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Abstract—This research presents an ontology-based frame-
work designed to enhance market and production management
for specialized Small and Medium-sized Enterprises (SMEs) in
the precision manufacturing sector, using air bearings as a
case study. The framework was validated through real-world
applications in a precision manufacturing SME and features a
knowledge graph that was used for staff education and improved
operational efficiency. Our approach integrates expert-driven
ontology modeling with a modular web crawler and advanced
Natural Language Processing (NLP) techniques, specifically the
BERT-based ELECTRA model, for entity recognition and re-
lationship extraction. This enables the framework to identify
potential customers and competitors from unstructured online
data, improving strategic decision-making. Key outcomes include
enhanced supply chain transparency, more accurate market
positioning, and better identification of long-tail demand patterns.
The study demonstrates the practical value of combining knowl-
edge graphs with NLP in industrial applications and suggests
future extensions such as integration with large language models
and the development of a domain-specific search engine.

Index Terms—Air Bearing; Knowledge Graph; Market Intel-
ligence; Ontology; Industrial Management

I. INTRODUCTION

Air bearings play a crucial role in high-precision manufac-
turing, particularly in semiconductor production, metrology,
and optical processing [1]. By eliminating mechanical contact
through a thin film of compressed air, they enable frictionless
motion essential for nanometer-level accuracy [2]. This tech-
nology reduces mechanical wear, enhances positioning preci-
sion, and supports the demands of next-generation fabrication
systems.

The development of air bearing technology marked a shift
from conventional contact-based support to non-contact solu-
tions. Early theoretical foundations, such as Reynolds’ equa-
tion, helped establish the behavior of thin gas films and remain
central to performance optimization [2]. Progress accelerated
during the 1950s with the emergence of systematic studies and
international collaboration.

Air bearings are broadly classified into aerostatic, aerody-
namic, hybrid, and squeeze film types [2]. Each type offers
unique advantages: aerostatic bearings provide high stability
through external pressurization, while aerodynamic types excel
in high-speed environments. Hybrid and squeeze film types
are used for more specialized scenarios. As semiconductor
equipment demands greater precision and cleanliness, air
bearings are increasingly favored for their durability, zero-
contamination characteristics, and ability to meet sub-micron
motion requirements.

However, the development and adoption of air bearing
technology remain concentrated among a few global play-
ers, leaving specialized Small and Medium-sized Enterprises
(SMEs) with limited access to structured market intelligence
and application-driven strategies. The lack of comprehensive
knowledge frameworks restricts these SMEs’ ability to posi-
tion themselves competitively and respond to dynamic market
trends.

Despite technological potential, SMEs face common and
persistent challenges: fragmented market information scattered
across unstructured data sources such as technical reports,
online forums, and company disclosures [3], [4]; difficulties
in standardizing product lines due to the dominance of highly
customized and experimental orders [5]; and intense compe-
tition from larger, well-established international players who
benefit from economies of scale and brand recognition [6].

To address these issues, this research proposes an integrated
framework for intelligent market analysis and production man-
agement based on ontology and Natural Language Processing
(NLP). Our approach combines expert-driven ontology mod-
eling, modular data acquisition mechanisms, and ELECTRA-
based entity recognition [7] to extract, organize, and visualize
unstructured industrial data into a coherent and evolving
strategic knowledge graph.

Validated through real-world applications in a precision
manufacturing SME, the proposed framework not only im-
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proved internal staff training and customer targeting but also
enhanced technological alignment by revealing key relation-
ships among technical fields, subfields, companies, and prod-
ucts. This structured visibility empowers SMEs to identify
underserved market segments, optimize their positioning, and
support more agile decision-making processes.

This study demonstrates how the integration of ontology
and NLP techniques can help SMEs overcome structural infor-
mation barriers, enhance competitive intelligence, and better
adapt to fragmented and rapidly evolving industrial markets.
It is particularly effective in addressing long-tail demand
patterns, where niche opportunities constitute a significant but
often overlooked portion of the high-precision manufacturing
landscape [8].

