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Abstract

In the context of Industry 4.0 and smart manufacturing, predicting cutting tool remain-
ing useful life (RUL) is crucial for enabling and enhancing the reliability and efficiency
of CNC machining. This paper presents an innovative predictive model based on the
data fusion architecture of Graph Neural Networks (GNNs) and Transformers to address
the complexity of shallow multimodal data fusion, insufficient relational modeling, and
single-task limitations simultaneously. The model harnesses time-series data, geometric
information, operational parameters, and phase contexts through dedicated encoders,
employs graph attention networks (GATs) to infer complex structural dependencies, and
utilizes a cross-modal Transformer decoder to generate fused features. A dual-head output
enables collaborative RUL regression and health state classification of cutting tools. Exper-
iments are conducted on a multimodal dataset of 824 entries derived from multi-sensor
data, constructing a systematic framework centered on tool flank wear width (VB), which
includes correlation analysis, trend modeling, and risk assessment. Results demonstrate
that the proposed model outperforms baseline models, with MSE reduced by 26-41%, MAE
by 33-43%, R? improved by 6-12%, accuracy by 6-12%, and F1-Score by 7-14%.

Keywords: tool wear; remaining useful life; graph neural networks; transformer; smart
machining

1. Introduction

In sustainable manufacturing and Industry 4.0, digitization, cloud computing, and
intelligent systems drive innovations by enhancing precision and sustainability. Numerical
control (CNC) machine tools, as foundational “mother machines” for high-value manu-
facturing, underpin modern industry through their automation, precision, and reliability,
profoundly impacting efficiency and quality in sectors like aerospace, automotive, and
precision engineering [1]. Cutting tools, the critical end-effectors in CNC systems, interact
directly with workpieces but are highly vulnerable to failure under harsh conditions in-
volving mechanical impacts, high temperatures, pressures, and friction, leading to wear,
damage, or chipping.

In harsh cutting environments, cutting tools continuously endure intense mechanical
impacts, high temperatures and pressures, as well as severe friction, making forms of failure
such as wear, damage, or even chipping inevitable. Progressive tool failure not only directly
leads to a decline in workpiece surface quality, dimensional inaccuracies, and increased
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scrap rates; more severely, sudden tool breakage can cause catastrophic secondary damage,
such as harming the workpiece, fixtures, or even core expensive components like the
machine spindle, resulting in significant economic losses and production safety accidents [2].
Traditional manufacturing employs experience-based periodic tool changes to mitigate
risks, but this passive approach overlooks tool life variability from diverse conditions
and materials, leading to premature discard of tools with substantial RUL and resource
waste, contradicting green manufacturing principles [3]. Intelligent technologies for real-
time tool health assessment and RUL prediction are essential to transition from “time-
based” passive to “condition-based” predictive maintenance, a key focus in academia and
industry [4]. Accurate RUL prediction prevents failures, ensures safety, optimizes efficiency,
maximizes tool utilization, integrates tool changes into scheduling to minimize downtime,
and supports intelligent, unmanned factories like “lights-out” operations, bridging sensing
and decision-making.

However, despite significant progress in data-driven prediction methods in recent
years [5,6], their applications to complex and variable real-world industrial scenarios still
face a series of deep-seated challenges, which constitute the current technical bottlenecks
in research. First, existing methods show deficiencies in multimodal data fusion, often
using simple concatenation or weighting that ignores deep nonlinear interactions among
time-series signals for cutting dynamics, geometric information for wear states, and static
parameters for operating conditions [7]. Second, they fail to exploit structural dependen-
cies, as traditional models handle Euclidean data well but overlook non-Euclidean graph
structures in machining. For instance, entities include tools as nodes representing wear
states, sensors capturing force and roughness signals, workpieces linked to surface quality
metrics, and experimental phases grouping sequential operations. Relationships manifest
as edges denoting dependencies, such as the physical coupling between tool wear VB in
mm and cutting forces Fx/Fy/Fz from sensors, or contextual links across batches that reflect
variability in machining conditions and degradation patterns. Ignoring these graphs limits
generalization and robustness [8]. Finally, single-task regression overlooks health state
transitions, such as from “normal” to “rapid wear”, failing to provide staged maintenance
guidance. This paper addresses these challenges by integrating GNNs with optimized
Transformers for deep multimodal fusion, precise graph relational inference, and multi-task
learning, enabling simultaneous RUL prediction and health state classification in dynamic
machining processes.

2. Literature Review

Cutting tool RUL prediction is a core topic in the field of smart manufacturing. Domes-
tic and international research revolves around three technical routes: physical and statistical
models, traditional machine learning and ensemble learning, and deep learning. These
routes have, respectively, advanced prediction accuracy and generalization capabilities in
theoretical depth, algorithm optimization, and industrial applications.

Physical and statistical models use mathematical equations for mechanistic and
data-driven predictions. Physical modeling, constrained by multivariable complexity,
guides data methods via fusion; for example, physics-informed hidden Markov model (PI-
HMM) [9] and Gaussian process regression [10] improve consistency and uncertainty, while
early HMMs tracked wear using forces [11]. Statistical approaches like multi-stage Wiener
processes with change-point detection characterize non-stationary wear phases [12,13].

Traditional machine learning and ensemble learning build efficient models from
sensor data, emphasizing accuracy and uncertainty. Support Vector Machines (SVMs)
hybrids incorporate particle filtering or optimization for time-series and limited-data sce-
narios [14,15]; Gaussian Process Regression (GPR) variants handle noise via sparsity or
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genetic algorithms [16,17]. Bayesian methods prevent overfitting and quantify uncer-
tainty [18], with early inference networks [19] and recent Bayesian Regularized Artificial
Neural Networks (BRANNSs) [20] enabling robust generalization. Ensembles, including
random forests [21,22] and Extreme Gradient Boosting (XGBoost) hybrids [23,24], excel
in classification and optimization, while AdaBoost suits small datasets [25]; comparative
studies highlight reliable selection for reliability prediction [26].

