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Abstract
This paper examines the effects of climate policies and energy shocks on mean and volatility
spillovers between green and brown stock price indices in five countries (Canada, India,
Japan, the UK and the US). More specifically, bivariate GARCH-BEKK models including
dummy variables controlling for these shocks are estimated using weekly series with start
dates ranging from 13 March 2009 to 24 August 2012 (depending on data availability for the
green index) and an end date of 29 December 2023. Significant dynamic linkages between
green and brown indices are found when climate policy and oil shocks are considered jointly.
Some common patterns emerge, such as shifts in spillover dynamics between green and
brown assets, but also country-specific effects of the climate policy shocks which reflect
differences in regulatory frameworks and policies. By contrast, energy shocks tend to have a
more uniform impact. Further, the interaction between climate policy and energy shocks
weakens cross-market linkages, enhancing portfolio diversification opportunities for green
investors. The conditional correlation analysis confirms this finding, suggesting that green
stocks can be used as an effective hedge. These results highlight the benefits of incorporating
green assets into diversified portfolios, particularly in financial centers where, in recent years,
they have offered higher returns and lower volatility.
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1. Introduction
Climate change has become a key issue for policy-makers and financial investors — this is

because of the risks it generates and the consequent need to adopt policies to achieve the
transition to a low-carbon economy by promoting renewable energy and sustainable
investments. This process is expected to have significant effects on financial markets by
reallocating capital toward sustainable sectors, driving innovation in renewable technologies,
and altering risk profiles across industries. These changes are expected to create new
opportunities in green sectors while increasing volatility and adjustment costs in traditional
industries reliant on fossil fuels (Hanif et al., 2023). The shift toward a green economy drives
changes in infrastructure and technology, opening new opportunities for some industries
while posing challenges for others. Moreover, it reinforces the critical role of financial
markets in channeling capital toward sustainable development. Venturini (2022) highlighted
that accurately accounting for firms’ exposure to climate risks in return forecasts makes
expected returns more closely with actual outcomes, which raises important issues for
investors. In their comprehensive review of the impact of climate change on financial
markets, which focused especially on microeconomic evidence, de Bandt et al. (2024)
showed that the cumulative effects are difficult to estimate, owing to the multifaceted nature
of risks and their varying impact on markets and portfolios. The recent literature argues that
increased stock markets volatility and uncertainty related to the green transition depends on
exogenous shocks, such as new climate policies or commodity price fluctuations, particularly
in the case of crude oil (see Al-Thageb and Algharabali, 2019; Dutta et al., 2020; among
others).

Climate policies have become a key driver of volatility in environmentally focused financial
markets owing to the significant changes they entail. The Paris Agreement (PA), signed on 12
December 2015 by 195 countries at the UNFCCC COP21 (United Nations Framework
Convention on Climate Change, Convention of the Parties 21), represented a turning point, as
it required its signatories to adopt long-term strategies to reduce greenhouse gas emissions
specifying targets for 2030 and 2050. Since its announcement, international and national
climate-financial initiatives have grown, along with the need for investors to understand
climate policies and their impact on stock returns (Monasterolo and de Angelis, 2020;
D’Orazio et al., 2022; Raza et al., 2024). The existing literature provides evidence on the
different effects of climate policies on market uncertainty. For instance, the 2019 violation of
the Clean Air Act under the Trump administration was linked to increased market volatility,
which reflected the destabilizing influence of weakened environmental regulations. By
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contrast, supranational initiatives such as the European Green Deal (European Commission,
2021) have proven effective at mitigating market uncertainties, especially in comparison to
the case of Asian regions where the absence of appropriate climate policies has contributed to
greater instability (Husain et al., 2022; Albanese et al., 2024).

Another strand of the literature has investigated the role of crude oil, as a primary energy
resource, for stock markets. According to Ouyang et al. (2022), understanding the link
between crude oil prices and financial risk is crucial for maintaining financial stability and
fostering economic growth. Increasing oil prices may provide an incentive to invest in
renewable energy, particularly in oil-importing economies (Azhgaliyeva et al., 2022). Such a
shock may have a different impact on green relative to brown stock prices and thus on
optimal investment strategies. Green companies prioritize sustainability, utilizing renewable
energy and adopting eco-friendly practices to reduce emissions and enhance their ESG
(environmental, social, and governance) scores. They are found in sectors such as renewable
energy, organic agriculture, and sustainable transportation, among others. By contrast, brown
companies operate in industries with environmentally harmful practices, often giving priority
to profit over sustainability. Examples include fossil fuel production, deforestation, and the
use of toxic chemicals (Hartzmark et al., 2022).

Global indices tracking green and brown stocks are often employed to monitor the
performance of these energy sectors. Examples include the MAC Global Energy Index, the
ISE Global Wind Energy Index, and the S&P 500 Global Clean Energy Index for green
stocks. Brown indices typically focus on fossil fuel-related sectors such as crude oil, coal, and
natural gas (Caporale et al., 2023). However, the global nature of such indices means that
they are not informative about country-specific factors.

By contrast, the present paper uses weekly series with start dates ranging from 13 March
2009 to 24 August 2012 (depending on data availability for the green index) and an end date
of 29 December 2023 for five major economies, namely Canada, India, Japan, the UK and
the US, which allows to analyze spillovers between green and brown stock price indices and
the possible impact of climate policy as well as energy shocks at the national level. The
country selection is primarily driven by the availability of sufficiently long time series for the
green indices to obtain robust estimates. The fact that such indices in most cases have only
been introduced in recent years limits the analysis to the selected group. However, the
findings will still be highly informative as the countries in our sample have adopted different

climate policies, whose effects can be compared.



Therefore, the first contribution of this study is to investigate within-country spillover effects
among green and brown stock price indices rather than focusing on global indicators. The
second one is to assess the impact of exogenous shocks using independent climate change
measures. In particular, the analysis uses the Climate Policy Index, a component of the
Climate Change Performance Index (Germanwatch, 2022), which is a reliable benchmark for
assessing country-specific climate policies (detailed in Section 3). Furthermore, following
Kilian et al. (2022), Baumeister et al. (2016), and Gazzani et al. (2024), the effects of global
energy shocks resulting from fluctuations in oil prices are also investigated. More precisely,
bivariate VAR-GARCH-BEKK models are used to estimate simultaneously both the
conditional mean and variance spillovers and the effects of shocks on those spillovers within
each country. Note that the BEKK functional form not only ensures the positive definiteness
of the variance—covariance matrix but also captures the transmission of shocks and volatility
between indices, making it the most suitable empirical framework for our purposes.

The layout of the paper is the following: Section 2 briefly reviews the literature on the impact
of climate change on financial markets; Section 3 describes the data used for the analysis;
Section 4 outlines the empirical framework and the hypotheses tested; Section 5 discusses the

empirical results; Section 5 offers some concluding remarks.

2. Literature Review

The effects of climate risks, both physical and transition-related (Bua et al., 2022; Ardia et
al., 2023; Campiglio et al., 2018), on financial markets have been extensively investigated in
the recent literature, with a particular focus on market volatility linkages during stable and
turbulent periods and their implications for investors. This is particularly important for the
green and brown energy sectors, given the shift from fossil fuels towards renewable energy,
which requires a thorough understanding of how information is transmitted between markets
(Bouri, 2023). The literature has analyzed spillovers between green and brown market
returns, often using global indicators to track the performance of “green” industries such as
renewable energy, clean energy, solar, and wind, and "brown" ones such as oil, coal, and gas.
For instance, Liu et al. (2020) analyzed US and European data and found that spillovers from
fossil fuel to renewable energy stocks are slightly more pronounced in the US. Further, crude
oil price shocks appear to have a stronger impact than natural gas ones, and volatility
spillovers are more sizeable in the US, especially during financial crises, when investor

uncertainty is higher.



Another study by Cepni et al. (2022) estimated an ADCC model using data on various green
assets and found that green bonds are the most effective safe-haven against physical and
transition risks and to manage climate risk exposures in investment portfolios. Caporale et al.
(2024) focused on Germany, a leader in green investment within the EU, where sustainable
growth is a priority. Their study provides new insights into the properties of green and
traditional (brown) stock prices respectively by employing fractional integration techniques
to analyze their persistence, which has implications for market efficiency. Using daily data
from representative green and brown stock indices, their analysis shows that green stock

returns exhibit higher volatility persistence than brown ones.

2.1 Climate Policy Shocks

One important issue when assessing the impact of climate change on stock markets is how to
obtain accurate measures of climate risk. Textual analysis methods are often used for this
purpose (Engle et al., 2020; Bua et al., 2022; Ardia et al., 2023). For example, Gavriilidis
(2021) developed the Climate Policy Uncertainty (CPU) index by searching for articles in

eight major US newspapers that included terms such as "uncertainty” "climate risk"

"greenhouse gas emissions” "climate change" "regulation™ and "policies”. The CPU has since
become a widely used metric in the climate policy literature. Ren et al. (2023) carried out
time-varying Granger tests to examine the dynamic bi-directional causality between CPU and
both brown (coal, oil, natural gas) and green energy markets (clean energy, green bonds,
carbon trading) in the US. Using monthly data, they considered various types of shocks
including the sharp decline in crude oil prices in 2014. Their study showed evolving bi-
directional causality patterns, suggesting that both energy price volatility and climate policy
uncertainty influence traditional and green energy stocks. Also, Bouri et al. (2022) provide
evidence that the Climate Policy Uncertainty (CPU) index is a key driver of the relative
performance of green versus brown energy stocks, and highlight its prediction properties.

Husain et al. (2022) followed instead a cross-quantilogram approach to show that CPU
affects green markets, especially during periods of high uncertainty. Pham et al. (2019)
analyzed the performance of the green bond market under uncertainty, and detected more
sizeable spillovers during periods characterized by higher Economic Policy Uncertainty
(EPU), stock market uncertainty and crude oil price volatility. Ehrenbergerova et al. (2023)
examined how climate policies, COP meetings, and the COVID-19 pandemic affected green
and brown firms' securities, using a difference-in-differences regression. Their findings

indicate that these policies significantly influence securities, with policy makers generally
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providing greater support to green firms after major climate events as well as during
pandemics. Diaz-Rainey et al. (2021) found that both Trump’s election in 2020 and the Paris
Agreement had negative effects on the oil and gas sectors. Finally, Bogmans et al. (2024)
showed that, during the early stages of the energy transition, climate policy uncertainty
negatively affects investments in the oil and gas sectors. Their analysis uses the transcripts of
earnings calls from publicly-listed firms as a proxy for measuring climate policy uncertainty.
Li et al. (2023) examined the effects of three climate risk factors, including the CPU, on the
long-run volatility and correlation between green and brown stocks in the US, and found that
climate risks have a significant impact only on the long-run volatility of brown stocks, while
they tend to reduce the correlation between green and brown stocks. Specifically, their stydy
employs four GARCH-type models, including GARCH, GJR-GARCH, EGARCH, or
APARCH; however, those frameworks cannot capture cross-market linkages. By contrast, as
explained in Section 4, in this paper we use a VAR-GARCH model (1,1), which enables us to
shed light on market interactions.

