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Abstract 
This paper examines the effects of climate policies and energy shocks on mean and volatility 

spillovers between green and brown stock price indices in five countries (Canada, India, 

Japan, the UK and the US). More specifically, bivariate GARCH-BEKK models including 

dummy variables controlling for these shocks are estimated using weekly series with start 

dates ranging from 13 March 2009 to 24 August 2012 (depending on data availability for the 

green index) and an end date of 29 December 2023. Significant dynamic linkages between 

green and brown indices are found when climate policy and oil shocks are considered jointly. 

Some common patterns emerge, such as shifts in spillover dynamics between green and 

brown assets, but also country-specific effects of the climate policy shocks which reflect 

differences in regulatory frameworks and policies. By contrast, energy shocks tend to have a 

more uniform impact. Further, the interaction between climate policy and energy shocks 

weakens cross-market linkages, enhancing portfolio diversification opportunities for green 

investors. The conditional correlation analysis confirms this finding, suggesting that green 

stocks can be used as an effective hedge. These results highlight the benefits of incorporating 

green assets into diversified portfolios, particularly in financial centers where, in recent years, 

they have offered higher returns and lower volatility.  
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1. Introduction 

Climate change has become a key issue for policy-makers and financial investors – this is 

because of the risks it generates and the consequent need to adopt policies to achieve the 

transition to a low-carbon economy by promoting renewable energy and sustainable 

investments. This process is expected to have significant effects on financial markets by 

reallocating capital toward sustainable sectors, driving innovation in renewable technologies, 

and altering risk profiles across industries. These changes are expected to create new 

opportunities in green sectors while increasing volatility and adjustment costs in traditional 

industries reliant on fossil fuels (Hanif et al., 2023). The shift toward a green economy drives 

changes in infrastructure and technology, opening new opportunities for some industries 

while posing challenges for others. Moreover, it reinforces the critical role of financial 

markets in channeling capital toward sustainable development. Venturini (2022) highlighted 

that accurately accounting for firms’ exposure to climate risks in return forecasts makes 

expected returns more closely with actual outcomes, which raises important issues for 

investors. In their comprehensive review of the impact of climate change on financial 

markets, which focused especially on microeconomic evidence, de Bandt et al. (2024) 

showed that the cumulative effects are difficult to estimate, owing to the multifaceted nature 

of risks and their varying impact on markets and portfolios. The recent literature argues that 

increased stock markets volatility and uncertainty related to the green transition depends on 

exogenous shocks, such as new climate policies or commodity price fluctuations, particularly 

in the case of crude oil (see Al-Thaqeb and Algharabali, 2019; Dutta et al., 2020; among 

others). 

Climate policies have become a key driver of volatility in environmentally focused financial 

markets owing to the significant changes they entail. The Paris Agreement (PA), signed on 12 

December 2015 by 195 countries at the UNFCCC COP21 (United Nations Framework 

Convention on Climate Change, Convention of the Parties 21), represented a turning point, as 

it required its signatories to adopt long-term strategies to reduce greenhouse gas emissions 

specifying targets for 2030 and 2050. Since its announcement, international and national 

climate-financial initiatives have grown, along with the need for investors to understand 

climate policies and their impact on stock returns (Monasterolo and de Angelis, 2020; 

D’Orazio et al., 2022; Raza et al., 2024). The existing literature provides evidence on the 

different effects of climate policies on market uncertainty. For instance, the 2019 violation of 

the Clean Air Act under the Trump administration was linked to increased market volatility, 

which reflected the destabilizing influence of weakened environmental regulations. By 
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contrast, supranational initiatives such as the European Green Deal (European Commission, 

2021) have proven effective at mitigating market uncertainties, especially in comparison to 

the case of Asian regions where the absence of appropriate climate policies has contributed to 

greater instability (Husain et al., 2022; Albanese et al., 2024). 

Another strand of the literature has investigated the role of crude oil, as a primary energy 

resource, for stock markets. According to Ouyang et al. (2022), understanding the link 

between crude oil prices and financial risk is crucial for maintaining financial stability and 

fostering economic growth. Increasing oil prices may provide an incentive to invest in 

renewable energy, particularly in oil-importing economies (Azhgaliyeva et al., 2022). Such a 

shock may have a different impact on green relative to brown stock prices and thus on 

optimal investment strategies. Green companies prioritize sustainability, utilizing renewable 

energy and adopting eco-friendly practices to reduce emissions and enhance their ESG 

(environmental, social, and governance) scores. They are found in sectors such as renewable 

energy, organic agriculture, and sustainable transportation, among others. By contrast, brown 

companies operate in industries with environmentally harmful practices, often giving priority 

to profit over sustainability. Examples include fossil fuel production, deforestation, and the 

use of toxic chemicals (Hartzmark et al., 2022). 

Global indices tracking green and brown stocks are often employed to monitor the 

performance of these energy sectors. Examples include the MAC Global Energy Index, the 

ISE Global Wind Energy Index, and the S&P 500 Global Clean Energy Index for green 

stocks. Brown indices typically focus on fossil fuel-related sectors such as crude oil, coal, and 

natural gas (Caporale et al., 2023). However, the global nature of such indices means that 

they are not informative about country-specific factors. 

By contrast, the present paper uses weekly series with start dates ranging from 13 March 

2009 to 24 August 2012 (depending on data availability for the green index) and an end date 

of 29 December 2023 for five major economies, namely Canada, India, Japan, the UK and 

the US, which allows to analyze spillovers between green and brown stock price indices and 

the possible impact of climate policy as well as energy shocks at the national level. The 

country selection is primarily driven by the availability of sufficiently long time series for the 

green indices to obtain robust estimates. The fact that such indices in most cases have only 

been introduced in recent years limits the analysis to the selected group. However, the 

findings will still be highly informative as the countries in our sample have adopted different 

climate policies, whose effects can be compared.  
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Therefore, the first contribution of this study is to investigate within-country spillover effects 

among green and brown stock price indices rather than focusing on global indicators. The 

second one is to assess the impact of exogenous shocks using independent climate change 

measures. In particular, the analysis uses the Climate Policy Index, a component of the 

Climate Change Performance Index (Germanwatch, 2022), which is a reliable benchmark for 

assessing country-specific climate policies (detailed in Section 3). Furthermore, following 

Kilian et al. (2022), Baumeister et al. (2016), and Gazzani et al. (2024), the effects of global 

energy shocks resulting from fluctuations in oil prices are also investigated. More precisely, 

bivariate VAR-GARCH-BEKK models are used to estimate simultaneously both the 

conditional mean and variance spillovers and the effects of shocks on those spillovers within 

each country. Note that the BEKK functional form not only ensures the positive definiteness 

of the variance–covariance matrix but also captures the transmission of shocks and volatility 

between indices, making it the most suitable empirical framework for our purposes.  

The layout of the paper is the following: Section 2 briefly reviews the literature on the impact 

of climate change on financial markets; Section 3 describes the data used for the analysis; 

Section 4 outlines the empirical framework and the hypotheses tested; Section 5 discusses the 

empirical results; Section 5 offers some concluding remarks. 

 

2. Literature Review 

The effects of climate risks, both physical and transition-related (Bua et al., 2022; Ardia et 

al., 2023; Campiglio et al., 2018), on financial markets have been extensively investigated in 

the recent literature, with a particular focus on market volatility linkages during stable and 

turbulent periods and their implications for investors. This is particularly important for the 

green and brown energy sectors, given the shift from fossil fuels towards renewable energy, 

which requires a thorough understanding of how information is transmitted between markets 

(Bouri, 2023). The literature has analyzed spillovers between green and brown market 

returns, often using global indicators to track the performance of “green” industries such as 

renewable energy, clean energy, solar, and wind, and "brown" ones such as oil, coal, and gas. 

