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ABSTRACT
Radio frequency fingerprinting identification (RFFI) leverages the unique features of communication transmitter signals to
classify Internet of Things (IoT) devices, enabling individual recognition through waveform analysis. Traditional RFFI methods
face challenges in extracting nonlinear features, which machine learning (ML) techniques help overcome by providing
advanced wave characteristic analysis. This study introduces RFFI‐SCNN, a hybrid model integrating RFFI with a spiking
conventional neural network (SCNN) to enhance IoT device authentication within networks. The model operates in two phases:
signal processing, where wave data are collected and preprocessed, and SCNN‐based classification, where features are extracted
and devices are authenticated. The proposed model's performance is evaluated against three ML‐based models—1SNN, 1CNN
and DCNN—based on accuracy, execution time and memory usage. Experimental results, conducted using a publicly available
dataset from the Institute for the Wireless Internet of Things at Northeastern University, indicate that RFFI‐SCNN achieves
superior accuracy in classifying communication devices compared to 1CNN and 1SNN while also requiring less memory and
shorter execution time than DCNN and 1CNN. These findings highlight the effectiveness of RFFI‐SCNN in secure and efficient
IoT device identification.

1 | Introduction

Information security problems such as reply attacks, hardware
cloning and unauthorised user accounts have become a big
challenge in confronting how to exactly authenticate and recog-
nise a device in the Internet of Things networks (IoTs). Besides,
the rules are applied by the IoT [1, 2]. The conventional authen-
tication methods are performed at the application layer (AP),
utilising cryptographic techniques to produce numerical results
that are hard for the attacker to fraud.However, the techniquehas
the hazard of key leaks and protocol security gaps. Physical layer
(PH) authentication is one of the essential methods to guarantee
the security of wireless communication (WC). The PH authenti-
cation method provides a wide dais for handling WC security

problems. Currently, the research on the PH security authenti-
cation method is still incapable of keeping up with the rapid
development of otherWC authenticationmethods.Moreover, the
extensive PH resources remain largely untapped, despite their
considerable potential for further exploration and practical
application [3–5]. So, to handle this issue, some researchers pro-
posed a ‘radio frequency fingerprinting identification’ [6–9] RFFI
technique to authenticate and recognise IoT devices. The RFFI is
a promising method that exploits substantial features and sin-
gular hardware malfunctions (such as power amplifiers, clock
skew, filter clock, etc.) as an identifier for the object in the
network [10]. The RFF system consists of three steps: feature
specification, feature extraction and device authentication [11].
In the first step, the eavesdropping of the wireless device is
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authenticated, and the fingerprint features are extracted via wave
analysis and processing. In the device identification step, the
device is authorised based on a matching and identification pro-
cess performed on the fingerprint features database [12]. These
features are generated due to impairment process differences,
which cannot be discarded even with sophisticated impairment
mechanisms. The hardware features are swerving from ordinary
values that lightly affect the signal for a wireless transmission,
unless the swerve is in a small range, which cannot affect the
ordinary communication operation. The main disadvantage of
the traditional RFFI method is that it depends on the hardware
quality designed to characterise the extraction method. Machine
learning (ML) techniques (such as deep learning) are broadly
applied in RFFI because of their powerful capabilities for
extracting hardware features. Besides, the ML‐based RFFI
method can provide superior identification performance [13]. It
can beutilised to promptly process thewave to be identified (i.e., it
does not needmanual ‘features’ design). Furthermore,ML is used
to optimise the RFFI scheme by increasing the accuracy of the
device classification.