While textual analysis provides valuable insights, it has limitations, such as its reliance on a
selected sample of news and reports. Moreover, indices as such CPU are global measures and
therefore studies using it do not capture country-specific factors. For these reasons, the
current study uses instead the Climate Policy Index from the Climate Change Performance
Index (CCPI), calculated by GermanWatch, which provides a country-specific assessment of
climate policies. Therefore, our analysis is based on country-specific indicators of climate
change risk rather than the global metrics used in most existing studies. Thus, an important
contribution to the literature of the present study is represented by our analysis of climate
policy-related risks using a country-specific measure, rather than relying solely on a US-
based index.

2.2 Energy Shocks

Concerning the effects of energy price shocks, Wu et al. (2024) reported that spillovers
between green finance and traditional energy markets peaked during periods of turmoil such
as the 2016 oil price crash, the 2020 pandemic, and the Russia-Ukraine war, when traditional
energy markets, particularly oil, tend to transmit more risk owing to supply uncertainty and
regulatory pressures. Bouoiyour et al. (2023) employed wavelet decomposition to investigate
directional causality between oil and renewable energy indices, and found strong but not
long-lived linkages corresponding to key events such as the Paris Agreement and the
COVID-19 pandemic. Dutta et al. (2020) and Kilian et al. (2023) analyzed oil price shocks
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and their effects on green investments, highlighting the critical role of oil market volatility as
one of their drivers. Finally, Ferrer et al. (2018) examined interconnectedness between clean
energy stock prices and crude oil, and found bigger spillovers during crisis periods. Hanif et
al. (2023) investigated connectedness between oil shocks and green stocks and showed that
this relationship becomes stronger in the long term, particularly within the green market and
during financial crises, including the oil crisis. Finally, Liu et al. (2020) analyzed US and
European data and found that spillovers from fossil fuel to renewable energy stocks are
slightly more pronounced in the US. Further, crude oil price shocks have a stronger impact
than natural gas ones, and volatility spillovers are more sizeable in the US, especially during
financial crises, when investor uncertainty is higher. Bulding on such studies, we make a
second contribution to the literature by jointly considering oil crises and climate policy

shocks at the national level, as illustrated in Table 2.

3. Data Sources and Variables Description

For our analysis we use weekly green and brown stock price indices obtained from Refinitiv,
as well as several climate change indicators built by GermanWatch (2022), for five countries
(Canada, India, Japan, the UK and the US). The model also includes two control variables,
namely: (i) a proxy for global stock markets uncertainty, specifically changes in the Chicago
Board Options Exchange volatility index, known as VIX, which is a measure of implied
volatility (Zhen et al., 2025) and is calculated using option prices on the S&P 500 index; this
allows us to control for any effects of stock market global uncertainty on the linkages
between green and brown indices; short-term interest rates (the 3-month policy rates) to
control for country-specific macroeconomic developments (Priya and Sharma, 2025). The
source for both series is again Refinitiv. *

As already mentioned, the selection of these countries is mainly driven by the availability of
data on the green index and the need to ensure a comparable sample size for all of them.
More precisely, for Japan, the US and the UK the series used is the FTSE Environmental
Opportunity Index starting on 13 March 2009, whilst for Canada and India it is the S&P TSX
Renewable Energy Index and the S&P BSE GREENEX respectively, the corresponding start
dates being 2 April 2010 and 24 August 2012. In all cases the end date is 29 December 2023.

The estimation period is set accordingly.

1 Given the weekly frequency of our data, it would not be feasible to include other macroeconomic variables,
such as GDP growth or inflation, which are only available at a lower frequency.
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For each index, the corresponding rate of return is calculated as follows: Returns; =

[(Prices; — Prices;_,) / Prices;_;] X 100.

Please insert Table 1 about here

Table 1 provides definitions of each of the green and brown stock indices considered. We
selected the Energy Price Return Index from Refinitiv, based on the Refinitiv Business
Classification, as our measure for brown indices. This classification system categorizes
global companies by industry. In detail, for Canada, the index includes 64 companies; for
India, 30 companies; for Japan, 20 companies; for the UK, 11 companies; for the US, 117
companies. For the green stock indices, we employ instead the FTSE Environmental
Opportunities Index Series, which evaluates the performance of global companies
significantly involved in environmental activities, such as renewable and alternative energy,
energy management, water infrastructure, and waste and pollution control. To qualify for
inclusion, companies must obtain at least 20% of their revenues from environmental products
and services. In our sample, this index is not available for Canada and India, for which we
use instead the S&P TSX Renewable Energy Index, which tracks Canadian companies listed
on the TSX with core activities in green technologies and sustainable infrastructure
solutions?, and for India the S&P BSE GREENEX, which measures the performance of the
top 25 “green” companies based on GHG emissions, market capitalization, and liquidity.

To capture the role of climate policies, we use the Climate Change Performance Index
(CCPI) constructed by GermanWatch (2022). This is an independent measure that evaluates
countries' efforts in climate protection, promoting transparency in global climate policies and
enabling cross-country comparisons (Albanese et al., 2025). The climate policy component of
the CCPI is derived from an annual questionnaire that assesses both national and international
policies. Experts from NGOs, universities and think tanks rate governments' performance in
key areas on a scale from 1 (weak) to 5 (strong). The questionnaire focuses on assessing
national and international policies related to greenhouse gas (GHG) emissions reduction,
energy transition, and climate strategies. It specifically examines the effectiveness of national
strategies for GHG emission reductions, the promotion of renewable energy, and energy

sector management, with particular emphasis on the gradual phase-out of fossil fuels and

2 The constituents are screened by Sustainalytics, one of the world's leading providers of environmental, social,
and governance research and analysis.



incentives for sustainable energy sources. The section on energy supply and renewable
energy evaluates the implementation of policies aimed at phasing out coal, gas, and oil, as
well as the financial support for renewable energy sources such as sustainable biofuels. Also,
the questionnaire discusses the significance of biomass in the national energy mix, addressing
potential environmental justice issues and impacts on ecosystems associated with its use. In
the energy use category, the questionnaire investigates decarbonization policies for the
transport and industrial sectors, focusing on low-emission technologies and regulations aimed
at improving energy efficiency. Progress towards more energy-efficient buildings is also
assessed. The questions regarding future targets concentrate on national emission reduction
goals for 2030, compatibility with international climate agreements, and ambition relative to
the country's capabilities, while evaluating the integration of renewable energy. The section
on non-energy sectors explores policies related to forestry, peatlands, and agriculture,
assessing the level of support for sustainable practices and efforts to reduce deforestation. It
also addresses the phase-out of fossil fuels, focusing on national efforts to ban extraction and
halt subsidies for fossil fuel production. Finally, the international performance of a country is
analyzed in relation to its participation in climate negotiations and forums, such as the
UNFCCC, considering both progressive and regressive actions. The questionnaire also
examines participation in global climate initiatives and the country's position in international
climate negotiations (GermanWatch, 2022). In this paper we use scores associated to both the

national and international climate policy components.

3.1 Dummy Variables

To measure the impact of climate policies on stock returns, we define two sets of dummy
variables, each including two dummies corresponding to national and international climate
policies respectively. In the first (second) set these variables take a value of 1 when the
climate policy score, national or international, exhibits a positive (negative) change from one
year to the next and O otherwise. In addition, to capture global energy prices shocks,
following the works of Kilian et al. (2022), Baumeister et al. (2016), and Gazzani et al.
(2024), we introduce a fifth dummy variable which takes a value of 1 when an oil price shock
occurs and 0 otherwise.

To analyse the combined effects of climate policy shocks and energy shocks, we also include
interaction dummies between them. These allow us to assess whether the simultaneous
occurrence of the two types of shocks considered enhances or mitigates their impact on the

dynamic linkages between green and brown assets. Table 2 specifies the periods when
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climate policy shocks and oil price ones occurred simultaneously, with the corresponding
interaction dummy taking a value of 1. This modelling approach provides deeper insights into
how the interplay between policy-driven environmental changes, at country level, and

exogenous energy market disruptions influence financial markets and asset diversification.

Please insert Table 2 about here

We also include a set of control variables. Global stock markets uncertainty is proxied by the
changes in the Chicago Board Options Exchange volatility index, known as VIX, which is a
measure of implied volatility and is calculated using option prices on the S&P 500 index (this
series is also obtained from Refinitiv). In addition, we control for monetary policy country-

specific effects by including short-term interest rates (the 3-month policy rates).

3.2 Descriptive Statistics

Table 3 reports some descriptive statistics for all variables used in our empirical analysis.
Green stock returns are, on average, twice as high as brown stock returns in Japan, the UK,
and the US, whilst in Canada and India brown stocks have been more profitable. This
suggests that investors in green assets tend to prefer more liquid markets, particularly in
major financial centers, where green investment opportunities are more developed. On the
contrary, in smaller financial markets such as Canada and India, green assets appear less
attractive to financial investors, leading to a stronger demand for conventional brown stocks.
Concerning the second moment, it can be seen that green stock returns exhibit lower
volatility compared to brown ones in all the countries in our sample. This evidence, combined
with the significantly higher returns observed in Japan, the UK, and the US, highlights the
important role of green stocks in portfolio diversification and profit-making strategies,

particularly in well-established financial markets.

4. Empirical Model

In this section, we describe the multivariate setup we use to estimate simultaneously the first
and second moments of green and brown stock returns as well as the corresponding spillovers
within each country. We model the joint process governing green and brown stock returns
using a bi-variate BEKK-GARCH(1,1) framework based on the representation proposed by
.Engle and Kroner (1995). The choice of this model is motivated by the properties of its

functional form. In particular, it is a multivariate framework which allows to examine mean
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and volatility transmission across markets, while ensuring the positive definiteness of the
associated variance—covariance matrix. In its most general specification, the model takes the

following form:
Xt=a+ fXe1+@Zr1 + Ut 1)

where xt = (Green Stock Returnst, Brown Stock Returnst). The parameter vectors of the mean
equation (1) are the constant a= (11, a22) and the autoregressive term f = (11, f12 + f*12| f1
+ %21, f22), Xe1 is the corresponding vector of lagged returns, 2 and ze1== (IR 1, VIX 1) is a
vector containing the 3-month policy rate, to capture country-specific macroeconomic effects,
as well as the VIX to control for global financial uncertainty.