For instance, Liu et al. (2020) analyzed US and European data and found that spillovers from 

fossil fuel to renewable energy stocks are slightly more pronounced in the US. Further, crude 

oil price shocks appear to have a stronger impact than natural gas ones, and volatility 

spillovers are more sizeable in the US, especially during financial crises, when investor 

uncertainty is higher.  
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Another study by Cepni et al. (2022) estimated an ADCC model using data on various green 

assets and found that green bonds are the most effective safe-haven against physical and 

transition risks and to manage climate risk exposures in investment portfolios. Caporale et al. 

(2024) focused on Germany, a leader in green investment within the EU, where sustainable 

growth is a priority. Their study provides new insights into the properties of green and 

traditional (brown) stock prices respectively by employing fractional integration techniques 

to analyze their persistence, which has implications for market efficiency. Using daily data 

from representative green and brown stock indices, their analysis shows that green stock 

returns exhibit higher volatility persistence than brown ones.  

 

2.1 Climate Policy Shocks  

One important issue when assessing the impact of climate change on stock markets is how to 

obtain accurate measures of climate risk.  Textual analysis methods are often used for this 

purpose (Engle et al., 2020; Bua et al., 2022; Ardia et al., 2023). For example, Gavriilidis 

(2021) developed the Climate Policy Uncertainty (CPU) index by searching for articles in 

eight major US newspapers that included terms such as "uncertainty" "climate risk" 

"greenhouse gas emissions" "climate change" "regulation" and "policies". The CPU has since 

become a widely used metric in the climate policy literature. Ren et al. (2023) carried out 

time-varying Granger tests to examine the dynamic bi-directional causality between CPU and 

both brown (coal, oil, natural gas) and green energy markets (clean energy, green bonds, 

carbon trading) in the US. Using monthly data, they considered various types of shocks 

including the sharp decline in crude oil prices in 2014. Their study showed evolving bi-

directional causality patterns, suggesting that both energy price volatility and climate policy 

uncertainty influence traditional and green energy stocks. Also, Bouri et al. (2022) provide 

evidence that the Climate Policy Uncertainty (CPU) index is a key driver of the relative 

performance of green versus brown energy stocks, and highlight its prediction properties. 

Husain et al. (2022) followed instead a cross-quantilogram approach to show that CPU 

affects green markets, especially during periods of high uncertainty. Pham et al. (2019) 

analyzed the performance of the green bond market under uncertainty, and detected more 

sizeable spillovers during periods characterized by higher Economic Policy Uncertainty 

(EPU), stock market uncertainty and crude oil price volatility. Ehrenbergerová et al. (2023) 

examined how climate policies, COP meetings, and the COVID-19 pandemic affected green 

and brown firms' securities, using a difference-in-differences regression. Their findings 

indicate that these policies significantly influence securities, with policy makers generally 
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providing greater support to green firms after major climate events as well as during 

pandemics. Diaz-Rainey et al. (2021) found that both Trump’s election in 2020 and the Paris 

Agreement had negative effects on the oil and gas sectors. Finally, Bogmans et al. (2024) 

showed that, during the early stages of the energy transition, climate policy uncertainty 

negatively affects investments in the oil and gas sectors. Their analysis uses the transcripts of 

earnings calls from publicly-listed firms as a proxy for measuring climate policy uncertainty. 

Li et al. (2023) examined the effects of three climate risk factors, including the CPU, on the 

long-run volatility and correlation between green and brown stocks in the US, and found that 

climate risks have a significant impact only on the long-run volatility of brown stocks, while 

they tend to reduce the correlation between green and brown stocks. Specifically, their stydy 

employs four GARCH-type models, including GARCH, GJR-GARCH, EGARCH, or 

APARCH; however, those frameworks cannot capture cross-market linkages. By contrast, as 

explained in Section 4, in this paper we use a VAR-GARCH model (1,1), which enables us to 

shed light on market interactions.  

While textual analysis provides valuable insights, it has limitations, such as its reliance on a 

selected sample of news and reports. Moreover, indices as such CPU are global measures and 

therefore studies using it do not capture country-specific factors. For these reasons, the 

current study uses instead the Climate Policy Index from the Climate Change Performance 

Index (CCPI), calculated by GermanWatch, which provides a country-specific assessment of 

climate policies. Therefore, our analysis is based on country-specific indicators of climate 

change risk rather than the global metrics used in most existing studies. Thus, an important 

contribution to the literature of the present study is represented by our analysis of climate 

policy-related risks using a country-specific measure, rather than relying solely on a US-

based index. 

 

2.2 Energy Shocks  

Concerning the effects of energy price shocks, Wu et al. (2024) reported that spillovers 

between green finance and traditional energy markets peaked during periods of turmoil such 

as the 2016 oil price crash, the 2020 pandemic, and the Russia-Ukraine war, when traditional 

energy markets, particularly oil, tend to transmit more risk owing to supply uncertainty and 

regulatory pressures. Bouoiyour et al. (2023) employed wavelet decomposition to investigate 

directional causality between oil and renewable energy indices, and found strong but not 

long-lived linkages corresponding to key events such as the Paris Agreement and the 

COVID-19 pandemic. Dutta et al. (2020) and Kilian et al. (2023) analyzed oil price shocks 
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and their effects on green investments, highlighting the critical role of oil market volatility as 

one of their drivers. Finally, Ferrer et al. (2018) examined interconnectedness between clean 

energy stock prices and crude oil, and found bigger spillovers during crisis periods. Hanif et 

al. (2023) investigated connectedness between oil shocks and green stocks and showed that 

this relationship becomes stronger in the long term, particularly within the green market and 

during financial crises, including the oil crisis. Finally, Liu et al. (2020) analyzed US and 

European data and found that spillovers from fossil fuel to renewable energy stocks are 

slightly more pronounced in the US. Further, crude oil price shocks have a stronger impact 

than natural gas ones, and volatility spillovers are more sizeable in the US, especially during 

financial crises, when investor uncertainty is higher. Bulding on such studies, we make a 

second contribution to the literature by jointly considering oil crises and climate policy 

shocks at the national level, as illustrated in Table 2. 

 

 

3. Data Sources and Variables Description 

For our analysis we use weekly green and brown stock price indices obtained from Refinitiv, 

as well as several climate change indicators built by GermanWatch (2022), for five countries 

(Canada, India, Japan, the UK and the US). The model also includes two control variables, 

namely: (i) a proxy for global stock markets uncertainty, specifically changes in the Chicago 

Board Options Exchange volatility index, known as VIX, which is a measure of implied 

volatility (Zhen et al., 2025) and is calculated using option prices on the S&P 500 index; this 

allows us to control for any effects of stock market global uncertainty on the linkages 

between green and brown indices; short-term interest rates (the 3-month policy rates) to 

control for country-specific macroeconomic developments (Priya and Sharma, 2025). The 

source for both series is again Refinitiv. 1 

 As already mentioned, the selection of these countries is mainly driven by the availability of 

data on the green index and the need to ensure a comparable sample size for all of them. 

More precisely, for Japan, the US and the UK the series used is the FTSE Environmental 

Opportunity Index starting on 13 March 2009, whilst for Canada and India it is the S&P TSX 

Renewable Energy Index and the S&P BSE GREENEX respectively, the corresponding start 

dates being 2 April 2010 and 24 August 2012. In all cases the end date is 29 December 2023. 

The estimation period is set accordingly.  

                                                 
1 Given the weekly frequency of our data, it would not be feasible to include other macroeconomic variables, 

such as GDP growth or inflation, which are only available at a lower frequency. 
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For each index, the corresponding rate of return is calculated as follows: Returns𝑡 =

[(Prices𝑡 − Prices𝑡−1) / Prices𝑡−1] × 100.  