Deep learning enables end-to-end feature learning for robust architectures. Automated
analysis employs Fully Convolutional Networks (FCNs) [27] or lightweight Convolutional
Neural Networks (CNNSs) [28] for high-accuracy wear detection. In aerospace, autoen-
coders with Gated Recurrent Units (GRUs) monitor composites [29]. Recurrent models like
adaptive Bidirectional Long Short-Term Memory networks (BiLSTMs) [30,31] and multi-
sensor Long Short-Term Memory networks (LSTMs) [32] capture dependencies. Hybrids
fuse features via wavelets [33] or attention with Independently Recurrent Neural Network
(IndRNN) [34]; multirate Hidden Markov Models (HMMs) process acoustics [35], and Maxi-
mal Overlap Discrete Wavelet Transform (MODWT) supports label-free IoT predictions [36].
Time—frequency LSTMs [37] and Transformers like Power Spectral Density-Convolutional
Vision Transformer (PSD-CVT) [38] or Convolutional Physics-Informed Transformer (Conv-
PhyFormer) [39] balance efficiency and interpretability. Physics-informed Deep Learning
(DL) optimizes generalization [40].

Although these studies have advanced tool RUL prediction from mechanism-driven to
data-driven paradigms, three core challenges remain: shallow multimodal fusion overlook-
ing physical couplings and contexts, for example, batches and sequences, leading to biases
and reduced robustness under noise; inadequate relational modeling of non-Euclidean
graphs among entities like tools and sensors, causing redundancy and weakened general-
ization in variable scenarios; and single-task regression neglecting health state evolution,
limiting staged degradation sensitivity and maintenance guidance.

To overcome these, this study proposes an innovative end-to-end architecture inte-
grating multimodal encoding, graph relational inference, and multi-task learning for deep
fusion and interaction. Modal encoders refine feature extraction, preserving modality
traits with adaptive weighting to address imbalances and exceed concatenation limits.
A graph adaptive fusion module uses GATs to construct and learn entity dependency
graphs, dynamically attending to nonlinear interactions and contextual links for enhanced
robustness in noisy environments. Finally, a cross-modal Transformer decoder fuses global
features via self-attention across time-series, geometric, and operational data, enabling
dual-head multi-task outputs, one for health state classification and one for RUL regression,
to promote knowledge transfer, degradation sensitivity, and precise predictions.

3. Architecture Design for Tool RUL Calculation

The architecture design encompasses key stages such as data acquisition, feature engi-
neering, multimodal feature extraction, graph adaptive fusion, and cross-modal interaction
and prediction, aiming to achieve high-precision RUL regression prediction and health
status classification of the cutting tool.

Figure 1 completely depicts a multimodal deep learning model for precisely predicting
the tool RUL and assessing its health status. The core idea of this model is to systematically
integrate data from different information sources to build a comprehensive understanding
of the tool wear process. The entire process begins with data acquisition phase, which
acquires four key types of data in parallel: first, raw sensor data that directly reflects the
physical state of the cutting process, such as three-directional cutting forces (Fx, Fy, Fz)
and a series of surface roughness parameters; second, geometric data that quantify the
physical wear of the cutting tool, namely the diameter changes before and after tool
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use; furthermore, operational parameters that define the machining conditions, including
cutting depth, speed, and feed rate; finally, phase information that provides context for the
data, such as experimental batches and positions. These four types of data together lay a
solid data foundation for the subsequent precise predictions, particularly in the semantics
of cutting force variations, tool cutting edge status, tool wear, surface roughness and quality
of the component machined [41].
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Figure 1. Architecture for tool RUL calculation.
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After data acquisition, the system enters the feature engineering and preprocessing
stage, with the objective of transforming raw data into more informative features to pre-
pare for the deep learning model. In this stage, high-frequency sensor signals undergo
processing through specialized high-order feature extraction algorithms to reveal their
intrinsic patterns. The initial and final diameters of the tool are used to calculate a key
wear indicator that is VB, which intuitively reflects the degree of tool degradation. At the
same time, operational parameters and experimental phase information are, respectively,
integrated and embedded encoded, enabling effective mathematical fusion with other types
of features.

Next, the architecture employs a parallel multimodal feature processing pipeline to
perform deep feature extraction on different data sources. For the cutting force signals that
best reflect the real-time cutting state, the system uses a one-dimensional convolutional
neural network (1D-CNN) with three convolutional layers, kernel size of 5, and filter
dimensions of [64, 128, 256] for envelope extraction, followed by a bidirectional Transformer
encoder configured with four layers, eight attention heads, a hidden dimension of 256,
and a dropout rate of 0.1 to capture its complex temporal dependencies. For the geometric
and roughness data that represent progressive wear, it is processed through a channel
that combines a Temporal Convolutional Network (TCN) with four layers, kernel size
of 3, channel dimensions of [32, 64, 128, 256], and a standard Transformer encoder with
three layers, four attention heads, a hidden dimension of 128, and a dropout rate of 0.1.
At the same time, the processed operational parameters and phase information are also
forwarded as independent feature streams. This specialized processing ensures that the
unique characteristics of each data modality are fully exploited.

One of the innovative aspects of this architecture is its graph adaptive fusion module,
which aims to intelligently integrate information from different data streams. This module
constructs the features from the geometric, operational parameters, and phase information
streams into a graph structure, where the graph’s nodes represent sensor positions, and the
edges cleverly define the complex associations between internal tool features as well as be-
tween different machining batches. To provide a precise definition, the graph is formulated
as G consisting of nodes V and edges E. The nodes V consist of multimodal entities: sensor
nodes representing positions for cutting force signals Fx, Fy, Fz and roughness parameters
Ra, Rz, embedded as feature vectors from their respective encoders; geometric nodes captur-
ing tool wear metrics like VB and diameter changes; operational parameter nodes encoding
static conditions such as cutting depth, speed, and feed rate via dense embeddings; and
phase nodes representing experimental batches and positions as categorical embeddings
to provide contextual grouping. This integration relates sensor positions to operational
and phase info by treating them as interconnected entities in a heterogeneous graph, where
sensor nodes are linked to phase nodes for batch-specific context and to operational nodes
for condition-dependent dynamics. The edges E are defined based on domain-informed
associations: intra-modal edges connect similar entities within a modality, sensor nodes
linked by spatial proximity or signal correlation, weighted by cosine similarity of their
feature vectors; inter-modal edges capture cross-dependencies such as between geometric
nodes VB and sensor nodes forces to model physical coupling, initially weighted by corre-
lation coefficients, strong edge for VB-Fx with correlation > 0.7, or between phase nodes
and all others to encode batch-wise temporal relations, weighted by sequence similarity
across machining cycles. Edges are undirected and initially static but dynamically refined
via the attention mechanism of GATs during training, allowing adaptive weighting based
on learned importance. By employing GATs with three layers, eight attention heads, a
hidden dimension of 256, output dimension of 128, dropout rate of 0.2, and LeakyReLU
negative slope (alpha) of 0.2, the model can adaptively learn the importance of different
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information sources and generate a highly condensed feature representation that is aligned
across modalities and batches, providing key context for understanding the tool’s wear
behavior under different operating conditions and time scales.