To account for the potential effect of climate policies and/or energy shocks, we include, in
turn, the dummy variables, discussed in section 3.1, and denoted by *. The residual vector ut
is bivariate and normally distributed ut | It1 ~ (0, Ht) with its conditional variance-covariance
matrix given by:

_ hyp h12,t]
=
hy1 ¢ hpoy

)
The parameter matrices for the variance equation (2) are defined as ¢, which is restricted to
be upper triangular, and two unrestricted matrices, 4,, and G,,, whose elements are the a and

g coefficients, respectively. Therefore, the second moment will take the following form:

/ ; Uiy Uge-1U2t-1 ,
H=CC+A' ' T, A+ G'11H 4Gy, (3)
Upt—1U1t—1 Uz t—1
where
o ai aiz +agp * ’, o g11 g21+ g1z %'
A = ; G1q = .
az1 + ayq * az; 921+ go1 * 922

Equation (3) models the dynamic process of Ht as a linear function of its own past values Ht.1
and past values of the innovations (uit1, uzt1), allowing for own-market and cross-market

influences in the conditional variances. The off-diagonal parameters in the latter two matrices

3 Note that the dummy variables are used to model shifts in the cross-parameters only, not in the autoregressive
terms.
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capture the volatility spillovers (causality-in-variance) among the two indices under
investigation. Given a sample of T observations, a vector of unknown parameters* 6, and a 2
x 1 vector of variables xi, the conditional density function for the model (1)—(2) is:

fxt] lea; 0) = 2r)™t |H| ™2 exp(—/ut’ (HY) ud / 2) 4)

The log-likelihood function is:

Log-Lik = 3i=1" log f (xt| lt1; 6) (5)

In recent years, other types of models have also been used to investigate cross-country co-
movements. Among those, copula models have become increasingly popular. A
comprehensive discussion of the pros and cons of using them rather than DCC and GARCH
models can be found in Al Rahahleh and Bhatti (2017), Nguyen et al. (2017) and Bhatti and
Do (2019). Given the nature of our research question and the relatively small number of
variables considered, we have chosen to estimate reduced-form VAR models including a
GARCH component because of their suitability to analyse both co-movement and spillover
effects within the same econometric framework. Furthermore, the adopted BEKK
representation guarantees by construction the positive-definiteness of the variance-covariance

matrix.

4.1 Hypotheses Tested
We examine mean and volatility spillovers, as well as possible shifts in the cross parameters,
by incorporating dummy variables into the model specification (see Section 3). Specifically,

we test the following null hypotheses:

Test for No Structural Shifts in the Conditional Mean and Variance
Hy1: No shift in the conditional mean: aj;= a5,=0

H,y,: No shift in the conditional variance: c¢;; = ¢, =0

Test for No Mean Spillovers Between Green and Brown Stock Returns
Hy3: No mean spillovers between green and brown stock returns: 8;,=,,=0

Hy,: No mean spillovers between green and brown stock returns as a result of

exogenous shocks (climate policy and/or oil): 51,= 5, =0

4 Standard errors (SE) are calculated using the quasi-maximum likelihood method of Bollerslev and Wooldridge
(1992), which is robust to the distribution of the underlying residuals.
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Test for No Volatility Spillovers Between Green and Brown Stock Returns
H,s: No volatility spillovers between stock returns: a;,=a,;=0

Hye: No volatility spillovers between stock returns as a result of exogenous shocks

(climate policy and/or oil): aj, =a3,=0

Testing empirically these hypotheses allows us to assess the extent to which market linkages
and risk transmission between green and brown assets are influenced by country-specific

climate change shocks and global energy shocks.

5. Empirical Results

We determine the optimal lag length for the mean equation using the Schwarz Information
Criterion, which suggests that only one lag should be included in all cases. To assess the
adequacy of the models, we conduct Ljung-Box portmanteau tests on the standardized
residuals. The pairwise estimates of the dependence between green and brown indices in both
the conditional mean and variance exhibit variations in both size and direction. The estimated
GARCH(1,1)-BEKK models with the associated robust p-values and likelihood function
values are presented in Tables 4-8. Given the extensive set of results presented, we focus only

on the most relevant coefficients in our discussion.

Please insert Tables 4 to 8 about here

The model specification allows us to explore the shift in the conditional mean value and
conditional variance, and causality in mean and in variance between green and brown stock
returns. The main findings emerging from Tables 4 to 8 can be summarized as follows.

First, we reject the null hypothesis (H,;) of no shift in the conditional mean in some cases.
Specifically, we find a shift in green stock returns in Japan corresponding to positive changes
in national climate policy scores (aj,= -0.44), in the UK during periods associated to energy
shocks (aj;= -0.88) and in Canada when negative changes in the national climate policy
score interact with oil shocks (aj;= 0.97). Furthermore, there is a positive shift in the
conditional mean of brown stock returns corresponding to negative changes in the national
climate policy score in the UK (a3,= 0.44), an a negative shift in India and the US when
positive changes in the international climate policy score interact with energy shocks (a3, = -

3.15 and a3,=-0.60, respectively).
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The shift in the conditional variance (H,,) instead is more pronounced and occurs in both
green and brown stock returns in several cases. Specifically, we find it in Canada in
correspondence with positive changes in the international climate policy score (c;;=0.59 and
c;,=1.31, respectively), in Japan when there is a significant interaction between negative
changes in the international climate policy score and energy shocks (c;;=1.12), and in India
for brown stock returns when positive changes in the national climate policy score interact
with energy shocks (c;,=-0.22).

When climate policies and energy shocks are not accounted for, causality-in-mean and
causality-in-variance are observed; concerning the former, the mean spillovers run from
brown to green stock returns in India and in the US and volatility spillovers in the same
direction in Japan (a,,= -0.31), and in the UK (a;,= 0.12). As for spillovers from green to
brown stock returns, the mean equation provides supporting evidence only in the case of
Japan (B,,= 0.27), but not for Canada, India, Japan and the US. Therefore, for Japan we
reject the null hypothesis of no spillovers between green and brown stock returns (Hys).
Conversely, we reject the null hypothesis of spillovers in the conditional volatility (H,s) for
India (a,,=0.28), Japan (a,;=0.08), and the US (a,,=0.18). Therefore, on the whole we find
statistically significant spillover effects in the second moment regardless of the inclusion of
the climate policies and energy shock dummies, whereas the mean spillovers appear to be
significant only for the UK. Finally, in general the exogenous control variables are
statistically significant. In particular, the estimated coefficients indicate that monetary policy,
measured by the domestic 3-month policy rate, has a negative effect on asset returns, as one
would expect. By contrast, global financial markets uncertainty, measured by the VIX, tends
to affect negatively brown stock returns but positively green ones, though not in all cases.
These differences in the behaviour of green vis-a-vis brown stock returns make them a
possible hedge during periods of heightened uncertainty to mitigate exposure to market

turbulence.

5.1 Climate Policy Shocks

As mentioned before, the impact of climate policy shocks is measured using four
appropriately defined dummies for the cases of positive and negative changes in the national
and international scores respectively. The null hypothesis (Hy,) of no mean spillovers
between green and brown stock returns resulting from those shocks is rejected for the UK

(B1,=0.12), and the US (B;,= -0.07). Specifically, in the case of a positive national climate
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policy shock spillovers are positive in the UK (Table 7), but negative in the US (Table 8).
The corresponding spillovers are negative in Japan, but positive in response to a negative
policy shock (Table 6).

As for the volatility spillovers, we find that in the UK and the US these run from brown to
green stock returns in correspondence with increases in the international climate policy score
(ai,= -0.29; aj,= -0.32, and aj,= 0.67, respectively). They also run from green to brown
stock returns in the US when there is a positive change in the national climate policy score
(a3, = 0.11). The latter findings are consistent with those of Banerjee et al. (2024), who
detected volatility spillovers varying in both sign and magnitude in response to economic
shocks.

5.2 Energy Shocks

The second set of exogenous shocks, also modelled using dummy variables, captures energy
price uncertainty as identified by Kilian et al. (2022), Baumeister et al. (2016), and Gazzani
et al. (2024). The conditional mean equation results are largely insignificant except for a
negative spillover from green to brown stock returns in Canada (S5, = -0.24), whereas there
is evidence of significant bi-directional volatility spillovers in the case of Japan (aj,=1.14
and a3,=0.43). In all other cases, we fail to reject the null hypothesis (Hyg), which implies

that there are no significant shifts in volatility spillovers due to energy shocks.

5.3 Interaction between Climate Policy and Energy Price Shocks

The previous evidence concerning shifts in mean and volatility spillovers, following climate
policy and energy shocks examined separately, is somewhat mixed. However, the
introduction of interaction dummies produces a different scenario (Tables 4 to 8).
Specifically, mean spillovers from brown to green stock returns are now found in all
countries under examination except the US. In Canada, these are negative and significant in
response to positive international climate policy and energy shocks (81, = —0.62), whereas
in the UK they are negative in correspondence to negative national climate policy shocks
(B, = —0.43). In India, positive spillovers are detected when positive international climate
policy shocks occur (B, = 0.08), while in Japan significant positive spillovers are observed
in the case of negative national and international climate policy shocks (8;,=0.27 and

B1,=0.33, respectively).
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There is also evidence of mean spillovers from green to brown stock returns, which are
always negative. In Canada, for instance, in response to negative international climate policy
and energy shocks, the links between the two markets become much weaker (8;,= -0.44),
which is in line with the findings of Athari et al. (2024), who argue that fluctuations in oil
prices significantly affect green energy companies. A similar pattern emerges for the UK, as
shown in Table 7, and India when the latter is hit by positive international climate policy
shocks (B,,=-0.82 and 3;,=-0.79).

Volatility spillovers are generally more sizeable and statistically significant. They run from
brown to green stock returns in Canada when negative national and international climate
policy shocks occur (aj,=0.91 and a;,=0.60, respectively). Similar results are found for
Japan (aj,=0.74 and a;,=0.90) and the US, where spillovers are significant only in response
to negative national climate policy and energy shocks (aj,=0.52). In a related study Bouri
(2023) also reported that the total connectedness index for volatility exhibits significant
spikes during the oil price crash from mid-2014 to January 2016 and the COVID-19
pandemic, with green stock indices typically being net volatility transmitters throughout the
sample period.