 

Please insert Table 1 about here 

 

Table 1 provides definitions of each of the green and brown stock indices considered. We 

selected the Energy Price Return Index from Refinitiv, based on the Refinitiv Business 

Classification, as our measure for brown indices. This classification system categorizes 

global companies by industry. In detail, for Canada, the index includes 64 companies; for 

India, 30 companies; for Japan, 20 companies; for the UK, 11 companies; for the US, 117 

companies. For the green stock indices, we employ instead the FTSE Environmental 

Opportunities Index Series, which evaluates the performance of global companies 

significantly involved in environmental activities, such as renewable and alternative energy, 

energy management, water infrastructure, and waste and pollution control. To qualify for 

inclusion, companies must obtain at least 20% of their revenues from environmental products 

and services. In our sample, this index is not available for Canada and India, for which we 

use instead the S&P TSX Renewable Energy Index, which tracks Canadian companies listed 

on the TSX with core activities in green technologies and sustainable infrastructure 

solutions2, and for India the S&P BSE GREENEX, which measures the performance of the 

top 25 “green” companies based on GHG emissions, market capitalization, and liquidity. 

To capture the role of climate policies, we use the Climate Change Performance Index 

(CCPI) constructed by GermanWatch (2022). This is an independent measure that evaluates 

countries' efforts in climate protection, promoting transparency in global climate policies and 

enabling cross-country comparisons (Albanese et al., 2025). The climate policy component of 

the CCPI is derived from an annual questionnaire that assesses both national and international 

policies. Experts from NGOs, universities and think tanks rate governments' performance in 

key areas on a scale from 1 (weak) to 5 (strong). The questionnaire focuses on assessing 

national and international policies related to greenhouse gas (GHG) emissions reduction, 

energy transition, and climate strategies. It specifically examines the effectiveness of national 

strategies for GHG emission reductions, the promotion of renewable energy, and energy 

sector management, with particular emphasis on the gradual phase-out of fossil fuels and 

                                                 
2 The constituents are screened by Sustainalytics, one of the world's leading providers of environmental, social, 

and governance research and analysis. 
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incentives for sustainable energy sources. The section on energy supply and renewable 

energy evaluates the implementation of policies aimed at phasing out coal, gas, and oil, as 

well as the financial support for renewable energy sources such as sustainable biofuels. Also, 

the questionnaire discusses the significance of biomass in the national energy mix, addressing 

potential environmental justice issues and impacts on ecosystems associated with its use. In 

the energy use category, the questionnaire investigates decarbonization policies for the 

transport and industrial sectors, focusing on low-emission technologies and regulations aimed 

at improving energy efficiency. Progress towards more energy-efficient buildings is also 

assessed. The questions regarding future targets concentrate on national emission reduction 

goals for 2030, compatibility with international climate agreements, and ambition relative to 

the country's capabilities, while evaluating the integration of renewable energy. The section 

on non-energy sectors explores policies related to forestry, peatlands, and agriculture, 

assessing the level of support for sustainable practices and efforts to reduce deforestation. It 

also addresses the phase-out of fossil fuels, focusing on national efforts to ban extraction and 

halt subsidies for fossil fuel production. Finally, the international performance of a country is 

analyzed in relation to its participation in climate negotiations and forums, such as the 

UNFCCC, considering both progressive and regressive actions. The questionnaire also 

examines participation in global climate initiatives and the country's position in international 

climate negotiations (GermanWatch, 2022). In this paper we use scores associated to both the 

national and international climate policy components. 

 

3.1 Dummy Variables 

To measure the impact of climate policies on stock returns, we define two sets of dummy 

variables, each including two dummies corresponding to national and international climate 

policies respectively. In the first (second) set these variables take a value of 1 when the 

climate policy score, national or international, exhibits a positive (negative) change from one 

year to the next and 0 otherwise. In addition, to capture global energy prices shocks, 

following the works of Kilian et al. (2022), Baumeister et al. (2016), and Gazzani et al. 

(2024), we introduce a fifth dummy variable which takes a value of 1 when an oil price shock 

occurs and 0 otherwise. 

To analyse the combined effects of climate policy shocks and energy shocks, we also include 

interaction dummies between them. These allow us to assess whether the simultaneous 

occurrence of the two types of shocks considered enhances or mitigates their impact on the 

dynamic linkages between green and brown assets. Table 2 specifies the periods when 
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climate policy shocks and oil price ones occurred simultaneously, with the corresponding 

interaction dummy taking a value of 1. This modelling approach provides deeper insights into 

how the interplay between policy-driven environmental changes, at country level, and 

exogenous energy market disruptions influence financial markets and asset diversification. 

 

Please insert Table 2 about here 

 

We also include a set of control variables. Global stock markets uncertainty is proxied by the 

changes in the Chicago Board Options Exchange volatility index, known as VIX, which is a 

measure of implied volatility and is calculated using option prices on the S&P 500 index (this 

series is also obtained from Refinitiv). In addition, we control for monetary policy country-

specific effects by including short-term interest rates (the 3-month policy rates). 

 

3.2 Descriptive Statistics 

Table 3 reports some descriptive statistics for all variables used in our empirical analysis. 

Green stock returns are, on average, twice as high as brown stock returns in Japan, the UK, 

and the US, whilst in Canada and India brown stocks have been more profitable. This 

suggests that investors in green assets tend to prefer more liquid markets, particularly in 

major financial centers, where green investment opportunities are more developed. On the 

contrary, in smaller financial markets such as Canada and India, green assets appear less 

attractive to financial investors, leading to a stronger demand for conventional brown stocks. 

Concerning the second moment, it can be seen that green stock returns exhibit lower 

volatility compared to brown ones in all the countries in our sample. This evidence, combined 

with the significantly higher returns observed in Japan, the UK, and the US, highlights the 

important role of green stocks in portfolio diversification and profit-making strategies, 

particularly in well-established financial markets.  

 

4.   Empirical Model 

In this section, we describe the multivariate setup we use to estimate simultaneously the first 

and second moments of green and brown stock returns as well as the corresponding spillovers 

within each country. We model the joint process governing green and brown stock returns 

using a bi-variate BEKK-GARCH(1,1) framework based on the representation  proposed by 

.Engle and Kroner (1995). The choice of this model is motivated by the properties of its 

functional form. In particular, it is a multivariate framework which allows to examine mean 
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and volatility transmission across markets, while ensuring the positive definiteness of the 

associated variance–covariance matrix. In its most general specification, the model takes the 

following form: 

xt = α + βxt-1 + zt-1 + ut                                                                                                (1) 

where xt = (Green Stock Returnst, Brown Stock Returnst). The parameter vectors of the mean 

equation (1) are the constant α= (α11, α22) and the autoregressive term β = (β11, β12 + β*12 | β21 

+ β*21, β22), xt-1 is the corresponding vector of lagged returns, 3 and zt-1 = = (IR t-1-,VIX t-1) is a 

vector containing the 3-month policy rate, to capture country-specific macroeconomic effects, 

as well as the VIX to control for global financial uncertainty.  

To account for the potential effect of climate policies and/or energy shocks, we include, in 

turn, the dummy variables, discussed in section 3.1, and denoted by *. The residual vector ut 

is bivariate and normally distributed ut | It-1 ~ (0, Ht) with its conditional variance-covariance 

matrix given by: 

                                            𝐻𝑡 = [
h11,t h12,t

h21,t h22,t
]                                                                   (2) 

The parameter matrices for the variance equation (2) are defined as 𝐶, which is restricted to 

be upper triangular, and two unrestricted matrices, 𝐴11  and 𝐺11, whose elements are the a and 

g coefficients, respectively. Therefore, the second moment will take the following form: 

𝐻𝑡 = 𝐶′𝐶 + 𝐴′
11 [

𝑢1,𝑡−1
2 𝑢1,𝑡−1𝑢2,𝑡−1

𝑢2,𝑡−1𝑢1,𝑡−1 𝑢2,𝑡−1
2 ] 𝐴11 + 𝐺′

11𝐻𝑡−1𝐺11,                                    (3)                                                  

where 

𝐴′11 = [
𝑎11 𝑎12 + 𝑎12 ∗

𝑎21 + 𝑎21 ∗ 𝑎22
]

′

;  𝐺′11 = [
𝑔11 𝑔21 + 𝑔12 ∗

𝑔21 + 𝑔21 ∗ 𝑔22
]

′

 . 

