

Evaluation of Users Performance in the use of ERP systems in Higher Education

Journal:	<i>Transforming Government: People, Process and Policy</i>
Manuscript ID	TG-11-2015-0045.R5
Manuscript Type:	Research Paper
File Type:	
Keywords:	ERPs, post implementation, stakeholders, performance, higher education

SCHOLARONE™
Manuscripts

E-Government System Evaluation: The Case of Users Performance using ERP systems in Higher Education

Abstract

Purpose: Enterprise resource planning (ERP) systems are complex and comprehensive software designed to integrate business processes and functions. Despite the difficulties and risk, the adoption of ERP systems is expanding rapidly. Universities make large investments in information systems and expecting positive impacts. However, universities are facing serious challenges in implementing new technology. Therefore, this research aims to evaluate the impact of ERP systems in higher education (HE) from the perspective of stakeholders' performance.

Design/methodology/approach: This research conducted a case study of an ERP system in a Saudi university to explore the impact of ERM system on the performance of the system's stakeholders among the university's employees.

Findings: The system quality factors (flexibility, compatibility, right data, currency, ease of use and timeliness) were found to affect performance positively, as were service quality factors (tangibility, reliability, responsiveness and assurance). This research further found that factors from pre-implementation, implementation and post-implementation phases had a direct effect on stakeholders' performance.

Research limitations/implications: Future research would be useful during the maturity phase to include all stakeholders in several Saudi universities. In addition, more research can be beneficial to test the applicability of ERP system impact on stakeholders' performance in other public sector organizations and in private sector.

Practical implications: The results suggest that organisations in general and HE institutions in particular, should focus on the early stages and the implementation phase if they wish to achieve high standards of stakeholder performance.

Originality/value: This research makes a novel contribution by attempting to evaluate the impact of service quality on stakeholder performance in the ERP environment. The contribution use service quality as a dimension consisting of four factors: reliability, assurance, tangibility and responsiveness. All four factors were found to be significant on ERP stakeholders' performance.

Key words: *ERPs, post implementation, stakeholders, performance, evaluation, and higher education*

1 2 3 1. Introduction 4 5

6 Enterprise resource planning (ERP) systems are complex and comprehensive software packages designed to
7 integrate business processes and functions. Despite the difficulties and risks involved in adopting them,
8 organisations spend millions of dollars on information systems (IS) to improve organisational and individual
9 performance. Such systems were a breakthrough, particularly in industrialized nations where they
10 applied by a vast majority of manufacturing companies (Jutras, 2010; Tenhälä and Helkiö, 2015).
11 Swartz and Orgill (2000), major proponents of ERP systems, argue that there are many encouraging reasons to
12 implement them, including to improve information access and the effectiveness of workflow. Other reasons to
13 consider ERP are its ability to improve controls and its ease of use for stakeholders. According to Petter,
14 DeLone and McLean (2008), IS are developed using information technology (IT) to help individuals,
15 practitioners and researchers understand and measure the success of investments (Goodhue, 1995). However,
16 Sedera, Gable and Chan (2003) argue that the success of large IS, particularly ERP systems, is itself difficult to
17 measure, since their benefits, while substantial, are often intangible and the systems have numerous users
18 (stakeholders), ranging from top executives to data entry operators, each group defining success differently.
19 However, Shen, Chen and Wang (2016) state that it is worth measuring ERP system performance based on its
20 impact to critical performance of an organization: The hierarchical balanced scorecard (HBSC) model with
21 respect to multiple criteria decision-making is such a systematic approach was developed in order to bridge ERP
22 performance measurement and key organizational performance. Galy and Sauceda (2014) consider the time
23 essential to promote and receive profits following an ERP implementation system. Therefore, there is a great
24 need for continued improvement and assessment as ERP use evolves over time and one of the most important
25 issues in measuring ERP success is when measurement accrued.
26

27 According to Elmes, Strong and Volkoff (2005), organisations adopt enterprise systems for a variety of reasons,
28 both technical and organizational. Therefore, it is important to theorise the technical aspects of IT and how
29 design decisions affect the emergence of a socio-technical infrastructure and its accompanying work practices.
30 Indeed, it is essential to conceptualise the limitations of such technology and the ways in which human
31 behaviour fits within its restraints (Scott and Wagner, 2003).
32

33 Universities in particular make large investments in IS, expecting positive outcomes. Despite the potential
34 benefits, universities face serious challenges in implementing this new technology. As highlighted by Irani
35 (2002) several challenges including, human and organisational management. Universities are unique
36 organisations, meeting stakeholders' expectations is a particular challenge. Effectiveness subsequent to the
37 implementation of ERP systems has become an essential indicator of success; effective selection, development
38 and improvement of information systems require a systematic evaluation tool.
39

40 Although researchers and practitioners consider user satisfaction to be a fundamental indicator of IS success
41 (Aladwani, 2003), the literature has revealed a number of key weaknesses in this assumption, including that IS
42 can be viewed from two distinct perspectives: the organizational, focusing on the quality of the interface and the
43 information provided by the system to help employees fulfil their tasks, and the socio-technical, concerned with
44 individual needs (Au, Ngai, and Cheng, 2002). Furthermore, while adopting IS represents a major investment
45 and a significant financial risk (Irani 20110; Sharif and Irani, 2006), with ERP systems being described as
46 expensive, risky and difficult, IS/ERP projects are nonetheless often evaluated using traditional techniques.
47 Thus, there is an urgent need to evaluate these systems from the perspective of the stakeholders. Such an
48 approach to evaluation would provide researchers and practitioners with a guide as to how to assess the impact
49 of new technology on employee performance.
50

51 Traditionally, higher education (HE) institutions have tended to be advocates and proactive adopters of new
52 technology (Rabaa'i, Bandara, and Gable, 2009). At present, several Saudi Arabian universities intend to adopt
53 or develop new IS/ERP systems to improve the HE process. In response to the serious challenges that they face
54 in doing so, they need to improve the integration of administrative functions into a more systematic approach,
55 giving them a strategic advantage.
56

The organisation of this paper is as follows: the research problem is illustrated, then there is a review of the literature on the evaluation of stakeholders' performance and ERP systems in higher education. The theoretical framework is then developed and the research hypotheses outlined. The next section concerns the methodology and the case study selected for studying this phenomenon. Subsequently, the data are analysed and the findings set out, followed by a discussion of issues raised in the research and the conclusions drawn from the study.

2. ERP systems and user performance

According to Helo (2008), the history of ERP systems can be traced back to material requirements planning (MRP), developed in the 1960s-1970s by Joseph Orlicky. A subsequent version, manufacturing resource planning (MRPII), developed in 1983 by Oliver Wight, was better adapted to commercial implementation. The vision for MRP and MRPII was to centralise and integrate business information in a way that would facilitate decision making for production managers and increase the efficiency of the production line overall. While MRP was primarily concerned with materials, MRPII addressed the integration of all aspects of manufacturing, including materials, finance and human relations. Like today's ERP systems, MRPII was designed to integrate large amounts of information by way of a centralised database. However, the hardware, software and relational database technology of the 1980s was not advanced enough to provide the speed and capacity to run these systems in real time (Shum, 2003); their cost was also prohibitive for most businesses. Nonetheless, the vision had been established, and shifts in the underlying business processes along with rapid advances in technology led to the more affordable enterprise and application integration systems that many enterprises use today (Monk and Wagner, 2006). The term 'enterprise resource planning' was coined in the early 1990s by the Gartner Group (Wylie, 1990). ERP has since been defined by various authors (e.g. Gable, 1998; Rosemann, 1999; Almashari, Al-Mudimigh and Zairi, 2003; Sane, 2005; Wu and Wang, 2006) without significant differences. This paper adopts the definition developed by Zhu, Li, Wang and Chen (2010): "configurable information systems/packages that integrate information and information-based processes within and across functional areas in an organisation". ERP systems have been increasingly adopted by large and medium-sized organizations in both the private and public sectors for a variety of technical and organizational reasons, which can be summarised as addressing the limitations, defragmentation and incompatibility associated with existing (legacy) systems (Elmes, Strong and Volkoff, 2005; Robey, Ross, and Boudreau, 2002). Khoo and Robey (2007) and Khoo, Robey and Rao (2011) list the advantages for organizations of adopting packaged software solutions as: costs saving, improving use capabilities, reducing system development time, boosting competitive advantages and enhancing productivity improvement. According to Tenhijälä and Helkiö, (2015) some authors argued that ERP system can be beneficial for the organizations that operate in stable market requirements. However, these systems definitely are detrimental to organisations facing dynamic conditions. This can be contributed to that ERP systems impose constraints and procedures on organizations that reduce the flexibility in changing business process (Tenhijälä and Helkiö, 2015). On the other hand, other authors stressed that information-processing capabilities of ERP systems are crucial for organizations that operate in dynamic conditions, and constrain the process of reengineering. Tenhijälä and Helkiö, (2015) strongly favour the use of ERP systems in organizations that face dynamic market requirements. On this basis, an ERP software package has become a universal technology for both personal users and large organisations (Khoo and Robey, 2007). Hence, ERP has a significant role to play in information technology management, including in the HE sector.

Within an HE context, ERP systems have multiple functions, "tracking a range of activities that include human resources systems, student information systems and financial systems" (Robert, 2004). While there are many similarities between the HE and industrial sectors as far as implementing ERP software is concerned, universities can be seen as distinct in combining certain characteristics, identified by Okunoye and Folick (2006) as: "complexity of purpose, limited measurability of outputs, both autonomy from and dependency on wider society, diffuse structure of authority, and internal fragmentation". Another fundamental factor considered to distinguish HE institutions from other organisations is their stakeholders. Notwithstanding these differences, Bradley and Lee (2007) assert that universities have similar problems to other organisations, such as coordinating resources, controlling costs, motivating faculty and staff members, and facilitating their use of ERP; therefore, evaluation of the systems is important, especially that the implementation is challenging and

1
2
3 expensive task that places tremendous demands on organisation time and resources. These challenges make
4 most of ERP implementations classified as failures because they did not achieve predetermined organisation
5 goals (Babaei, Gholami, and Altafi, 2015). A number of universities have spent more than \$20 million each on
6 implementing ERP projects, which can take two or three years (Swartz and Orgill, 2000). However, while the
7 literature on ERP systems has considered manufacturing industries and noted that ERP is currently experiencing
8 rapid growth, few studies have discussed ERP in an academic context, particularly its implementation by HE
9 institutions (Rabaa'i, Bandara, and Gable, 2009; Abugabah and Sanzongni, 2010; Kalema, Olugbara and
10 Kekwaletswe, 2014). The present study offers a valuable contribution in this respect.
11
12

13 2.1. Evaluation of Stakeholders' Performance

14 The evaluation of IS more generally has been the concern of many researchers (e.g. Farbey, Land, and Targett,
15 1993; Irani, 1998; Land, 2001; Adelakun and Jennex, 2002; Irani and Love, 2008). Despite the variety of IS
16 success evaluation studies, there is no consensus on the appropriate way to conduct these so as to maximise
17 organizations' return on their IS investments. Previous studies have focused on user satisfaction, but there has
18 been less attention to ERP systems and stakeholder performance. Especially measures of expected performance
19 differ from one project to another, and it depend on the domain of the application and negotiation of multiple
20 stakeholders (Duhamel et al., 2014). Despite the importance of IS evaluation, there is a lack of an accepted
21 framework for IS evaluation in general and specifically of ERP in higher education, which this study addresses.
22 This section outlines three IS models and considers their potential for evaluating the performance of ERP
23 system stakeholders in HE.
24
25

26 Task-Technology Fit

27 According to Chang (2008), the Task-Technology Fit (TTF) model, proposed by Goodhue (1995), considers the
28 degree to which the capabilities of the technology match the demands of the task. Alternatively, Goodhue and
29 Thompson (1995) define TTF as "the degree to which a technology assists an individual in performing his or her
30 portfolio of tasks". The model has four main constructs. Three of these—task characteristics, technology
31 characteristics and individual characteristics—together affect the fourth construct, TTF, which in turn affects
32 either utilisation or performance (Dishaw, Strong, and Bandy, 2002). Additionally, Goodhue, Klein and March
33 (2000) state that the model assumes that performance affects the relationships among technology characteristics,
34 task requirements and individual abilities.
35
36

37 38 Information Systems Success Model

39 DeLone and McLean's (1992) IS success model (the D&M model) is the most widely cited and valued
40 contribution to the literature on IS success measurement, as it was the first study that tried to impose some order
41 and to develop a comprehensive IS model for a particular context (Gable, Sedera, and Chan, 2008). DeLone and
42 McLean (1992) analysed a large number of academic studies from 1981-1987, attempting to identify the key
43 factors contributing to IS success. Based on these studies, they identified six major dimensions or categories of
44 IS success: systems quality, information quality, use, user satisfaction, individual impact and organisational
45 impact. The performance of DeLone and McLean model has been assessed by Nripendra et al., (2013)
46 who emphasized that several studies, like Garrity and Sanders, (1998); Rai et al., (2002), have either
47 adopted or expand DeLone and McLean model with some modifications.
48
49

50 51 End User Computing Satisfaction

52 The End User Computing Satisfaction (EUCS) Model, designed by Doll and Torkzadeh (1988), is a potentially
53 measurable surrogate as a utility in decision-making. It interacts directly with the application software to enter
54 information or prepare output reports. The end user's decision-making ability is enhanced when the output
55 meets the user's requirements (Doll and Torkzadeh, 1988).
56
57
58
59
60

When applied separately, the TTF, EUCS and D&M models do not provide effective evaluation of stakeholder performance, since TTF and EUCS evaluate the technical aspects of systems, while the individual impact in the D&M model focuses on the human/social aspects. In response, this paper aims to integrate all three models to effectively evaluate ERP stakeholder performance in an HE environment. The new synthesised framework adopts the conceptual model developed by Gable, Sedera and Chan (2008), thus combining impact and quality, and selecting the appropriate factors. This offers a more comprehensive view of the most important factors that affect stakeholder performance, the consequence of the factors in the D&M model. The factors gathered from the TTF model and EUCS consider quality as a half measure, which will be used to evaluate stakeholders' performance, while individual performance is an essential indicator of organisational performance. Studying the impact of ERP systems on stakeholders' performance is a significant way to assess the utility of this software in higher education, and how it contributes to performance, efficiency and effectiveness.