II. RELATED WORK

Air bearing technology, originating from nineteenth-century
air lubrication experiments, has undergone continuous evolu-
tion to become a foundational component of high-precision
motion systems [1]. By eliminating mechanical contact
through the maintenance of a stable air film, air bearings en-
able extremely low friction, high stiffness, and nanometer-level
positioning accuracy, making them indispensable in advanced
semiconductor equipment, metrology platforms, and optical
manufacturing systems [1], [2].

Despite achieving technological maturity in certain sectors,
air bearing systems continue to face technical and market
challenges. Dynamic behavior modeling under varying loads,
thermal management at high operating speeds, and the high
cost of integration remain major obstacles to broader adoption
across industrial applications [2].

Parallel to the evolution of air bearing technologies, knowl-
edge graphs have emerged as powerful tools for structuring
complex industrial knowledge. A knowledge graph organizes
entities, attributes, and relationships in a flexible, semantic
manner, enabling richer information representation compared
to traditional relational databases [12]. Originally developed
for web search optimization, knowledge graphs are increas-
ingly applied in industrial domains for tasks such as supply
chain visualization, competitive landscape mapping, and tech-
nology trend analysis [11], [20].

Recent advances in NLP, particularly the introduction of
pre-trained models like ELECTRA [7], have significantly
enhanced the efficiency and accuracy of information extraction
from unstructured text sources. This has made the automatic
construction of domain-specific knowledge graphs more fea-
sible and less reliant on extensive manual curation, especially
when integrated with traditional linguistic resources like part-
of-speech tagging and dependency parsing [10], [14].

SMEs in high-tech manufacturing sectors, including air-
bearing platform providers, face distinct disadvantages in gath-
ering and utilizing market intelligence. Information fragmen-
tation, data sparsity, and the overwhelming presence of larger
competitors make traditional intelligence-gathering methods
inefficient and costly [3], [5], [6]. Knowledge graph-based
methods offer a promising alternative, enabling SMEs to

structure fragmented information dynamically, discover hidden
opportunities, and simulate market scenarios based on graph
analytics [8], [9].

Moreover, in technically dense and rapidly evolving indus-
tries, human expertise remains essential for validating and
refining automatically extracted knowledge. Human-in-the-
loop systems, which integrate expert review into automated
processes, have proven effective in enhancing semantic ac-
curacy and maintaining the relevance of evolving knowledge
bases [9], [13].

Building upon these foundations, this study presents a prac-
tical framework that combines ontology modeling, knowledge
graph construction, and NLP-based information extraction.
Designed specifically for precision manufacturing SMEs, it
aims to bridge the gap between fragmented industrial knowl-
edge and actionable strategic insights, particularly in the com-
plex and opportunity-rich domain of air-bearing applications.

III. METHODOLOGY

This section outlines the design and implementation of a
modular framework supporting real-time market intelligence
gathering and production decision-making for SMEs in the
air bearing industry. The framework integrates three core
components: ontology-driven knowledge graph construction,
automated information acquisition, and an NLP-based entity
recognition and integration module [9].

A. Knowledge Graph Construction

The knowledge graph module builds a structured represen-
tation of the semiconductor equipment industry using Neo4j,
a graph database optimized for complex relationship manage-
ment. We first defined a domain-specific ontology, capturing
concepts such as companies, technical domains, subfields,
products, and their interconnections [10].

A top-level classification system comprising 13 technical
fields (e.g., Lithography, Etching, CVD) and corresponding
subfields (e.g., EUV, Dry Etching) was established. Each field
was mapped to key market players like ASML, AMAT, Lam
Research, Tokyo Electron, and KLA based on their product
specialization and market dominance. Field strengths were
encoded with three levels: leading (3), strong participation (2),
and involvement (1).

Cypher queries were used to construct the graph, creating
nodes and edges representing hierarchical and competitive
relationships. The resulting graph not only served as a central-
ized knowledge repository but also enabled visual exploration,
helping SMEs analyze supply chain structures, identify strate-
gic gaps, and support internal training and market planning
[11], [12].

B. Information Acquisition

To enrich and update the knowledge graph dynamically, a
hybrid information acquisition system was developed, com-
bining automated crawlers with Robotic Process Automation
(RPA) tools.