Unlike traditional neural networks, SCNNs offer biologically
inspired temporal processing capabilities that are well‐suited for
RF signal dynamics. Moreover, RF signals contain rich temporal
dynamics, and SCNNs are inherently capable of capturing these
features through biologically inspired spike‐based processing.
Therefore, in this study, we introduce architectural adaptations
to SCNNs—including custom spike encoding and convolutional
configurations—designed specifically to capture the unique
temporal and spectral features of I/Q waveform data. These
innovations enable more efficient and accurate device identifi-
cation in IoT environments. The proposed method, called RFFI,
is based on the spiking conventional neural network (RFFI‐
SCNN) to identify devices in IoT. The RFFI‐SCNN model con-
sists of two phases: signal processing and the SCNN classifier. In
signal processing, the waves are collected for transmitter pa-
rameters of I & Q from the dataset [14], utilising the sliding
window technique, to divide the incoming I & Q data to use as
inputs for SCNN. The SCNN phase includes two fully connected
layers, each layer consists of the leaky integrate‐and‐fire (LIF)
neurons, which perform the classification and recognition pro-
cess. Also, the model performance has been evaluated by using
three metrics (accuracy device authentication, memory usage
and execution time) in comparison with the three models: RFFI‐
based one, conventional neural network (RFFI‐1CNN) and
RFFI‐based one SNN (RFFI‐1SNN) model and RFFI‐based on
deep CNN (RFFI‐DCNN). The rest of this paper is organised as
follows: Section 2 explores the related works of using ML‐based
RFFI, Section 3 presents the RFFI‐SCNN model and Section 4
demonstrates the study results and discussions. Finally, Sec-
tion 5 includes the study conclusion.

2 | Related Works

Recent studies in WC have highlighted the distinctiveness and
effectiveness of machine learning by demonstrating its ability to
learn based on wave classification and specific transmitter iden-
tification [15]. For instance, the authors in ref. [16] employed a

one‐dimensional convolutional neural network (1‐CNN) to
extract features from RF waveforms, aiming to reduce training
time and improve classification accuracy.However, this approach
lacks temporal encoding mechanisms, which limits its ability to
capture dynamic signal patterns. The authors in ref. [17] intro-
duced a deep learning model based on autoencoders to generate
device authentication codes (DACs) by minimising the recon-
struction error in RF tracks. Although effective for error reduc-
tion, this method does not leverage biologically inspired
processing or energy‐efficient architectures. The authors in ref.
[18] proposed a CNN‐based RFFI model to prevent unauthorised
access to wireless resources. Their architecture includes two
convolutional layers, two pooling layers and a fully connected
layer, using I/Q data as inputs. Although the model achieves
reliable classification, it relies on dense activation patterns and
conventional deep learning structures. The authors in ref. [19]
applied support vector data description (SVDD) to mobile IoT
devices, identifying unique RF features by enclosing training
samples within a minimal‐radius hypersphere. Although SVDD
offers geometric interpretability, it lacks scalability and adapt-
ability to noisy RF environments. The authors in ref. [20] devel-
oped a deep complex residual (DCR) network to enhance RF
fingerprinting by extracting correlation features from baseband
waveforms. Although powerful, the DCR model is computation-
ally intensive and less suited for low‐power IoT applications. The
authors in ref. [21] explored a multi‐DCNN approach using six
different convolutional schemes to optimise identification per-
formance across varying I/Q sample times. Thismethod improves
accuracy but increases model complexity and training overhead.
The authors in ref. [22] introduced a spiking neural network
(SNN) forWi‐Fi framedetection, utilising leaky integrate‐and‐fire
(LIF) neurons and spike timing‐dependent plasticity (STDP)
learning. Although this work demonstrates the potential of neu-
romorphic computing, it does not incorporate convolutional
layers or spike encoding tailored to RF fingerprinting.

In summary, although prior works have explored various deep
learning and SNN‐based approaches for RF fingerprinting, they
often suffer from high computational costs, limited temporal
modelling or lack of neuromorphic compatibility. Our proposed
RFFI‐SCNN model addresses these gaps by combining spike‐
based learning with convolutional feature extraction, optimised
for RF signal characteristics. Table 1 provides a comparative
overview of these methods.