2.2. Theoretical Framework and Hypothesis Building

According to Quattrone and Hopper (2006), technologies are not external or independent of human beings, neither are they 'out there' simply waiting to be appropriated, but rather emerge from people's repeated and situated interactions with particular technologies. The implementation of ERP systems presents a number of challenges, many of which are anchored in people's responses to new technologies. If implementation is unsuccessful, organisations suffer heavy costs while failing to achieve the expected benefits. The academic literature has thus paid significant attention to the factors contributing to successful implementation. Table 1 lists the key factors of the theoretical model developed for this study, showing their derivation from the D&M, TTF and EUCS models. When combined, they are assumed to affect stakeholders' performance positively. These factors were selected as being the most suitable in the ERP environment, with the aim of measuring how ERP systems enhance individual performance. The derivation of the performance factors which are presented in the D&M model—time taken to complete task, improving stakeholders' productivity, immediate recall of information, stakeholders' confidence and performance, and ability to identify problem and solution—was initially based on a comprehensive study conducted by DeLone and McLean (1992) under the dimension of individual impact.

Table 1. The selection factors from the three models

Performance	Systems Quality		Service quality	
	D&M ISS	TTF	EUCS	
<ul style="list-style-type: none"> -Time taken to complete task -Improve stakeholders' productivity -Immediate recall of information -Stakeholders' confidence and performance -Ability to identify problem and solutions -Computer awareness 	<ul style="list-style-type: none"> -Lack of confusion -Right data -Accessibility -Assistance -Authorization -Ease of use -Flexibility -Training -Accuracy -Compatibility -Currency 	<ul style="list-style-type: none"> -Content -Format -Timeliness 	<ul style="list-style-type: none"> -Reliability -Assurance -Responsiveness -Tangible 	

Many researchers have focused on performance evaluation in the managerial motivation literature (Kominis and Emmanuel, 2007); employees have different expectations and levels of confidence regarding their capabilities (Eerde and Thierry, 1996). This paper focuses on stakeholders' outcomes and suggests that individuals consider alternative outcomes, while analysing the costs and benefits of each, then select an outcome with optimum utility (Woodroof and Kasper, 1998). Since this research is concerned with the post-implementation phase of ERP systems, it is essential to evaluate stakeholder performance, measuring whether the systems have a significant impact on this and meet stakeholders' expectations.

Au, Ngai and Cheng (2008) define performance in IS environments as "the perceived outcome from IS use"; higher performance levels of ERP systems will lead to higher levels of stakeholder performance. For an IS to be considered successful, it must be both effective in terms of outcome and efficient in terms of process. Both process and outcome are considered to be essential in meeting users' needs. Expectable ERP performance refers to stakeholders' expectations and needs, such as developing performance and functional effectiveness that can be enabled by using an ERP system in the workplace.

1
2
3 As illustrated in the flowing Section: 3, there are two main hypotheses; the first main hypothesis is thus that
4 *higher ERP system quality leads to higher stakeholder performance. In addition, there are 14 sub-hypothesis*
5 related to the first main hypothesis and their factors' 14 correlations are illustrated in the Table 1. All factors are
6 based on D&M, TTF and EUCS models,

7 Pitt, Watson and Kavan (1995), among others, found it important to include service quality as a measure of IS
8 success, which was considered by DeLone and McLean (2003). The service support that stakeholders receive
9 from their ERP system team, in answering their questions, solving any problems they may face and providing
10 the latest hardware and software, can result in higher performance.

11 This leads to the second main hypothesis that *higher service quality leads to higher levels of ERP stakeholder*
12 *performance. In addition, there are 4 sub-hypothesis related to the second main hypothesis and their factors' 4*
13 correlations are illustrated in the Table 1.

14 These hypotheses are restated in more specific form in the following section, after an account of the empirical
15 context of the study.

16 3. Research Methodology

17 This research is considered as a developing research because the factors contributing to high-quality ERP
18 systems and to service quality were identified by reviewing the existing literature. Then, the questionnaire and
19 interviews were employed in order to evaluate the impact of ERP systems in higher education (HE) from the
20 perspective of stakeholders' performance. Data collection applied descriptive survey research because it
21 identifies the traits of the population under investigation in terms of the nature of the situations and relationship.
22 Finally, since the study was conducted at King Saud University (KSU), as a dynamic and live institution, this is
23 applied research and its findings can be used practically.

24 3.1. Research setting

25 This research selects King Saud University (KSU) in Riyadh, Saudi Arabia as a research setting. To develop the
26 understanding of ERP systems in the HE sector and to provide researchers and practitioners with a new
27 technique to enhance their evaluation of ERP stakeholders' performance in HE, this study examines the impact
28 of the MADAR ERP system on the performance of stakeholders in the King Saud University (KSU) in Riyadh,
29 Saudi Arabia. The study identifies the factors contributing to high-quality ERP systems and to service quality,
30 which in turn improve stakeholders' performance.

31 King Saud University

32 (1) The progress of any nation has always been strongly associated with knowledge and learning. KSU, the
33 premier HE institution in Saudi Arabia and the first university in the Kingdom, was established in 1957
34 to enhance the nation's growth and respond to the educational needs of a new generation. KSU aims to
35 provide skilled professionals and academics required to meet the nation's growing needs in the areas of
36 medicine, engineering, agriculture, science and development, the humanities and language. KSU aims
37 to become a leader in educational and technological innovation, scientific discovery and creativity, by
38 fostering an atmosphere of intellectual inspiration and partnership. Among its many departments, the
39 Department of Computer and Information Science, Architecture and Planning was established in 1984
40 (King Saud University's history 2012). The rational for selecting KSU was based on their adoption of
41 ERP; KSU is the first and leading Saudi university adopting ERP. The population of this study
42 consists of the 8582 employees of KSU in the departments from which employees (stakeholders) were
43 selected as a sample based on the following three criteria: (1) as MADAR implementation was carried
44 out in phases and the selected stakeholders are working in departments who already implemented the
45 system; (2) stakeholders experience for more than 3 year; (3) stakeholders already received sufficient
46 training on MADAR system.

1 2 3 The MADAR system 4 5

6 MADAR is an enterprise system used by KSU to meet all of its administrative software needs (Alshamlan and
7 Al-Mudimigh, 2011). The MADAR project is responsible for developing, implementing and maintaining ERP
8 projects within KSU, and has experience in implementing many projects for other organizations in Saudi
9 Arabia. Its strengths are integration and collaboration, and these organizations are reported to be mostly content
10 with the results of the integration (Al-Mudimigh and Ullah, 2011). Table 2 lists the functions at KSU that have
11 implemented the MADAR system.
12
13

14 A single case study was conducted at KSU, based on the need to evaluate such a system and examine the impact
15 from the stakeholders' perspective. Reasons for selecting KSU as a suitable case study are discussed in section
16 5. The case study is a research method commonly used in the social sciences to examine a phenomenon in its
17 natural setting (Yin, 2009). Case study research is well suited to the investigation of the post-implementation
18 phase of IS/ERP systems, especially when context is important and the phenomenon is a contemporary one
19 which the researchers have no control over.
20
21

22 3.2. Measures 23 24

25 A combined methodology of 60 structured questionnaires and eight semi-structured interviews were employed
26 to collect the data from MADAR system users at KSU. The content and format of the questionnaire were
27 developed from a review of the relevant literature. The questionnaire was adapted from one previously
28 employed in the general IS context, to make it suitable for examining ERP use in particular. The researchers
29 found it useful to use five-item Likert scales (e.g. strongly agree, agree, don't know, disagree, strongly disagree)
30 in the questionnaire items which designed to understand and measure the opinions of ERP end-users regarding
31 the impact of the systems on their performance.
32
33

34 The questionnaire consisted of four parts: part 1 comprised demographic questions designed to solicit general
35 information about the respondents, their organisations (universities) and the extent of their roles in the systems;
36 part 2 concerned stakeholders' impact; part 3 addressed systems quality and part 4 was about technical support.
37 The questionnaire can be described as semi-structured, comprising 31 items, including 3 open questions at the
38 end of each part, while the remainder required responses on a five-point Likert-type scale where 1=strongly
39 disagree and 5=strongly agree.
40
41

42 Most measurement factors were adopted from previous studies of IS and ERP systems to ensure adequate
43 reliability and validity. Thus, questions concerning the D&M model were adapted from Gable et al. (2004) and
44 Kositanurit, Ngwenyama, and Bryson, (2006) for individual performance, while questions on service quality
45 (technical support) were adapted from the D&M update (2003). For EUCS (Doll and Torkzadeh, 1988),
46 questionnaire items were adapted from the work of Somers, Nelson, and Karimi, (2003). Finally, items from the
47 questionnaire on the TTF model by Goodhue (1995) were adapted to address systems quality.
48
49

50 A pilot study was conducted on six users familiar with the MADAR system. Questionnaire data were analysed
51 using SPSS (version 20) (Bernstein and Bernstein, 1999). Statistical methods, multiple regressions that are more
52 powerful tests and appropriate method to predict the changes in the dependent variable in response to the
53 changes in independent variables (Hair et al., 2010). Therefore, multiple regressions were used to test the
54 following hypotheses and to explore the relationships of perceptions of ERP systems quality and service quality
55 with six outcomes of stakeholder performance.
56
57

58 **H1: MADAR systems quality variables have a significant impact on KSU stakeholders' performance
59 variables.**
60

61 **H2: MADAR service quality variables have a significant impact on KSU stakeholders' performance
62 variables.**
63
64

4. Findings

This section outlines the empirical findings of the case study of the KSU MADAR system. From the outset, the aim was to tightly integrate theoretical assumptions with the empirical evidence, thereby avoiding abstract concepts detached from social reality.

4.1 Questionnaire

Reliability Test

Internal consistency within the research instrument is assessed by measuring the reliability coefficient known as Cronbach's alpha (α), which refers to the level of homogeneity among the measured items in one or more sets. The items were clustered into a particular dimensional group and α was calculated. The total questionnaire, consisting of 24 questions, had a coefficient score of 0.931, which is considered high internal consistency. In addition, the performance, system quality and service quality constructs had reliability coefficients of 0.899, 0.865, and 0.792 respectively, indicating strongly acceptable levels of internal consistency. According to Nunnally (1978), reliability coefficients of 0.5 and above are considered sufficient for research that is exploratory in nature. The Cronbach's α results are shown in Table 2.

Table 2. Reliability Test KSU

Constructs	Number of items	Cronbach's Alpha	Type
Total KSU questionnaire	24	0.931	Excellent reliability
Performance	6	0.899	High reliability
System Quality	14	0.865	High reliability
Service Quality	4	0.792	High reliability

System Quality (H1)

To more thoroughly test H1, multiple regressions were used to assess the relative importance of the system quality variables in explaining differences in attitudes towards stakeholder performance. Standard multiple regressions (enter method) were conducted, with the six stakeholder performance variables posited as the dependent variables and the fourteen ERP system quality variables posited as the independent variables. The R^2 values show that the system quality variables, as a group, explained 50.4% of the variation in improving stakeholders' productivity, 68.5% of the variation in time taken to complete task, 63.8% in stakeholder confidence and performance, 64.8% in computer awareness, 48.3% in immediate recall of information and 59.9% in ability to identify problem and solution. According to Pallant (2006), these are acceptable levels of accuracy for academic research, which rarely reaches the high levels of variance required in real-world research (e.g. medicine or marketing).

The F values show that there were highly significant relationships ($p<.001$) between the fourteen ERP system quality variables and all stakeholder performance variables. The model for time taken to complete task had the largest F value, $F(14, 59) = 7.004$, $p<.001$, indicating that it was the most significant model, followed by computer awareness, $F(14, 59) = 5.906$, $p<.001$, stakeholder confidence and performance, $F(14, 59) = 5.656$, $p<.001$, then ability to identify a problem and solution, $F(14, 59) = 4.808$, $p<.001$, improving stakeholders' productivity $F(14, 59) = 3.269$, $p<0.01$ and finally immediate recall of information, $F(14, 59) = 2.999$, $p<.01$.

Turning now to the importance of each predictor, we need to look at the standardised beta coefficient (β) statistics. These tell us the unique contribution of each predictor to the outcome and what effect an increase of one standard deviation in each predictor would have on the outcome.