In the final cross-modal interaction and prediction stage, all refined feature informa-
tion is aggregated to generate the final prediction results. The deep temporal features
extracted from the cutting force signals, along with the aligned contextual features output
from the graph fusion module, are fed together into a cross-modal Transformer decoder
configured with two layers, eight attention heads, a hidden dimension of 256, feed-forward
network dimension of 512, and dropout rate of 0.1. This decoder is responsible for parsing
and fusing the deep interactions between these two major categories of heterogeneous
features, generating the final fused contextual features. These features contain the most
comprehensive description of the tool’s current state and are fed into a dual-task output
layer. Among them, a classification head consisting of fully connected layers with di-
mensions [256, 128, 3], ReLU activation, and Softmax function, through fully connected
layers and a Softmax function, determines whether the tool is in a “normal,” “warning,” or
“critical” health status. Meanwhile, another regression head that is RUL regression head
composed of fully connected layers with dimensions [256, 128, 64, 1], ReLU activation,
and Sigmoid output solves a key regression problem through a set of fully connected
layers: predicting the normalized proportion of the tool’s RUL. To enhance the model’s
generalization ability and training stability, the RUL here is normalized to a standard
interval of 0 to 1. In this interval, “1” represents the tool in a brand-new state, possessing
its full potential useful life; while “0” represents that the tool’s life has been completely
exhausted, reaching the failure standard. Therefore, the task of this regression head is to
precisely predict a continuous value between 0 and 1, which intuitively represents the
percentage of the tool’s current remaining life in its total life. This normalized prediction
value not only facilitates robust regression calculations for the model but also provides a
standardized health metric independent of specific physical units. When needing to obtain
specific physical life, simply multiply this prediction proportion by the total design life of
that model tool under specific operating conditions to easily convert to actual remaining
minutes or the number of machinable workpieces.

The model training process employs the AdamW optimizer with a learning rate
of 1 x 10#, incorporating a warmup phase of 500 steps followed by cosine annealing
decay. Training is conducted with a batch size of 32 for 100 epochs, with early stopping
implemented using a patience of 15 epochs to prevent overfitting. The dual-task joint loss
function balances the classification and regression objectives with a lambda (A) value of 0.7,
meaning the regression task contributes 70% to the total loss while the classification task
contributes 30%. Specifically, the classification task employs cross-entropy loss with label
smoothing of 0.1, and the regression task uses mean squared error (MSE) loss. To stabilize
training, gradient clipping with a maximum norm of 1.0 is applied. All experiments are
conducted using PyTorch framework (https:/ /pytorch.org/) on an NVIDIA RTX 3090 GPU
with 24 GB memory (NVIDIA, Santa Clara, CA, USA).

Based on the macroscopic overview of the tool RUL calculation architecture, this
study systematically elaborates the end-to-end process of the model from data acquisi-
tion to prediction output. To advance theoretical exploration, the following will delve
into the mathematical modeling of each module, as well as the loss functions and op-
timization strategies. Equations are as (1) to (5). The aim is to provide a quantitative
framework for the internal mechanisms of the model, while explaining the theoretical basis
for design decisions.

O VB Mathematical Modeling
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D init — D final
- 4 1
. (1)

where Djpj; (Init_diameter) represents the initial diameter of the tool, Do) (Final_diameter)

VB~

represents the current measured diameter. To clarify, VB is a calculated metric derived from
direct measurements of the tool’s initial and current diameters. D;,;; is measured before
tool usage, Dyinq is similarly measured after a period of machining, reflecting the tool’s
worn state. VB is then computed as the difference between these two measured values. The
role of VB is to transform static geometric data into dynamic wear indicators, facilitating
fusion with temporal sensor signals.

@ RUL Normalization

Lremaining

(2)

RU Lnormalized = Leotal
tota

where Lyemaining 18 the current RUL, and Ly, is the total design life of the tool under
specific operating conditions. The [0, 1] interval facilitates sigmoid activation, MSE stability,
and cross-unit generalization.

(® ATs Attention Mechanism

The attention coefficient a;; for node i aggregating information from neighbor j is
computed as follows:

exp (LeakyReLU (a” [Wh; || Wh;]))
"
]

= 3
Toni) exp(LeakyReLU(aT [Wh; | Why])) )

where h;, hj, and hy are node vectors, representing the embedded feature representations
of nodes in the graph G consisting of V and E, where h; is the central node such as a sensor
node encoding cutting force features, h; and hy are neighboring nodes such as geometric
nodes for VB or operational parameter nodes for cutting conditions, transformed by the
weight matrix W to project them into a common space for attention computation, W is
the learnable weight matrix, a is the attention vector, i represents vector concatenation,
|| represents vector concatenation, N (i) is the set of neighboring nodes of i including i
itself for self-attention if applicable, and LeakyReLU introduces nonlinearity. This softmax
mechanism dynamically weights the edges, enhancing cross-modal robustness.

®» 1D-CNN Convolution Operation

K-1
Ye=Y 4o Xtk Wp+Db (4)

where y; is the output feature value at position or time step ¢, representing the convolved
result that captures local patterns in the sequence, Zf;ol denotes the summation over
the kernel range from K = 0 to K — 1, aggregating weighted inputs for efficient feature
computation, x;_j is the input signal value at the shifted position t — k, providing the
sliding window of sequential data such as sensor readings, wy is the kernel weight at
position k, and b is the bias term.