3 | Study Method

The SCNN classifier comprises two fully connected layers using
leaky integrate‐and‐fire (LIF) neurons. To adapt the SCNN ar-
chitecture for RF fingerprinting, we introduced several key
modifications tailored to the characteristics of I/Qwaveformdata.
First, we implemented a custom spike encoding scheme that
transforms amplitude and phase variations into spike trains using
threshold‐based temporal encoding. This preserves the dynamic
structure of RF signals while enabling sparse, event‐driven pro-
cessing. Second, the convolutional layers were configured
with kernel sizes and stride values optimised to capture short‐
term dependencies and spectral features inherent in RF
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transmissions. These architectural choices enhance the model's
ability to extract discriminative features from noisy and variable
RF data, improving classification accuracy and robustness in IoT
device identification (see Figure 1).

3.1 | Signal Processing Phase

The I/Q wave data used in this study are collected from the Wi‐
Fi dataset [14]. The emitters consist of 12 NI N20 and 8 NI X310

TABLE 1 | A summary RFFI‐based ML comparison of existing approaches.

Study Year RFFI‐based ML Summary
[16] 2020 1‐CNN learning approach Uses a one‐dimensional convolution kernel to extract features from RF

signals, aiming to reduce training time and improve classification accuracy.

[17] 2021 Autoencoder algorithm Applies deep learning to minimise reconstruction error in RF tracks,
generating device authentication codes (DACs) for device identification.

[18] 2022 CNN Utilises I/Q waveform data as input to a CNN with multiple layers; final
output classifies authorised IoT devices.

[19] 2020 Support vector data
description

Uses support vector data description to enclose training samples in a
minimal‐radius hypersphere; features are extracted based on support
vectors.

[20] 2020 Deep complex residual (DCR) Extracts correlation features from RF baseband signals using a DCR
network to identify the emitter's fingerprint.

[21] 2022 DCNN Employs six DCNN architectures with varying configurations to optimise
identification accuracy across different I/Q sampling intervals.

[22] 2023 SNN Uses leaky integrate‐and‐fire (LIF) neurons and spike timing‐dependent
plasticity (STDP) learning to detect Wi‐Fi frames from RF signals.

Propose
study

CSNN Introduces a spiking convolutional neural network with LIF neurons and
optimised convolutional layers for RF fingerprinting; achieves efficient
classification with low memory usage and fast execution time.

FIGURE 1 | Demonstrates the RFFI‐SCNN model phases.
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SDRs, operating with GNU Radio. Each device transmits signals
for 30 s using IEEE 802.11 a/g standards at a frequency of
2.432 GHz with a sampling rate of 20 MS/s, utilising BPSK
modulation and 20 Ettus VERT2450 antennas. On the receiving
end, a single static receiver equipped with an Ettus VERT2450
antenna captures the signal in all cases. The I/Q Wi‐Fi data
samples are then processed for further analysis.

In this phase, the linear discriminant analysis (LDA) technique
is employed to reduce dataset dimensionality and extract rele-
vant features for input into the second stage, CSNN classifica-
tion. LDA works by projecting training samples onto a linear
axis, ensuring that points within the same class are positioned as
closely as possible, whereas points from different classes are
maximally separated. This approach enhances classification
accuracy by improving data differentiation after dimensional
reduction. When a new data sample is introduced, it is projected
onto the same axis, allowing classification to be determined
based on its position relative to existing points. [23]. A Fisher
criterion is used with LDA to compute the projection vector
(PV) by using Equation (1), where φ́ represents the best pro-
jection vector (with coefficients φ) that maximises the rate of the
Sb between‐class scattering (calculated by Equation 2) to Sφ, the
within‐class‐scattering (calculated by Equation 3). In Equa-
tion (2), ai represents samples from a1, …., an and bi represents
ai class labels from b1, …., bn. μbi

represents the mean of the class
labels (bi). In Equation (3), μc is the sample mean of the cth
class, m is the number of classes, μ is the mean of the entire
sample and nc is the number of samples in c (i.e., data samples
in the cth class). Thus, a computed value φ́ Equation (1) gives a
good PV when the eigenvector has a minimum eigenvalue
Sφ = Sb). However, in most cases, a single PV proves insuffi-
cient for accurate recognition across multiple groups.