Equation (3) models the dynamic process of Ht as a linear function of its own past values Ht-1 

and past values of the innovations (u1,t-1, u2,t-1), allowing for own-market and cross-market 

influences in the conditional variances. The off-diagonal parameters in the latter two matrices 

                                                 
3 Note that the dummy variables are used to model shifts in the cross-parameters only, not in the autoregressive 

terms. 
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capture the volatility spillovers (causality-in-variance) among the two indices under 

investigation. Given a sample of T observations, a vector of unknown parameters4 θ, and a 2 

 1 vector of variables xt, the conditional density function for the model (1)−(2) is: 

ƒ(xt | It-1; θ) = (2π)-1 |Ht|-1/2 exp(−[ut′ (Ht
-1) u t] / 2)                                                                (4) 

The log-likelihood function is: 

Log-Lik = t=1
T log ƒ (xt | It-1; θ)                                                                                              (5) 

 

In recent years, other types of models have also been used to investigate cross-country co-

movements. Among those, copula models have become increasingly popular. A 

comprehensive discussion of the pros and cons of using them rather than DCC and GARCH 

models can be found in Al Rahahleh and Bhatti (2017), Nguyen et al. (2017) and Bhatti and 

Do (2019). Given the nature of our research question and the relatively small number of 

variables considered, we have chosen to estimate reduced-form VAR models including a 

GARCH component because of their suitability to analyse both co-movement and spillover 

effects within the same econometric framework. Furthermore, the adopted BEKK 

representation guarantees by construction the positive-definiteness of the variance-covariance 

matrix. 

 

4.1 Hypotheses Tested 

We examine mean and volatility spillovers, as well as possible shifts in the cross parameters, 

by incorporating dummy variables into the model specification (see Section 3). Specifically, 

we test the following null hypotheses: 

 

Test for No Structural Shifts in the Conditional Mean and Variance 

𝐻01: No shift in the conditional mean: 𝑎11
∗ = 𝑎22

∗ =0 

𝐻02: No shift in the conditional variance: 𝑐11
∗  = 𝑐22

∗  = 0 

Test for No Mean Spillovers Between Green and Brown Stock Returns 

𝐻03: No mean spillovers between green and brown stock returns: 𝛽12=𝛽21= 0 

𝐻04: No mean spillovers between green and brown stock returns as a result of 

exogenous shocks (climate policy and/or oil): 𝛽12
∗ = 𝛽21

∗ = 0 

                                                 
4 Standard errors (SE) are calculated using the quasi-maximum likelihood method of Bollerslev and Wooldridge 

(1992), which is robust to the distribution of the underlying residuals.  
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Test for No Volatility Spillovers Between Green and Brown Stock Returns 

𝐻05: No volatility spillovers between stock returns: 𝑎12=𝑎21= 0 

𝐻06: No volatility spillovers between stock returns as a result of exogenous shocks 

(climate policy and/or oil): 𝑎12
∗  = 𝑎21

∗ = 0 

 

Testing empirically these hypotheses allows us to assess the extent to which market linkages 

and risk transmission between green and brown assets are influenced by country-specific 

climate change shocks and global energy shocks. 

 

5. Empirical Results  

We determine the optimal lag length for the mean equation using the Schwarz Information 

Criterion, which suggests that only one lag should be included in all cases. To assess the 

adequacy of the models, we conduct Ljung–Box portmanteau tests on the standardized 

residuals. The pairwise estimates of the dependence between green and brown indices in both 

the conditional mean and variance exhibit variations in both size and direction. The estimated 

GARCH(1,1)-BEKK models with the associated robust p-values and likelihood function 

values are presented in Tables 4-8. Given the extensive set of results presented, we focus only 

on the most relevant coefficients in our discussion. 

 

Please insert Tables 4 to 8 about here 

 

The model specification allows us to explore the shift in the conditional mean value and 

conditional variance, and causality in mean and in variance between green and brown stock 

returns. The main findings emerging from Tables 4 to 8 can be summarized as follows. 

First, we reject the null hypothesis (𝐻01) of no shift in the conditional mean in some cases. 

Specifically, we find a shift in green stock returns in Japan corresponding to positive changes 

in national climate policy scores (𝑎11
∗ = -0.44), in the UK during periods associated to energy 

shocks (𝑎11
∗ = -0.88) and in Canada when negative changes in the national climate policy 

score interact with oil shocks (𝑎11
∗ = 0.97). Furthermore, there is a positive shift in the 

conditional mean of brown stock returns corresponding to negative changes in the national 

climate policy score in the UK (𝑎22
∗ = 0.44), an a negative shift in India and the US when 

positive changes in the international climate policy score interact with energy shocks (𝑎22
∗ = -

3.15 and 𝑎22
∗ = -0.60, respectively). 
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The shift in the conditional variance (𝐻02) instead is more pronounced and occurs in both 

green and brown stock returns in several cases. Specifically, we find it in Canada in 

correspondence with positive changes in the international climate policy score (𝑐11
∗ =0.59 and 

𝑐22
∗ =1.31, respectively), in Japan when there is a significant interaction between negative 

changes in the international climate policy score and energy shocks (𝑐11
∗ =1.12), and in India 

for brown stock returns when positive changes in the national climate policy score interact 

with energy shocks (𝑐11
∗ =-0.22).  

When climate policies and energy shocks are not accounted for, causality-in-mean and 

causality-in-variance are observed; concerning the former, the mean spillovers run from 

brown to green stock returns in India and in the US and volatility spillovers in the same 

direction in Japan (𝑎12= -0.31), and in the UK (𝑎12= 0.12). As for spillovers from green to 

brown stock returns, the mean equation provides supporting evidence only in the case of 

Japan (𝛽21= 0.27), but not for Canada, India, Japan and the US. Therefore, for Japan we 

reject the null hypothesis of no spillovers between green and brown stock returns (𝐻03). 

Conversely, we reject the null hypothesis of spillovers in the conditional volatility (𝐻05) for 

India (𝑎21=0.28), Japan (𝑎21=0.08), and the US (𝑎21=0.18). Therefore, on the whole we find 

statistically significant spillover effects in the second moment regardless of the inclusion of 

the climate policies and energy shock dummies, whereas the mean spillovers appear to be 

significant only for the UK. Finally, in general the exogenous control variables are 

statistically significant. In particular, the estimated coefficients indicate that monetary policy, 

measured by the domestic 3-month policy rate, has a negative effect on asset returns, as one 

would expect. By contrast, global financial markets uncertainty, measured by the VIX, tends 

to affect negatively brown stock returns but positively green ones, though not in all cases. 

These differences in the behaviour of green vis-a-vis brown stock returns make them a 

possible hedge during periods of heightened uncertainty to mitigate exposure to market 

turbulence. 

 

5.1 Climate Policy Shocks 

As mentioned before, the impact of climate policy shocks is measured using four 

appropriately defined dummies for the cases of positive and negative changes in the national 

and international scores respectively. The null hypothesis (𝐻04) of no mean spillovers 

between green and brown stock returns resulting from those shocks is rejected for the UK 

(𝛽12
∗ = 0.12), and the US (𝛽12

∗ = -0.07). Specifically, in the case of a positive national climate 
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policy shock spillovers are positive in the UK (Table 7), but negative in the US (Table 8). 

The corresponding spillovers are negative in Japan, but positive in response to a negative 

policy shock (Table 6).  

As for the volatility spillovers, we find that in the UK and the US these run from brown to 

green stock returns in correspondence with increases in the international climate policy score 

(𝑎12
∗ = -0.29; 𝑎12

∗ = -0.32, and 𝑎12
∗ = 0.67, respectively). They also run from green to brown 

stock returns in the US when there is a positive change in the national climate policy score 

(𝑎21
∗ = 0.11). The latter findings are consistent with those of Banerjee et al. (2024), who 

detected volatility spillovers varying in both sign and magnitude in response to economic 

shocks.  

