9 with little remaining vision was not able to
complete the task with ENVISIONVR as he felt the main
objects indication function provided conflicting information
by reporting an object directly behind him, which could not
be confirmed easily using vision. Most participants of the
subgroup who regularly use assistive technology (6 out of 8)
were not able to complete the interaction task in the NVR
condition, and ENVISIONVR was able to support five out
of these six participants to complete the interaction task.
Overall, object interaction task completion results show a
83.3% − 50% = 33.3% improvement in task success rate
with EVR compared with NVR. A McNemar’s test did not
indicate a significant difference (χ2 = 2.67, p = .102, Cohen’s
g = .33) between the NVR and EVR object interaction task
completion status.

Figure 6 (right) presents box plots of the perceived difficulty
of the task for the NVR (M = 2.92, SD = 1.68) and EVR
(M = 3.42, SD = 1.44) conditions. Wilcoxon Signed-Rank
tests did not reveal a significant difference (W = 33.5, p =
.21, |r| = .49) between the NVR and EVR conditions.

D. Interaction Behaviors

Figure 7 plots the distribution of the number of ENVI-
SIONVR function activations for participants in the user study.
The results show that the main objects indication function was
activated a similar number of times for participants who regu-
larly use assistive technology (M = 2.00, SD = 1.20) and for
participants who do not (M = 2.25, SD = 2.22). However,
participants who regularly use assistive technology activated
the scene description function more (M = 3.25, SD = 3.01)
than participants who do not regularly use assistive technology
(M = 1.25, SD = .500). The object localization function
was also activated more by participants who regularly use
assistive technology (M = 2.50, SD = 1.77) compared with
those who do not (M = 1.25, SD = 1.26). This suggests
that participants with less visual perception capability tend
to rely more on high-level scene descriptions and the fine

detail object localization function. Meanwhile, participants
with different vision capabilities relied on the Main Objects
Indication Function at a similar level.

For participants who do not regularly use assistive technol-
ogy, ENVISIONVR appeared to complement their available
vision. These participants used the scene description function
less as they have enough residual vision to support their
understanding of the scene, as evidenced by the performance
of P2, P7, P9, and P11 in the scene understanding task in
the NVR condition. They were also able to precisely locate
small virtual objects as evidenced by successful completion
of the object interaction task under the NVR condition. These
participants used the main objects indication function more,
likely because their residual vision does not allow them to
explore a wide range in the scene, and they rely on the function
to know what key objects are nearby.
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Fig. 7. Distribution of the number of ENVISIONVR function activations for
participants who regularly use assistive technology and for those who do not
with labeled outliers. Black squares indicate the mean value.

E. Post-Study Interview

In the post-study interview, 11 out of 12 participants
expressed a preference for ENVISIONVR over the NVR
condition. Key themes were identified through a thematic
analysis [18] and are summarized below.

1) Level of Information Delivered: The design of visual
accessibility systems often faces a trade-off between the level
of detail of information provided and the ease of use of the
system. For the ENVISIONVR system, participants liked how
the scene description function was “helpful to identify a new
location” (P2, P4, P5, P7, P10) with the “correct amount
of detail” (P7) and “gave you a picture of the scene” (P3)
and “a general overview” (P9, P10) to “build an image up
in your mind” (P6). P11 commented that the tools could be
more helpful if there was more detailed information. Overall,
participants liked how the information had an appropriate
amount of detail to gain a sense of physical presence.

“[With EnVisionVR,] I felt that I was in a real bar
or a restaurant and I’d gotten out my camera [to get
a description using Be My Eyes], it was very very
good.” (P3)

Participants also liked how the main objects indication
function told the user about key objects nearby. They liked
how it told the user “if there is something on the right and
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left” (P2) and “helped users to be more confident by saying the
names of things” (P5), but found the spatial tone to indicate
the object location to be redundant (P4), and it sometimes did
not pick up objects near the user (P9).