® Dual-Task Joint Loss

Liotar = A - Lregression + (1 - /\) - Lelassification )

where Ly, is the total combined loss function for the multi-task learning model, serving
as the overall objective to minimize during training by balancing regression and classifica-
tion tasks, A is the hyperparameter that controls the relative importance of the regression
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task, with higher values prioritizing regression over classification (set to 0.7 in our im-
plementation), Lyegression 1S the loss value for the regression task (computed using mean
squared error), and Ljassification 1S the loss value for the classification task (computed using
cross-entropy loss).

This architecture design drives multimodal fusion with VB as the core degradation
indicator. In the feature engineering stage, VB serves as a key proxy, supporting static
correlation analysis and segmented trend modeling. The model captures the weak correla-
tions between VB and cutting forces, roughness, and in the graph adaptive fusion module,
adaptively weights through the GATs attention mechanism, for risk interval division and
multimodal dimensionality reduction.

4. Experiments and Simulations Development
4.1. Dataset

This dataset contains 824 tool observation records with multimodal data from force
sensors, surface roughness measurement instruments, and tool monitoring systems, fully
reproducing the degradation trajectory of the tool from initial run-in to stable cutting [42].
The dataset is structured into three subsets corresponding to different experimental phases:
Prep (run-in period), Experiment 1, and Experiment 2 (stable cutting periods). It encom-
passes data from 13 distinct cutting tools, and each cutting tool has a total of more than
60 observations across various stages and repeated measurements. The total 824 entries are
distributed as follows: Prep stage with 212 entries including initial measurements for all
tools, Experiment 1 with 324 samples under new-tool conditions, and Experiment 2 with
288 additional samples under progressive wear conditions, allowing for comprehensive
tracking of tool degradation over time. The Prep stage records geometric diameters, cu-
mulative machining time (CTime), machined length, and six surface roughness indicators
(Ra, Rz, Rsk, Rku, RSm, Rt), used to identify run-in period features; the stable cutting stage
adds three-axis cutting forces (Fx, Fy, Fz) and resultant force F, combined with geomet-
ric wear and surface quality data, supporting multimodal analysis. To facilitate model
training and evaluation, the dataset was split into training, validation, and testing sets
using a stratified approach to preserve the distribution of tool wear levels (VB values) and
experimental phases: 70% (578 records) for training, 15% (123 records) for validation, and
15% (123 records) for an independent testing set.

4.2. Experiments and Simulations

Based on the three datasets of Prep, Experiment 1, and Experiment 2, as well as the
core parameter VB therein, this article constructs a systematic and hierarchical experimental
research framework around the VB-driven RUL prediction task. This framework covers
six dimensions: static correlation analysis, temporal trend modeling, risk interval divi-
sion, multimodal interpretation and dimensionality reduction, uncertainty propagation
assessment, and prediction performance and failure determination.

The design of the six dimensions in this experimental research framework follows
a progressive closed-loop logic from data exploration to model validation, and then to
application optimization: first, static correlation analysis lays the foundation for variable
relationships, identifying the core driving role of VB; second, temporal trend modeling
captures the dynamic degradation process, bridging from static to dynamic evolution;
then, risk interval division introduces application-oriented risk management, quantifying
failure warnings; next, multimodal interpretation and dimensionality reduction refine
high-dimensional semantics, supporting feature optimization; subsequently, uncertainty
propagation assessment diagnoses model reliability, ensuring robustness; finally, prediction
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performance and failure determination close the evaluation loop, verifying the overall
efficacy of GNNs and Transformers.

4.2.1. Static Correlation Analysis

We aimed to explore the relationships between VB and other variables, including
surface roughness, cutting forces, and time, through static correlation visualizations. Specif-
ically, tools such as residual analysis plots, scatter plots, and heatmaps were employed to
quantify the negative correlation between VB and RUL, the proxy relationship between VB
and cutting force components, and the representational value of VB in the surface quality
dimension. These associations directly guide the graph construction of GNNs and the
feature selection for Transformers.

First, the scatter plot and residual analysis plot of VB and RUL, as shown in Figure 2,
demonstrate a strong negative correlation between VB and RUL, thereby verifying the
rationality of VB as the main degradation driving variable. The residual analysis plot shows
that the error points are basically randomly distributed around the zero line (red dashed
line), though the smoothed trend line (orange) reveals a noticeable dip and subsequent rise,
particularly between predicted RUL values of 0.4 and 0.5, suggesting a potential systematic
bias in this mid-range region where the model may slightly overestimate or underestimate
residuals during moderate wear stages. Additionally, the variance of residuals appears
to decrease as predicted RUL increases, indicating possible heteroscedasticity rather than
perfect homoscedasticity, which could imply that the model’s error distribution is not
entirely constant across wear levels and may be influenced by data density in high-RUL
(low-wear) areas. Despite these observations, the overall proximity of the trend line to
horizontal and the general random scatter support a low level of systematic bias, affirming
the model’s reasonable reliability for RUL prediction based on VB. The color gradient
(from purple to yellow) encodes the VB values, revealing the relative independence of
the residual distribution from the degree of wear. This critical analysis of the residuals
highlights areas for refinement, such as incorporating additional data in mid-wear regimes
to mitigate bias, while still confirming VB'’s utility in guiding GNN graph representations
for degradation modeling.
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Figure 2. Residual analysis of VB and RUL.

Secondly, the comparative scatter plots of VB and cutting force components (Fx, Fy, Fz)
as well as the prediction performance analysis, as shown in Figure 3, explore the systematic
patterns of VB with increasing force values, to verify the feasibility of cutting force signals as
proxy indicators for VB. Fx shows the strongest positive correlation, with a larger regression
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line slope; Fy lacks correlation, with a horizontal trend line; Fz shows moderate positive
correlation, with a medium and positive regression line slope, but high dispersion. The
prediction accuracy scatter plot shows values closely along the perfect line; the residual
distribution is random and unbiased; the error histogram approximates normal; the feature
importance bar chart confirms Fx as dominant, Fz second, and Fy lowest. These results
guide GNNs node aggregation, prioritizing Fx, and enhance model interpretability.
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Figure 3. Comparation of VB and Cutting Force Components.

Finally, the VB and roughness multivariable correlation heatmap, as shown in Figure 4,
calculate the correlation coefficients between VB and Ra, Rz, Rsk, Rku, RSm, and Rt to
assess the representational value of VB in the surface quality dimension. The heatmap
shows weak positive correlations between VB and RSm, Rz, and Rt, with no correlation
to Rsk and Rku; the roughness parameters are highly correlated internally. The weak
positive correlations indicate the need for Transformer multimodal fusion to enhance

the assessment.
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Figure 4. VB and roughness multivariable correlation.