 

5.2 Energy Shocks 

The second set of exogenous shocks, also modelled using dummy variables, captures energy 

price uncertainty as identified by Kilian et al. (2022), Baumeister et al. (2016), and Gazzani 

et al. (2024). The conditional mean equation results are largely insignificant except for a 

negative spillover from green to brown stock returns in Canada (𝛽21
∗ = -0.24), whereas there 

is evidence of significant bi-directional volatility spillovers in the case of Japan (𝑎12
∗ =1.14 

and 𝑎21
∗ =0.43). In all other cases, we fail to reject the null hypothesis (𝐻06), which implies 

that there are no significant shifts in volatility spillovers due to energy shocks. 

 

5.3 Interaction between Climate Policy and Energy Price Shocks 

The previous evidence concerning shifts in mean and volatility spillovers, following climate 

policy and energy shocks examined separately, is somewhat mixed. However, the 

introduction of interaction dummies produces a different scenario (Tables 4 to 8). 

Specifically, mean spillovers from brown to green stock returns are now found in all 

countries under examination except the US. In Canada, these are negative and significant in 

response to positive international climate policy and energy shocks (𝛽12
∗ =  −0.62), whereas 

in the UK they are negative in correspondence to negative national climate policy shocks 

(𝛽12
∗ =  −0.43). In India, positive spillovers are detected when positive international climate 

policy shocks occur (𝛽12
∗ = 0.08), while in Japan significant positive spillovers are observed 

in the case of negative national and international climate policy shocks (𝛽12
∗ =0.27 and 

𝛽12
∗ =0.33, respectively).  
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There is also evidence of mean spillovers from green to brown stock returns, which are 

always negative. In Canada, for instance, in response to negative international climate policy 

and energy shocks, the links between the two markets become much weaker (𝛽21
∗ = -0.44), 

which is in line with the findings of Athari et al. (2024), who argue that fluctuations in oil 

prices significantly affect green energy companies. A similar pattern emerges for the UK, as 

shown in Table 7, and India when the latter is hit by positive international climate policy 

shocks (𝛽21
∗ = -0.82 and 𝛽21

∗ = -0.79). 

Volatility spillovers are generally more sizeable and statistically significant. They run from 

brown to green stock returns in Canada when negative national and international climate 

policy shocks occur (𝑎12
∗ =0.91 and 𝑎12

∗ =0.60, respectively). Similar results are found for 

Japan (𝑎12
∗ =0.74 and 𝑎12

∗ =0.90)  and the US, where spillovers are significant only in response 

to negative national climate policy and energy shocks (𝑎12
∗ =0.52). In a related study Bouri 

(2023) also reported that the total connectedness index for volatility exhibits significant 

spikes during the oil price crash from mid-2014 to January 2016 and the COVID-19 

pandemic, with green stock indices typically being net volatility transmitters throughout the 

sample period. 

Volatility spillovers from green to brown stock returns are generally significant. In India they 

shift in the presence of positive national and international climate policy shocks (𝑎21
∗ = 0.14 

and 𝑎21
∗ =0.20, respectively). In Japan, they result from the interaction between positive 

international climate policies and oil price shocks (𝑎21
∗ =-0.41), and in UK and Canada from 

the interaction between negative national climate policy and oil price shocks (𝑎21
∗ = −0.95 

and 𝑎21
∗ = 0.37, respectively). There is also a similar pattern in the US (𝑎21

∗ = 0.12). These 

findings are in line with those of Guo et al. (2024), who reported that cross-country risk 

spillovers fluctuate over time since they are highly sensitive to major climate actions and 

financial shocks. 

Please insert Figures 1 and 2 about here 

 

Finally, Figure 1 and 2 display the green and brown stock return series, their conditional 

correlations and the dummy variable for the interaction between negative national climate 

policy and energy shocks. The predominantly positive correlations suggest that green and 

brown stocks tend to move in the same direction over the years, with some exceptions. In the 

case of Canada, for instance, the conditional correlation exhibits significant variability, 

frequently oscillating between negative and positive values, with more stable periods around 
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2015 and 2020. India and the UK stand out since their green and brown stock returns 

correlations are always positive over the period analyzed. In the case of the US, they are 

generally high and predominantly positive before 2018, but drop almost to zero in 2020. In 

Japan, the UK and the US they are lower post-2020 (Figure 2). This suggests that in recent 

years green assets could have been used as a hedge against market turbulence, in line with the 

findings of Farid et al. (2023). 

On the whole, the results indicate that effective climate policies, especially at the national 

level, can mitigate volatility spillovers and encourage stable investments in green markets. 

Regarding individual countries, Canada appears to be particularly exposed to energy shocks, 

which makes diversification across green and brown sectors essential.  

With Canada’s strong focus on hydro and wind power, long-term investments in renewable 

energy stocks could provide stable returns (Chen et al., 2023). In India, the responsiveness of 

brown stocks to positive climate policy shocks offers opportunities for short-term gains (Basu 

et al., 2023). However, with coal dominating the energy landscape, green investments are 

critical for long-term portfolio stability, especially as the country ramps up its renewable 

energy capacity. Investors in the Japanese markets appear to have benefited from the nation’s 

decarbonization initiatives, which have strengthened the performance of green stocks in 

response to positive national as well as international climate policy shocks. However, as 

noted by Paramati et al. (2017), the Japanese economy is still strongly reliant on brown 

energy. In the UK, positive climate policy shocks enhance spillovers from brown to green 

stocks, which reflects a commitment to a well-defined framework for the transition to a low-

carbon economy, as noted by Shah et al. (2018). Finally, in the US the lack of a consistent 

climate policy framework (Shah et al., 2018) appears to increase significantly volatility, 

especially in the case of brown stocks (Chen et al., 2025).  

 

6. Conclusions 

This paper provides comprehensive evidence on the behaviour of brown and green stock 

returns in response to both climate policy and energy shocks in five major economies, namely 

Canada, India, Japan, the UK and the US, with the sample start dates ranging from 13 March 

2009 to 24 August 2012 and the end date being 29 December 2023 in all cases, the sample 

selection being driven by data availability on country-specific green energy indices. More 

specifically, a VAR-GARCH-BEKK framework is used to estimate simultaneously bivariate 

mean and volatility spillovers and the effects on those dynamic linkages of both (national and 

international) climate policy and energy shocks, which are modelled using dummy variables 
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and are also allowed to interact. The former are measured using indices produced by 

GermanWatch, whilst the latter are captured using oil prices.  

The findings reveal strong dynamic linkages between green and brown stock returns, which 

are significantly influenced by exogenous shocks, and expecially by the interaction between 

climate policy and oil price shocks, these effects varying across countries. The conditional 

correlations between stock returns are predominantly positive but appear to have turned 

negative in recent years. The detected dynamic linkages between green and brown stock 

markets highlight the need for diversified investment strategies that incorporate both asset 

types to mitigate risks arising from energy price uncertainty and climate policy shocks. In 

particular, our findings suggest that: i) investors should adopt region-specific strategies to 

optimize their portfolios; the reason is that long-term investments in renewables may offer 

superior returns in markets, such as the UK and Japan, where climate policies appear to have 

a stronger influence on green asset performance; by contrast, in oil-dependent economies, 

such as Canada, brown stocks may remain more resilient to energy shocks; and ii) 

international investors and asset managers can benefit from forward-looking climate risk 

assessments to identify opportunities in regions where green investments are actively 

promoted by policy interventions. These insights can guide capital allocation towards 

sustainable assets while managing exposure to conventional markets to balance risk-return 

trade-offs. 