φ́= argmax
φ

φT Sb φ
φT Sφ φ

, (1)

Sb =∑
n

i=1
(ai − μbi

)(ai − μbi
)
T
, (2)

Sφ =∑
m

c=1
nc(μc − μ)(μc − μ)T , (3)

Since SCNN requires a fixed input data length, but the collected
receiver data varies in size, the sliding window method [24] is
applied to address this issue. This method uses a window of
fixed length (L) that moves through the data samples step by
step, calculating statistics within each window. The output of
each step is a statistical representation of both the current
window (L) and the previous step (L − 1).

For example, if a wave of length n is received, the sliding win-
dow mechanism processes the wave incrementally:

– Step 1: The I/Q wave data are sliced from 1 to k.

– Step 2: The window shifts, slicing from 2 to k þ 1.

– The process continues until reaching the final step (see
Figure 1).

By structuring the wave data into a fixed‐length series, the input
size remains consistent, preventing gradient disappearance
during training and enhancing the stability of SCNN learning
features.

3.2 | SCNN Phase

A spiking neural network (SNN) is employed in this study to
extract features from the input dataset generated during the
signal processing phase. The SNN consists of multiple synaptic
neurons, each receiving an input wave and producing an
output wave, independent of the actions of other neurons.
These neurons exhibit internal dynamics, causing modulation
over time. When the neuron's time threshold is exceeded, it
resets to an empty state, reducing its membrane potential.
Consequently, split input spikes do not trigger a spike or fire
[23, 25]. Each neuron is connected to a synapse with an
associated weight, which is updated during learning using
either supervised or unsupervised methods. The spikes are
encoded by converting the input wave into spike trains, a
process referred to as ‘encoding’. In this study, SCNN consists
of two layers, each containing fully interconnected leaky
integrate‐and‐fire (LIF) neurons along with two conventional
layers (see Figure 1). The LIF neuron is mathematically defined
using Equation (4), where τm = 10 represents the time constant,
Vmem(t) and Vreset denote the membrane voltage and reset
voltage, respectively, whereas I(t) refers to the pre‐neuron input
current at time t computed using Equation (5). In Equation (5),
M represents the number of pre‐neurons, wxy is the weight
between neuron y in the pre‐neuron layer and neuron x in the
post‐neuron layer and zy(t) indicates the response of pre‐
neuron y. The instantaneous membrane voltage V[t] is deter-
mined using Equations (6–8) [26, 27], where V[t] describes the
voltage before a neuron fires and after it is charged. Addi-
tionally, E[t] represents the emitted energy via the neuron,
whereas Vth is the membrane threshold voltage.

τm
dV(t)

dt
= −(Vmem(t) − Vreset) + I(t), (4)

I(t) =∑
M

y=1
wxyzy(t), (5)

V[t] = f (V[t − 1], I[t]) = V[t − 1]

+
1
τm

( − V[t − 1] − Vreset) + I[t],
(6)

[t] = f (V[t − 1], I[t]), (7)

E[t] = s(V[t] − Vth). (8)

The first convolutional layer has a size of 3 � 3 � 128, taking
input from the signal processing phase and passing it to the first
LIF layer (32 � 32 � 128). The spiking output from the LIF
layer is gathered along the time dimension and processed using
an average pooling layer (2 � 2), reducing the feature map size
to 32 � 32 � 128 while preserving essential features. This
process is repeated as the output data are fed into the second
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LIF layer (16 � 16 � 128). Again, the spiking output is pro-
cessed using an average pooling layer (2 � 2), further refining
the feature map to 8 � 8 � 128. To illustrate the spike time
transformation, see Figure 2. The LIF neuron synchronously
emits spikes across multiple time steps. The input spike signal
tensor (feature map channel size 4 � 4) is divided into four‐time
steps, ensuring consistent spike processing throughout the
network. The kernel size (3 � 3) remains synchronised across
all time steps, ensuring that the output tensor captures poten-
tials at every step. Since spikes are stored accumulatively,
the potentials are progressively enhanced, improving feature
extraction. The final feature map (8 � 8 � 128) is passed to the
next layer, which consists of two groups, each containing 128
leaky integrate‐and‐fire (LIF) neurons, responsible for signal
classification (i.e., wave identification). To train the LIF neu-
rons, a surrogate gradient [28, 29] is utilised, with a sigmoid
function performing back‐propagation, as defined in Equa-
tion (9). For forward‐propagation, a step function is employed
to differentiate binary states (0 and 1s) within the LIF neurons.
The step function is computed using Equations (10) and (11),
where ∅ represents the Heaviside step function, and φ corre-
sponds to the Dirac–Delta function.