Improving stakeholders' productivity: Table 3 shows that among all the 14 variables of system quality, only timeliness had a significant impact on improving stakeholder productivity, with $\beta = 0.501$ at $p < 0.01$. Thus, for every one standard deviation increase in timeliness, improving stakeholder productivity increased by 0.501 points. Consequently, the regression equation to predict improvement in stakeholders' productivity is:

$$B_1 \text{ Timeliness} = 0.561 \text{ Timeliness.}$$

Time taken to complete task: Table 3 shows that only timeliness had a significant impact on time taken to complete task ($\beta = 0.588$). Thus, the regression equation to predict time taken to complete task is:

$$B_1 \text{ Timeliness} = 0.691 \text{ Timeliness}$$

Table 3. Regression models for improved stakeholder productivity and time taken to complete task influenced by system quality at KSU

Model	USTD CO		t	Sig.	Model	USTD CO		t	Sig.
	ISP	B	Std. Error	Beta		TCT	B	Std. Error	Beta
(Constant)	0.186	0.751		0.248	0.805	(Constant)	-0.796	0.627	
Accessibility	-.222	0.204	-.226	-.1089	0.282	Accessibility	-.154	0.17	-.140
Assistance	-.084	0.159	-.082	-.529	0.599	Assistance	-.148	0.132	-.138
Ease of Use	0.29	0.178	0.245	1.629	0.11	Ease of Use	0.079	0.149	0.064
Accuracy	0.227	0.168	0.23	1.351	0.184	Accuracy	0.186	0.14	0.18
Currency	0.155	0.146	0.152	1.059	0.295	Currency	0.132	0.122	0.124
Content	-.055	0.207	-.048	-.266	0.791	Content	0.335	0.173	0.277
Format	-.164	0.213	-.137	-.771	0.445	Format	-.160	0.178	-.127
Timeliness	0.561	0.2	0.501	2.807	0.007	Timeliness	0.691	0.167	0.588
Authorization	-.029	0.108	-.034	-.264	0.793	Authorisation	-.119	0.09	-.133
Training	0.04	0.12	0.045	0.331	0.742	Training	-.074	0.1	-.080
Right Data	0.049	0.177	0.054	0.279	0.781	Right Data	0.09	0.148	0.094
Lack of Confusion	0.054	0.142	0.062	0.384	0.703	Lack of Confusion	-.097	0.118	-.105
Compatibility	0.048	0.207	0.041	0.232	0.817	Compatibility	0.244	0.173	0.198
Flexibility	0.157	0.149	0.174	1.053	0.298	Flexibility	0.237	0.125	0.25

UNSTD CO-Unstandardized Coefficient STD CO-Standarized Coefficients

ISP=Improve Stakeholders' Productivity, TCT= Time Tacken to Complete Task

Stakeholder confidence and performance: Table 4 shows that only two of the system quality variables, timeliness ($\beta = 0.399$) and flexibility ($\beta = 0.393$), had a significant and negative impact on stakeholder confidence and performance. Accordingly, the regression equation to predict stakeholder confidence and performance is:

$$B_1 \text{ Timeliness} + B_2 \text{ Flexibility} = 0.459 \text{ Timeliness} + 0.364 \text{ Flexibility.}$$

Computer Awareness: Table 4 shows that content and currency had significant positive impacts on computer awareness, while format had a significant negative impact on it, with $\beta = 0.308$, 0.275 and -0.429 respectively at $p < 0.05$. Hence, the regression equation to predict computer awareness is:

$$B_1 \text{ Content} + B_2 \text{ Currency} + B_3 \text{ Format} = 0.395 \text{ Content} + 0.312 \text{ Currency} - 0.571 \text{ Format}$$

Table 4. Regression models for confidence and performance and computer awareness influenced by system quality at KSU

Model	USTD CO		t	Sig.	Model	USTD CO		t	Sig.		
	CP	B	Std. Error	Beta		CA	B	Std. Error	Beta		
(Constant)	-0.083	0.659		-1.26-	0.9	(Constant)	-.317-	0.704		-.450-	0.655
Accessibility	0.018	0.179	0.018	0.101	0.92	Accessibility	0.358	0.191	0.328	1.876	0.067
Assistance	-.154-	0.139	-.147-	-1.110-	0.273	Assistance	-.168-	0.149	-.148-	-1.128-	0.265
Ease of Use	0.252	0.156	0.207	1.61	0.114	Ease of Use	0.177	0.167	0.135	1.064	0.293
Accuracy	-.018-	0.148	-.017-	-.119-	0.906	Accuracy	0.245	0.158	0.224	1.556	0.127
Currency	0.217	0.128	0.207	1.691	0.098	Currency	0.312	0.137	0.275	2.276	0.028
Content	0.206	0.182	0.174	1.134	0.263	Content	0.395	0.194	0.308	2.034	0.048
Format	-.179-	0.187	-.145-	-.958-	0.343	Format	-.571-	0.199	-.429-	-2.866-	0.006
Timeliness	0.459	0.176	0.399	2.616	0.012	Timeliness	0.209	0.187	0.168	1.118	0.269
Authorisation	-.173-	0.095	-.197-	-1.816-	0.076	Authorisation	-.155-	0.102	-.163-	-1.523-	0.135
Training	-.117-	0.105	-.130-	-.112-	0.272	Training	-.184-	0.112	-.189-	-1.638-	0.108
Right Data	0.153	0.156	0.162	0.982	0.331	Right Data	-.031-	0.166	-.030-	-.184-	0.855
Lack of Confusion	-.148-	0.124	-.163-	-.1189-	0.241	Lack of Confusion	-.148-	0.133	-.150-	-1.111-	0.272
Compatibility	0.17	0.182	0.141	0.939	0.353	Compatibility	0.289	0.194	0.221	1.491	0.143
Flexibility	0.364	0.131	0.393	2.782	0.008	Flexibility	0.263	0.14	0.262	1.885	0.066

UNSTD CO-Unstandardized Coefficients STD CO-Standarized Coefficients

CP=Confidence and Performance, CA = Computer Awareness

Immediate recall of information: Table 5 shows that only system ease of use had a significant impact on immediate recall of information ($\beta = 0.329$). Thus, the regression equation to predict immediate recall of information is: $B_1 \text{ Ease of use} = 0.402 \text{ Ease of use}$.

Ability to identify problem and solution: Table 5 shows that none of the system quality variables had a significant impact on stakeholders' ability to identify problems and solutions. Hence, there were no influential predictors among them.

Table 5. Regression models for ability to identify problems and solutions and immediate recall of information influenced by system quality at KSU

Model	USTD CO		t	Sig.	Model	USTD CO		t	Sig.		
	AIP	B	Std. Error	Beta		IMI	B	Std. Error	Beta		
(Constant)	-.235-	0.631		-.373-	0.711	(Constant)	0.488	0.792		0.616	0.541
Accessibility	0.138	0.171	0.15	0.805	0.425	Accessibility	-.011-	0.215	-.011-	-.051-	0.96
Assistance	-.008-	0.133	-.009-	-.062-	0.95	Assistance	-.021-	0.167	-.020-	-.126-	0.9
Ease of Use	0.01	0.15	0.009	0.07	0.944	Ease of Use	0.402	0.188	0.329	2.14	0.038
Accuracy	0.057	0.141	0.062	0.404	0.688	Accuracy	0.17	0.177	0.167	0.96	0.342
Currency	0.211	0.123	0.222	1.717	0.093	Currency	0.205	0.154	0.195	1.327	0.191
Content	0.236	0.174	0.219	1.354	0.182	Content	0.344	0.219	0.289	1.571	0.123
Format	-.036-	0.179	-.032-	-.199-	0.843	Format	-.377-	0.225	-.304-	-1.677-	0.1
Timeliness	0.12	0.168	0.115	0.715	0.478	Timeliness	0.349	0.211	0.301	1.653	0.105
Authorisation	-.123-	0.091	-.154-	-1.353-	0.183	Authorisation	0.005	0.114	0.005	0.042	0.967
Training	0.016	0.101	0.02	0.16	0.873	Training	-.194-	0.126	-.214-	-1.533-	0.132
Right Data	-.015-	0.149	-.018-	-.101-	0.92	Right Data	-.257-	0.187	-.270-	-1.371-	0.177
Lack of Confusion	0.097	0.119	0.118	0.817	0.418	Lack of Confusion	0.097	0.15	0.107	0.652	0.518
Compatibility	0.11	0.174	0.1	0.633	0.53	Compatibility	0.146	0.218	0.12	0.67	0.506
Flexibility	0.191	0.125	0.226	1.524	0.134	Flexibility	0.087	0.157	0.093	0.55	0.585

UNSTD CO-Unstandardized Coefficients, STD CO-Standarized Coefficients

AIP= Ability to Identify Problem, IMI=Immediate Recall of Information

Service Quality (H2)

To more thoroughly test H2, multiple regressions were used to assess the relative importance of the service quality variables in explaining differences in attitudes towards stakeholder performance. Standard multiple regressions (enter method) were conducted, with the six stakeholder performance variables posited as the dependent variables and the four ERP service quality variables as the independent variables.

The R^2 values show that the service quality variables together explained 30.5% of the variation in improving stakeholders' productivity, 44.4% of the variation in time taken to complete task, 49.25% in stakeholder confidence and performance, 47.0% in computer awareness, 16.6% in immediate recall of information, and 50.2% in the ability to identify problems and solutions. The percentage of variance explained by service quality variables was thus substantially lower than for the systems quality variables reported above. As discussed

earlier, part of the variance may be due to measurement error, but the lower percentage of variance explained suggests that other unknown factors must play a part in determining these stakeholder performance attitudes (Field, 2009).

The F values reveal highly significant relationships at the $p<0.05$ level between the four ERP service quality variables and all stakeholder performance variables. The model for ability to identify problems and solutions had the largest F value, $F(4, 59) = 13.885$, $p<.001$, indicating that this was the most significant model, followed by stakeholders confidence and performance, $F(4, 59) = 13.479$, $p < .001$, then computer awareness, $F(4, 59) = 12.204$, $p<.001$, time taken to complete task, $F(4, 59) = 10.990$, $p<.001$, improving stakeholder productivity, $F(4, 59) = 6.030$, $p<0.001$, and finally immediate recall of information, $F(4, 59) = 2.730$, $p<0.05$.

As for system quality above, it is now necessary to examine the unique contribution of each predictor on the outcome by calculating the β statistics.

Improving stakeholders' productivity: Table 6 shows that among the variables of service quality, only tangibility had a significant impact on improving stakeholder productivity, with $\beta = 0.356$ at $p<0.05$. Thus, the regression equation to predict improvement in stakeholders' productivity is:

$$B_0 + B_1 \text{Tangibility} = 2.113 + 0.330 \text{Tangibility}.$$

Time taken to complete task: Table 6 shows that only one variable of service quality, reliability, had a significant impact on time taken to complete task, with $\beta = 0.447$ at $p<0.01$. Thus, the regression equation to predict time taken to complete task is:

$$B_0 + B_1 \text{Reliability} = 1.318 + 0.438 \text{Reliability}$$

Table 6. Regression models for improved stakeholder productivity and time taken to complete task influenced by service quality at KSU

Model	USTD CO		t	Sig.	Model	USTD CO		STD CO	t	sig
	B	Std. Error				TCT	B	Std. Error	Beta	
(Constant)	2.113	0.462	4.575	0	(Constant)	1.318	0.433		3.044	0.004
Tangible	0.33	0.135	0.356	0.018	Tangible	0.135	0.126	0.139	1.07	0.289
Reliability	0.296	0.154	0.317	0.059	Reliability	0.438	0.144	0.447	3.036	0.004
Responsiveness	-.062-	0.115	-.084-	-.540-	Responsiveness	0.151	0.108	0.195	1.403	0.166
Assurance	-.046-	0.128	-.051-	-.362-	Assurance	-.018-	0.12	-.019-	-.152-	0.88

UNSTD CO-Unstandardized Coefficients STD CO-Standarized Coefficients
ISP=Improve stakeholders' Productivity, TCT= Time Taken to Complete Task

Stakeholder confidence and performance: Table 7 shows that only tangibility and responsiveness among the service quality variables had a significant impact on stakeholder confidence and performance, with $\beta = 0.345$ and 0.287 respectively at $p<0.05$. The regression equation to predict stakeholder confidence and performance is:

$$B_0 + B_1 \text{Tangibility} + B_2 \text{Responsiveness} = 1.374 + 0.329 \text{Tangibility} + 0.218 \text{Responsiveness}.$$

Computer Awareness: Table 7 shows that tangibility and responsiveness were the only service quality variables having a significant impact on stakeholders' computer awareness, with $\beta = 0.265$ and 0.304 respectively at $p<0.05$. Therefore, the regression equation to predict computer awareness is:

$$B_1 \text{Tangibility} + B_2 \text{Responsiveness} = 0.273 \text{Tangibility} + 0.250 \text{Responsiveness}$$

Table 7. Regression models for confidence and performance and computer awareness influenced by service quality at KSU

Model	USTD CO		t	Sig.	Model	USTD CO		t	sig		
	CP	B	Std. Error	Beta		CA	B	Std. Error	Beta		
(Constant)	1.374	0.404		3.399	0.001	(Constant)	0.817	0.448		1.824	0.074
Tangible	0.329	0.118	0.345	2.784	0.007	Tangible	0.273	0.131	0.265	2.085	0.042
Reliability	0.261	0.135	0.272	1.94	0.057	Reliability	0.267	0.149	0.256	1.786	0.08
Responsiveness	0.218	0.101	0.287	2.169	0.034	Responsiveness	0.25	0.112	0.304	2.241	0.029
Assurance	-.094-	0.112	-.102-	-.840-	0.404	Assurance	0.001	0.124	0.001	0.011	0.991

UNSTD CO-Unstandardized Coefficie STD CO-Standarized Coefficients

CP=Confidence and Performance, CA = Computer Awareness

Immediate recall of information: The analysis revealed that none of the service quality variables was significant, so none was an influential predictor of the immediate recall of information, as Table 8 shows.

Ability to identify problem and solution: Table 8 shows that the only service quality variables having a significant impact on the ability to identify problems and solutions were reliability and assurance, with $\beta = 0.340$ and 0.364 at $p<0.05$. Thus, the regression equation to predict stakeholders' ability to identify problems and solutions is:

$$B_1 \text{Reliability} + B_2 \text{Assurance} = 0.297 \text{Reliability} + 0.307 \text{Assurance}$$

Table 8. Regression models for ability to identify problems and solutions and immediate recall of information influenced by service quality at KSU

Model	USTD CO		t	Sig.	Model	USTD CO		t	Sig.		
	AIP	B	Std. Error	Beta		IMI	B	Std. Error	Beta		
(Constant)	0.632	0.365		0.089	(Constant)	2.558	0.523		4.894	0	
Tangible	0.182	0.107	0.21	1.709	0.093	Tangible	0.17	0.153	0.178	1.114	0.27
Reliability	0.297	0.122	0.34	2.442	0.018	Reliability	0.21	0.174	0.217	1.206	0.233
Responsiveness	-.026-	0.091	-.037-	-.283-	0.778	Responsiveness	0.007	0.13	0.009	0.05	0.96
Assurance	0.307	0.101	0.364	3.031	0.004	Assurance	0.082	0.145	0.088	0.563	0.576

UNSTD CO-Unstandardized Coefficie STD CO-Standarized Coefficients

AIP= Ability to Identify Problem, IMI=Immediate Recall of Information

The above results are shown graphically in Figure 1, a conceptual model of relationships between ERP system quality variables, ERP service quality variables and stakeholder performance.