Policymakers clearly also play a crucial role in shaping the investment landscape by 

implementing measures that facilitate green market development and enhance financial 

stability. Governments should introduce incentives such as green bonds, tax breaks, and 

subsidies to encourage investment in sustainable sectors. and focus on transparent and stable 

regulatory environments that provide clear long-term signals to investors. Strategic 

investment in green infrastructure, coupled with retraining programmes for fossil fuel-

dependent industries, can facilitate a smoother transition to a low-carbon economy. Finally, 

given the international nature of climate risks and financial markets, coordinated efforts 

among policymakers can enhance global green investment opportunities. Establishing 

regional climate investment funds and harmonizing carbon pricing mechanisms can improve 

capital flow into sustainable sectors. 

On the whole, this study makes a novel contribution to the understanding of the linkages 

between climate risks, crude oil shocks, and the dynamics of green and brown stock returns. 

However, its limitations should be acknowledged. In particular, data availability constraints 

meant that the analysis could only be carried out for a limited set of countries. Furthermore, 
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the low frequency of the climate policy indices implies that the analysis cannot shed light on 

the impact of short-term fluctuations in transition climate risk. Future research could also 

yield additional insights by using sectoral data to uncover industry-specific patterns, and by 

investigating the role of emerging technologies, such as carbon capture and storage or 

renewable energy innovations, as a driver of stock market spillover dynamics.  
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Table 1. Brown and Green Stock Indices Definitions 

 
Country Brown index Definition Green Index Definition 

Canada Canada Energy 

Price Stocks 

Index  

Composed of 64 companies 

across sectors like uranium 

mining, oil services, natural gas 

exploration, oil refining, and 

unconventional oil production. 

 

S&P/TSX 

Renewable 

Energy and Clean 

Technology Index  

Measures companies 

focused on green 

technologies and 

sustainable 

infrastructure solutions, 

screened by 

Sustainalytics. 

 

India 

 

 

 

 

  

India Energy 

Price Stocks 

Index 

Includes 30 companies in sectors 

such as oil drilling, petroleum 

refining, wind systems, coal 

mining, and LNG transportation. 

S&P BSE 

GREENEX 

Tracks the performance 

of the top 25 "green" 

companies based on 

GHG emissions, market 

capitalization, and 

liquidity. 

Japan Japan Energy 

Price Stocks 

Index  

Comprises 20 companies, 

including coal wholesale, 

petroleum refining, and oil-

related services. 

 

FTSE 

Environmental 

Opportunities  

It measures global 

companies significantly 

involved in renewable 

energy, pollution 

control, energy 

efficiency and water 

infrastructure. 

 

United 

Kingdom 

U.K. Energy Price 

Stocks Index  

Consists of 11 companies in oil 

exploration, integrated oil and gas 

services, and stationary fuel cells. 

 

FTSE 

Environmental 

Opportunities 

 

 

United 

States 

U.S. Energy Price 

Stocks Index  

Tracks 117 companies in sectors 

such as uranium, coal, oil 

exploration, and renewable 

energy services. 

 

FTSE 

Environmental 

Opportunities  

Notes: The source for all indices is Refinitiv. 
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Table 2. Climate Policy and Oil Price Shocks - Interaction Dummies 

Country National pos. + Oil National neg. + Oil 
International pos. 

+ Oil 

International neg. 

+ Oil 

Canada 30/05/2014 to 19/12/2014; 

17/06/2016; 23/03/2018; 

24/09/2021 to 22/10/2021 

21/05/2010; 29/07/2011 

to 09/09/2011; 

25/05/2012; 17/05/2019 

to 24/05/2019; 

02/08/2019; 14/02/2020; 

29/05/2020; 25/02/2022 

to 25/03/2022 

29/07/2011 to 

05/08/2011; 09/09/2011; 

17/06/2016; 23/03/2018; 

25/02/2022 to 

25/03/2022 

25/05/2012; 30/05/2014 

to 19/12/2014; 

17/05/2019 to 

24/05/2019; 02/08/2019; 

14/02/2020; 29/05/2020; 

24/09/2021 to 

22/10/2021 

India 17/06/2016; 17/05/2019 to 

24/05/2019; 02/08/2019; 

14/02/2020; 29/05/2020 

30/05/2014 to 

19/12/2014; 23/03/2018; 

24/09/2021 to 

22/10/2021; 25/02/2022 

to 25/03/2022 

17/06/2016; 23/03/2018; 

14/02/2020; 29/05/2020; 

25/02/2022 to 

25/03/2022 

30/05/2014 to 

19/12/2014; 17/05/2019 

to 24/05/2019; 

02/08/2019; 24/09/2021 

to 22/10/2021 

Japan 17/04/2009; 28/05/2010; 

05/08/2011; 16/09/2011; 

01/06/2012; 30/03/2018; 

24/05/2019 to 31/05/2019; 

01/10/2021 to 29/10/2021; 

04/03/2022 to 01/04/2022 

06/06/2014 to 

26/12/2014;  

24/06/2016; 2102/2020; 

05/06/2020 

28/05/2010; 24/05/2019 

to 31/05/2019; 

09/08/2019; 01/10/2021 

to 29/10/2021; 

04/03/2022 to 

01/04/2022 

17/04/2009; 05/08/2011 

to 12/08/2011; 

16/09/2011; 01/06/2012; 

06/06/2014 to 

26/12/2014; 

24/06/2016/; 

30/03/2018; 21/02/2020; 

05/06/2020 

United Kingdom 21/05/2010; 25/05/2012; 

30/05/2014 to 19/12/2014; 

17/06/2016; 23/03/2018; 

17/05/2019 to 24/05/2019; 

14/02/2020; 29/05/2020; 

19/05/2020; 25/02/20222 to 

25/03/2022 

29/07/2011 to 

05/08/2011; 09/09/2011; 

24/09/2021 to 

22/10/2021 

21/05/2010; 25/05/2012; 

30/05/2014 to 

19/12/2014; 17/06/2016; 

23/03/2018; 17/05/2019 

to 24/05/2019; 

02/08/2019; 25/02/2022 

to 25/03/2022 

29/07/2011 to 

05/08/2011; 09/09/2011; 

24/09/2021 to 

22/10/2021 

United States 10/09/2010; 18/11/2011 to 

25/11/2011; 30/12/2011; 

14/09/2012; 07/10/2016; 

14/01/2022 to 11/02/2022; 

17/06/2022 to 15/07/2022 

19/09/2014 to 

10/04/2015; 13/07/2018; 

05/06/2020; 18/09/2020  

31/07/2009; 10/09/2010; 

14/09/2012; 19/09/2014 

to 10/04/2015; 

07/10/2016 

18/11/2011 to 

25/11/2011; 30/12/2011  

Note: The reported dates correspond to periods when climate policy shocks and oil price shocks were observed. Climate 

policy shocks are identified using the CCPI index, while oil price shocks are based on Kilian et al. (2022), Baumeister et al. 

(2016), and Gazzani et al. (2024). These shocks are represented by a value of 1 when they occur and 0 otherwise. 
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Table 3. Descriptive Statistics 

 

Notes: for Japan, the US and the UK the green index used is the FTSE Environmental Opportunity Index starting on 13 

March 2009, whilst for Canada and India it is the S&P TSX Renewable Energy Index and the S&P BSE GREENEX 

respectively, the corresponding start dates being 2 April 2010 and 24 August 2012. In all cases the end date is 29 December 

2023. The sample period is set accordingly for all series. 

 

 

 

 

 

 

 

 

Country 
 

Green Brown Interest Rate 

Canada Mean 0.05 0.09 1.13 

 S.D. 2.46 3.26 1.19 

 Min. -15.77 -26.16 0.03 

 Max. 11.97 13.56 5.16 

 Obs. 717 717 717 

India Mean 0.20 0.30 6.40 

 S.D. 2.01 3.28 1.86 

 Min. -11.09 -17.35 3 

 Max. 14.40 14.84 11.75 

 Obs. 592 592 592 

Japan Mean 0.24 0.12 -0.04 

 S.D. 2.95 3.46 0.14 

 Min. -13.73 -20.21 -0.47 

 Max. 13.90 15.31 0.28 

 Obs. 772 772 772 

United Kingdom Mean 0.19 0.11 0.80 

 S.D. 2.20 3.58 1.18 

 Min. -14.01 -29.77 -0.09 

 Max. 10.86 18.59 5.58 

 Obs. 757 757 757 

United States Mean 0.29 0.15 0.91 

 S.D. 2.76 3.76 1.45 

 Min. -17.68 -24.31 -0.05 

 Max. 15.37 15.48 5.51 

 Obs. 772 772 772 

     

Global Control Variable  VIX 

 Mean 18.90 

 S.D. 7.31 

 Min. 9.14 

 Max. 66.04 

 Obs. 772 
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Table 4. Estimated GARCH(1,1)-BEKK models for Canada 

 
Benchmark Energy 

shock 
Climate policy shocks  

Oil and Climate Policy Shocks 

Interaction 

 

 
 Nat. 