Volatility spillovers from green to brown stock returns are generally significant. In India they
shift in the presence of positive national and international climate policy shocks (a3,= 0.14
and a3,=0.20, respectively). In Japan, they result from the interaction between positive
international climate policies and oil price shocks (a3,=-0.41), and in UK and Canada from
the interaction between negative national climate policy and oil price shocks (a3; = —0.95
and a3,= 0.37, respectively). There is also a similar pattern in the US (a3, = 0.12). These
findings are in line with those of Guo et al. (2024), who reported that cross-country risk
spillovers fluctuate over time since they are highly sensitive to major climate actions and
financial shocks.

Please insert Figures 1 and 2 about here

Finally, Figure 1 and 2 display the green and brown stock return series, their conditional
correlations and the dummy variable for the interaction between negative national climate
policy and energy shocks. The predominantly positive correlations suggest that green and
brown stocks tend to move in the same direction over the years, with some exceptions. In the
case of Canada, for instance, the conditional correlation exhibits significant variability,

frequently oscillating between negative and positive values, with more stable periods around
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2015 and 2020. India and the UK stand out since their green and brown stock returns
correlations are always positive over the period analyzed. In the case of the US, they are
generally high and predominantly positive before 2018, but drop almost to zero in 2020. In
Japan, the UK and the US they are lower post-2020 (Figure 2). This suggests that in recent
years green assets could have been used as a hedge against market turbulence, in line with the
findings of Farid et al. (2023).

On the whole, the results indicate that effective climate policies, especially at the national
level, can mitigate volatility spillovers and encourage stable investments in green markets.
Regarding individual countries, Canada appears to be particularly exposed to energy shocks,
which makes diversification across green and brown sectors essential.

With Canada’s strong focus on hydro and wind power, long-term investments in renewable
energy stocks could provide stable returns (Chen et al., 2023). In India, the responsiveness of
brown stocks to positive climate policy shocks offers opportunities for short-term gains (Basu
et al., 2023). However, with coal dominating the energy landscape, green investments are
critical for long-term portfolio stability, especially as the country ramps up its renewable
energy capacity. Investors in the Japanese markets appear to have benefited from the nation’s
decarbonization initiatives, which have strengthened the performance of green stocks in
response to positive national as well as international climate policy shocks. However, as
noted by Paramati et al. (2017), the Japanese economy is still strongly reliant on brown
energy. In the UK, positive climate policy shocks enhance spillovers from brown to green
stocks, which reflects a commitment to a well-defined framework for the transition to a low-
carbon economy, as noted by Shah et al. (2018). Finally, in the US the lack of a consistent
climate policy framework (Shah et al., 2018) appears to increase significantly volatility,
especially in the case of brown stocks (Chen et al., 2025).

6. Conclusions

This paper provides comprehensive evidence on the behaviour of brown and green stock
returns in response to both climate policy and energy shocks in five major economies, namely
Canada, India, Japan, the UK and the US, with the sample start dates ranging from 13 March
2009 to 24 August 2012 and the end date being 29 December 2023 in all cases, the sample
selection being driven by data availability on country-specific green energy indices. More
specifically, a VAR-GARCH-BEKK framework is used to estimate simultaneously bivariate
mean and volatility spillovers and the effects on those dynamic linkages of both (national and

international) climate policy and energy shocks, which are modelled using dummy variables
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and are also allowed to interact. The former are measured using indices produced by
GermanWatch, whilst the latter are captured using oil prices.

The findings reveal strong dynamic linkages between green and brown stock returns, which
are significantly influenced by exogenous shocks, and expecially by the interaction between
climate policy and oil price shocks, these effects varying across countries. The conditional
correlations between stock returns are predominantly positive but appear to have turned
negative in recent years. The detected dynamic linkages between green and brown stock
markets highlight the need for diversified investment strategies that incorporate both asset
types to mitigate risks arising from energy price uncertainty and climate policy shocks. In
particular, our findings suggest that: i) investors should adopt region-specific strategies to
optimize their portfolios; the reason is that long-term investments in renewables may offer
superior returns in markets, such as the UK and Japan, where climate policies appear to have
a stronger influence on green asset performance; by contrast, in oil-dependent economies,
such as Canada, brown stocks may remain more resilient to energy shocks; and ii)
international investors and asset managers can benefit from forward-looking climate risk
assessments to identify opportunities in regions where green investments are actively
promoted by policy interventions. These insights can guide capital allocation towards
sustainable assets while managing exposure to conventional markets to balance risk-return
trade-offs.

Policymakers clearly also play a crucial role in shaping the investment landscape by
implementing measures that facilitate green market development and enhance financial
stability. Governments should introduce incentives such as green bonds, tax breaks, and
subsidies to encourage investment in sustainable sectors. and focus on transparent and stable
regulatory environments that provide clear long-term signals to investors. Strategic
investment in green infrastructure, coupled with retraining programmes for fossil fuel-
dependent industries, can facilitate a smoother transition to a low-carbon economy. Finally,
given the international nature of climate risks and financial markets, coordinated efforts
among policymakers can enhance global green investment opportunities. Establishing
regional climate investment funds and harmonizing carbon pricing mechanisms can improve
capital flow into sustainable sectors.

On the whole, this study makes a novel contribution to the understanding of the linkages
between climate risks, crude oil shocks, and the dynamics of green and brown stock returns.
However, its limitations should be acknowledged. In particular, data availability constraints

meant that the analysis could only be carried out for a limited set of countries. Furthermore,
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the low frequency of the climate policy indices implies that the analysis cannot shed light on
the impact of short-term fluctuations in transition climate risk. Future research could also
yield additional insights by using sectoral data to uncover industry-specific patterns, and by
investigating the role of emerging technologies, such as carbon capture and storage or

renewable energy innovations, as a driver of stock market spillover dynamics.
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Table 1. Brown and Green Stock Indices Definitions

Country Brown index Definition Green Index Definition
Canada Canada Energy Composed of 64 companies S&P/TSX Measures ~ companies
Price Stocks across sectors like uranium Renewable focused on  green
Index mining, oil services, natural gas Energy and Clean technologies and
exploration, oil refining, and Technology Index sustainable
unconventional oil production. infrastructure solutions,
screened by
Sustainalytics.
India India Energy Includes 30 companies in sectors S&P BSE Tracks the performance
Price Stocks such as oil drilling, petroleum GREENEX of the top 25 "green"
Index refining, wind systems, coal companies based on
mining, and LNG transportation. GHG emissions, market
capitalization, and
liquidity.
Japan Japan Energy Comprises 20 companies, FTSE
Price Stocks including coal wholesale, Environmental
Index petroleum refining, and oil- Opportunities
related services.
It measures global
United U.K. Energy Price Consists of 11 companies in oil FTSE companies significantly
Kingdom  Stocks Index exploration, integrated oil and gas Environmental involved in renewaple
services, and stationary fuel cells.  Opportunities energy, pollution
control, energy
efficiency and water
United U.S. Energy Price  Tracks 117 companies in sectors FTSE infrastructure.
States Stocks Index such as wuranium, coal, oil Environmental
exploration, and renewable Opportunities

energy services.

Notes: The source for all indices is Refinitiv.
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Table 2. Climate Policy and Oil Price Shocks - Interaction Dummies

International pos.

International neg.

Country National pos. + Oil  National neg. + Oil
+ Qil + Oil
Canada 30/05/2014 to 19/12/2014; 21/05/2010; 29/07/2011 29/07/2011 to 25/05/2012; 30/05/2014
17/06/2016; 23/03/2018; to 09/09/2011; 05/08/2011; 09/09/2011; to 19/12/2014;
24/09/2021 to 22/10/2021 25/05/2012; 17/05/2019 17/06/2016; 23/03/2018; 17/05/2019 to
to 24/05/2019; 25/02/2022 to 24/05/2019; 02/08/2019;
02/08/2019; 14/02/2020; 25/03/2022 14/02/2020; 29/05/2020;
29/05/2020; 25/02/2022 24/09/2021 to
to 25/03/2022 22/10/2021
India 17/06/2016; 17/05/2019 to 30/05/2014 to 17/06/2016; 23/03/2018; 30/05/2014 to
24/05/2019; 02/08/2019; 19/12/2014; 23/03/2018; 14/02/2020; 29/05/2020; 19/12/2014; 17/05/2019
14/02/2020; 29/05/2020 24/09/2021 to 25/02/2022 to to 24/05/2019;
22/10/2021; 25/02/2022 25/03/2022 02/08/2019; 24/09/2021
to 25/03/2022 t0 22/10/2021
Japan 17/04/2009; 28/05/2010; 06/06/2014 to 28/05/2010; 24/05/2019  17/04/2009; 05/08/2011
05/08/2011; 16/09/2011; 26/12/2014; to 31/05/2019; to 12/08/2011;
01/06/2012; 30/03/2018; 24/06/2016; 2102/2020;  09/08/2019; 01/10/2021  16/09/2011; 01/06/2012;
24/05/2019 to 31/05/2019; 05/06/2020 t0 29/10/2021; 06/06/2014 to
01/10/2021 to 29/10/2021; 04/03/2022 to 26/12/2014;
04/03/2022 to 01/04/2022 01/04/2022 24/06/2016/;
30/03/2018; 21/02/2020;
05/06/2020
United angdom 21/05/2010; 25/05/2012; 29/07/2011 to 21/05/2010; 25/05/2012; 29/07/2011 to
30/05/2014 to 19/12/2014; 05/08/2011; 09/09/2011; 30/05/2014 to 05/08/2011; 09/09/2011;
17/06/2016; 23/03/2018; 24/09/2021 to 19/12/2014; 17/06/2016; 24/09/2021 to
17/05/2019 to 24/05/2019; 22/10/2021 23/03/2018; 17/05/2019 22/10/2021
14/02/2020; 29/05/2020; to 24/05/2019;
19/05/2020; 25/02/20222 to 02/08/2019; 25/02/2022
25/03/2022 to 25/03/2022
United States 10/09/2010; 18/11/2011 to 19/09/2014 to 31/07/2009; 10/09/2010; 18/11/2011 to

25/11/2011; 30/12/2011;
14/09/2012; 07/10/2016;
14/01/2022 to 11/02/2022;
17/06/2022 to 15/07/2022

10/04/2015; 13/07/2018;
05/06/2020; 18/09/2020

14/09/2012; 19/09/2014
to 10/04/2015;
07/10/2016

25/11/2011; 30/12/2011

Note: The reported dates correspond to periods when climate policy shocks and oil price shocks were observed. Climate
policy shocks are identified using the CCPI index, while oil price shocks are based on Kilian et al. (2022), Baumeister et al.
(2016), and Gazzani et al. (2024). These shocks are represented by a value of 1 when they occur and 0 otherwise.
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Table 3. Descriptive Statistics