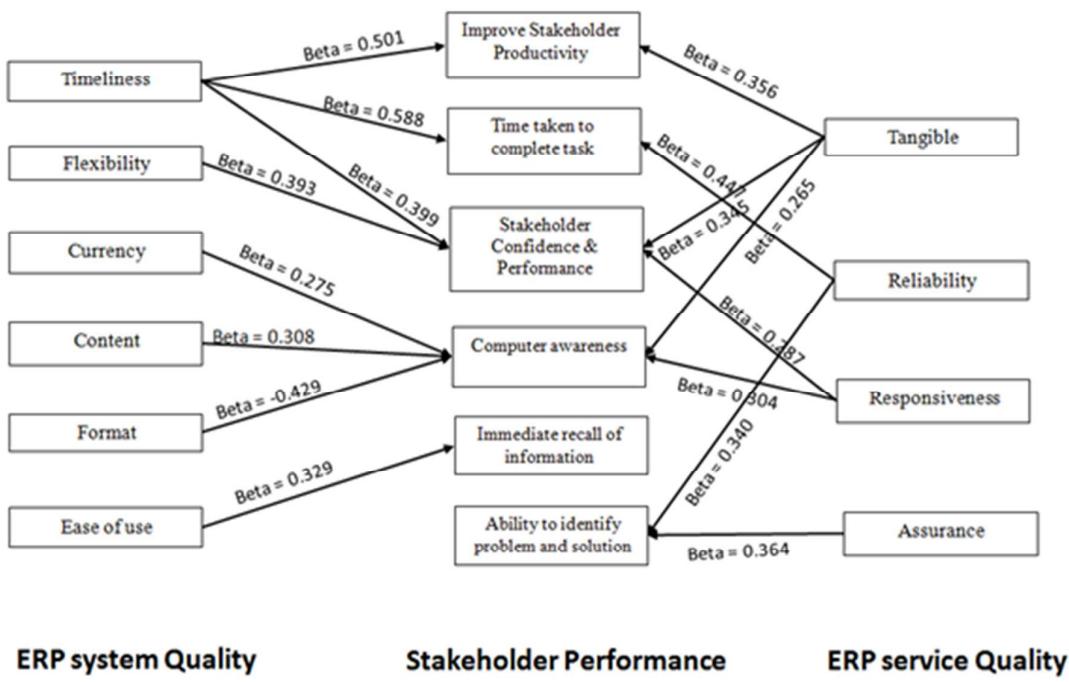


Figure 1. System Quality and Service Quality - Significant Factors

Source: the Researchers

4.2 Interviews

The model in Figure 1 is based on the quantitative part of this research. The authors believe that there is a need for additional qualitative data to complement the proposed model. According to Skok and Legge (2002), in complex ERP projects involving multiple stakeholders and the interrelationships between them, a single data collection technique is unlikely to provide a clear picture of the impact of the system on stakeholders' performance. There is thus a need for an in-depth analysis to determine the precise situation. Here, an interpretive and qualitative approach is suitable, as it helps the researcher to identify the key issues of concern among the stakeholders who have actually been involved in the ERP system in their daily work.

Interviews were therefore conducted with project managers of the MADAR system and KSU employees, focusing on the following specific points, which were considered to be essential from the managerial point of view and to have a direct impact on all phases or levels of implementation.

Contextual factors

- *Employee resistance*

IS/ERP implementations often fail due to strong resistance from users. This problem should be addressed, especially in the case of the public sector. Managers A and E stated that although users were aware that the new system could help them with their performance in different ways, older users who had spent most of their careers in the same place preferred to work with the legacy system rather than spend time learning how to work with the new system, which they considered complex compared to the old one. Four of the five project managers identified resistance to change as the major problem that they faced during the implementation phase:

1
2
3 *It was really hard for us to convince the employees to use the new system, those employees*
4 *who'd spent their careers working with the legacy system, especially when it came to the old*
5 *users who didn't have many years left until their retirement (Manager A).*

6
7 Most Saudi universities operate in the public sector, receiving funding and support from the government, so the
8 majority of personnel are government employees. This explains why KSU employees thought that their jobs
9 were secure, according to manager D:

10
11 *Dealing with government employees leads us as managers to another problem, which is job*
12 *security. The employees thought that using the new system was not compulsory and by law*
13 *nobody can fire them, therefore we have to take other action to solve this problem by linking*
14 *attendance at courses and using the new system effectively with promotion for all the*
15 *employees (Manager D).*

16
17

- ***Customisation***

18
19 Although packaged applications are designed to work in different organisations, or even in different industries,
20 they often do not provide all the functionality needed in a specific business. Although ERP as a software
21 application is designed to work in different organisations or industries, or at different levels, some degree of
22 system customisation is required.

23
24 According to manager A, KSU configured its system to its needs by selecting appropriate components, and by
25 setting parameters that allowed the university to modify the system within the boundaries set by the developers
26 of the application. MADAR was designed in house by a local firm. KSU management decided to choose a local
27 company rather than a global one for many reasons, including cost effectiveness, ease of contact and the ability
28 to address changes or configurations based on the university's needs:

29
30
31 *Choosing a local company wasn't a bad decision. Of course there is no comparison between a*
32 *local and a global one, but the local one we can ask for any modification or changes we need*
33 *on the system, so customisation wasn't a serious issue at KSU (Manager A and C).*

34
35 During the planning phase, KSU received many global and local implementation proposals for the ERP project.
36 Manager C believed that local companies were found to be a good choice due to their enhanced understanding
37 of the university, in addition to the financial efficiency offered by using a local firm and applying its expertise in
38 different departments.

39
40 MADAR managers B and E said that customisation of the system to meet the university's needs was not a
41 barrier for them. This was attributable to the company's flexibility and its direct connection with the university,
42 eliminating the need for an intermediary company.

43
44

- ***Weakness of project leadership***

45
46 Manager A believed that effective administration during and after implementation was one of the serious
47 problems that KSU managers faced. This was due to an assumption that the university administration was
48 committed to supporting the project, especially the MADAR package, which had already been selected and
49 implemented. As the ERP system was considered a new phenomenon and a major change for any university, it
50 was essential to focus on preparatory courses for administrative and managerial personnel, rather than on the
51 operational level of implementation activities.

52
53 Manager D added that the role of the management was to oversee pre-implementation preparation and
54 facilitation during the implementation; they needed to be involved in every step of the project until the ERP
55 system was implemented. In any such project, the management should continually monitor the progress of the
56 project and provide direction to the implementation teams:

Having an effective leadership is crucial – leaders who are willing to allow for a huge attitude change by accepting that a lot of learning has to be done at all levels, including themselves, because their attitude will affect other employees as well, which will help the implementation go smoothly and easily (Manager D).

MADAR project managers realised that the support of the university administration was essential at all levels. This was identified as one of the most important and crucial success factors in any ERP implementation, since the management can deal with many aspects of the project including planning, organisation, IS acquisition, employee selection and the management and monitoring of software implementation. KSU project managers found that motivating managers and administrators to cooperate during all stages of the implementation promoted successful and effective decisions.

- **Weakness of legacy system**

Manager A explained that MADAR was intended to replace legacy systems, each of which provided support for a specific functional area. Its implementation involved a complex transition from legacy IS and business processes to an integrated ERP infrastructure and common processes throughout the organisation, dependent on sophisticated IT infrastructure. Transferring from one system to the other was costly, as information was spread across many different computers in the legacy systems. This was not the only difficulty faced in transition, as exemplified in the following statement:

There is no doubt that changing from the current legacy system to the ERP system is difficult, but when the current system has a bad data structure it makes it even more difficult and it takes a long time to do it (Manager E).

The managers were aware that KSU, one of the largest universities in the country, had hitherto functioned with an ill-structured system, making it increasingly difficult to conduct data clean-up and transfer from the legacy system to the ERP system. Despite this weakness of the legacy system, the transition had to be efficient, as mistakes could cause multiple problems that would be difficult to rectify but which had to be solved before the implementation could proceed.

Improving stakeholders' productivity and performance

The economic rationale of implementing a new system is to achieve the highest productivity in stakeholders' output. To clarify and supplement the questionnaire data, the interviews examined this question from the stakeholders' point of view. It was found that the results of the qualitative phase were similar to those of the earlier quantitative phase of data collection, with limited changes from a managerial point of view.

- **Training programme**

The majority of KSU employees were aware that training plays a major role in ERP implementation, which generally requires profound reengineering of any organisation. Indeed, practical training is an important factor that affects the success or failure of implementation. Employee A believed that training offers a good opportunity for users to adjust to the changes introduced by the ERP system, and helps to build positive attitudes towards the new system. It also provides experience for users, so that they can appreciate the attributes and potential benefits of the new system. Employees believed that they did not have adequate training to enable them to understand the system in general or to operate it effectively.

Employees B, C and D explained that the majority of employees were unaware of the concept of ERP and how the system would help them to relate their work to other departments functionally. As such, it was important to build users' initial conceptual understanding of the new system, then introduce other courses gradually thereafter. This might have helped employees to understand the system and make it more user-friendly.

1
2
3 *There is a difference between a full, strong training course and a short session. I think what*
4 *was provided for us was a session, more than an appropriate training course. As employees,*
5 *we need intensive courses to build our confidence in terms of using the system (Employee B).*

6
7 Employees appeared to be aware of how important training was, and that it could help them to improve their
8 work and increase their productivity. Therefore, there was a demand for adequate training courses before, during
9 and after implementation.

10
11

- 12 ***Ease of use***

13 Although any ERP system is considered to be complex, participants found MADAR easy to use, which was a
14 significant factor in its adoption by KSU employees, despite their need for more intensive training. The majority
15 of the interviewees agreed that they found ERP easier to use than the legacy system. Furthermore, MADAR had
16 a positive impact both on completing the task effectively and on increasing their productivity:

17
18 *The most important benefit of the MADAR system is that it is easy to use it compared to the*
19 *legacy system, in terms of the ability to do the work easily and make faster information*
20 *transactions. If I had known it was that easy I wouldn't have resisted in the beginning*
21 *(Employee B).*

22
23 The presentation, format and content of the MADAR system were reported to make it even easier to use, so that
24 users could access any information that they needed and improve the quality of their work. Overall, employees
25 believed that MADAR implementation had made their jobs significantly easier.

26
27

- 28 ***Timeliness***

29 Both managers and employees listed timeliness as one of the benefits of using the ERP system. Employees A, B
30 and D stated that timeliness was considered an important factor in two ways: accessing the information that the
31 user needed on time, and helping users to do their work in a shorter time. Both of these assisted users to fulfil
32 the needs and requirements of their jobs:

33
34 *As a financial employee, working with the MADAR system is affecting my work positively. For*
35 *example, it improves efficiency, reduces data errors and avoids duplication of information. In*
36 *both functional and application domains it saves me many hours in my work (Employee A).*

37 According to employees B, C and D, the MADAR system allowed administrative and managerial personnel and
38 faculty members to check their salaries and promotions. It also made it possible to transfer easily, accurately and
39 quickly to other individual management functions within the system, such as procurement and distribution.

40
41

- 42 ***Flexibility***

43 Interviewees gave varying answers regarding the flexibility of the MADAR system. Employees A, B and C,
44 described as end-users, found the system flexible, while making transactions faster. This degree of flexibility
45 was provided at the time of implementation:

46
47 *The level of flexibility in the MADAR system is really obvious, which has improved my ability*
48 *to respond effectively, changing user interface, changing underlying data, and its effect is to*
49 *change performance positively (Employee B).*

50 In contrast, managers A, B and D believed that flexibility could and should be improved by upgrading the
51 system to meet their future needs and to match the planned expansion of the system:

I agree that MADAR has a high degree of flexibility when using the system daily, but as managers we look to have a higher degree of flexibility by updating the system in the future (Manager A).

To conclude, employees A, B, C and D agreed that flexibility, timeliness and ease of use were the most important factors, and believed that these factors had a significant impact by increasing their productivity and accuracy while reducing the time they spent on each job.

▪ Service Quality

Service quality was found to be a major area of concern for all five project managers, as it had a strong impact in facilitating the successful operation of the system and optimising employee/user performance. If the MADAR system were successfully implemented, the links between different departments of the university would not be adequate. Internal support from the service quality department would also be required. Interviewees felt that it was time to build a strong technical support service to help the system flow smoothly and to reduce the barriers to effective use of the system.

The four employees agreed that the service quality department at KSU, which was linked with the MADAR system, was extremely important in facilitating their use of the system and solving problems. Therefore, it was important to implement a new system in parallel with the service.

Service quality was seen to lie in the communications between users and the technical department, in terms of how quickly and accurately it delivered answers to users' enquiries. Interviewees perceived a strong link between speed of response and the accuracy of their own work. In this way, the MADAR system promoted a high degree of reliability and trust among users in a short time:

With the latest hardware and software, the service quality team are showing a high level of understanding and experience dealing with the MADAR system's difficulties. It's also obvious that they're making efforts to provide quick responses to system enquiries (Employee A).

It was widely perceived by the interviewees that the implementation of the MADAR system at KSU was intended to enforce or reinforce changes in both financial and administrative aspects of the university's operations. The majority of the employees asserted that they would not have resisted the change if they had known that changes were likely to have positive implications for themselves and the university, including non-financial benefits, since it was clear that the MADAR system resulted in greater productivity at work and better performance in general.

5. Discussion

On the basis of the above analysis, the authors are able to identify six key success factors for high stakeholder performance: ***understanding resistance to change, appropriate customisation, effective management support, intensive training schedule, better system quality and better service quality.***

• Understanding resistance to change

ERP systems are known to suffer high failure rates for many reasons, one of the most important being employees' resistance to change (Hong and Kim, 2002). Aladwani (2001) offers two fundamental reasons for this: perceived risk, which is a managerial issue, and users' habits. Clearly, the attitudes of users can determine whether they decide to support or resist such a change.