a(x) = sigmid [α x] =
1

1 + e−αx
, (9)

S[t] =∅(V[t] − Vth), (10)

∂S
∂V

= φ (V − Vth) ∈ {0, 1}. (11)

4 | Results and Discussions

The RFFI‐SCNN model has been implemented on a laptop
type Lenovo CPU speed 2.8 GHz Intel Core i7, RAM 8 GB
and operating system MS Windows 10. Four experiments have
been conducted to evaluate the performance of the model:

Since SCNN requires a fixed input length, the first experiment
employed the RFFI‐based Single‐SNN (RFFI‐1SNN) model,
which used a single fully connected layer with 128 LIF
neurons for signal identification. The second experiment
adopted the RFFI‐DCNN model as proposed in [21], while the
third utilized the RFFI‐1CNN model from [16]. The four ex-
periments have been implemented by using the Python lan-
guage (version 3.8). The SnnTorch library has been used to
implement RFFI‐1SNN and RFFI‐SCNN, whereas TensorFlow,
Keras and PyTorch libraries have been used to apply RFFI‐
1CNN and RFFI‐DCNN. In the four experiments, a signal‐
to‐noise ratio (SNR) utilised values (0 dB to −15 dB), and
time frequency‐map (value 200 and 600) is used for testing
and training, respectively, and scaled to a size of 32 � 32
utilising bicubic interpolation, see Table 2.

During the signal processing phase, the I/Q sample wave data
are collected from the Wi‐Fi dataset [14], with 10,000 samples
gathered from each radiation source. The window sliding
length is set to 128, and each data sample consists of two
channels: I and Q. The dataset is split into 75% for training and
25% for testing across the four experiments. To evaluate model
performance, three key metrics are used: signal identification
accuracy, memory utilisation and execution time. Accuracy is
measured using a confusion matrix to assess prediction per-
formance. Among the four experiments, the RFFI‐DCNN
model achieves the highest accuracy (0.972) and lowest
misclassification rate (0.027) compared to other models. The
proposed RFFI‐SCNN model demonstrates strong performance
with 0.966 accuracy and 0.033 misclassification rate, out-
performing RFFI‐1CNN (accuracy: 0.961, misclass: 0.038) and
RFFI‐1SNN (accuracy: 0.946, misclass: 0.053; see Figure 3).
The resource computation metrics, including memory uti-
lisation and execution time, are assessed during both the
training and testing phases. Figure 4 presents the lowest total
memory usage (in KiB) for each model: RFFI‐SCNN (2800
KiB), RFFI‐1CNN (5000 KiB), RFFI‐1SNN (2500 KiB) and
RFFI‐DCNN (5200 KiB). The highest memory usage observed
was 4500 KiB (RFFI‐SCNN), 6500 KiB (RFFI‐1CNN), 4000 KiB
(RFFI‐1SNN) and 6800 KiB (RFFI‐DCNN). Regarding execu-
tion time, RFFI‐SCNN and RFFI‐1SNN performed faster
compared to RFFI‐1CNN and RFFI‐DCNN, as illustrated in
Figure 5. During the testing phase, Figure 6 shows the lowest
total memory usage: RFFI‐SCNN (800 KiB), RFFI‐1CNN (1200

FIGURE 2 | Transforming spike times process for the input spike‐
wave 4 � 4 channel.