Country Green Brown Interest Rate
Canada Mean 0.05 0.09 1.13
S.D. 2.46 3.26 119
Min. -15.77 -26.16 0.03
Max. 11.97 13.56 516
Obs. 717 717 17
India Mean 0.20 0.30 6.40
S.D. 2.01 3.28 1.86
Min. -11.09 1s 3
Max. 14.40 14.84 1175
Obs. 592 sob 592
Japan Mean 0.24 0.12 -0.04
S:D. 2.95 3.46 0.14
Min. -13.73 2021 -0.47
Max. 13.90 15.31 0.28
Obs. 772 772 772
United Kingdom Mean 0.19 0.11 0.80
S.D. 2.20 3.58 1.18
Min. -14.01 -29.77 -0.09
Max. 10.86 18.59 5.58
Obs. 757 757 757
United States Mean 0.29 0.15 0.91
b o4 2.76 3.76 1.45
Min. -17.68 2431 -0.05
Max. 15.37 15.48 5.51
Obs. 772 772 772
Global Control Variable VIX
Mean 18.90
S.D. 731
Min. 9.14
Max. 66.04
Obs. 772

Notes: for Japan, the US and the UK the green index used is the FTSE Environmental Opportunity Index starting on 13
March 2009, whilst for Canada and India it is the S&P TSX Renewable Energy Index and the S&P BSE GREENEX
respectively, the corresponding start dates being 2 April 2010 and 24 August 2012. In all cases the end date is 29 December
2023. The sample period is set accordingly for all series.
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Table 4. Estimated GARCH(1,1)-BEKK models for Canada

Benchmark Energy Climate policy shocks Oil and Climate Policy Shocks

shock Interaction
Nat. Nat. Qil + Qil + 0Oil + Oil +
Int. Pos. Int Neg. Nat. Nat. Int. Int.
Pos. Neg
Pos. Neg Pos. Neg
Conditional mean equation
0.03 0.01 0.16 0.02 0.02 0.02 -0.00 0.12 0.11 0.02
A (0.878) (0.980) (0.666) (0.929) (0.929) (0.923) (0.990) (0.556) (0.579) (0.898)
al, ) 0.01 0.14 -0.14 -0.13 0.15 -0.11 0.97 0.25 0.06
(0.959) (0.315) (0.372) (0.372) (0.201) (0.574) (0.003) (0.541) (0.755)
B 0.01 0.00 0.02 0.02 0.02 0.02 0.01 0.01 0.03 0.02
(0.532) (0.868) (0.742) (0.623) (0.623) (0.597) (0.848) (0.633) (0.408) 0.616)
B1z 0.02 0.01 -0.00 0.04 0.04 -0.00 0.01 0.01 0.00 0.01
(0.532) (0.809) (0.928) (0.259) (0.259) 0.917) (0.625) (0.713) (0.948) (0.608)
B, . 0.03 0.04 0.03 0.04 0.03 0.01 0.16 0.18 0.04
(0.686) (0.395) (0.376) (0.376) (0.365) (0.853) (0.253) (0.263) (0.566)
IR -0.12 -0.12 -0.18 -0.17 -0.18 -0.17 -0.13 -0.19 -0.19 -0.13
(0.108) (0.098) (0.023) (0.023) (0.022) (0.002) (0.597) (0.008) 0.011) (0.028)
VIX 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02
(0.146) (0.404) (0.175) (0.121) (0.121) (0.245) (0.146) (0.351) (0.245) (0.136)
az, 0.52 0.43 -1.10 0.75 0.75 -0.52 -0.48 0.56 -0.62 -0.50
(0.093) (0.414) 0.007) 0.012) 0.012) (0.067) (0.125) (0.061) 0.037) (0.096)
az, . -0.09 0.35 -0.35 0.03 0.11 0.10 0.26 0.75 0.00
(0.829) (0.045) (0.099) (0.591) (0.476) (0.762) (0.637) (0.263) 0.991)
B2z 0.04 0.05 0.04 0.05 0.05 0.03 0.05 0.05 0.05 0.04
(0.258) (0.279) (0.208) (0.175) (0.175) (0.236) (0.149) (0.106) (0.156) (0.140)
B 0.06 0.07 0.08 0.03 0.03 0.05 0.07 0.03 0.01 0.07
(0.265) (0.241) (0.348) (0.590) (0.590) (0.555) (0.147) (0.546) (0.821) (0.145)
51 . 0.24 -0.05 0.05 0.04 0.04 -0.28 0.02 0.22 0.44
(0.045) 0.627) (0.626) (0.626) (0.648) (0.142) (0.905) (0.295) 0.019)
IR -0.02 -0.01 -0.05 -0.04 -0.05 -0.01 -0.02 -0.03 -0.02 -0.02
(0.718) (0.889) (0.565) (0.572) (0.572) (0.821) (0.616) (0.662) (0.832) (0.723)
VIX 0.04 0.03 -0.06 0.06 0.06 0.03 0.03 0.05 -0.04 0.04
(0.065) (0.335) (0.002) (0.001) (0.001) (0.084) (0.091) (0.025) (0.011) (0.045)
Conditional variance equation
c11 0.18 0.07 0.76 0.32 0.39 -0.00 0.16 0.37 0.32 0.19
(0.002) (0.961) (0.008) (0.040) (0.040) (0.998) (0.144) (0.004) (0.079) 0.019)
¢y ) -0.35 037 0.37 0.37 0.14 039 -0.37 033 -0.19
(0.765) (0.103) (0.087) (0.087) (0.304) (0.222) (0.016) (0.103) (0.045)
g1 0.92 0.92 0.90 0.90 0.94 0.42 0.91 0.94 0.96 0.90
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
912 -0.09 -0.10 0.32 0.17 0.16 0.94 -0.10 0.23 0.29 -0.09
(0.000) (0.113) (0.000) (0.082) (0.082) (0.000) (0.000) (0.000) (0.000) (0.000)
g5 . 0.10 0.16 0.16 0.16 0.12 0.26 -0.61 -0.71 -0.08
(0.711) (0.120) (0.124) (0.124) (0.000) (0.000) 0.018) (0.000) (0.107)
ay, 0.39 0.38 0.43 0.49 0.49 0.18 0.39 0.38 0.39 0.41
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
as, -0.10 0.35 0.10 0.02 0.03 0.48 0.36 0.15 -0.19 0.29
(0.000) (0.051) (0.493) (0.006) (0.854) (0.000) (0.000) (0.138) (0.055) (0.000)
al, . -0.02 0.13 0.16 0.13 0.07 -0.41 0.91 0.63 0.60
(0.974) (0.434) (0.124) (0.448) (0.191) (0.036) (0.009) (0.006) 0.013)
c2 0.59 -0.49 0.30 0.86 0.86 0.85 0.49 0.66 0.68 0.56
(0.000) (0.283) (0.841) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000) (0.005)
Cha . 0.04 0.57 -0.56 -0.56 0.27 -0.48 -0.70 -0.72 0.07
(0.962) (0.695) (0.690) (0.690) (0.413) (0.023) (0.013) (0.002) (0.833)
C21 0.37 0.42 0.7 0.07 0.07 0.29 0.40 -0.05 -0.09 0.40
(0.000) (0.167) (0.728) (0.735) (0.735) (0.000) (0.000) (0.734) (0.607) (0.000)
G2z 0.92 0.93 0.82 0.82 0.82 0.31 0.93 0.83 0.79 0.94
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
g2 -0.02 -0.01 -0.08 -0.07 -0.07 0.76 -0.01 -0.06 -0.08 -0.03
(0.035) (0.583) 0.027) (0.148) (0.148) (0.000) (0.167) (0.000) (0.000) (0.238)
I . -0.02 0.01 -0.01 -0.01 0.11 0.04 -0.06 -0.00 0.02
(0.257) (0.681) (0.689) (0.689) (0.000) (0.111) (0.480) (0.954) (0.292)
az, 0.23 0.22 0.28 0.29 0.29 0.11 0.21 0.33 0.35 0.20
(0.000) (0.031) (0.000) (0.006) (0.006) (0.001) (0.000) (0.000) (0.000) (0.000)
az 0.01 0.01 -0.04 -0.00 -0.00 0.11 -0.00 0.03 0.04 0.02
(0.064) (0.882) (0.662) (0.908) (0.908) (0.000) 0.977) (0.507) (0.430) (0.573)
as, . 0.02 0.03 -0.01 -0.03 -0.00 -0.08 0.37 0.20 0.11
(0.882) (0.722) (0.689) (0.716) (0.983) (0.278) (0.008) (0.181) (0.057)
LogLik 3218.47 3212.53 3227.05 3227.05 3227.05 3216.61 320999 322387 322643 3212.34
LBgreon(r) 8.41 8.89 8.78 8.78 7.68 7.58 8.15 7.56 7.56 8.45
0.297) (0.260) (0.268) (0.268) (0.361) (0.371) (0.319) (0.372) 0.372) (0.294)
7 JN— 8.40 8.84 7.51 7.51 8.67 8.86 8.04 8.15 8.34 8.71
(0.297) (0.355) (0377) (0.377) (0.276) (0.262) (0.328) (0.318) (0.303) (0.274)

Notes: Statistically significant parameters at 5% are shown in bold. Parameters $,, and a,, measure the spillover effect of
brown on green stock returns and brown on green stock returns volatility, respectively. Whereas, S,; and a,, capture the
spillover effect of green on brown stock returns and brown on green stock returns volatility, respectively. The asterisk (*)
denotes dummy variables corresponding to each climate policy shock (national and international; positive and negative),
energy (oil) shocks, and their respective interactions. Standard errors (in brackets) are computed using the quasi-maximum
likelihood method of Bollerslev and Wooldridge (1992), which is robust to the distribution of the underlying residuals. The
first column presents the benchmark model without the inclusion of dummy variables. LB een(7) and LBgrown(7) are the

Ljung-Box test (1978) of significance of no autocorrelations of seven lags in the standardized residuals for green and brown
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returns, respectively. The covariance stationarity condition is satisfied by all the estimated models, all the eigenvalues of
Al1®A11 + G11®G11 being less than one in modulus.

Table 5. Estimated GARCH(1,1)-BEKK models for India

Benchmark Energy . . Oil and Climate Policy Shocks
Climate policy shocks .
shock Interaction

Nat. Nat. Oil + Oil + Oil + Oil +

Int. Pos. Int Neg. Nat. Nat. Int. Int.