Custom Python-based crawlers were built with a modular
architecture, supporting dynamic content parsing, authentica-
tion, API communications, and structured data output. They
were responsible for scraping structured and semi-structured
data from public sources such as company websites, patent
databases, and technical forums.

Meanwhile, Octoparse, a commercial RPA tool, was in-
tegrated to allow non-technical staff to participate in data
acquisition. Its visual interface enabled quick deployment of
web scraping workflows without coding, facilitating broader
organizational collaboration [13].

To ensure data reliability, a human-in-the-loop verification
stage was embedded after data collection. Human review-
ers cross-checked information for accuracy, relevance, and
uniqueness, filtering out outdated, redundant, or irrelevant
records. This dual-process design combined the efficiency of
automation with the semantic judgment of domain experts.

C. Entity Recognition and Knowledge Integration

After data collection, unstructured text materials were pro-
cessed through an advanced NLP pipeline. We implemented
a Chinese-language NLP system based on the ELECTRA
model [7] and the Language Technology Platform (LTP) [14],
capable of performing segmentation, part-of-speech tagging,
dependency parsing, and Named Entity Recognition (NER).

The pipeline targeted five main entity types: organizations,
persons, locations, technical keywords, and inter-entity re-
lationships. Recognized entities were classified and either
mapped to existing nodes in the knowledge graph or used
to generate new nodes and edges, allowing the graph to
organically expand over time.

The system architecture followed a Django-based Model-
View-Controller (MVC) pattern, ensuring modular separation
of data processing and interface management. ECharts was
used for dynamic, interactive visualization of the knowledge
graph, empowering domain experts and business teams to
browse, annotate, and analyze complex relationship networks
with minimal technical barriers.

By integrating real-time entity extraction with graph up-
dates, the framework enabled SMEs to continuously align
internal knowledge with external market signals, responding
to new opportunities and competitive threats effectively [15].

D. Summary

The framework’s three modules—ontology-based knowl-
edge graph construction, modular information acquisition,
and NLP-driven integration—operate independently yet cohe-
sively. Together, they create a scalable, extensible platform
for SMEs to bridge fragmented market intelligence, enhance
strategic visibility, and support data-informed decision-making
across dynamic industrial landscapes.

IV. RESULTS

This section presents the key outcomes of our frame-
work implementation, including the construction of a domain-
specific knowledge graph and the insights derived from market
and product data analysis related to air-bearing platforms.

A. Knowledge Graph Overview

We constructed a domain-specific knowledge graph to
model the structure of the semiconductor equipment industry.
This graph was designed to connect companies, product lines,
technical fields, and subfields to support strategic insights and
market visualization.

The knowledge graph is composed of 79 nodes and 136
relationships, categorized into four major node types: Com-
pany, Field, Subfield, and Product. It was implemented and
visualized using Neo4j. Figure 1 shows a full snapshot of the
final graph layout.

Fig. 1. Knowledge graph visualization of the semiconductor equipment supply
chain. Each color represents a distinct entity type. Edges indicate structured
relationships such as LEADER_IN, BELONGS_TO, and HAS_PRODUCT.

To populate the graph, we collected product and domain
data from five dominant vendors: ASML, Applied Materials
(AMAT), Tokyo Electron (TEL), Lam Research (LRCX), and
KLA. These companies collectively account for over 76.9%
of the global semiconductor equipment market [16]. Each
company’s participation in 13 major fields was quantified
according to its level of specialization. Table I summarizes the
classification scheme and the assigned field strength scores.

The encoding rule is as follows: 3 represents a lead-
ing position (LEADER_IN), 2 indicates strong involve-
ment (STRONG_IN), and 1 indicates general participation
(INVOLVED_IN). Based on this mapping, ASML holds a
dominant role in Lithography, while KLA leads Metrology.
AMAT maintains comprehensive participation across almost
all fields except Lithography. TEL and LRCX specialize in
process-heavy fields such as Etching, PVD, and Thermal
Processing.

The knowledge graph structure reflects these observa-
tions. Subfields are connected to their parent fields using
BELONGS_TO, and products are associated with subfields.