4.2.2. Temporal Trend Modeling

Based on key variables identified through static correlation, the dynamic trends of VB
are revealed through time-series visualization, comparing the evolution patterns of tool
wear. These identify nonlinear changes, supporting Transformer sequence modeling and
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GNNs’ dynamic graph updates. Time-series trends can serve as input sequences for the
GNNs-Transformer, verifying its superiority in capturing phase transitions.

Firstly, the degradation trajectory plot and nonlinear curve plot of VB changing with
the measurement number (R_measurement), as shown in Figure 5, plots multiple VB curves
according to Tool_ID, comparing the wear progress trajectories of different tools. The results
show that the 13 tools overall exhibit a progressive increasing pattern, starting from initial
low values, rising slowly or at medium speed with the number of measurements, and
reaching varying levels of 0.3-0.8 mm by the sixth measurement.
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Tool 10 23

0.7 1 Tool 10 31
- Tool 1D 33
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;
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|
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0.0

1 2 3 4 5 6
Measurement Number (R measurement)

Figure 5. Degradation trajectory.

Secondly, the nonlinear degradation curve of VB with cumulative machining time
(CTime), as shown in Figure 6, fits a smooth trend line and marks key turning points, which
were identified using a change-point detection algorithm based on the PELT (Pruned Exact
Linear Time) method, with a penalty parameter tuned to 3 for optimal segmentation of
the wear progression into initial, stable, and rapid phases; this algorithmic approach was
supplemented with manual verification against domain knowledge to ensure physical in-
terpretability, promoting reproducibility by avoiding subjective annotations alone, thereby
revealing the dynamic phase transitions and variability in the tool degradation process,
guiding the Transformer attention to capture long-term dependencies.

Finally, the stage distribution of VB values, as shown in Figure 7, is grouped by Prep,
Experiment 1, and Experiment 2, capturing the frequency distribution, statistical features,
and evolution trajectory of VB wear values. This enables the identification of the early
run-in zone, fluctuation differences, and the potential impact of experimental conditions
on the tool degradation process, providing a basis for segmented optimization.
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Figure 7. VB value stage distribution.

4.2.3. Risk Intervals and Failure Early Warning Division

Utilizing the dynamic phases of time-series trends to map VB risk levels, a model is

constructed through distribution plots, survival curves, and hazard rate curves, supporting

GNN risk graph prediction and Transformer survival sequences. Risk boundaries can be

incorporated into the loss function, enhancing the model’s accuracy in high-risk zones.

Firstly, the RUL distribution plot corresponding to segmented VB values, as shown in

Figure 8, visually compares the RUL differences under different wear intervals, thereby

providing quantitative support for predictive maintenance decisions. Specifically, the hori-

zontal axis divides the VB wear categories for segmented evaluation of degradation degree;

the vertical axis represents the RUL, reflecting the expected period from the equipment’s

current state to failure.

Secondly, the Kaplan—-Meier survival analysis, as shown in Figure 9, clearly demon-

strates the failure trends of different VB groups by estimating the survival probabilities in

each interval. Among them, the curve for the VB < 0.5 group declines relatively slowly,

with early steps showing intermittent characteristics, and by about 200 units, the survival

probability drops to about 0.4, indicating that this group has a higher long-term survival
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rate. In contrast, the curve for the VB 0.5-1.0 group declines steeply, with multiple steps
occurring continuously, and by about 150 units, the survival probability drops to about
0.1, and finally drops to zero at about 170 units, reflecting a higher early failure risk. The
obvious separation of the two curves verifies the effectiveness of VB as a risk factor. These
early warning boundaries provide a risk-sensitive semantic foundation for multimodal
dimensionality reduction.

== Mean Value
= Median & Quartiles
© Data Points
VB <0.5 Distribution
VB 0.5-1.0 Distribution

Remaining Useful Life (RUL)

V8 0.5 VB 0.5-1.0
VB Wear Categories

Figure 8. RUL distribution corresponding to segmented VB values.
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Survival Probability
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Operating Time

Figure 9. Kaplan—-Meier survival analysis.

4.2.4. Multimodal Interpretation and Dimensionality Reduction

Based on the latent structures of risk intervals, latent semantic structures of multi-
variate data are revealed through Principal Component Analysis (PCA), demonstrating
the clustering trends and interaction strengths of VB. To provide deeper insights into the
machining context, PCA is employed to uncover the underlying patterns in multimodal
data, including VB, cutting forces (Fx, Fy, Fz), surface roughness parameters (Ra, Rz, Rsk,
Rku, RSm, Rt), and operational conditions. By analyzing the loadings of the principal
components, we can infer their physical significance in the context of tool degradation.
Firstly, the PCA dimensionality reduction plot, as shown in Figure 10, displays the distribu-
tion of multivariate data in a two-dimensional space, where the horizontal axis Principal
Component 1 (PC1) captures the direction of maximum variance in the data, which typi-
cally corresponds to the core factors dominating the overall pattern. In this study, PC1 is
found to be strongly correlated with VB and cutting force component Fx, suggesting that it
primarily represents the overall tool wear progression, as VB is the dominant indicator of
degradation and Fx exhibits a strong positive correlation with VB. Secondly, the vertical axis
Principal Component 2 (PC2) is orthogonal to PC1, capturing secondary but independent
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variation patterns. PC2 is observed to be more closely associated with surface roughness
parameters and operational conditions, reflecting variations in machining quality and
process conditions that are less directly tied to wear progression.
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Figure 10. PCA dimensionality reduction.