Pos. Neg
Pos. Neg Pos. Neg
Conditional mean equation

-0.06 -0.30 -0.32 -0.34 -0.29 -0.62 0.38 -0.02 0.19 0.07
11 (0.895) (0.549) (0.522) (0.511) (0.383) (0.305) (0.000) (0.954) (0.000) (0.875)

iy 0.03 -0.01 0.01 -0.30 0.34 -0.59 0.05 -1.53 0.38
(0.909) (0.926) (0.926) (0.083) (0.042) (0.000) (0.826) (0.000) (0.201)

B 0.13 0.14 0.12 0.12 0.15 0.13 0.12 0.12 0.12 0.10
(0.005) (0.06) (0.002) (0.002) (0.000) (0.004) (0.000) (0.006) (0.000) (0.002)

Bz -0.07 -0.07 -0.05 -0.07 -0.09 -0.10 -0.05 -0.07 -0.05 -0.05
(0.058) (0.029) (0.206) (0.171) (0.252) (0.097) (0.250) (0.060) (0.002) (0.175)

Biz 0.07 -0.01 0.01 0.05 0.02 0.03 0.14 0.08 0.06
(0.345) (0.775) (0.779) (0.252) (0.679) (0.601) (0.156) (0.002) (0.347)

IR 0.01 0.02 0.02 0.02 0.01 0.02 -0.06 0.09 -0.03 0.02
(0.839) (0.740) (0.688) (0.688) (0.642) (0.679) (0.000) (0.839) (0.000) (0.763)

VIX 0.01 0.02 0.02 0.02 0.03 0.030 0.01 0.01 0.01 0.00
(0.401) (0.146) (0.178) (0.178) (0.048) (0.118) (0.000) (0.521) (0.000) (0.788)

az, 0.55 0.04 -0.08 0.10 0.13 -0.22 0.30 0.03 -0.06 0.31
(0.464) (0.939) (0.935) (0.920) (0.790) (0.807) (0.021) (0.968) (0.511) (0.615)

as, -0.43 0.18 -0.18 0.25 0.27 -1.21 -0.51 -3.15 0.02
(0.297) (0.369) (0.402) (0.297) (0.210) (0.000) (0.122) (0.000) (0.967)

B2 -0.10 -0.11 -0.09 -0.09 -0.13 -0.13 -0.13 -0.11 -0.14 -0.09
(0.049) (0.015) (0.079) (0.079) (0.028) (0.031) (0.000) (0.122) (0.000) (0.032)

B 0.16 0.21 0.17 0.14 0.15 0.23 0.23 0.19 0.25 0.16
(0.063) (0.006) (0.047) (0.774) (0.053) (0.025) (0.000) (0.048) (0.000) (0.009)

B -0.02 -0.03 0.03 0.14 -0.08 -0.18 0.03 -0.79 -0.23
(0.188) (0.767) (0.532) (0.122) (0.431) (0.586) (0.830) (0.000) (0.132)

IR -0.05 -0.01 -0.02 -0.02 -0.01 -0.00 -0.07 0.00 -0.03 -0.01
(0.457) (0.763) (0.669) (0.669) (0.823) (0.956) (0.000) (0.989) (0.005) (0.616)

VIX 0.01 0.03 0.03 0.03 0.02 0.02 0.03 0.01 0.03 0.10
(0.698) (0.178) (0.532) (0.532) (0.995) (0.397) (0.002) (0.439) (0.000) (0.616)

Conditional variance equation

C11 0.00 0.00 0.00 0.00 -0.000 0.37 0.22 0.00 0.32 -0.00
(0.999) (0.999) (0.999) (0.999) (0.995) (0.001) (0.130) (0.999) (0.459) (0.999)

cy -1.00 -0.00 -0.00 0.60 -0.18 -0.22 -0.00 0.32 0.31
(0.015) (0.999) (0.999) (0.021) (0.587) 0.117) (0.999) (0.456) (0.257)

g1 0.94 0.81 0.90 0.90 0.88 0.86 0.75 1.00 0.74 0.76
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

1z 0.11 1.36 0.02 -0.12 1.59 -0.18 0.12 0.21 0.19 -0.35
(0.031) (0.000) (0.592) (0.029) (0.000) (0.183) (0.000) (0.315) (0.002) (0.000)

iz 0.50 0.05 0.14 -0.21 0.01 0.79 0.17 0.18 -0.35
(0.002) (0.003) (0.007) (0.171) (0.863) (0.000) (0.094) (0.002) (0.000)

as; 0.00 0.13 -0.06 -0.06 0.13 -0.12 0.17 -0.03 0.12 0.12
(0.999) (0.189) (0.598) (0.598) (0.059) (0.331) (0.000) (0.743) (0.000) (0.298)

as, -0.31 -0.19 -0.41 -0.31 0.07 -0.50 -0.35 -0.43 -0.04 0.52
(0.007) (0.062) (0.021) (0.188) (0.559) (0.022) (0.000) (0.105) (0.000) (0.000)

a;, -0.06 -0.09 -0.09 -0.29 0.12 0.14 -0.02 -0.02 0.66
(0.808) (0.441) (0.188) (0.000) (0.427) (0.005) (0.904) (0.000) (0.000)

2 0.83 1.28 1.21 1.51 0.98 1.78 2.27 1.22 2.13 0.88
(0.008) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.025) (0.000) (0.000)

3y -0.58 0.30 -0.30 0.01 -0.14 -1.96 -0.62 -2.00 -0.88
(0.242) (0.592) (0.186) (0.972) (0.503) (0.000) (0.241) (0.000) (0.011)

C21 0.71 0.82 0.80 0.80 0.68 0.87 0.25 0.56 0.08 0.00
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.139) (0.063) (0.000) (0.980)

922 0.87 -0.93 0.84 0.84 -1.00 0.78 0.53 0.75 0.53 1.02
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

g2 -0.10 0.51 -0.11 -0.06 -0.03 -0.03 0.17 -0.17 0.18 0.20
(0.000) (0.002) (0.002) (0.052) (0.005) (0.469) (0.000) (0.094) (0.000) (0.000)

g1 -0.08 0.05 -0.05 -0.05 -0.12 0.27 0.04 0.19 -0.10
(0.308) (0.003) (0.003) (0.110) (0.331) (0.000) (0.486) (0.000) (0.001)

az, 0.32 035 0.44 0.44 0.24 0.53 0.37 0.42 0.49 -0.05
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.010) (0.000) (0.669)

az 0.28 0.24 0.32 0.32 0.19 0.35 0.19 0.31 0.21 0.12
(0.000) (0.002) (0.000) (0.000) (0.006) (0.000) (0.000) (0.000) (0.000) (0.142)

a;, -0.08 0.00 0.00 0.07 0.00 0.14 -0.44 0.20 -0.45
(0.380) (0.972) (0.972) (0.138) (0.978) (0.005) (0.000) (0.000) (0.000)
LogLik 2634.15 2637.65 2629.70 2629.70 2626.82 2627.17 263177 262774 2630.85  2634.54

LBgreencr) 7.62 6.85 7.93 7.93 9.45 9.62 7.97 7.50 9.95 536
(0.366) (0.444) (0.259) (0.338) (0.221) (0.211) (0.334) (0.378) (0.190) (0.616)

LB, ounr) 6.44 6.53 6.22 6.22 6.26 7.28 6.47 6.26 6.94 7.02
(0.488) (0.478) (0.514) (0.514) (0.532) (0.400) (0.486) (0.509) (0.434) (0.426)

Notes: Please refer to the notes in Table 4.
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Table 6. Estimated GARCH(1,1)-BEKK models for Japan

Benchmark Energy Climate policy shocks Oil and Climate P.ollcy Shocks
shock Interaction

Nat. Nat. Oil + Oil + Oil + Oil +

Int. Pos. Int Neg. Nat. Nat. Int. Int.

Pos. Neg
Pos. Neg Pos. Neg
Conditional mean equation

0.01 0.12 0.19 -0.25 0.18 0.12 0.20 -0.16 0.03 -0.11
11 (0.945) (0.627) (0.442) (0.362) (0.667) (0.637) (0.461) (0.585) (0.890) (0.679)

@y . 0.25 -0.44 0.44 -0.27 0.22 -0.33 0.40 -1.08 0.23
(0.450) (0.015) (0.018) (0.155) (0.153) (0.631) (0.481) (0.032) (0.577)

Bi1 0.03 0.01 0.01 0.01 0.05 0.04 0.06 0.02 0.04 0.01
(0.447) (0.764) (0.798) (0.787) (0.273) 0.277) (0.085) (0.503) (0.213) (0.699)

Bz -0.02 -0.03 -0.05 0.00 -0.00 -0.02 -0.03 -0.01 -0.02 -0.01
(0.532) (0.214) (0.276) (0.949) (0.891) (0.662) (0.247) (0.582) (0.371) (0.542)

Biz ) 0.12 0.05 -0.05 -0.02 0.00 0.09 0.27 0.22 0.33
(0.298) (0.309) (0.314) (0.716) (0.872) (0.628) (0.053) (0.219) (0.004)

IR -0.29 -0.08 0.25 0.25 -0.34 -0.28 -0.07 -0.53 -0.26 -0.32
(0.691) (0.887) (0.719) (0.687) (0.703) 0.677) (0.916) (0.464) (0.708) (0.643)

VIX 0.01 0.01 0.02 0.02 0.01 0.00 0.00 0.02 0.01 0.02
(0.263) (0.360) (0.056) (0.073) (0.522) (0.851) (0.593) (0.107) (0.281) (0.090)

az; -0.01 0.15 0.04 0.04 0.18 0.13 0.25 -0.02 0.25 0.01
(0.968) (0.606) (0.888) (0.892) (0.508) (0.678) (0.414) (0.926) (0.937) (0.976)

a;, . -0.00 0.00 -0.00 -0.10 0.06 1.04 -0.74 0.93 -0.92
(0.976) (0.985) (0.984) (0.711) (0.672) (0.122) (0.052) (0.221) (0.014)

B2z -0.09 -0.09 -0.08 -0.08 -0.07 -0.08 -0.10 -0.08 -0.10 -0.08
(0.008) (0.005) (0.001) (0.009) (0.023) (0.011) (0.000) (0.004) (0.002) (0.010)

B 0.27 0.26 0.37 0.18 0.20 0.32 0.28 0.27 0.29 0.26
(0.000) (0.000) (0.000) (0.000) (0.029) (0.000) (0.000) (0.000) (0.000) (0.000)