While the human aspect has been given fair attention throughout the IS literature, resistance to change has not received the same level of attention in regard to ERP systems. It is essential to investigate the causes of resistance to change, whether these lie in the organisations, employees, new systems or all of these. The present research is notable in focusing on the importance of social environmental factors in determining ERP

1
2
3 stakeholders' performance in the post-implementation phase. It has examined the impact of ERP systems on
4 stakeholders' performance and productivity, on the understanding that when a new system is introduced, the
5 organisation and its members will welcome or resist the associated change, which will generate either a positive
6 or negative impact on users' performance.
7

8 The findings of the current research reveal four main categories of reasons for employees to resist such change
9 in their organisations: employees' characteristics, additional responsibility, loss of authority and lack of
10 preparation. Each of these is discussed below.
11

- 12 **Employees' characteristics**

13 KSU is a university in the public sector, where dealing with employee resistance tends to be more difficult than
14 in the private sector, due to differences in job security. Since private employees do not enjoy the enhanced job
15 security of their public-sector counterparts, they will tend to be more motivated to accept change, such as the
16 use of a new system. The majority of MADAR stakeholders at KSU, being employed in the public sector,
17 considered their jobs to be secure.
18

- 19 **Additional responsibility**

20 Despite being discontented with the legacy system and considering it inadequate for their needs, users were still
21 reluctant to change, as they experienced a degree of comfort with the old system and were worried about having
22 to assume additional responsibility or having to work harder under the new system (Huq, Huq, and Cutright,
23 2006). Employees might also resist a new system because they are worried about the extra payments they may
24 receive (Dent and Goldberg, 1999).
25

- 26 **Loss of authority**

27 The research also detected that loss of authority was an important element of resistance to change, in line with
28 the findings of Huq, Huq and Cutright (2006) that loss of status or authority among employees can constitute a
29 barrier to change. This is especially true in Saudi culture, where superiority and authority are treated
30 synonymously. Potential loss of power is thus an important factor in employees' resistance to change.
31

32 An extraordinary example was set by KSU managers, who adopted the successful solution of linking
33 employees' effective use of the ERP system with their promotion. At the same time, to discover which
34 employees were using the system effectively, they also tracked their operations. This policy helped to encourage
35 employees to attend training sessions and operate the new system effectively. Silva and Fulk (2012) argue that
36 users may turn to acts of resistance if their view of the new system is different from that of management. For
37 instance, while managers may see the adoption of the ERP system as a necessary tool to establish control, users
38 may view it as a means of changing their work practices or as a threat to their jobs. Furthermore, they may not
39 find it user-friendly, and/or view it as a managerial tool for dominating the user (Quattrone and Hopper, 2006).
40

- 41 **Lack of preparation**

42 As highlighted by Kwahk and Lee (2008), it is essential to ensure that users are prepared for any change in the
43 organisation. Gargeya and Brady (2005) agree that if users are not ready or willing to change, change will not
44 succeed or simply will not occur. Hence, organisations planning to change from one system to another should be
45 prepared for a long process, going beyond a technical transfer, so that the technical and social planning phases
46 run in parallel. For instance, managers must be charged with the responsibility of encouraging, controlling and
47 training employees to be prepared for the new system (Aladwani, 2001). To facilitate successful ERP
48 implementation, organisations should have a capable and effective change management team responsible for
49 introducing the changes and resolving any problems. This includes employee resistance, which requires a clear
50 plan of user preparation before and during implementation (Aladwani, 2001). This opinion is supported by a
51 study of a successful ERP implementation, in which Kim, Lee and Gosain (2005) found a lack of organisational
52 change management expertise to be a critical barrier to implementation.
53

1
2
3 • **Effective management support**
4

5 Successful ERP implementation is achievable only when the organisation gives due consideration to many
6 important points, including the support offered by top management. Almudimigh, Zairi and Al-Mashari (2001)
7 define this support as the “willingness of top management to provide the necessary resources and authority or
8 power for project success”. Many authors, such as Somers and Nelson (2004) and Finney and Corbett (2007),
9 consider effective top management a crucial element in determining the success or failure of ERP
10 implementation.
11

12 For other authors, such as Soja (2006) and Yusuf (2004), the success of any ERP project depends on two parties.
13 The first is the project team, whose members are internal specialist managers and employees having vital
14 knowledge of cross-functional business relationships and experience of the old internal system. This team is
15 responsible for introducing ERP into the organisation, in collaboration with the second party, which comprises
16 experts from the external outsourcing company, representing the system suppliers on site.
17

18 It was widely perceived by the managers interviewed for the case study that these essential elements of the
19 implementation phase were missing. The executive managers demanded more support from middle managers
20 and project teams, while middle managers required more knowledge and training, as the majority of them were
21 not familiar with the details of the new ERP system. In practice, the skills and knowledge of the project team are
22 important in providing expertise in areas where team members lack knowledge (Somers and Nelson, 2004).
23 Based on the interview data, it is apparent that KSU had tended to neglect a very important part of the
24 transformation phase. As noted by Kim, Lee and Gosain (2005), any IT transformation requires a
25 comprehensive approach to the large-scale process and system changes associated with ERP implementation. In
26 other words, without appropriate change or top management support, the enterprise may not be able to adapt to
27 the new system and realise the desired performance gains.
28

29 It was apparent that managers at KSU had paid little attention to these critical factors during pre-implementation
30 and implementation, which explained the high degree of employee resistance to the new system. The problem
31 was a large gap in the preparation phase, concerning the role that top management should play during
32 implementation. Almudimigh, Zairi and Al-Mashari (2001) assert that an active top management is important
33 for ensuring adequate resources, fast decisions and acceptance of the project throughout the organisation.
34 Furthermore, they contend that the top management must be involved in every step of ERP implementation.
35 Similarly, Kim, Lee and Gosain (2005) argue that top managers' involvement in the various phases of
36 implementation is important in developing and promoting the vision of the organisation's IT infrastructure and
37 the role of the ERP system. Finney and Corbett (2007) emphasise that project management refers to ongoing
38 management of the implementation plan, including not only the planning stage, but also the allocation of
39 responsibilities to the various players. To enable successful ERP implementation, Beheshti and Beheshti (2010)
40 state that top management involvement as leaders and facilitators of change is critical, ensuring that the scope of
41 the project is not restricted. Inadequate top management commitment is considered a major reason for the failure
42 of implementation (Ligus, 2009).
43

44 Qualitative data collected during interviews with project managers indicate that deficient management was the
45 most problematic area for ERP implementation at KSU. The case study found that the purchase of an ERP
46 system had brought the university into a complex implementation relationship with the ERP itself and with a
47 system integration partner. A possible explanation for the lack of management support was a gap between
48 decision makers and managers, who should be involved in all steps, from comparing potential suppliers and
49 choosing between them, to the preparation and implementation phases. By encouraging such involvement,
50 universities would help to explain and facilitate their new systems and avoid potential resistance from
51 employees.
52

53

54

55

56

57

58

59

60

1
2
3 • **Appropriate industry customisation**
4
5

6 While the decision to implement an ERP system is an important one for any organisation, it is also important to
7 ensure that the implementation is successful. The system should match the organisation's needs and suit the
8 required tasks. A degree of customisation is required between the ERP system and the organisational processes
9 it supports, which can be achieved through reciprocal adaptation of the ERP system and of the organisation's
10 processes (Holsapple, Wang, and Wu, 2005). Rothenberger and Srite (2009) define customisation as "building
11 custom features by using standard programming language, changing the ERP code and or including third party
12 packages that require some degree of programming to implement". Other practitioners and researchers have
13 attempted to explain the difference between customisation and standardisation (Rothenberger and Srite, 2009;
14 Holsapple, Wang, and Wu, 2005), but the concept of customisation as applied to ERP systems has not been
15 authoritatively defined (Giff, 2009).

16 Nevertheless, customising these systems to match organisational needs is clearly an essential step for improving
17 the implementation process. The second step of upgrading the system is significant, although it is difficult to
18 assess its impact (Khoo, Robey, and Rao, 2011). Khoo and Robey (2007) note that an organisation's strategic
19 orientation towards new technology could influence its decision to upgrade. Khoo, Chua and Robey (2011) also
20 believe that organisations choose to use packaged rather than custom software for many reasons, including to
21 reduce development cost, shorten implementation time, achieve state-of-the-art best practice, reduce
22 maintenance and obtain extended functionality.

23 In the case of universities, each of which is a unique organisation with its own characteristics, customisation
24 would be the most efficient option. Indeed, KSU, the case studied in this research, is distinct in terms of the
25 customisation it required, while its relationships with potential ERP vendors were determined by the vendor
26 companies themselves, which were responsible for the packages and services offered to the university.

27 KSU had chosen to adopt a locally sourced system (MADAR), and the customisation process consisted of the
28 system being configured and modified to meet the university's demands. KSU was planning to implement the
29 system in all departments, based on their needs and requirements. The choice of a local company to supply the
30 ERP software meant that it was cheaper than global competitors. Consequently, any configuration or
31 modification requested by the university would be done by the vendor company. From KSU's perspective, it
32 was apparent that the ERP vendor played an essential role during adoption and adaptation.

33 Beatty and Williams (2006) state that during the initial implementation of an ERP system, many organisations
34 choose to customise the standard software modules to meet implementation dates and match their unique
35 business requirements. Although most organisations that implement ERP undertake some customisation of the
36 vendor's basic product offering, many make the mistake of over-customising their application modules in an
37 attempt to appease all members of their ERP upgrade project teams.

38 Since this research focuses on the human aspect of implementation, i.e. the ERP stakeholders, it is useful here to
39 return to the recommendations reported above concerning the involvement of managers in all stages of
40 implementation, as well as the importance of planning and preparation. Khoo, Chua and Robey (2011) support
41 this idea and assert that users also create idiosyncratic adaptations and workarounds to overcome limitations in
42 customised software. Furthermore, Giff (2009) states that the main challenge to ERP customisation is to
43 understand the system itself, since managers will need to consult experts on specific modules if customisation
44 becomes complex. Park, Suh and Yang (2007) report that users often ask for customisation when their tasks and
45 business needs are different from those envisaged by the design of the standardised package. This explains why
46 so many ERP installations fail, as consultants' technical knowhow and users' business knowledge sometimes
47 collide during implementation. Therefore, organisations in general and universities in particular find that ERP
48 customisation and the upgrading of systems to match individual universities' needs represent the most severe
49 technological headaches (Beatty and Williams, 2006).

To conclude, vendors can play a significant role in supporting universities' continual investment in their new systems, by upgrading, adding functionality, achieving a better fit between each university and its adopted system, and being aware of each university's strategic values. Vendor support should thus include extended technical assistance, emergency maintenance and updating. All of these factors can be seen to be linked to training. This is examined in the following section, where it will be argued that with packaged software, special user training is an important factor during the post-implementation phase.

10 • **Intensive training schedule**

11 Choosing the right system is important, but most important is choosing a system capable of integrating the
12 existing work applications and data archives to make migration easy for users, to reduce the costs associated
13 with transferring data and avoid interruption due to training (Lassila and Buchner, 1999). Training plays a major
14 role in ERP implementation and use, which generally requires major reengineering of the organisation (Bradley
15 and Lee, 2007). Similarly, Umble, Haft and Umble (2003) assert that as user understanding is so important,
16 education and training are among the most widely recognised critical success factors. ERP implementation
17 requires a critical mass of knowledge to help users solve problems. It is important for employees to understand
18 how the system works; otherwise they may discover their own suboptimal ways of using those parts of the
19 system that they are able to operate.

20 In general, the literature reveals the importance of ERP system training. Chien and Hu (2009), for instance, state
21 that education and training constitute an essential process for providing managers and employees with an
22 understanding of the logic and overall concept of the ERP system, including teaching many groups of users how
23 to operate the system efficiently in their daily work activities. According to Zhang (2005), intensive training can
24 provide users with a better understanding of how their work is related to other functional areas in the same
25 organisation. Hence, any user who produces results should be held responsible for making the system perform to
26 expectations.

27 Significantly, most of our knowledge about IT learning focuses on the efficacy of training or support during
28 implementation (i.e. before the application becomes operational). In this phase, training is typically considered
29 "preparation for use," and previous studies have shown that implementation training has a significant impact on
30 ERP success (Chien and Hu, 2009). It is therefore regrettable that ERP training is often compressed because
31 implementation projects are running out of time and money. Organisations tend to cut training costs when
32 adopting expensive systems, resulting in negative user attitudes and low integration equilibrium. In the case of
33 Saudi public universities, which enjoy the support of the government and correspondingly generous budgets,
34 time and money are not major concerns. Notwithstanding this comfortable financial position, this research
35 shows that training is still a critical issue for them.

36 Surprisingly, the results of the quantitative phase of this research indicated that training was not one of the most
37 significant factors. In contrast, the majority of interviewees emphasised the need for continuous training on the
38 new system to help them do their work effectively. KSU employees voiced a widespread belief that they had not
39 received appropriate training in terms of how to use the ERP system, asserting that they would prefer continuous
40 training to help users obtain sufficient knowledge of the new system and its added functionality. Unfortunately,
41 managers often heavily underestimate the degree of education and training necessary to implement an ERP
42 system, as well as the associated costs. Top management must be totally committed to spending enough money
43 on end-user training and incorporate it as part of the ERP budget (Umble, Haft and Umble, 2003).

44 Although case study data revealed that KSU employees felt the need for more intensive and continuous training,
45 the university did appear to have achieved progress in its training policy. Large numbers of users were trained in
46 order to implement the system in various departments, largely through a "train the trainer" approach. There was
47 greater awareness of how the ERP system affected the work of university's staff. There is a heavy responsibility
48 on managers, who should know and understand the implications of the system and must come to a consensus on
49 the changes that will take place in each university. If managers agree that change is necessary and possible, they
50 can be charged with distributing this information to their support managers. On the other hand, if they are not in
51 agreement or fail to collaborate, the enthusiasm to buy and implement the system will suffer, resulting in some
52

cases in active resistance. As stated by Marshall et al. (2000), education and training are major tools to improve human performance and encourage better decision making. Finally, while improving ERP stakeholders' performance remains a primary goal of modern Saudi universities for increasing competitiveness, analysis of the quantitative data revealed that not all constructs of the final research framework proved to be significant in achieving such an improvement. Despite the fact that training was not a significant factor according to the quantitative results, nearly all of the interviewees believed that well planned intensive training would have a significant impact on their performance.

- **Better system quality**

Employing stakeholders' performance in the evaluation of ERP system effectiveness is certainly well established in the literature (e.g. Umble, Haft and Umble, 2003). However, several elements prompt concern. A major dimension used in the IS/ERP literature is system quality, comprising factors such as accuracy, flexibility, ease of use and timeliness. This research was designed to investigate the impact of system quality and service quality on stakeholder performance. A finding of the quantitative phase was that six of the 14 system quality factors were significant: content, timeliness, format, ease of use, flexibility and currency. As to the qualitative findings, the majority of interviewees agreed that these factors all had a significant impact on their performance.