Figure 10 illustrates the scatter plot of the dataset projected onto the PC1-PC2 plane,
with data points color-coded by VB values to highlight the gradient of tool wear. The plot
reveals distinct clustering trends, where data points with low VB values (indicating early-
stage wear) are concentrated in the lower-left quadrant, while those with high VB values
(indicating severe wear) shift toward the upper-right quadrant. This gradient distribution
confirms VB’s pivotal role in driving the data variance captured by PC1. Additionally, the
spread along PC2 suggests variability in surface quality and machining conditions, with
tighter clusters indicating consistent machining outcomes and dispersed points reflecting
condition-specific variations. This plot not only highlights the gradient influence of VB
but also provides an intuitive basis for subsequent model optimization and semantic
mining, supporting GNNs embedding initialization and Transformer semantic extraction.
Specifically, the low-dimensional representations derived from PCA serve as compact
inputs for the GNNSs, enabling efficient initialization of node embeddings by capturing
the dominant wear-related patterns in PC1 and condition-related patterns in PC2. For the
Transformer, these representations enhance semantic extraction by providing a simplified
yet informative feature space that preserves critical multimodal interactions.

The conclusions drawn from the PCA results are twofold. First, the strong alignment
of PC1 with VB and Fx underscores the suitability of VB as a core degradation indicator, val-
idating its use in graph construction and feature fusion within the proposed model. Second,
the separation along PC2 highlights the importance of incorporating surface roughness and
operational parameters in multimodal fusion, as these factors contribute to the variability
in tool performance and machining outcomes. These insights guide the optimization of the
GNNs-Transformer architecture by ensuring that both wear progression and contextual
factors are adequately captured, thereby enhancing the efficiency and robustness of multi-
modal fusion in the RUL prediction task. The low-dimensional representations serve as
inputs, enhancing the efficiency of multimodal fusion.

4.2.5. Predictive Performance and Uncertainty Assessment

Integrating the reduced-dimensional features, the stability, confidence, and residuals
of the GNNs-Transformer Model predictions are assessed through visualization, employing
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partial dependence plot, Quantile-Quantile Plot (QQ plot), and calibration curves to
examine the response dominated by VB, distribution deviations, and coverage probabilities.
Firstly, the partial dependence plot, as shown in Figure 11, displays a nonlinear
negative correlation trend. Specifically, as VB gradually increases, the predicted RUL
exhibits multi-level plateau stages and transition stages, ultimately declining sharply in the
high VB zone. The confidence interval is narrower in the low VB zone, while significantly
widening in the high VB zone, reflecting increased uncertainty due to data sparsity.
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Figure 11. Partial dependence plot.

Secondly, in the process of diagnosing the distribution of model prediction residuals,
this study employs the Q-Q plot, as shown in Figure 12, to assess whether the residuals
conform to the normal distribution assumption, by comparing the quantiles of the ordered
residual samples with the theoretical quantiles of the standard normal distribution to
achieve an ideal fit. The QQ plot exhibits an “S”-shaped deviation, with both ends exceeding
the 95% confidence band, indicating heavy tails and asymmetric distribution, suggesting
that the model fit is insufficient and requires improvement.
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Figure 12. Predicted residual QQ.
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Finally, the reliability calibration plot, as shown in Figure 13, examines the coverage
probability. It is used to check whether the coverage probability of the predicted confidence
intervals matches the expected probability, that is, to evaluate the model’s calibration degree,
by comparing the observed coverage probability with the expected coverage probability. In
an ideal calibration state, the observed curve should closely fit the diagonal calibration line
for perfect calibration, indicating that the model’s confidence intervals accurately reflect
the true uncertainty. In this study, the observed curve is overall close to the calibration line,
but slightly higher than expected in the medium to high expected zones, with the deviation
indicating conservative intervals, stemming from overestimation of uncertainty.
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Figure 13. Reliability calibration.

4.2.6. Failure Classification and Determination Accuracy

Based on uncertainty assessment, the RUL health states are divided into healthy,
warning, and failure categories, constructing judgments through predicted and actual line
plots and accuracy analysis plots, examining the accuracy and offset of wear levels.

Firstly, in the dynamic comparative assessment of model performance, the focus is
on analyzing the VB predicted values and actual measured values. Figure 14 presents a
comparative analysis of actual VB values and predicted VB values across measurement
points for three representative tools with different prediction performance levels: Tool 23
(good performance), Tool 13 (average performance), and Tool 41 (poor performance). This
stratified representation reveals the model’s prediction capabilities across different wear
conditions, with performance metrics (MSE, MAE) quantifying the prediction accuracy for
each tool. The comparison enables insight into how prediction quality varies with wear
severity and tool-specific characteristics.

Tool 13 - Average Performance
MSE = 0.0008, MAE = 0.0254

Tool 41 - Poor Performance
MSE = 0.0016, MAE = 0.0362
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Figure 14. VB predicted values and measured values.
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Secondly, the VB prediction accuracy analysis plot, as shown in Figure 15, displays
performance through scatter points. Most points are distributed along the perfect line; the
£10% error band (good predictions) covers most points, the +20% error band (acceptable
predictions) includes a few points; very few points are outside the bands. The distribution
for different Tool_IDs evaluates performance, with errors slightly increasing as VB increases.
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Figure 15. VB prediction accuracy analysis.

4.2.7. Performance Comparison of Different Models

(@® Evaluation Metrics

To evaluate the performance of the proposed model in the tool RUL prediction task,
five standard metrics are used: mean squared error (MSE), mean absolute error (MAE), R?
Score, accuracy, and F1-Score. These metrics assess the model’s regression performance
for predicting continuous RUL values and classification performance for determining tool
health states. Detailed definitions and formulations of these metrics can be found in the
established machine learning literature [43,44].

@  Performance Comparison of Different Models

In order to further quantify the performance advantages of this model in the RUL pre-
diction task and compare it with existing typical methods, this study selected LSTM-SVM,
LSTM-CNN, and LSTM-XGBoost as benchmark models. These models were chosen as they
are common benchmarks in the tool RUL prediction literature, representing diverse cate-
gories of solutions: LSTM-SVM combines recurrent networks with kernel-based methods
for robust handling of sequential data; LSTM-CNN integrates convolutional and recurrent
layers for spatiotemporal feature extraction; and LSTM-XGBoost leverages ensemble boost-
ing for enhanced generalization across conditions, allowing a comprehensive evaluation
against established hybrid approaches. These models represent common combinations of
time-series processing with traditional machine learning or ensemble learning. Through ex-
perimental evaluations on the same dataset, the performance of each model was compared
on regression and classification metrics.