B ) -0.18 -0.19 0.19 0.09 -0.14 0.11 -0.11 -0.08 -0.08
(0.216) (0.013) (0.007) (0.285) (0.103) (0.498) (0.358) (0.607) (0.388)

IR -0.61 -0.39 -0.54 -0.54 -0.81 -0.95 -0.06 0.62 -0.57 -0.35
(0.435) (0.589) (0.485) (0.434) (0.279) (0.225) (0.429) (0.457) (0.500) (0.676)

VIX 0.01 0.00 0.00 0.00 0.02 -0.00 -0.01 0.01 0.00 0.01
(0.657) (0.907) (0.700) (0.714) (0.882) (0.991) (0.631) (0.642) (0.835) (0.597)

Conditional variance equation

c11 0.00 0.00 0.29 0.00 0.97 0.00 0.56 0.00 0.73 0.00
(0.999) (0.999) (0.729) (0.999) (0.040) (0.999) (0.493) (0.999) (0.081) (0.999)

Cia . -0.00 -0.29 0.29 0.31 0.79 -0.56 112 -0.73 1.09
(0.999) (0.713) (0.721) (0.435) (0.000) (0.514) (0.043) (0.054) (0.032)

g1 0.89 0.99 0.97 0.97 0.80 0.85 0.06 0.89 0.82 0.92
(0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.663) (0.000) (0.000) (0.000)

912 0.66 0.71 0.69 0.72 0.07 -0.10 0.79 0.57 0.59 0.60
(0.000) (0.000) (0.000) (0.000) (0.744) (0.147) (0.000) (0.000) (0.000) (0.000)

iz B -0.00 0.03 -0.03 -0.07 0.06 -0.14 -0.29 -0.63 -0.33
(0.977) (0.681) (0.682) (0.305) (0.331) (0.507) (0.050) (0.052) (0.023)

a1 0.27 0.19 0.24 0.24 0.05 0.02 0.11 0.27 0.32 0.25
(0.000) (0.002) (0.001) (0.002) (0.804) (0.750) (0.016) (0.000) (0.000) (0.000)

as, -0.39 -0.45 -0.54 -0.27 -0.42 0.32 -0.45 -0.41 -0.31 -0.44
(0.000) (0.000) (0.002) (0.005) (0.000) (0.000) (0.000) (0.000) (0.003) (0.000)

a;, . 1.14 0.27 -0.27 -0.13 0.05 -0.04 0.74 0.11 0.90
(0.000) (0.215) (0.213) (0.236) (0.572) (0.806) (0.000) (0.415) (0.000)

22 1.61 1.95 1.56 2.00 134 129 138 1.68 1.64 1.73
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

Cho . -1.10 043 -0.43 -0.24 0.22 0.36 229 2.06 232
(0.323) (0.125) (0.169) (0.663) (0.079) (0.761) (0.000) (0.023) (0.000)

C21 -0.91 -0.59 -0.69 -0.69 0.11 1.10 -0.45 -0.79 -0.76 -0.79
(0.000) (0.003) (0.031) (0.053) (0.937) (0.002) (0.077) (0.000) (0.008) (0.000)

922 0.34 0.15 0.29 0.20 0.81 0.86 0.21 0.41 0.41 0.36
(0.002) (0.279) (0.274) (0.311) (0.000) (0.000) (0.000) (0.000) (0.009) (0.000)

921 -0.02 -0.13 -0.11 -0.10 0.08 -0.09 0.78 0.03 0.06 -0.01
(0.867) (0.173) (0.543) (0.630) (0.776) (0.038) (0.000) (0.715) (0.581) (0.981)

g . -0.48 0.01 -0.01 -0.03 0.07 0.27 0.04 0.19 -0.10
(0.000) (0.843) (0.846) (0.672) (0.124) (0.000) (0.486) (0.000) (0.001)

az; 0.36 0.29 0.32 0.32 0.04 -0.01 0.00 -0.74 0.14 -0.62
(0.000) (0.000) (0.000) (0.000) (0.448) (0.746) (0.989) (0.000) (0.403) (0.000)

ayy 0.08 0.11 0.06 0.11 -0.37 0.22 -0.30 0.06 0.05 0.07
(0.055) (0.000) (0.100) (0.052) (0.003) (0.001) (0.000) (0.272) (0.361) (0.078)

a3, B 0.43 0.04 -0.04 0.15 0.07 -0.22 0.13 -0.41 0.22
(0.007) (0.540) (0.538) (0.147) (0.350) (0.082) (0.537) (0.007) (0.207)
LogLik 3786.94 3778.86 377723 377723 3764.26 3757.87 376552 377202 377832 3768.66

LBy eoncr) 0.96 0.63 1.56 1.56 1.34 1.17 3.04 1.03 1.26 0.79
(0.995) (0.998) (0.980) (0.980) (0.987) (0.991) (0.880) (0.994) (0.989) (0.997)

LBy, ounr) 4.78 4.43 3.61 3.64 4.74 4.54 5.01 4.96 4.84 5.05
(0.686) (0.729) (0.820) (0.820) (0.692) (0.715) (0.658) (0.664) (0.679) (0.654)

Notes: Please refer to the notes in Table 4.
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Table 7. Estimated GARCH(1,1)-BEKK models for the United Kingdom

Benchmark Energy Climate policy shocks Oil and Climate Policy Shocks

shock Interaction

Nat. Nat. Oil + Oil + Oil + Oil +

Int. Pos. Int Neg. Nat. Nat. Int. Int.

Pos. Neg
Pos. Neg Pos. Neg
Conditional mean equation

0.15 0.13 027 028 0.07 0.12 0.10 -0.09 -0.00 030
an (0.503) (0.553) (0.151) (0.240) (0.766) 0.619) (0.673) (0.683) (0.984) (0.255)

@y . -0.88 -0.23 0.16 0.19 0.19 0.10 -1.87 032 -1.92
(0.028) (0.052) (0.215) (0.134) (0.156) (0.732) (0312) (0.293) (0.342)

B11 -0.00 0.04 0.01 0.02 0.00 0.00 0.00 0.02 0.00 -0.02
(0.930) (0.340) (0.695) 0.577) (0.940) (0.839) (0.908) (0.513) (0.929) (0.473)

B12 -0.00 0.00 -0.07 0.00 0.02 0.01 -0.03 -0.01 -0.03 0.00
(0.932) (0.946) (0.004) (0.949) (0.734) (0.616) (0.195) (0.612) (0.209) (0.946)

B, . 0.07 0.12 -0.05 0.03 -0.03 0.05 -0.43 0.00 0.11
(0.663) (0.000) (0.314) (0.568) (0.618) (0.531) (0.034) (0.953) (0.435)

IR -0.02 -0.09 -0.00 0.25 0.02 0.02 -0.05 -0.08 -0.06 0.10
(0.709) (0.241) (0.962) (0.687) (0.754) (0.744) (0.329) (0.158) (0.344) (0.085)

VIX 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.01 0.03
(0.070) (0.030) (0.000) (0.046) 0.271) (0.182) (0.142) (0.068) (0.293) (0.031)

az, -0.68 0.49 -0.67 -0.87 037 0.71 031 0.53 025 0.42
(0.023) (0.120) 0.014) 0.015) (0.215) (0.040) (0.337) (0.123) (0.455) (0.215)

ay, ) -0.49 030 0.44 033 0.33 0.00 -3.46 -0.48 -1.83
(0.433) (0.075) 0.017) (0.153) (0.173) (0.993) (0.073) (0.156) (0.610)

B2z 0.06 -0.08 0.11 0.07 0.09 0.09 0.05 0.03 0.03 0.09
(0.133) (0.035) (0.001) (0.054) (0.052) (0.089) (0.146) (0.326) (0.370) (0.021)

B 0.01 -0.05 -0.08 0.05 -0.02 0.02 -0.01 -0.01 -0.00 -0.04
(0.855) (0.423) (0.130) (0.354) (0.699) (0.734) (0.851) (0.851) (0.982) (0.427)

B . 0.25 0.11 0.11 0.05 -0.05 -0.00 -0.82 0.11 0.63
(0.356) (0.082) (0.135) (0.553) (0.624) (0.993) (0.000) (0.578) (0.175)

IR -0.01 -0.11 -0.04 -0.05 0.00 0.00 -0.04 -0.09 -0.09 -0.08
(0.811) (0.332) (0.545) (0.454) (0.967) (0.965) (0.619) (0.233) (0.351) (0.407)

VIX 0.04 0.04 0.05 0.04 0.03 0.03 -0.02 0.04 0.03 0.03
(0.007) (0.024) (0.000) (0.026) (0.054) (0.044) (0.211) (0.033) (0.141) (0.131)

Conditional variance equation

C11 0.27 0.00 0.00 0.33 0.16 0.37 0.00 0.00 0.00 0.00
(0.002) (0.999) (0.999) (0.000) (0.573) (0.078) (0.999) (0.999) (0.999) (0.999)

Cia . 113 0.45 -0.33 0.21 0.53 -0.00 -0.00 0.00 -3.10
(0.005) (0.064) (0.019) (0.478) (0.159) (0.999) (0.999) (0.999) (0.000)

g1 0.89 0.97 0.77 0.89 0.87 0.87 -0.70 0.45 0.4 -0.97
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.003) (0.000)

912 0.09 0.57 1.77 -0.09 0.14 -0.05 -1.16 0.20 -0.15 -1.40
(0.003) (0.000) (0.000) (0.000) (0.026) (0.285) (0.000) (0.124) (0.460) (0.000)

g5 . -0.28 -0.07 0.03 0.09 -0.09 -0.77 0.58 0.14 0.16
(0.177) (0.607) (0.361) (0.148) (0.195) (0.000) (0.107) (0.268) (0.719)

a1 0.33 -0.08 0.32 0.37 0.38 0.38 -0.08 0.02 0.02 023
(0.000) (0.337) (0.000) (0.000) (0.000) (0.000) (0.358) (0.903) (0.809) (0.062)

as, 0.12 0.29 0.17 0.27 0.25 0.02 -0.16 0.02 -0.08 025
(0.098) (0.188) (0.010) 0.017) (0.019) (0.800) 0.014) (0.791) (0.243) (0.009)

a;, . -0.64 -0.32 -0.18 023 0.23 -0.03 0.82 0.19 -0.06
(0.177) (0.000) (0.123) (0.048) (0.099) (0.782) (0.000) (0.130) (0.695)

c2 0.75 0.01 0.51 0.60 0.71 0.80 -1.22 0.94 0.88 0.80
(0.000) (0.970) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) 0.028) (0.000)

Cho . 2228 0.02 -0.04 0.09 -0.09 -0.28 -0.81 0.151 3.29
(0.036) (0.795) (0.823) (0.609) (0.655) (0.104) (0.580) (0.645) (0.000)