- **Flexibility**

The flexibility of an ERP system in dealing with change in its environment is important, so any change in the degree of flexibility is certain to affect users' performance in time. The flexibility of certain system processes can be used as a surrogate measure of the level of stakeholders' performance. The literature has largely concentrated on the three aspects of flexibility mentioned earlier: user satisfaction, organisational performance and technical performance.

Gebauer and Lee (2008) describe flexibility as the "capacity of an information system to adapt and to support and enable organisational change", noting that it "has been linked to operational efficiency and to organisational nimbleness". More simply, Gong and Janssen (2010) define flexibility as the "ability to respond effectively to changing circumstances".

The case study data reveal that both types of flexibility were important to KSU stakeholders, but the ways in which participants viewed flexibility varied slightly. End users were pleased about the degree of flexibility they had in their daily work compared to the legacy systems, whereas managers (key users) were concerned with both types of flexibility and looked forward to upgrading the systems in the hope of achieving a higher degree of flexibility. In sum, the stakeholders at KSU found that the ERP systems implemented there were flexible, which significantly impacted performance. In other words, the flexibility of these systems contributed to the more efficient performance of given tasks and processes.

- **Ease of use**

As highlighted by Ifinedo and Nahar (2007), system quality refers to the performance characteristics of an ERP system, and is concerned with the ease with which it can be learned and then used. The models most widely utilised to assess IS/ERP systems have also been used to examine how ease of use affects users' culture and user satisfaction (D&M and EUCS).

The present research considered ease of use to be an important element of system quality, evaluating its impact on stakeholders' performance. Both primary and secondary findings show it to be one of the most significant factors affecting users' productivity and performance. Without a doubt, ERP systems are complex, yet large numbers of participants found them easy to use. Before ERP implementation, employees of KSU had long suffered from conflict between departments, difficulties in performing tasks and lack of integration, which caused difficulties in communicating with other platforms. The results of the case study show that the accessibility of the ERP systems adopted by the university improved stakeholders' working environment and helped them to process their transactions efficiently, thus improving their productivity.

1
2
3 • **Timeliness**
4
5

6 The primary reasons for any organisation to implement an ERP system are to improve stakeholders'
7 productivity and increase their work efficiency, which are necessary if the organisation is to improve its
8 competitive position. To achieve these goals, timeliness is considered an important factor in two ways:
9 accessing the information that the users need on time and helping them to do their work in a shorter time.

10 As discussed in the literature review, among the most important benefits of ERP systems are saving time,
11 reducing redundancy and improving productivity. Similarly to flexibility and ease of use, the effect of timeliness
12 has been examined on user satisfaction (D&M and EUCS), organisational performance and technical
13 performance (e.g. Zhang et al., 2005; Nelson and Somers, 2001; Somers, Nelson and Karimi, 2003; Torkzadeh
14 and Doll, 1991). This paper considers it essential to include timeliness in the framework, as it provided a clear
15 indication of stakeholder performance and productivity.
16

17 The results relating to timeliness show that employees at KSU were aware of the importance of the ERP system
18 and how it would enable them to perform more effectively, accurately and on time. In this context, stakeholders
19 compared the time they spent completing tasks before and after ERP implementation, reporting that they saved
20 time, which could then be spent on performing other tasks.
21

22 • **Content**
23
24

25 A key challenge in IS design is to provide sufficient information without overloading system users. Therefore, it
26 is important that an ERP system should contain exactly the information that users need to complete tasks
27 efficiently and effectively. Content refers to the provision of precise information and the production of final
28 reports. Among the different aspects of content widely discussed in the literature are user satisfaction and the
29 evaluation of ERP system performance. It is also a feature of one of the important IS models, namely EUCS.
30 This research has considered the content factor by integrating EUCS with D&M and TTF, while focusing on
31 stakeholder performance and productivity. Both qualitative and quantitative results indicate that a wide range of
32 participants found their ERP systems to be providing employees with barely sufficient information to perform
33 their tasks.
34

35 • **Currency and format**
36
37

38 One of the earliest studies still referred to by many recent studies of IS/ERP systems is that of Bailey and
39 Pearson (1983), who discuss currency and format as elements of system quality. It is important that the system
40 should provide the latest information relevant to the work process in question. The literature reports a large
41 number of studies addressing currency in IS/ERP, ranging widely across aspects such as user satisfaction and
42 the evaluation of ERP system performance. Currency is also a component of two of the most important IS
43 models, namely TTF and D&M (e.g. Strong and Volkoff, 2010; Smith and Mentzer, 2010; Zigurs and Buckland,
44 1998; Goodhue and Thompson, 1995). Evaluating ERP stakeholders' performance at KSU is a new
45 development, in that it focuses on the impact of the system on stakeholders in this particular environment. The
46 results of this research reveal that employees believed that the ERP systems were providing data suitable for the
47 intended purposes. Moreover, the degree of currency in the ERP system's environment met their needs and had
48 a significant impact.
49

50 • **Better service quality**
51
52

53 The final important dimension to be considered when evaluating an IS/ERP system is service quality, as it is a
54 key dimension in determining the success or failure of such a system (Seth, Deshmukh and Vrat, 2004).
55 Therefore, researchers have recognised the importance of service quality and the effects it may have on IS users.
56 Indeed, some have called for more research to measure service quality (Chang and King, 2005). Petter, DeLone
57 and McLean (2008) define service quality as "the quality of the support that system users receive from the IS
58 department and IT support personnel".
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Despite the importance of service quality and its effect on system users, there is limited reference to it in the empirical literature, and few frameworks have included it. Indeed, none of the original models integrated in this research has service quality as one of its dimensions. The model of DeLone and McLean (1992), for example, which is the most widely cited in IS studies, does not take service quality into account. Several researchers have subsequently attempted to test and modify the D&M model, while others have called for its further development and validation. The contribution of Pitt, Watson and Kavan (1995) was to modify the model by including service quality as a measure of IS success, arguing that it needed to be expanded to reflect the service role of the IS department. In addition, Myers, Kappelman and Prybutok (1997) highlight the importance of providing service quality to customers.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
While the few studies of IS service quality focus on a number of different aspects, including user satisfaction and measuring system performance, the present study makes a novel contribution by attempting to evaluate the impact of service quality on stakeholder performance in the ERP environment. It does so by treating service quality as a dimension consisting of four factors: reliability, assurance, tangibility and responsiveness. All four factors were found to be significant. The qualitative results are consistent with the quantitative ones in terms of the importance of service quality and its effect on performance.

20
21
22
23
24
25
26
27
28
29
30
20
21
22
23
24
25
26
27
28
29
30
The majority of interviewees emphasised two aspects of service quality. First, stakeholders felt that it was important for the system they were using to be dependable and trustworthy, so that they could complete tasks and improve productivity. Secondly, they expressed willingness to provide a timely service, thus indicating that timeliness provides a significant connection between system quality and service quality.

20
21
22
23
24
25
26
27
28
29
30
20
21
22
23
24
25
26
27
28
29
30
The findings of this research are consistent with the literature in terms of the importance of service quality, while the novel contribution made by including service quality in the model demonstrates that it has a significant impact on stakeholder performance, in addition to the essential role played by effective and efficient service quality in increasing productivity.

20
21
22
23
24
25
26
27
28
29
30
20
21
22
23
24
25
26
27
28
29
30
The above discussion allows conclusions to be drawn regarding the factors that have a significant impact on the performance of ERP stakeholders. Both the system quality and service quality dimensions have been identified in many studies reported in the literature, covering various aspects, perspectives and ERP implementation phases. The role of management, however, has been identified only in studies of the implementation phase.

20
21
22
23
24
25
26
27
28
29
30
20
21
22
23
24
25
26
27
28
29
30
Figure 2 shows the final model representing the findings of the present study in the form of a model of ERP system impact on stakeholder performance. It reflects the conclusion that factors from the pre-implementation phase, the implementation phase (the Management Quality dimension) and the post-implementation phase (the System Quality and Service Quality dimensions) had a direct impact on stakeholders' performance. In ERP implementation, each phase has a direct impact on the following phase; in other words, all phases are linked and interconnected. Consequently, organisations in general, and higher education institutions in particular, should focus on the early stages and the implementation phase if they wish to achieve high stakeholder performance.

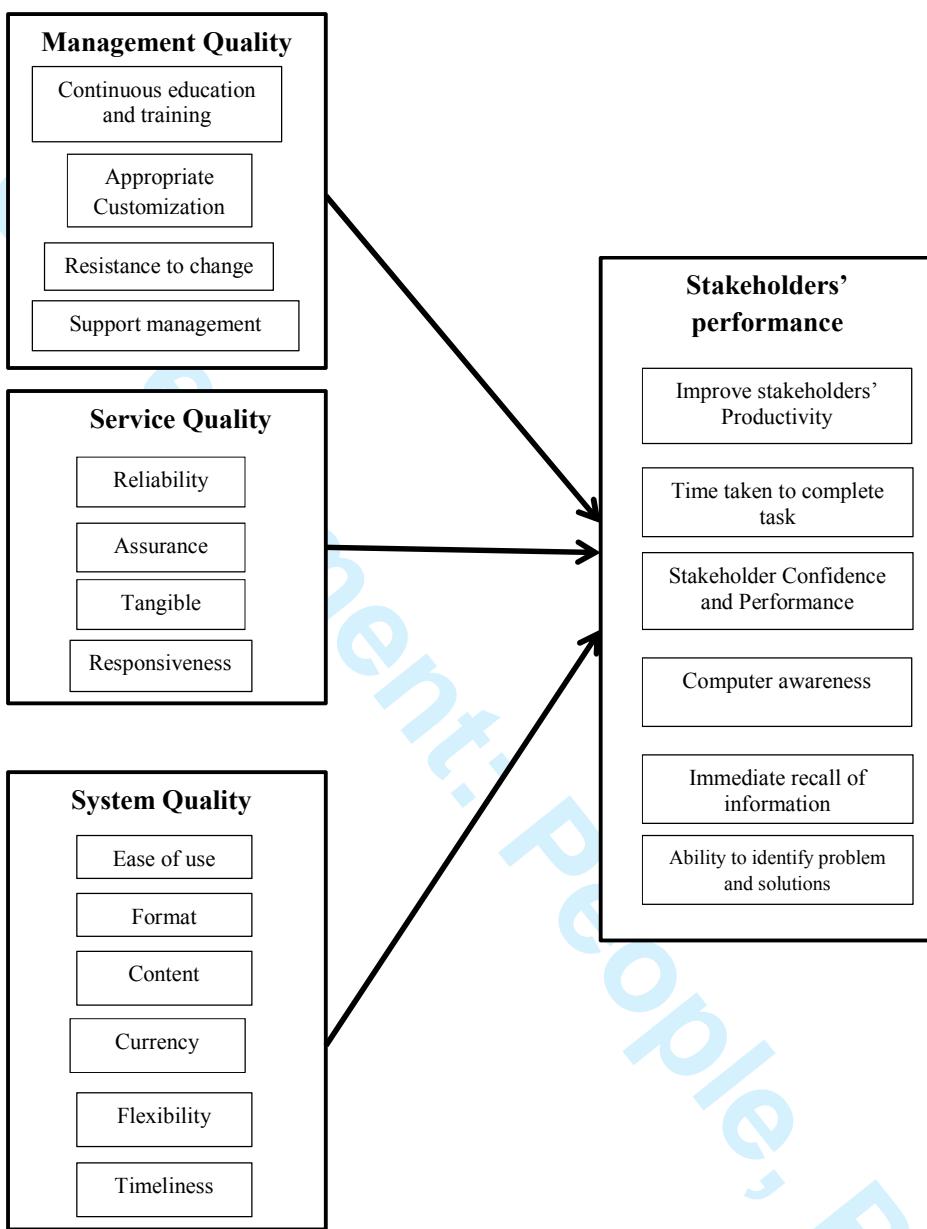


Figure 2. Model of ERP System Impact on Stakeholder Performance

7. Conclusion

The aim of this study was to evaluate the impact of ERP systems in HE from the perspective of stakeholders' performance. The theoretical framework was derived from the integration of three widely used models (D&M, TTF and EUCS), which measure different factors affecting individual performance in an ERP system environment. The empirical data were collected in the case study of the MADAR system implemented at the King Saud University. A questionnaire comprising five-point Likert scale items was developed to test the proposed model. Two independent variables, system quality and service quality, were anticipated to affect positively the performance of MADAR system stakeholders at KSU.

The findings are consistent with the literature in terms of the importance of service quality, while a novel contribution was made by including service quality in the model and demonstrating significant impact on stakeholders' performance, as well as highlighting the essential role played by effective and efficient service quality in increasing productivity. The analysis allows conclusions to be drawn as to the factors having a significant impact on the performance of ERP stakeholders.

The adoption of an ERP system is a long-term programme that may take several years to implement; evaluating its success is thus not an easy task, as sufficient time is needed to gather meaningful post-implementation data. Factors affecting stakeholders' performance are complex and plentiful; therefore case study was considered an appropriate and effective way to identify the specific factors positively influencing stakeholders' performance. While both system quality and service quality have been identified in many studies, the role of management has been identified only in studies of the implementation phase. The present study found that stakeholders' performance was significantly affected by system quality factors, namely flexibility, compatibility, right data, currency, ease of use and timeliness. In addition, service quality factors had a positive impact on stakeholders' performance. This research further found that factors from the pre-implementation, implementation and post-implementation phases had a direct effect on stakeholders' performance. In ERP implementation, each phase has a direct impact on the following phase; in other words, all phases are linked and interconnected. Therefore, organisations in general, and higher education institutions in particular, should focus on the early stages and the implementation phase if they wish to achieve high standards of stakeholders' performance. Future research would be useful during the maturity phase to include all stakeholders in several Saudi universities. In addition, more research can be beneficial to test the applicability of ERP system impact on stakeholders' performance in other public and private sectors.

8. References

Abugabah, A. and Sanzogni, L. (2010), "Enterprise resource planning (ERP) system in higher education: a literature review and implications", *International Journal of Social, Management, Economics and Business Engineering*, Vol. 4 No. 11, pp. 361-365.