Participants found the object localization function helpful
in providing the precise location of individual objects. Partic-
ipants found it helpful in “telling [participants] how far [they]
need to move” (P2), locating the object and letting the user
“know the object is there” (P5), and “helping [participants]
understand the direction of the object” and “gives good feed-
back” (P8). P4 found the beeping helpful in telling whether the
controller was getting closer to the object. Overall, participants
found ENVISIONVR helpful in delivering both high-level
scene information and detailed object-level information.

“[With EnVisionVR,] this is the first time that I
have been able to do anything in VR. This is really
promising, I think you’re on to something here.” (P1)

2) System Latency: Participants commented that existing
vision accessibility systems in the physical world, such as Be
My AI, take several seconds to return a description. Partici-
pants contrasted this with their experience of ENVISIONVR,
which they found to be very responsive. P8 commented how
she appreciated systems which give constant feedback on
updates of what is in front of the user as the user moves.

“The advantage here is that the answer comes
instantly and doesn’t take any time to process the
question.” (P3)

3) Consistency in System Design: The user study revealed
that inconsistency in the system design could pose usability
barriers. For example, the command “Where am I?” describes
the user’s field of view, while the command “What is near
me?” reads out the names of objects which are near the user
but not necessarily in front of the user. The inconsistency in
reference frames sometimes led to confusion (P1, P9).

“Visually I could see where things were and I could
move towards easily. The voice assistant wasn’t
giving me the instruction I needed, it didn’t quite
work. When I was looking for that ‘brew button’, it
said it was next to me but I couldn’t see it.” (P9)

As the scene descriptions were pre-baked based on images
of the scene, there can be different names for the same
object in the scene description function and the main objects
indication function. For example, the bookholder on the desk
in Anchor 1 of the test scene was referred to as a computer
in scene descriptions, which can cause confusion for users.

4) User Agency: Participants also commented on different
aspects of user agency over the system. These included user
control on what information to deliver, the speed of delivery,
and the level of detail of delivered information.

“I’d like this experience to have a speedier read-
out speed, close to 200%. That really should be
customisable. It’d be nice to have two levels of
description, detailed and then summary.” (P1)
“I’d like a mode where I could scan a room, turning
in my chair, and keep hearing an updated description
of what’s in front of me.” (P1)

“For me maybe [the voice description] was a bit
slow. If you are in a new environment you don’t want
it too fast.” (P6)

Participants also suggested that the system could support
more voice commands to improve user agency. P7 commented
that the system was helpful but required users to memorize the
different speech commands for each function. P12 reported
difficulty in trying to remember how to phrase the question.

“The only thing I would say is maybe broaden the
wording used to launch the command... If it was a
bit more open in terms of voice commands.” (P6)

VII. DESIGN IMPLICATIONS

Results from our evaluation study reveal important design
implications for VLM-assisted interactive systems for visual
accessibility design in VR. Through these guidelines, we
intend to assist designers and developers in creating more
inclusive immersive systems for BLV users.

1) Hierarchy of Descriptions: Implement a hierarchy of
high-level scene descriptions and detailed object level infor-
mation. Results show that participants with regular use of
assistive technology triggered scene descriptions more often
(Section VI-D). 9 out of 12 participants appreciated the level
of information delivered in scene descriptions, and 4 out
of 12 users found the object localization function helpful
(Section VI-E1). A 41.7% improvement in object localization
is made with ENVISIONVR (Section VI-B). These findings
align with the observed benefits of adaptive levels of detail in
scene descriptions [7].

2) Dynamic Updates vs. Latency Requirements: Adopt
anchor-based VLM descriptions for predictable static scenes,
and use dynamic on-demand updates of altered scenes and in-
dividual elements to account for object movement and user in-
teraction. Participants favored ENVISIONVR which balanced
latency with flexibility (Section VI-E2). This design extends
VLM-based systems like VR-GPT [26] by providing spatial
information of objects in addition to 2D visual information in
the user’s field of view with low latency.