Table 1 shows the performance comparison of four models in the tool RUL prediction
task. These models include LSTM-SVM, LSTM-CNN, LSTM-XGBoost, and the Proposed
GNNs-Transformer Model. The evaluation metrics include MSE, MAE, R? Score, accuracy,
and F1-Score. These metrics comprehensively evaluate the models’ performance in regres-
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sion tasks for predicting continuous RUL values and classification tasks for tool health
status, such as healthy, warning, or failure states. Specifically, the main features of the
LSTM-SVM model lie in the good robustness from the combination of sequential LSTM
with SVM classification, but its limitations include high hybrid complexity and the need for
parameter optimization; the features of the LSTM-CNN model are the fusion of time series
and spatial features, which improves accuracy, but time—frequency limitations lead to weak
relationship modeling; the features of the LSTM-XGBoost model are the combination of
time series with ensemble learning, adaptable to multiple working conditions, but requiring
generalization verification; the features of the Proposed GNNs-Transformer Model are
multimodal fusion, graph relationship inference, and multi-task learning, with overall
performance superior to the other models.

Table 1. Model performance comparison.

Model MSE MAE R? Score Accuracy F1-Score
LSTM-SVM 0.086 0.049 0.823 0.809 0.781
LSTM-CNN 0.080 0.045 0.842 0.827 0.808

LSTM-XGBoost 0.069 0.042 0.876 0.854 0.836
Proposed Model 0.051 0.028 0.925 0.906 0.892

To ensure reproducibility and transparency in the experimental setup, the key hyper-
parameters for each benchmark model were optimized based on standard practices, using
a validation subset of the dataset. The benchmark models were trained using the Adam op-
timizer with a learning rate of 1 x 1073, batch size of 32, and early stopping after 20 epochs
without improvement. For the LSTM-SVM model, the LSTM component consisted of two
layers with 128 hidden units, followed by an SVM regressor/classifier using a radial basis
function (RBF) kernel, regularization parameter C = 1.0, and gamma = 0.1. The LSTM-CNN
model integrated 1D-CNN layers (three layers, kernel size = 5, filters = [64, 128, 256]) with a
bidirectional LSTM (two layers, 128 hidden units), using ReLU activation and dropout = 0.2.
The LSTM-XGBoost model employed a single LSTM layer (128 hidden units) to extract time-
series features, which were then fed into XGBoost with 100 estimators, maximum depth = 6,
learning rate = 0.1, and subsample = 0.8. For the Proposed GNNs-Transformer Model,
as detailed in Section 3. These configurations were selected to balance computational
efficiency and performance while ensuring fair comparison across models.

5. Discussion

This study proposes a tool RUL prediction model based on GNNs and Transformer
optimization. While prior work has explored GNNSs for leveraging equipment structures in
RUL estimation, our novelty lies in the seamless integration of GNNs with Transformers
via a specialized multimodal fusion strategy—combining dedicated encoders for diverse
data types, GAT for relational inference, and a cross-modal Transformer decoder for deep
interactions—coupled with a dual-head multi-task output for simultaneous RUL regression
and health state classification, enabling more refined predictive maintenance beyond
single-task paradigms. Through multimodal data fusion, graph adaptive relationship
inference, and multi-task learning, it achieves precise evaluation and prospective prediction
of tool health status. The experimental results validate the effectiveness of the model in
aspects such as static correlation analysis, segmented trend modeling, risk interval division,
multimodal interpretation, prediction performance evaluation, and failure classification.
Moreover, they highlight VB’s multi-dimensional value as the core degradation indicator,
extending beyond basic correlations to inform a closed-loop validation framework that
integrates data exploration, model verification, and application optimization—ensuring
the model’s comprehensiveness and robustness without reiterating module details.
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This study broadens GNNs and Transformer applications in data processing by ex-
plicitly modeling entity relationships and enabling collaborative RUL regression and state
classification, revealing wear turning points and providing a new framework for physics-
guided deep learning, where “physics-guided” refers to the incorporation of domain-
specific physical proxies like VB, derived from tool geometry and wear mechanics, into the
fusion architecture, constraining the model to respect real-world degradation dynamics
rather than purely data-driven patterns. Relative to mechanism-based models, it cir-
cumvents assumption limitations through data-driven multimodal fusion for superior
generalization; compared to traditional machine learning, it minimizes feature engineering
needs via GATs, outperforming ensembles in multivariable interaction capture. Benchmark
comparisons underscore these gains in error control, fit, and classification, affirming the
model’s innovative fusion and inference value. While the proposed model excels in ac-
curacy, its computational cost must be considered for industrial feasibility. Training the
full GNNs-Transformer architecture on an NVIDIA RTX 3090 GPU (24 GB memory) takes
approximately 2.5 h per run, with inference time per sample around 50-100 ms, depending
on batch size. In comparison, benchmark models like LSTM-SVM and LSTM-XGBoost re-
quire 30-60% less training time (1-1.5 h) due to simpler architectures, though they sacrifice
multimodal depth. This higher cost stems from the GAT layers and Transformer decoder’s
attention mechanisms, which process complex graph and sequence data. For industrializa-
tion, the model’s deployment in real-time CNC systems could be viable on edge devices
with optimizations, but current complexity may limit scalability in resource-constrained
environments; future lightweighting could reduce inference latency by 20—40% without
significant accuracy loss, enhancing practical applicability in smart manufacturing.

The uncertainty assessment utilizing partial dependence plots represents an initial step
toward model interpretability by visualizing VB’s nonlinear influence on RUL predictions.
This aligns with the broader Explainable Artificial Intelligence (XAI) paradigm, which
emphasizes transparency and trust in black-box models like GNNs and Transformers,
particularly in high-stakes manufacturing where opaque decisions could lead to costly
failures or safety risks. By integrating XAI techniques, such as SHapley Additive exPla-
nations (SHAP) values for feature attribution and ablation for modality contributions, the
model not only quantifies uncertainty but also elucidates decision pathways, fostering user
confidence in predictive maintenance systems. This approach is consistent with recent
advances in developing physically interpretable, data-driven models. In manufacturing
contexts, XAl techniques such as SHAP have been employed to analyze machine learn-
ing models for cavity prediction in electrochemical machining, effectively linking model
behavior to process-level understanding and supporting anomaly detection [45]. In the
wider XAI context for manufacturing, this work contributes to bridging the gap between
complex Al and domain experts, enabling better integration with physics-guided models
defined here as hybrids that embed physical proxies such as wear metrics into neural
architectures for enhanced explainability. Influential future directions could include de-
veloping real-time XAI frameworks for edge-deployed systems, leveraging counterfactual
explanations to simulate “what-if” scenarios in tool wear, or exploring federated XAI in
multi-factory settings to preserve data privacy while aggregating insights across distributed
CNC environments—ultimately advancing trustworthy Al for Industry 4.0 applications.