Adelakun, Olayele and Jennex, Murray. 2002. "Stakeholder process approach to information system evaluation." Eighth Americas Conference on Information Systems, 1186-1195.

Aladwani, Adel .M. 2001. "Change management strategies for successful ERP implementation." *Business Process Management Journal*, 7 (3) 266 -275.

Aladwani, Adel. 2002. "An empirical examination of the role of social integration in system development projects." *Information Science Journal*, 12, (4) 339-353.

Aladwani, Adel. 2003. "Key Internet characteristics and e-commerce issues in Arab countries." *Information Technology & People*, 16 (1) 9-20.

Almashari, Majed, Al-Mudimigh Abdullah, and Zairi, Mohammed. 2003. "Enterprise resource planning: A taxonomy of critical factors." *European Journal of Operational Research*. (146) 352-364.

Al-Mudimigh, Abdullah, and Ullah, Z. 2011. "Integration and communication to prevent dirty data: The role of MADAR projects." under review in *Journal of Information*. (ISI indexed).

Al-Mudimigh, Abdullah, Zairi, Mohammed, and Al-Mashari, Majed. 2001. "ERP software implementation: an integrative framework." *European Journal of Information Systems*. (10) 216-226.

Alshamlan, H., and Almudimigh, A. 2011. "The change management strategies and processes for successful ERP implementation: A case study of MADAR." *International Journal of Computer Science*, 8.

Au, Norman, Ngai, Eric W, and Cheng, T.C. Edwin. 2002. "A Critical Review of End-User Information System Satisfaction Research and a New Framework." *Omega* 30 (6) December, 451 cem.

Au, Norman, Ngai, Eric W, and Cheng, T.C. Edwin. 2008. "Extending the understanding of end user information systems satisfaction formation: An equitable needs fulfilment model approach." *MIS Quarterly*. 32,(1), 43-66.

Babaei, M. Gholami, Z. Altafi, S. (2015), Challenges of Enterprise Resource Planning implementation in Iran large organizations, *Information Systems*, 54. PP.15-27.

Bailey, James E., and Pearson, Sammy W. 1983. "Development of a tool for measuring and analysing computer user satisfaction." *Management Science*, 29 (5) 530-545.

Beatty, Robert C., and Williams, Craig D. 2006. "ERP II: Best practices for successfully implementing an ERP upgrade." *Communications of the ACM - Self managed systems CACM*, 49 (3) 105-109.

Beheshti, Hooshang M., and Beheshti, Cyrus M. 2010. "Improving productivity and firm performance with enterprise resource planning.", *Enterprise Information Systems*, 4 (4) 445-472.

Bernstein, Stephen., and Ruth Bernstein. 1999. *Elements of Statistics II: Inferential Statistics*, Schaum's Outline Series, New York: McGraw-Hill.

Bradley, Joseph., and C. Christopher Lee. 2007. "ERP training and user satisfaction: A case study." *Journal of Enterprise Information Systems*, 3 (4) 33-50.

Chang, Hsin Hsin. 2008. "Intelligent agent's technology characteristics applied to online auction task: A combined model of TTF and TAM." *Technovation* (28) 564-577.

Chang, JERRY CHA-JAN, and King, WILLIAM R. 2005. "Measuring the performance of information systems: A functional scorecard." *Journal of Management Information Systems*. 22 (1) 85-115.

1
2 Chien, Shih-Wen and Hu, Changya. 2009. "The moderating effect of employee computer self-efficacy on the
3 relationship between ERP competence constructs and ERP effectiveness." *Journal of Electronic Commerce in
4 Organisations*. 7 (3) 56-85.

5
6 DeLone, William H., and McLean, Ephraim. E.R. 1992. "Information Systems Success: The quest for the
7 dependent variable." *Information Systems Research*. 3 (1) 60-95.

8
9 DeLone, William H., and McLean, Ephraim. E.R. 2003. "The DeLone and McLean Model of Information
10 Systems Success: A ten year update." *Journal of Management Information Systems*, 19 (4) 9-30.

11
12 Dent, Eric.B., and Goldberg, Susan Galloway. 1999. "Challenging resistance to change." *Journal of Applied
13 Behavioural Science*, (35) 24-41.

14
15 Dishaw, Mark. T Strong, Diane. M., and Bandy, D. Brent. 2002. "Extending the task technology fit model with
16 self-efficacy constructs." *Eighth Americas Conference on Information Systems*. 1021-1027.

17
18 Doll, William J, Deng, Xiaodong and Raghunathan, T.S. Torkzadeh, Gholamreza, and Xia, Weidong. 2004.
19 "The meaning and measuring of user satisfaction: A multi-group invariance analysis of the end user computing
20 satisfaction instrument." *Journal of Management Information Systems*, 21 (1) 227-262.

21
22 Doll, William J., and Torkzadeh, Gholamreza. 1988. "The measurement of end user computing satisfaction." *MIS Quarterly*. 12 (2) 250-273.

23
24 Duhamel, F. Gutierrez-Martinez, I. Picazo-Vela, S. and Luna-Reyes, L. F. (2013), IT outsourcing in the public
25 sector: a conceptual model, *Transforming Government: People, Process and Policy*, 8(1), pp. 8-27.

26
27 Eerde, Wendelen Van, and Thierry, Henk. 1996. Vroom's expectancy model and work-related criteria: A
28 meta-analysis, *Journal of Applied Psychology*, (81) 575-586.

29
30 Elmes, Michael B, Strong, Diane M, and, Olga. Volkoff. 2005. "Panoptic empowerment and reflective
31 conformity in enterprise systems-enabled organizations." *Information and Organisation*. 15 (1)-37.

32
33 Farbey, Barbara, Land, Frank, and Targett, David 1993. *How to Assess Your IT Investment*, Oxford:
34 Butterworth-Heinemann.

35
36 Field, Andy. 2009. *Discovering Statistics Using SPSS*, Sage.

37
38 Finney, Sherry, and Corbett, Martin. 2007. "ERP implementation: A compilation and analysis of critical success
39 factors." *Business Process Management Journal*.13 (3) 329-347.

40
41 Gable, Guy G., Scott, Judy E. and Davenport, Tom D. 1998. Cooperative ERP life-cycle knowledge
42 management. 9th Australasian Conference on Information Systems, 29 September – 2 October, Sydney.

43
44 Gable, Guy G., Sedera, Darshana and Chan, Taizan 2008. "Re-conceptualizing information system success: The
45 IS-impact measurement model." *Journal of the Association for Information Systems*. 9 (7) 376-408.

46
47 Galy, E. and Sauceda, M. (2014), 'Post-implementation practices of ERP systems and their relationship to
48 financial performance, *Information & Management*, 51. PP. 310–319

49
50 Gargeya, Vidyaranya B., and Brady, Cydnee. 2005. "Success and failure factors of adopting SAP in ERP system
51 implementation." *Business Process Management Journal*, 11 (5) 501-516.

52
53 Garrity, E.J. and Sanders, G.L. (1998), *Information Systems Success Measurement*, Idea Group Publishing,
54 Hershey, PA.

55
56 Gebauer, Judith, and Lee, Fei 2008. "Enterprise system flexibility and implementation strategies: Aligning
57 theory with evidence from a case study." *Information System Management*. (25) 71-82.

58
59 Giff, Stephen, Yvonne, Dittrich, Sebastien Vaucouleur, 2009. "ERP customization as software engineering:
60 Knowledge sharing and cooperation." *IEEE Software*. 26 (6) 41- 47.

61
62 Gong, Yiwei, and Janssen, Marijn. 2010. "Measuring process flexibility and agility." ICEGOV '10 Proceedings
63 of the 4th International Conference on Theory and Practice of Electronic Governance, October, Beijing, 173-
64 182.

1
2
3 Goodhue, Dale L. 1995. "Understanding user evaluation of information systems." *Management Science*. 41(12)
4 1827.
5
6 Goodhue, Dale L, Klein Barbara D., and March, Salvatore T. 2000. "User evaluation of IS surrogates for
7 objective performance." *Information and Management*, (38) 87-101.
8
9 Goodhue, Dale L., and Thompson, Ronald L. 1995. "Task-technology fit and individual performance." *MIS
10 Quarterly*. 19 (2) 213-236.
11
12 Hair, J.F., Black, W. C., Babin, B.J. and Anderson, R.E. (2010). *Multivariate data analysis*, 7th ed., PEARSON.
13
14 Helo, Petri, Anussornnitisarn, Pornthep and Phusavat. Kongkiti. 2008. "Expectation and reality in ERP
15 implementation: Consultant and solution provider perspective." *Industrial Management & Data Systems*,
16 108(8)1045-1059.
17
18 Holsapple, C, Wang, Yu- Min., and Wu, Jen- Her. 2005. "Empirically testing user characteristics and fitness
19 factors in enterprise resource planning success." *International Journal of Human Computer Interaction*, 19 (3)
20 323-342.
21
22 Hong, Kyung-Kwon, and Kim, Young-Gul. 2002. "The critical success factors for ERP implementation: an
23 organizational fit perspective." *Information & Management*. 40 (1) 24- 40.
24
25 Hsu, Li-Ling, Lai, Robert SQ and Weng, Yu-Te. 2008. "Understanding the critical effect of user satisfaction and
26 impact of ERP through innovation of diffusion theory, *International Journal of Technology Management*" 43 (1-
27 3) 30- 47.
28
29 Huq, Z., Huq, F., and Cutright, K. 2006. "BPR through ERP: Avoiding change management pitfalls." *Journal of
30 Change Management*. 6 (1) 67-85.
31
32 Ifinedo, Princely, and Nahar, Nazmun. 2007. "ERP systems success: An empirical analysis of how two
33 organisational stakeholder groups prioritize and evaluate relevant measures." *Enterprise Information Systems*, 1
34 (1) 25-48.
35
36 Irani Z. 2010 "Investment Evaluation within Project Management: An Information Systems Perspective".
37 Journal of the Operational Research Society (JORS), 61(6): 917-928.
38
39 Irani, Zahir, and Love, Peter. 2008. *Evaluating Information Systems: Public and Private Sector*, Oxford:
40 Butterworth-Heinemann.
41
42 Irani Z. 2002. "Information systems evaluation: Navigating through the problem domain". *Information and
43 Management*, 40(1): 11-24.
44
45 Jutras, C., 2010. *ERP in Manufacturing (2010): Measuring Business Benefit and Time to Value*. Aberdeen
46 Group, Boston, MA.
47
48 Kalema, M. B. Olugbara, O. O. and Kekwaletswe, M. R. (2014) "Identifying Critical Success Factors: the case
49 of ERP Systems in Higher Education," *The African Journal of Information Systems*: 6(3). Pp. 65-84
50
51 Khoo, Huoy Min., and Robey, Daniel. (2007). "Deciding to upgrade packaged software: A comparative case
52 study of motives, contingencies and dependencies." *European Journal of Information Systems*, (16) 555-567.
53
54 Khoo, Huoy Min., Chua, Cecil Eng Huang, and Robey, Daniel. 2011. "How organizations motivate users to
55 participate in support upgrades of customized packaged software." *Information & Management*, 48(8) 328-
56 335
57
58 Khoo, Huoy Min., Robey, Daniel., and Rao, Srinivasan Venkoba. 2011. "An exploratory study of the impacts
59 of upgrading packaged software: A stakeholder perspective. *Journal of Information Technology*." (26) 153-
60 169.
61
62 Kim, Yongbeom, Zoonky Lee, and Gosain, Sanjay. 2005. "Impediments to successful ERP implementation
63 process." *Business Process Management Journal*. 11 (2) 158-170.

Kominis, George, and Emmanuel, Clive R. 2007. "The expectancy-valence theory: Developing an extended model of managerial motivation." *Management Accounting Research*, (18) 49-75.

Kvavik, Robert.B., Katz, Richard.N., Beecher, Karin., Caruso, Judith., King, Paula., Voloudakis John., and Williams, Lori-Anne. 2004. "The promise and performance of enterprise systems for higher education." *Research study from the EDUCUSE Center for Applied Research*, (4) 5-85.

Kwahk, Kee-Young and Ahn, Hyunchul. 2010. "Moderating effects of localization difference on ERP use: A socio-technical systems perspective." *Computers in Human Behaviour*. (26) 186-198.

Kwahk, Kee-Young, and Lee, Jae-Nam 2008. "The role of readiness for change in ERP implementation: Theoretical bases and empirical validation." *Information & Management*. 45 (7) 474- 481.

Land, Frank. 2001. "IS evaluation: Recent trends". Keynote speech, NUKAIS Information systems evaluation seminar, priestly Hall, Leeds Metropolitan University, 27th February 2001.

Lassila, Kathy S, and Brancheau, James C. 1999. "Adoption and utilization of commercial software packages: Exploring utilization equilibria, transitions, triggers, and tracks." *Journal of Management Information Systems*, 12 (2) 63-90.

Ligus, R.W. (2009). *The 12 Cardinal Sins of ERP Implementation*. White Paper, Technology Evaluation Center, Montreal, Canada.

Marshall, Thomas E., Lorraine R. Gardiner, Byrd, Terry Anthony, and R. Kelly Rainer Jr. 2002. "Technology acceptance and performance: An investigation into requisite knowledge." *Information Resource Management*, 13 (3) 33-45.

Monk, Ellen, and Wagner, Bret. 2006. *Concepts in Enterprise Resource Planning* (2nd edn.), Canada: Thomson.

Myers, Barry L., Kappelman, Leon A., and Prybutok, Victor R 1997. "A comprehensive model for assessing the quality and productivity of the information systems function: Toward a theory for information systems assessment." *Information Resources Management Journal*, 10 (1) 6-25.

Nripendra, P. R. Yogesh, K. D and Michael, D. W (2013), Evaluating alternative theoretical models for examining citizen centric adoption of e-government *Transforming Government, People, Process, Policy*. 7(1), PP. 27-49.

Nunnally, J. C., and Bernstein, H.L 1978. *Psychometric Theory*. New York: McGraw-Hill.