Pos. 

Nat. 

Neg 
Int. Pos. Int Neg.  

Oil + 

Nat. 

Pos. 

Oil + 

Nat. 

Neg 

Oil + 

Int. 

Pos. 

Oil + 

Int. 

Neg 

 Conditional mean equation 

𝒂𝟏𝟏 
-0.03 

(0.878) 

-0.01 

(0.980) 

-0.16 

(0.666) 

-0.02 

(0.929) 

-0.02 

(0.929) 

-0.02 

(0.923) 
 

-0.00 

(0.990) 

0.12 

(0.556) 

0.11 

(0.579) 

-0.02 

(0.898) 

𝒂𝟏𝟏
∗  - 

0.01 

(0.959) 

0.14 

(0.315) 

-0.14 

(0.372) 

-0.13 

(0.372) 

0.15 

(0.201) 
 

-0.11 

(0.574) 

0.97 

(0.003) 

0.25 

(0.541) 

0.06 

(0.755) 

𝜷𝟏𝟏 0.01 

(0.532) 

0.00 

(0.868) 

0.02 

(0.742) 

0.02 

(0.623) 

0.02 

(0.623) 

0.02 

(0.597) 
 

0.01 

(0.848) 

0.01 

(0.633) 

0.03 

(0.408) 

0.02 

(0.616) 

𝜷𝟏𝟐 0.02 

(0.532) 

0.01 

(0.809) 

-0.00 

(0.928) 

0.04 

(0.259) 

0.04 

(0.259) 

-0.00 

(0.917) 
 

0.01 

(0.625) 

0.01 

(0.713) 

0.00 

(0.948) 

0.01 

(0.608) 

𝜷𝟏𝟐
∗  - 

0.03 

(0.686) 

0.04 

(0.395) 

-0.03 

(0.376) 

-0.04 

(0.376) 

0.03 

(0.365) 
 

0.01 

(0.853) 

0.16 

(0.253) 

0.18 

(0.263) 

-0.04 

(0.566) 

IR -0.12 

(0.108) 

-0.12 

(0.098) 

-0.18 

(0.023) 

-0.17 

(0.023) 

-0.18 

(0.022) 

-0.17 

(0.002) 
 

-0.13 

(0.597) 

-0.19 

(0.008) 

-0.19 

(0.011) 

-0.13 

(0.028) 

VIX 0.02 

(0.146) 

0.02 

(0.404) 

0.02 

(0.175) 

0.02 

(0.121) 

0.02 

(0.121) 

0.01 

(0.245) 
 

0.02 

(0.146) 

0.01 

(0.351) 

0.01 

(0.245) 

0.02 

(0.136) 

 
           

𝒂𝟐𝟐 -0.52 

(0.093) 

-0.43 

(0.414) 

-1.10 

(0.007) 

-0.75 

(0.012) 

-0.75 

(0.012) 

-0.52 

(0.067) 
 

-0.48 

(0.125) 

-0.56 

(0.061) 

-0.62 

(0.037) 

-0.50 

(0.096) 

𝒂𝟐𝟐
∗  - 

-0.09 

(0.829) 

0.35 

(0.045) 

-0.35 

(0.099) 

0.03 

(0.591) 

0.11 

(0.476) 
 

0.10 

(0.762) 

-0.26 

(0.637) 

0.75 

(0.263) 

0.00 

(0.991) 

𝜷𝟐𝟐 0.04 

(0.258) 

0.05 

(0.279) 

0.04 

(0.208) 

0.05 

(0.175) 

0.05 

(0.175) 

0.03 

(0.236) 
 

0.05 

(0.149) 

0.05 

(0.106) 

0.05 

(0.156) 

0.04 

(0.140) 

𝜷𝟐𝟏 0.06 

(0.265) 

0.07 

(0.241) 

0.08 

(0.348) 

0.03 

(0.590) 

0.03 

(0.590) 

0.05 

(0.555) 
 

0.07 

(0.147) 

0.03 

(0.546) 

0.01 

(0.821) 

0.07 

(0.145) 

𝜷𝟐𝟏
∗  - 

-0.24 

(0.045) 

-0.05 

(0.627) 

0.05 

(0.626) 

0.04 

(0.626) 

0.04 

(0.648) 
 

-0.28 

(0.142) 

0.02 

(0.905) 

0.22 

(0.295) 

-0.44 

(0.019) 

IR -0.02 

(0.718) 

-0.01 

(0.889) 

-0.05 

(0.565) 

-0.04 

(0.572) 

-0.05 

(0.572) 

-0.01 

(0.821) 
 

-0.02 

(0.616) 

-0.03 

(0.662) 

-0.02 

(0.832) 

-0.02 

(0.723) 

VIX 0.04 

(0.065) 

0.03 

(0.335) 

-0.06 

(0.002) 

0.06 

(0.001) 

0.06 

(0.001) 

0.03 

(0.084) 
 

0.03 

(0.091) 

-0.05 

(0.025) 

-0.04 

(0.011) 

-0.04 

(0.045) 

 Conditional variance equation 

𝒄𝟏𝟏 -0.18 

(0.002) 

0.07 

(0.961) 

0.76 

(0.008) 

0.32 

(0.040) 

0.39 

(0.040) 

-0.00 

(0.998) 
 

0.16 

(0.144) 

0.37 

(0.004) 

0.32 

(0.079) 

0.19 

(0.019) 

𝒄𝟏𝟏
∗  - 

-0.35 

(0.765) 

-0.37 

(0.103) 

0.37 

(0.087) 

0.37 

(0.087) 

0.14 

(0.304) 
 

-0.39 

(0.222) 

-0.37 

(0.016) 

-0.33 

(0.103) 

-0.19 

(0.045) 

𝒈𝟏𝟏 -0.92 

(0.000) 

0.92 

(0.000) 

0.90 

(0.000) 

0.90 

(0.000) 

0.94 

(0.000) 

-0.42 

(0.000) 
 

0.91 

(0.000) 

0.94 

(0.000) 

0.96 

(0.000) 

0.90 

(0.000) 

𝒈𝟏𝟐 -0.09 

(0.000) 

-0.10 

(0.113) 

0.32 

(0.000) 

0.17 

(0.082) 

0.16 

(0.082) 

0.94 

(0.000) 
 

-0.10 

(0.000) 

0.23 

(0.000) 

0.29 

(0.000) 

-0.09 

(0.000) 

𝒈𝟏𝟐
∗  - 

0.10 

(0.711) 

-0.16 

(0.120) 

0.16 

(0.124) 

0.16 

(0.124) 

-0.12 

(0.000) 
 

0.26 

(0.000) 

-0.61 

(0.018) 

-0.71 

(0.000) 

-0.08 

(0.107) 

𝒂𝟏𝟏 0.39 

(0.000) 

0.38 

(0.000) 

0.43 

(0.000) 

0.49 

(0.000) 

0.49 

(0.000) 

0.18 

(0.000) 
 

0.39 

(0.000) 

0.38 

(0.000) 

0.39 

(0.000) 

0.41 

(0.000) 

𝒂𝟏𝟐 -0.10 

(0.000) 

0.35 

(0.051) 

-0.10 

(0.493) 

0.02 

(0.006) 