C21 0.60 0.71 0.52 0.55 0.59 0.59 -1.48 -1.59 1.64 0.64
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

922 0.94 0.70 -0.83 0.96 0.95 0.95 1.06 0.94 0.94 1.01
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

g2 0.00 -0.18 0.14 0.01 0.04 0.00 0.13 -0.00 0.06 -0.01
(0.965) (0.000) (0.000) (0.434) (0.410) (0.966) (0.000) (0.715) (0.581) (0.981)

g . 0.07 -0.02 -0.01 -0.04 0.04 0.27 0.04 0.00 0.08
(0.301) (0.280) (0.381) (0.672) (0.354) (0.000) (0.803) (0.939) (0.493)

az, 0.28 0.08 0.17 0.19 0.25 0.25 0.05 0.39 0.41 0.24
(0.000) (0.626) (0.000) (0.000) (0.000) (0.000) 0.271) (0.000) (0.000) (0.000)

ayy -0.01 0.29 -0.01 -0.06 0.09 -0.02 -0.23 0.31 0.32 0.00
(0.872) (0.000) (0.582) (0.124) (0.211) (0.724) (0.000) (0.000) (0.001) (0.979)

ay, . 0.10 0.04 0.04 0.07 -0.07 0.11 0.95 -0.05 0.17
(0.487) (0.322) (0.398) (0.472) (0.399) (0.329) (0.000) 0.711) (0.313)
LogLik 3422.08 3434.01 3403.68 3414.55 3414.55 3414.55 342340 342418 3438.64 341279

LBy eoncr) 6.77 5.55 7.22 6.77 7.29 7.29 7.99 8.04 9.04 5.16
(0.452) (0.489) (0.405) (0.453) (0..399) (0.399) (0.333) (0.328) (0.249) (0.640)

7 J— 10.57 11.58 11.65 11.29 10.93 10.93 11.62 11.73 12.59 11.49
(0.158) (0.115) (0.112) (0.126) (0.141) (0.141) (0.113) (0.109) (0.082) (0.118)

Notes: Please refer to the notes in Table 4.
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Table 8. Estimated GARCH(1,1)-BEKK models for the United States

Benchmark Energy Climate policy shocks Oil and Climate Policy Shocks

shock Interaction
Nat. Nat. Oil + Oil + Oil + Oil +
Int. Pos. Int Neg. Nat. Nat. Int. Int.
Pos. Neg
Pos. Neg Pos. Neg
Conditional mean equation
0.47 0.28 0.44 -0.46 030 -0.44 -0.40 -0.06 032 -0.40
an (0.061) (0.198) (0.039) (0.091) (0.247) (0.049) 0.061) (0.214) (0.147) (0.000)
@y . 0.52 -0.23 0.05 -0.01 0.10 038 0.29 -0.41 -1.58
(0.186) (0.771) (0.709) (0.936) (0.504) (0.640) (0.523) (0.084) (0.607)
B11 -0.00 0.02 0.04 0.03 0.02 0.028 0.03 0.17 0.02 0.03
(0.941) (0.564) (0.216) (0.256) (0.482) (0.460) 0.415) (0.713) (0.438) (0.079)
B12 0.07 0.07 -0.03 -0.08 -0.04 -0.06 -0.06 -0.05 -0.07 -0.07
(0.025) (0.003) (0.259) (0.002) (0.238) (0.026) (0.024) (0.068) (0.001) (0.004)
B, ) 0.05 -0.07 0.03 0.03 -0.07 -0.03 0.00 0.06 0.18
(0.396) (0.057) (0.529) (0.435) 0.277) (0.837) (0.984) (0.203) (0.533)
IR 0.01 -0.02 -0.02 -0.01 -0.02 -0.00 -0.00 -0.02 -0.01 -0.00
(0.814) (0.631) (0.581) (0.809) (0.649) (0.888) (0.861) (0.658) (0.674) (0.875)
VIX 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04
(0.000) (0.001) (0.000) (0.000) (0.002) (0.000) (0.000) (0.005) (0.001) (0.000)
az, -1.10 -0.65 -0.88 -0.74 -1.01 -0.85 -0.83 0.79 -0.71 -0.85
(0.000) (0.015) (0.001) (0.018) (0.018) (0.002) (0.001) 0.012) (0.006) (0.000)
ay, i -0.72 0.13 -0.06 0.03 0.07 0.28 -0.84 -0.60 -4.03
(0.168) (0.421) (0.749) (0.885) (0.769) 0.817) (0.225) (0.040) (0.275)
B2z 0.07 0.04 -0.07 -0.06 0.00 -0.06 -0.05 0.02 -0.05 -0.07
0.091) (0.257) (0.020) (0.007) (0.947) (0.105) (0.169) (0.433) 0.052) (0.010)
B 0.06 0.06 0.14 0.06 0.08 0.11 0.07 0.07 0.07 0.08
(0.335) (0.225) (0.003) (0.227) (0.295) (0.107) (0.169) (0.151) (0.053) (0.000)
B ) 0.02 -0.06 0.06 -0.00 0.11 0.22 0.41 -0.07 0.09
(0.880) (0.266) (0.540) (0.947) (0.331) 0.278) (0.186) (0.628) (0.824)
IR -0.03 -0.09 -0.08 -0.08 -0.10 -0.06 -0.07 -0.11 -0.08 -0.06
(0.573) (0.110) (0.063) (0.250) (0.242) (0.238) (0.330) (0.045) (0.113) (0.303)
VIX 0.07 0.05 0.07 0.06 0.07 0.06 0.06 0.05 0.06 0.06
(0.007) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)
Conditional variance equation
C11 -0.00 0.13 0.258 0.07 0.00 0.20 0.22 0.13 0.149 0.18
(0.998) (0.076) (0.031) (0.656) (0.999) (0.000) (0.000) (0.107) (0.008) (0.023)
Cia . 0.13 -0.25 -0.33 -0.39 -0.20 022 0.13 0.15 -0.18
(0.258) (0.029) (0.046) (0.061) (0.004) (0.085) (0.226) (0.385) (0.566)
g1 0.42 0.88 0.88 0.90 1.07 0.91 0.90 0.88 0.90 0.91
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
912 1.56 -0.07 -0.01 -0.07 0.98 -0.03 0.04 -0.08 -0.05 -0.03
(0.000) (0.050) (0.705) (0.482) (0.000) (0.351) (0.173) (0.176) (0.116) (0.234)
g5 i 0.03 -0.10 0.06 -0.10 -0.02 0.02 -0.90 0.01 0.63
(0.490) 0.011) (0.164) (0.231) (0.201) (0.818) (0.016) (0.829) (0.000)
a1 0.22 0.26 0.15 0.17 0.29 0.19 0.18 0.31 0.24 0.14
0.014) (0.050) (0.038) (0.177) (0.000) (0.070) (0.048) (0.141) (0.055) (0.073)
as, 0.01 0.03 021 0.00 -0.68 -0.07 -0.09 0.11 0.01 -0.12
(0.898) (0.803) (0.099) (0.999) (0.000) (0.507) (0.375) (0.649) (0.928) (0.190)
a;, . 0.07 0.28 -0.15 0.67 0.11 0.23 0.52 0.00 0.09
(0.625) (0.005) (0.175) (0.000) (0.201) (0.103) (0.001) 0.972) (0.538)
c2 0.53 0.54 0.50 0.579 2.31 0.59 0.577 0.59 0.568 0.61
(0.000) (0.000) (0.000) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Cho . -0.01 0.17 -0.08 -0.90 0.12 -0.23 0.19 0.30 -0.11
(0.934) (0.357) (0.649) (0.000) (0.357) (0.845) (0.439) (0.479) (0.565)
C21 0.65 0.60 0.62 0.56 -0.14 0.56 0.55 0.62 0.59 0.57
(0.000) (0.000) (0.000) (0.000) (0.338) (0.000) (0.000) (0.000) (0.000) (0.000)
922 -0.53 0.94 0.92 0.92 -0.01 0.91 0.92 0.93 0.93 0.91
(0.000) (0.000) (0.000) (0.000) (0.874) (0.000) (0.000) (0.000) (0.000) (0.000)
g2 1.57 -0.03 -0.02 -0.05 -0.21 -0.05 -0.04 -0.03 -0.04 -0.05
(0.000) (0.032) (0.098) (0.005) (0.001) (0.000) (0.001) (0.148) 0.015) (0.000)
g . -0.04 -0.03 0.01 -0.08 -0.01 -0.10 -0.00 -0.01 0.439
(0.020) (0.028) (0.343) (0.068) (0.061) (0.003) (0.907) (0.827) (0.000)
az, 0.44 0.39 0.46 0.45 0.56 0.4 0.44 0.37 0.41 0.46
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.007) (0.000) (0.000)
ayy 0.18 0.18 0.22 0.27 0.07 0.21 0.21 0.52 0.19 0.23
(0.000) (0.028) (0.000) (0.000) (0.043) (0.001) (0.000) (0.001) (0.025) (0.00)
ay, i 0.09 0.11 -0.05 0.18 0.09 0.23 0.12 0.05 0.239
(0.247) (0.009) 0.411) (0.002) (0.102) (0.008) (0.050) (0.629) (0.000)
LogLik 3513.02 3493.12 2116.98 2116.98 2116.98 2116.98 211698 211698 211698  2116.98
LBy eoncr) 9.71 8.33 7.51 7.97 7.28 8.73 8.16 6.75 7.90 7.62
(0.205) (0.401) (0.378) (0.334) (0.400) (0.272) (0.318) (0.455) (0.333) (0.367)
7 J— 13.57 8.35 8.86 9.19 4.77 079 8.99 7.83 9.19 8.56
(0.059) (0.302) (0.262) (0.239) (0.687) 0.200) (0.252) (0.348) (0.239) (0.285)

Notes: Please refer to the notes in Table 4.
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Figure 1. Stock Returns and Conditional Correlations
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Notes: To examine the combined effects of climate policy shocks and energy shocks, we incorporate interaction dummies
that account for the simultaneous occurrence of both types of shocks. Specifically, the figures at the bottom illustrate the
interaction dummy representing instances where national climate policies in favour of a green transition coincide with oil
shocks. Furthermore, the time-varying conditional correlation (pi2: = hiz/(Nhizvhee) is estimated using the multivariate
GARCH(1,1)-BEKK model, which explicitly includes the interaction dummies discussed.
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Figure 2. Stock Returns and Conditional Correlations
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Notes: Please refer to the notes in Figure 1.
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