Companies are linked to fields through role-encoded edges.
This configuration enables flexible traversal from a macro
(field-level) to micro (product-specific) view, supporting a
wide range of use cases from customer analysis to strategic
planning.

TABLE I
FIELD AND SUBFIELD DISTRIBUTION OF MAJOR SEMICONDUCTOR

EQUIPMENT COMPANIES

Field / Company ASML AMAT LRCX TEL KLA
Lithography 3 0 0 0 0
Etching 0 3 3 2 0
CVD 0 3 2 2 0
Metrology 1 1 0 0 3
Cleaning 0 2 3 2 0
PVD 0 3 1 1 0
Track 0 0 0 3 0
ALD 0 2 2 1 0
CMP 0 3 0 1 0
Thermal Processing 0 2 0 3 0
Ion Implantation 0 3 0 0 0
ECP 0 3 1 0 0
Dry Strip 0 2 3 1 0

B. Market Insights and Air-Bearing Product Landscape

With the help of the constructed knowledge graph, internal
teams gained clarity on the company’s position within the
broader semiconductor equipment supply chain. This insight
allowed technical and business personnel to identify key fields
where domestic substitution was feasible, as well as recognize
the types of data that were missing. Guided by this structure,
the company initiated a targeted data acquisition effort to
populate gaps relevant to air-bearing product lines.

The product data presented in this section was collected
through a combination of automated web scraping using
Python scripts and collaborative efforts from internal sales
teams. Non-technical staff utilized RPA tools to assist in
collecting product names, model sizes, and brand information
from public websites. To improve processing efficiency, we
applied NLP-based entity recognition (using ELECTRA and
LTP) to parse product tables, filter irrelevant text, and extract
valid company-product pairs. The resulting data enabled the
construction of a usable and actionable competitor database.

Based on the collected and processed data, we present a
structured comparison of product availability across major
suppliers in the air-bearing turntable market. The tables below
summarize the product offerings in three key air-bearing
turntable series: Measurement, Compact, and High-Speed.

These insights reveal underserved market segments and
inform future product planning. Most current orders are ex-
perimental or customized, suggesting air bearings have not
yet achieved widespread adoption. This presents a strategic
opportunity to build a case library, provide service-oriented
offerings, and support niche customization markets such as
research institutes and specialized manufacturing tools [8],
[17].

TABLE II
MEASUREMENT SERIES PRODUCT DISTRIBUTION (DIAMETER IN MM)

Company 100 110 150 200 215 250 340
JS1 O O O O O
WX1 O O
SH1 O
YB O O O
BJ1 O O
BJ1+ O O
SY O O
XW O O
HZ O
US1 O
EU1 O

TABLE III
COMPACT SERIES PRODUCT DISTRIBUTION (DIAMETER IN MM)

Company 100 120 150 200 300
JS1 O O O O
WX1 O O O
SH1 O O
XW1 O O
SZ1 O
EU1 O O

TABLE IV
HIGH-SPEED SERIES PRODUCT DISTRIBUTION (DIAMETER IN MM)

Company 100
JS1 O
HZ O
EU1 O

V. MARKET AND TECHNOLOGY ANALYSIS

Understanding the industrial context of air-bearing plat-
forms requires positioning them within the broader digital
economy. As shown in Figure 2, the technology value chain
extends from mass-market applications (e.g., 5G, AI) to core
enablers such as semiconductor manufacturing.

Fig. 2. Global Technology Industry Funnel from Application to Core
Components

Semiconductor manufacturing, a $1 trillion segment, relies
on precision equipment valued at nearly $100 billion annu-
ally [16]. Air-bearing motion systems, though representing a
smaller market, are critical for enabling ultra-stable, vibration-
free motion, increasingly demanded by Moore’s Law scaling,



AI acceleration, and advanced packaging [18]. Positioned
at the interface of physical mechanics and computational
needs, air-bearing platforms align naturally with semiconduc-
tor equipment as the most strategic entry point.

A. Downstream Market Overview

Air-bearing systems are applicable in semiconductor pro-
duction, display manufacturing, ultra-precision machining,
and automation. Among these, semiconductors represent the
largest and most policy-supported downstream opportunity
[16].