3) Multimodal Feedback Consistency: Standardize spatial
reference frames (first- or third-person views) in speech de-
scriptions and other output modalities. The evaluative study
(Section VI-C and VI-E3) revealed inconsistent feedback as
a cause of confusion. This extends prior work on audio
description guidelines [4] to VLM-enhanced VR contexts.

4) Customized Descriptions: Align with existing assistive
technology workflows to support customized reading speed
and description verbosity. Blind users may want more de-
tailed descriptions than low-vision users. The formative study
(Section III-B3 and III-B4) showed strong user preferences
for audio descriptions. Post-study interviews (Section VI-E1,
VI-E4) also showed strong preferences for the right amount
of detail in descriptions. This finding expands personalization
in adaptive AR/VR [3] and VLMs [1] to customize VLM-
generated descriptions in immersive environments.

5) Feedback and User Agency: Design flexible speech in-
terfaces to support a wide range of commands while providing
rich multimodal feedback. Participants suggested increasing
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the number of supported commands and overall control (Sec-
tion VI-E4). This recommendation fits with the principles of
Human-Centered AI [36] and the design principles (DP1 and
DP2) on redundancy proposed by Dudley et al. [15].

VIII. DISCUSSION

ENVISIONVR represents an original integration of high-
level natural language scene descriptions and detailed object-
level speech, audio, and haptic cues for object localization and
interaction. We complement previous work on visual accessi-
bility design in VR by incorporating VLMs to provide detailed
scene descriptions to extend works such as SeeingVR [47]
and VRBubble [22] which convert visual information to
speech and audio, while also following Canetroller [46] and
VIVR [25] in incorporating different feedback modalities to
convey visual information such as the presence of a virtual ob-
ject. We also demonstrate how it is possible to leverage speech,
audio, and haptic information to design a multimodal system
for VR visual accessibility design. Results from the user study
show good promise in terms of supporting BLV users to enjoy
VR experiences with the greatest benefit seemingly afforded
to blind users or users with less usable vision.

The study results also reveal how ENVISIONVR could be
further improved. As ENVISIONVR is intended to provide
a proof-of-concept of how VLMs can be applied with other
interaction modalities for visual accessibility design for VR
content, the scene descriptions are pre-baked. This limits the
current approach to static VR scenes. Future design iterations
will aim to provide scene descriptions for dynamic VR scenes
while balancing system latency. The evaluative study found
different participants had different preferences in the verbosity
and level of detail of scene descriptions. These examples
demonstrate the significance of incorporating the ability to
customize features for individual preferences, as well as adap-
tations for each user as they become more accustomed to the
system. Additionally, we acknowledge that ENVISIONVR is
primarily a speech-driven interface with a limited number of
supported commands. As is typical in accessibility research,
we acknowledge the limitation of the small participant sam-
ple size and this must be considered when interpreting the
findings. Our evaluation with 12 participants is comparable to
that of SeeingVR’s [47] 11 participants. It is also important to
recognize that in both our work and SeeingVR [47], the sample
includes participants representing a spectrum of visual acuity
and vision loss. Given the need to prioritize time and reduce
cognitive burden, we made a conscious decision to not ask
BLV participants to reflect on task load and simulator sickness.
Future design iterations of ENVISIONVR will allow users
to access more object and scene-level information through
alternative and complementary forms of interaction.

IX. CONCLUSION

This paper presents ENVISIONVR, a proof-of-concept vi-
sual accessibility tool for VR based on scene descriptions and
object-level guidance powered by VLMs, speech and audio
cues, and haptic feedback. Our evaluation study with 12 BLV
participants demonstrates the effectiveness of ENVISIONVR

in assisting scene understanding, object localization (41.7%
increase in task success rate), and object interaction (33.3%
increase in task success rate) for BLV users compared with
the condition without visual accessibility features. We also
summarize a list of design implications covering five different
aspects of visual accessibility. We hope these findings and
contributions will advance research in this space and ultimately
lead to more inclusive VR experiences.

SUPPLEMENTAL MATERIAL

The online appendix is available at https://osf.io/zb2ak/.
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