Although multimodal fusion remains the model’s key strength, VB indeed plays a
central role as the core degradation indicator in both modeling and analysis, as it directly
quantifies tool wear and serves as a proxy for integrating other modalities. However, to
mitigate the risk of the approach devolving into a VB-centric regression rather than a truly
multimodal system, we conducted feature importance analysis as Table 2 and ablation
experiments as Table 3 to empirically validate the contributions of each modality (time-
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series signals like cutting forces Fx/Fy/Fz, geometric data including diameters, operational
parameters such as cutting depth/speed/feed rate, and phase contexts like experimental
batches). Using SHAP [46] values in the feature importance analysis, VB accounted for
approximately 45% of the overall importance in RUL prediction, while cutting forces and
surface roughness parameters contributed significantly to capturing dynamic interactions
and machining quality variations; operational parameters and phase contexts added 10%
and 5%, respectively, enhancing cross-batch generalization.

Table 2. Feature importance analysis.

Modality Category

Main Features Importance (%) Main Role Description

Geometric Wear Indicators
Time-Series Signals

Surface Roughness Features

Operational Parameters

Experimental Phase Context

Core degradation indicator that

3 O,
VB (flank wear width) 5% directly quantifies tool wear
Fx/Fy/Fz 259 Capture variations in tool load
(cutting forces, dominated by Fx) ? and dynamic interactions
Reflect machining quality and
0,
Ra, Rz, RY, etc. 15% tool condition changes
Cutting depth, speed, feed rate, o Re.p?esent the 1nﬂuer1c.e of
etc 10% machining process conditions on
’ wear
Experimental phases o Enha.nce 'cross—batch
5% generalization and phase

(Prep/Exp1/Exp2) recognition ability

Table 3. Ablation experiments.

Removed Modality

Main Included Features Performance Change Impact Description

Time-Series Signals

Geometric Data (excluding VB)
Operational Parameters

Experimental Phase Context

Missing cutting force signals

Fx, Fy, Fz MSE 118 /O:) weakens the model’s ability to
Accuracy | 9% . L
capture dynamic variations
Tool diameter, etc. MAE 1 12% Loss of supplgnentary geometric
wear information
Cutting depth, speed, feed rate R? | 7% Reduces the model’s adaptability

to different machining conditions
Decreases cross-phase recognition

Fl-Score | 6% and generalization performance

Experimental phase information

Ablation experiments, where individual modalities were removed and the model
retrained on the same dataset, showed performance degradation: removing time-series
data increased MSE by 18% and reduced accuracy by 9%; excluding geometric data (be-
yond VB) raised MAE by 12%; omitting operational parameters decreased R? by 7%; and
ablating phase contexts lowered F1-Score by 6%. Surface roughness features (Ra, Rz, Rt,
etc.) are integrated into the geometric feature stream; therefore, their ablation effect is
collectively represented under “Geometric Data (excluding VB)” rather than treated as a
separate modality.

These results confirm that while VB is pivotal, the multimodal fusion leverages com-
plementary information from all sources, preventing over-reliance on a single indicator
and ensuring robust predictions in diverse conditions.

Despite these advancements, limitations persist: the model’s reliance on VB may un-
dervalue noise in industrial settings, potentially biasing predictions; furthermore, the study
does not demonstrate generalization across different tools or materials, as evaluations were
confined to the specific dataset of 13 tools under controlled conditions, limiting insights
into broader applicability; high computational demands further constrain real-time deploy-
ment. Future efforts should diversify datasets for broader conditions, integrate additional
modalities to lessen VB dependence, and apply lightweighting techniques like pruning or
quantization to optimize for edge computing, balancing accuracy with practicality.
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6. Conclusions

In this paper, an innovative cutting tool RUL prediction model based on GNNs and
Transformer optimization is presented for effectively addressing the core challenges of mul-
timodal data fusion, complex relationship modeling, and task singularity. The modeling
approach can finely process multimodal features through dedicated encoders, explicitly
capture non-Euclidean structural dependencies using GATs, generates fused contextual fea-
tures via a cross-modal Transformer decoder, and ultimately render collaborative prediction
of RUL regression and health status classification of cutting tools with dual-head outputs.

The key conclusions of this study are summarized in the following points:

1. The proposed GNNs-Transformer architecture innovatively integrates multimodal
encoding, graph adaptive fusion via GATs, and cross-modal Transformer decoding, en-
abling deep interaction across time-series signals, geometric data, operational parameters,
and phase contexts, while the dual-head multi-task output simultaneously handles RUL
regression and health state classification, overcoming limitations of shallow fusion and
single-task models.

2. Experiments on a multimodal dataset of 824 entries, structured across 13 tools with
4-6 measurements each and split into 70% training, 15% validation, and 15% independent
testing, validate the model’s efficacy through a systematic framework including correlation
analysis, trend modeling, risk assessment, and uncertainty quantification.

3. VB emerges as the core degradation indicator, with analyses confirming its strong
negative correlation with RUL, nonlinear temporal evolution, risk threshold potential,
and robust performance in failure classification, supported by critical evaluations such as
residual diagnostics revealing minor mid-range biases and heteroscedasticity.

4. The model outperforms benchmarks (LSTM-SVM, LSTM-CNN, LSTM-XGBoost)
by 26-41% in MSE, 33-43% in MAE, 6-12% in R2, 6-12% in accuracy, and 7-14% in F1-
Score, verified through feature importance (VB at 45%, others complementary) and ablation
studies demonstrating each modality’s essential role.

5. Overall, this architecture enhances prediction accuracy, robustness, and decision
guidance for predictive maintenance in smart manufacturing, with future directions includ-
ing dataset expansion, further modality integration, lightweighting for edge deployment,
and advanced XAl for real-time interpretability in Industry 4.0.
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