As shown in Figure 3, the semiconductor equipment market
is dominated by fields such as Etching (25.0%) and Lithog-
raphy (19.7%), with five major companies—ASML, AMAT,
TEL, LRCX, and KLA—controlling over 76.9% of the market.

Fig. 3. Semiconductor Equipment Market Share by Field and Vendor

Table V highlights flagship equipment from these vendors,
illustrating the need for ultra-high precision motion stages.

TABLE V
KEY PRODUCTS OF MAJOR SEMICONDUCTOR EQUIPMENT VENDORS

Company Product Field Subfield
ASML NXE:3400B Lithography EUV
AMAT Centris Sym3 Etching Dry Etch
LRCX Kiyo Series Etching Plasma Etch
TEL TELINDY Plus Thermal Processing RTP
KLA CIRCL Series Metrology Optical

While adjacent markets such as OLED displays and automa-
tion exist, they are typically more fragmented and less scalable
compared to the semiconductor industry.

B. Supply Chain Positioning

The precision equipment value chain comprises OEMs,
system integrators, subsystem suppliers, unit suppliers, and
element providers. SMEs can strengthen their role as Tier 2
or Tier 3 suppliers by focusing on modular air-bearing units,
avoiding direct competition with full-system integrators while
contributing to the high-end supply chain [19].

C. Technology and Policy Drivers

Two major trends further favor air-bearing adoption:
• AI Computing Boom: Accelerated demand for GPUs

and sub-5nm chips drives investment in EUV lithography
and metrology equipment, both requiring high-stability
stages;

• Domestic Substitution: National policies in China pro-
moting semiconductor independence stimulate demand
for local motion control subsystems [17].

D. Strategic Summary

In conclusion, semiconductors offer the most scalable and
strategically aligned growth path for air-bearing technolo-
gies. By refining their specialization and leveraging structured
knowledge graph systems, SMEs can enhance their visibility
and resilience within this complex, high-value ecosystem.

VI. CONCLUSION

This study presents an integrated framework for market
and production management of air-bearing systems, combin-
ing ontology-based knowledge graphs and NLP techniques.
It contributes both a practical tool for SMEs in precision
manufacturing and a methodological reference for data-driven
decision-making in fragmented industrial environments.

A. Key Findings

The research identified significant opportunities for air-
bearing applications, particularly within the semiconductor
equipment industry. Through the construction of a domain-
specific knowledge graph, SMEs were able to visualize com-
plex industry structures, improve internal training, and enhance
strategic targeting. Additionally, the analysis revealed that
most air-bearing orders remain highly customized, highlight-
ing a ”long-tail” market structure where service-oriented busi-
ness models and specialized solutions can yield a competitive
advantage [8].



B. Theoretical and Practical Contributions

From a theoretical perspective, this work demonstrates
how ontology-based knowledge graphs can organize frag-
mented industrial information into coherent structures, sup-
porting semantic reasoning and strategic insight. Practically,
the framework offers SMEs a way to build internal knowledge
capabilities, bridge market intelligence gaps, and improve
responsiveness to shifting industry demands. The approach is
also adaptable to adjacent fields where precision motion and
supply chain complexity are critical factors.

C. Limitations and Future Work

While the framework effectively integrates knowledge graph
construction, modular information acquisition, and NLP-based
entity recognition, limitations remain in multilingual data
support, dynamic update automation, and semantic search
capabilities. Future enhancements will focus on:

• Integrating Retrieval-Augmented Generation (RAG) tech-
niques, such as LightRAG [21], to evolve into a domain-
specific knowledge search system;

• Expanding entity recognition to cover more technical
domains, enabling cross-industry strategic mapping;

• Incorporating global data sources to enhance international
market intelligence tracking.

D. Final Remarks

This research highlights the strategic value of combining
structured knowledge representation with practical industrial
data. In a rapidly evolving global manufacturing landscape,
frameworks like the one developed here provide SMEs with
the necessary tools to achieve greater agility, strategic fore-
sight, and sustainable growth.
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