TABLE 2 | Summary of the three experiments parameterS.

Parameter Value
SNR Rang from 0 dB to −15 dB

Time frequency map for training 600 MHz

Time frequency map for testing 200 MHz

Time frequency map size 32 � 32

Sampling rate 2 GHz

Time width 0.4 μs

Bandwidth 60 MHz

Learning rate 0.1

IET Wireless Sensor Systems, 2025 5 of 10
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KiB), RFFI‐1SNN (1000 KiB) and RFFI‐DCNN (13,400 KiB).
The highest allocated memory values recorded were 1200 KiB
(RFFI‐SCNN), 1900 KiB (RFFI‐1CNN), 1480 KiB (RFFI‐1SNN)
and 2380 KiB (RFFI‐DCNN). Figure 7 further demonstrates
that RFFI‐SCNN and RFFI‐1SNN required less execution time
compared to RFFI‐1CNN and RFFI‐DCNN. Although these
results highlight the efficiency of RFFI‐SCNN in terms of
memory and execution time, it is important to note that we
did not perform cross‐device generalisation testing. We agree
that this is a critical aspect for practical deployment, especially
in dynamic IoT environments where new or similar devices
may be introduced. We will add a note in the manuscript
discussing the importance of evaluating model generalisation
on larger and more diverse datasets in future work. However,
the superior performance of RFFI‐SCNN in terms of accuracy,
execution time and memory usage can be attributed to the
architectural adaptations made for RF data. The spike encod-
ing scheme and tailored convolutional configurations allowed
the SCNN to efficiently process temporal signal features,
resulting in more robust classification. These findings valid-
ate the effectiveness of our design choices and highlight the
potential of SCNNs in neuromorphic RF fingerprinting
applications.

5 | Conclusion

This study aims to enhance physical layer (PH) security in IoT
device recognition by leveraging transmitter wave features
through the development of a hybrid model, RFFI‐SCNN. The
model operates in two phases: signal processing and SCNN‐
based classification. In the signal processing phase, I/Q
wave data are collected and preprocessed using the sliding
window method to ensure consistency before being fed into
the next stage. The SCNN phase extracts wave features from
the processed data and executes the classification process,
enabling accurate device identification within the network.
The proposed RFFI‐SCNN model has been evaluated against
three models—RFFI‐1SNN, RFFI‐1CNN and RFFI‐DCNN—
using three performance metrics: accuracy, execution time
and memory usage. In terms of accuracy, RFFI‐SCNN dem-
onstrates superior performance compared to RFFI‐1SNN and
RFFI‐1CNN. Regarding execution time, RFFI‐SCNN achieves
the shortest processing duration, outperforming RFFI‐1CNN
and RFFI‐DCNN. Although the results highlight the effi-
ciency and accuracy of RFFI‐SCNN, future work is needed to
address its resilience against security threats such as spoofing,
replay attacks and signal injection. These vulnerabilities are

FIGURE 3 | Illustrates the identifying results of the individual communication radiance source based on RFFI‐CSNN, RFFI‐1CNN, RFFI‐1SNN
and RFFI‐DCNN model, respectively.

6 of 10 IET Wireless Sensor Systems, 2025

 20436394, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/w

ss2.70018 by N
IC

E
, N

ational Institute for H
ealth and C

are E
xcellence, W

iley O
nline L

ibrary on [23/12/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 4 | Illustrates memory usage in the training phase for the four experiments.

FIGURE 5 | Illustrates the execution time in the training phase for the four experiments.

IET Wireless Sensor Systems, 2025 7 of 10
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FIGURE 6 | Illustrates memory usage in the testing phase for the four experiments.

FIGURE 7 | Illustrates the execution time in the testing phase for the four experiments.

8 of 10 IET Wireless Sensor Systems, 2025
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critical in practical deployments, and we will include a dis-
cussion in the revised manuscript to emphasise the impor-
tance of securing RFFI systems against such adversarial
scenarios.
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