Okunoye, Adekunle, and Frolick, Mark, 2006. "ERP implementation in higher education: An account of pre-implementation and implementation phases." *Journal of Cases on Information Technology*. 8 (2) 110- 132.

Pallant, Julie. 2010. *SPSS Survival Manual*, Oxford: McGraw-Hill Education.

Park, Jong-Hun Suh, Hyun-Ju and Yang, Hee-Dong 2007. "Perceived absorptive capacity of individual users in performance of enterprise resource planning (ERP) usage: The case of Korean firms." *Information and Management*, (44) 300-312.

Petter, Stacie, DeLone, William and McLean, Ephraim. 2008. "Measuring information systems success: Models, dimensions, measures and interrelationships." *European Journal of Information Systems*. (17) 236-263.

Pitt, Leyland F., Watson, Richard T., and Kavan, C. Bruce. 1995. "Service quality: A measure of information systems effectiveness." *MIS Quarterly*, 19(2) 173-187.

Quattrone, Paolo, and Hopper, Trevor. 2006. "SAP, accounting, and visibility in multinational organisations." *Information and Organisation*, (16) 212-250.

Rabaa'i, Ahmad, Bandara, Wasana and Gable, Guy G. 2009. "ERP systems in the higher education sector: A descriptive case study." 20th Australian Conference on Information Systems: Melbourne, 456-470.

Rai, A., Lang, S.S. and Welker, R.B. (2002), "Assessing the validity of IS success models: an empirical test and theoretical analysis", *Information Systems Research*, Vol. 13 No. 1, pp. 50-69.

Robert, B. Kvavik. 2004. "The promise and performance of enterprise systems for higher education." *Research Study from the EDUCUSE Center for Applied Research*, 1-7.

1
2
3 Robey, Daniel, Ross, Jeanne W. and Boudreau, Marie-Claude. 2002. "Learning to implement enterprise
4 systems: An exploratory study of the dialectics of change." *Journal of Management Information Systems*, 19(1)
5 17-46.

6
7 Rosemann, Michael, and Wiese, Jens. 1999. "Measuring the performance of ERP software: A balanced
8 scorecard approach." *10th Australasian Conference on Information Systems*, 773-784.

9
10 Rothenberger, Marcus A, and Srite, Mark. 2009. "An investigation of customisation in ERP system
11 implementation." *IEEE Transactions in Engineering Management*, (56) 663-676.

12 Sane, V. 2005. "Enterprise resource planning overview." *Ezine Articles*. Retrieved 2nd January 2011 from:
13 <http://ezinearticles.com/?Enterprise-Resource-Planning-Overview&id=37656>.

14 Scott, Susan V., and Wagner, Erica L. 2003. Networks, negotiations, and new times: The implementation of
15 enterprise resource planning into an academic administration, *Information and Organisation*. (13) 285-313.

16 Sedera, Darshana, Gable, Guy G., and Chan, Taizan. 2003. "Measuring enterprise system success: A
17 preliminary model." *Ninth Americas Conference on Information Systems (AMCIS)* 476-485.

18 Seth, Nitin, Deshmukh, S. G. and Vrat, Prem. 2004. "Service quality models: A review." *International Journal
19 of Quality & Reliability Management*, 22(9) 913-949.

20 Sharif A M and Irani Z. 2006. "Exploring Fuzzy Cognitive Mapping for IS Evaluation: A Research Note".
21 European Journal of Operational Research, 173(3): 1175-1187.

22 Shu, Y.-C., Chen P.-S., Wang C.-H. (2016), 'A study of enterprise resource planning (ERP) system
23 performance measurement using the quantitative balanced scorecard approach', *Computers in Industry*, 75(1),
24 PP. 127–139.

25 Shum, Paul, and Lin, Grier. 2003. "Knowledge and innovation culture as determinants of financial performance
26 in new product development." *The International Journal of Knowledge, Culture and Change Management*, 6 (3)
27 95-108.

28 Silva, Leiser, and Fulk, H. Kevin. 2012. "From disruptions to struggles: Theorizing power in ERP
29 implementation projects." *Information and Organisation*, 22, 227-257.

30 Skok, Walter, and Legge, Michael. 2002. "Evaluating enterprise resource planning (ERP) systems using an
31 interpretive approach." *Knowledge and Process Management*. 9 (2) 72-82.

32 Smith, Carlo D., and Mentzer, John T. 2010. "Forecasting task-technology fit: The influence of individuals,
33 systems and procedures on forecast performance." *International Journal of Forecasting*. (26) 144-161.

34 Soja, Piotr. 2006. "Success factors in ERP systems implementation: Lessons from practice." *Journal of
35 Enterprise Information Management*, 19(6) 646-661.

36 Somers, Toni M., and Nelson, Klara G. 2004. "A taxonomy of players and activities across the ERP project life
37 cycle." *Information & Management* (41) 257-278.

38 Somers, Toni M., Nelson, Klara and Ragowsky, Arik. 2000. "Enterprise resource planning (ERP) for the next
39 millennium: Development of an integrative framework and implications for research." *American Conference on
40 Information Systems (AMCIS)* 998-1004.

41 Somers, Toni M., Nelson, Klara, and Karimi, Jahangir. 2003. "Confirmatory factor analysis of the end user
42 computing satisfaction instrument: Replication within an ERP domain." *Decision Sciences*, 34 (3) 595-621

43 Strong, Diane M., and Olga, Volkoff, 2010. "Understanding organisation-enterprise system fit: A path to
44 technology artefact." *MIS Quarterly*, 34(4), 731-756.

45 Swartz, Dave, and Orgill, Ken. 2000. "Higher education ERP: Lessons learned." *EDUCAUSE* 2000 in
46 Nashville, 1-12.

47 Tenhiälä, A. and Helkiö, P. (2015), 'Performance effects of using an ERP system for manufacturing planning
48 and control under dynamic market requirements' *Journal of Operations Management* , 36, PP. 147–164.

1
2
3 Torkzadeh, Golamreza, and Doll, William J. 1999. "The development of a tool for measuring the perceived
4 impact of information technology on work." OMEGA, 27, 327-339.
5
6 Umble, Elisabeth J., Haft, Ronald R., and Umble, M. Michael. 2003. Enterprise resource planning:
7 Implementation procedures and critical factors." European Journal of Operational Research, (146) 241-257
8
9 Woodroof, Jonathan B, and Kasper, George M.1998. A conceptual development of process and outcome user
10 satisfaction." Information Resources Management Journal. 11(2) 37-43.
11
12 Wu, Jen-Her, and Wang Yu-Min. 2006. "Measuring ERP success: The ultimate users' view." International
13 Journal of Operation and Production Management, 26(8) 882-903.
14
15 Wylie, L. 1990. "A Vision of Next Generation MRP II, Scenario S-300-339." Gartner Group
16
17 Yamauchi, Yutaka, and Swanson, E. Burton. 2010. "Local assimilation of an enterprise system: situated
18 learning by means of familiarity pockets." Information and Organisation. (20) 187-206.
19
20 Yin, Robert K. 2009. Case Study Research: Design and Methods, London: Sage.
21
22 Yusuf, Yahaya, Gunasekaran, Angappa, and Abthorpe, Mark S. 2004. "Enterprise information systems project
23 implementation: A case study of ERP in Rolls-Royce." International Journal of Production Economics. (87)
24 251-266.
25
26 Zhang, Zhe, Lee, Matthew KO, Huang, Pei, Zhang, Liang and Huang, Xiaoyuan. 2005. "A framework of ERP
27 systems implementation success in China: An empirical study." International Journal of Production Economics.
28 (98) 56-80.
29
30 Zhu, Yan, Li, Yan, Wang, Weiquan, and Chen, Jian. 2010. "What leads to post-implementation success of ERP?
31 An empirical study of the Chinese retail industry." International Journal of Information Management. (30) 265-
32 276.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

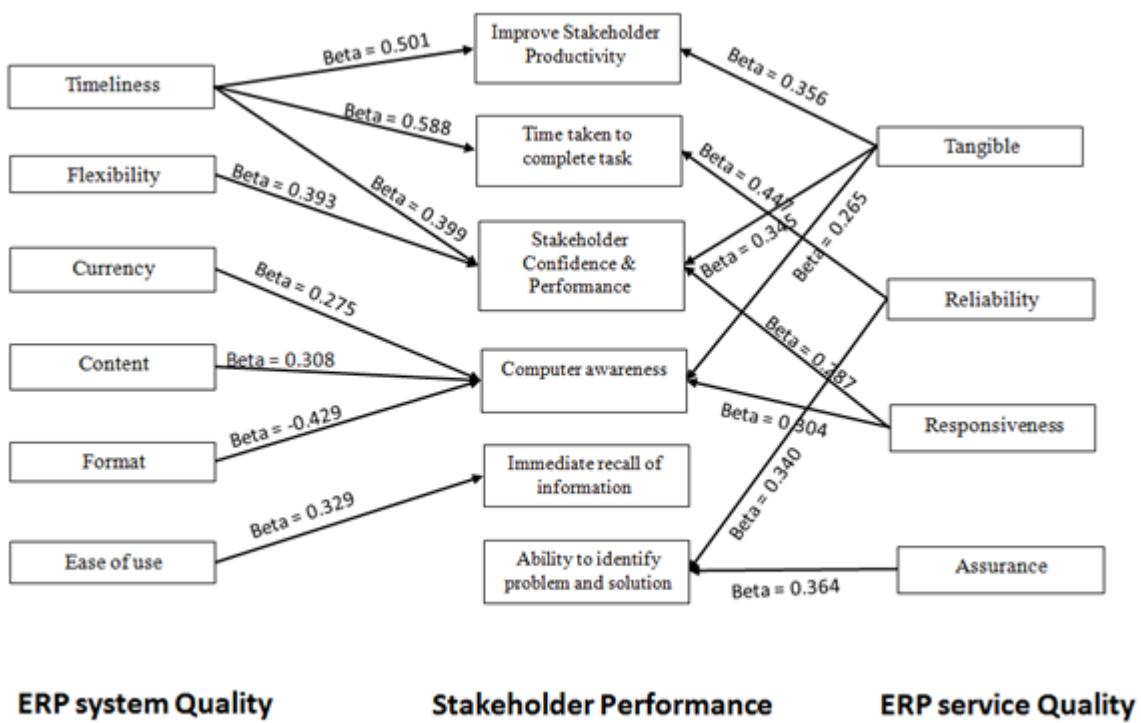


Figure 1. System Quality and service quality significant factors

6. Final Model

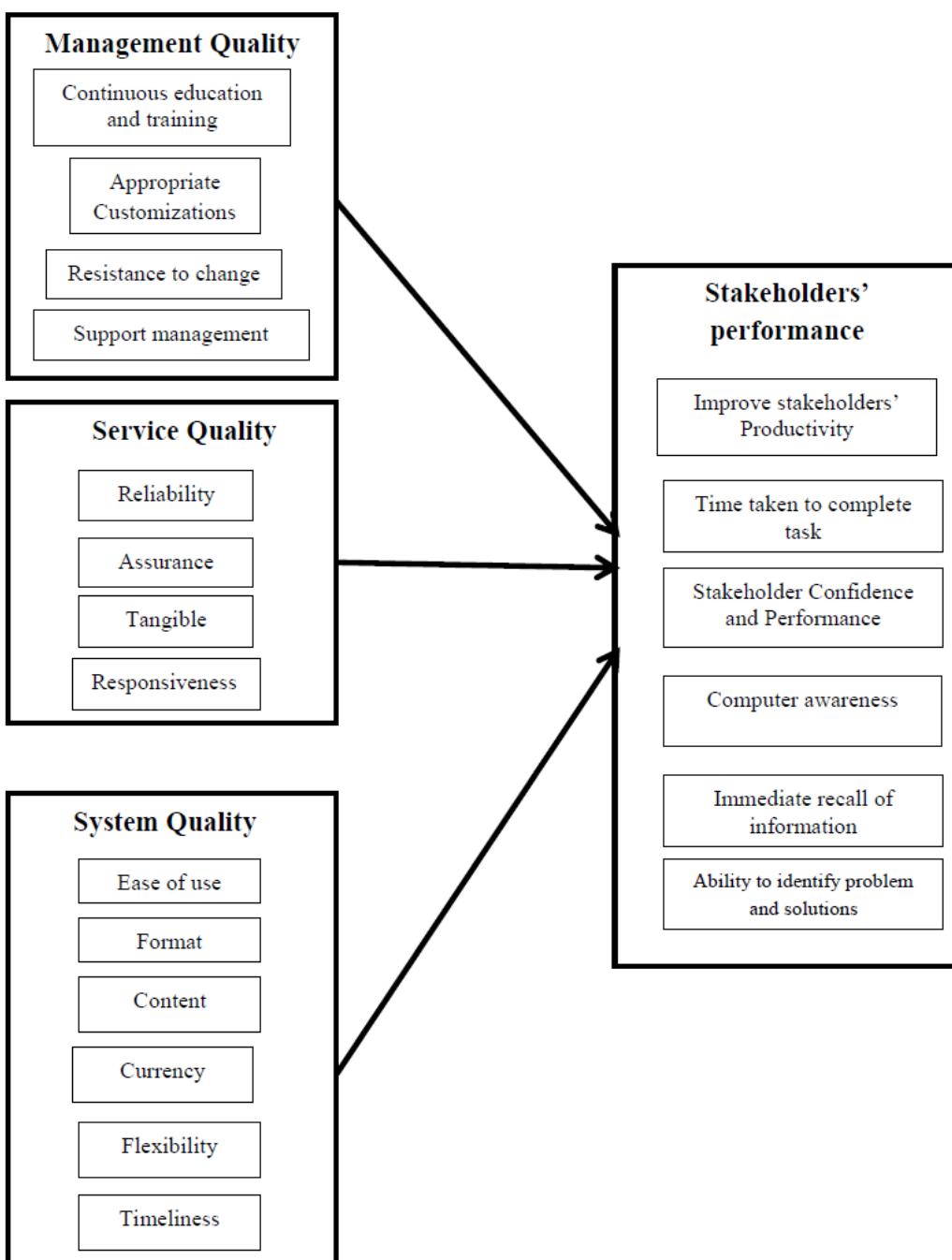


Figure: 2. ERP system Impact on Stakeholders' Performance Model