0.03 

(0.854) 

0.48 

(0.000) 
 

0.36 

(0.000) 

-0.15 

(0.138) 

-0.19 

(0.055) 

0.29 

(0.000) 

𝒂𝟏𝟐
∗  - 

-0.02 

(0.974) 

0.13 

(0.434) 

0.16 

(0.124) 

-0.13 

(0.448) 

0.07 

(0.191) 
 

-0.41 

(0.036) 

0.91 

(0.009) 

0.63 

(0.006) 

0.60 

(0.013) 

𝒄𝟐𝟐 0.59 

(0.000) 

-0.49 

(0.283) 

0.30 

(0.841) 

0.86 

(0.000) 

0.86 

(0.000) 

0.85 

(0.000) 
 

0.49 

(0.001) 

0.66 

(0.001) 

0.68 

(0.000) 

0.56 

(0.005) 

𝒄𝟐𝟐
∗  - 

0.04 

(0.962) 

0.57 

(0.695) 

-0.56 

(0.690) 

-0.56 

(0.690) 

-0.27 

(0.413) 
 

-0.48 

(0.023) 

-0.70 

(0.013) 

-0.72 

(0.002) 

0.07 

(0.833) 

𝒄𝟐𝟏 0.37 

(0.000) 

-0.42 

(0.167) 

0.7 

(0.728) 

0.07 

(0.735) 

0.07 

(0.735) 

0.29 

(0.000) 
 

0.40 

(0.000) 

-0.05 

(0.734) 

-0.09 

(0.607) 

0.40 

(0.000) 

𝒈𝟐𝟐 0.92 

(0.000) 

0.93 

(0.000) 

0.82 

(0.000) 

0.82 

(0.000) 

0.82 

(0.000) 

0.31 

(0.000) 
 

0.93 

(0.000) 

0.83 

(0.000) 

0.79 

(0.000) 

0.94 

(0.000) 

𝒈𝟐𝟏 -0.02 

(0.035) 

-0.01 

(0.583) 

-0.08 

(0.027) 

-0.07 

(0.148) 

-0.07 

(0.148) 

0.76 

(0.000) 
 

-0.01 

(0.167) 

-0.06 

(0.000) 

-0.08 

(0.000) 

-0.03 

(0.238) 

𝒈𝟐𝟏
∗  - 

-0.02 

(0.257) 

0.01 

(0.681) 

-0.01 

(0.689) 

-0.01 

(0.689) 

0.11 

(0.000) 
 

0.04 

(0.111) 

-0.06 

(0.480) 

-0.00 

(0.954) 

0.02 

(0.292) 

𝒂𝟐𝟐 0.23 

(0.000) 

0.22 

(0.031) 

0.28 

(0.000) 

0.29 

(0.006) 

0.29 

(0.006) 

0.11 

(0.001) 
 

0.21 

(0.000) 

0.33 

(0.000) 

0.35 

(0.000) 

0.20 

(0.000) 

𝒂𝟐𝟏 0.01 

(0.064) 

0.01 

(0.882) 

-0.04 

(0.662) 

-0.00 

(0.908) 

-0.00 

(0.908) 

0.11 

(0.000) 
 

-0.00 

(0.977) 

0.03 

(0.507) 

0.04 

(0.430) 

0.02 

(0.573) 

𝒂𝟐𝟏
∗  - 

0.02 

(0.882) 

0.03 

(0.722) 

-0.01 

(0.689) 

-0.03 

(0.716) 

-0.00 

(0.983) 
 

-0.08 

(0.278) 

0.37 

(0.008) 

0.20 

(0.181) 

0.11 

(0.057) 

            

LogLik 3218.47 3212.53 3227.05 3227.05 3227.05 3216.61  3209.99 3223.87 3226.43 3212.34 

𝑳𝑩𝑮𝒓𝒆𝒆𝒏(𝟕) 
8.41 

(0.297) 

8.89 

(0.260) 

8.78 

(0.268) 

8.78 

(0.268) 

7.68 

(0.361) 

7.58 

(0.371) 
 

8.15 

(0.319) 

7.56 

(0.372) 

7.56 

(0.372) 

8.45 

(0.294) 

𝑳𝑩𝑩𝒓𝒐𝒘𝒏(𝟕) 
8.40 

(0.297) 

 

8.84 

(0.355) 

 

7.51 

(0.377) 

 

7.51 

(0.377) 

 

8.67 

(0.276) 

 

8.86 

(0.262) 

 

 

8.04 

(0.328) 

 

8.15 

(0.318) 

 

8.34 

(0.303) 

 

8.71 

(0.274) 

 

Notes: Statistically significant parameters at 5% are shown in bold. Parameters 𝛽12 and 𝑎12 measure the spillover effect of 

brown on green stock returns and brown on green stock returns volatility, respectively. Whereas, 𝛽21 and 𝑎21 capture the 

spillover effect of green on brown stock returns and brown on green stock returns volatility, respectively. The asterisk (*) 

denotes dummy variables corresponding to each climate policy shock (national and international; positive and negative), 

energy (oil) shocks, and their respective interactions. Standard errors (in brackets) are computed using the quasi-maximum 

likelihood method of Bollerslev and Wooldridge (1992), which is robust to the distribution of the underlying residuals. The 

first column presents the benchmark model without the inclusion of dummy variables. 𝐿𝐵𝐺𝑟𝑒𝑒𝑛(7) and 𝐿𝐵𝐵𝑟𝑜𝑤𝑛(7) are the 

Ljung-Box test (1978) of significance of no autocorrelations of seven lags in the standardized residuals for green and brown 
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returns, respectively. The covariance stationarity condition is satisfied by all the estimated models, all the eigenvalues of 

A11⊗A11 + G11⊗G11 being less than one in modulus.  

Table 5. Estimated GARCH(1,1)-BEKK models for India 

 
Benchmark Energy 

shock 
Climate policy shocks  

Oil and Climate Policy Shocks 

Interaction 

 

 
 Nat. 

Pos. 

Nat. 

Neg 
Int. Pos. Int Neg.  

Oil + 

Nat. 

Pos. 

Oil + 

Nat. 

Neg 

Oil + 

Int. 

Pos. 

Oil + 

Int. 

Neg 

 Conditional mean equation 

𝒂𝟏𝟏 
-0.06 

(0.895) 

-0.30 

(0.549) 

-0.32 

(0.522) 

-0.34 

(0.511) 

-0.29 

(0.383) 

-0.62 

(0.305) 
 

0.38 

(0.000) 

-0.02 

(0.954) 

0.19 

(0.000) 

0.07 

(0.875) 

𝒂𝟏𝟏
∗  - 

0.03 

(0.909) 

-0.01 

(0.926) 

0.01 

(0.926) 

-0.30 

(0.083) 

0.34 

(0.042) 
 

-0.59 

(0.000) 

0.05 

(0.826) 

-1.53 

(0.000) 

0.38 

(0.201) 

𝜷𝟏𝟏 0.13 

(0.005) 

0.14 

(0.06) 

0.12 

(0.002) 

0.12 

(0.002) 

0.15 

(0.000) 

0.13 

(0.004) 
 

0.12 

(0.000) 

0.12 

(0.006) 

0.12 

(0.000) 

0.10 

(0.002) 

𝜷𝟏𝟐 -0.07 

(0.058) 

-0.07 

(0.029) 

-0.05 

(0.206) 

-0.07 

(0.171) 

-0.09 

(0.252) 

-0.10 

(0.097) 
 

-0.05 

(0.250) 

-0.07 

(0.060) 

-0.05 

(0.002) 

-0.05 

(0.175) 

𝜷𝟏𝟐
∗  - 

0.07 

(0.345) 

-0.01 

(0.775) 

0.01 

(0.779) 

0.05 

(0.252) 

0.02 

(0.679) 
 

0.03 

(0.601) 

0.14 

(0.156) 

0.08 

(0.002) 

0.06 

(0.347) 

IR 0.01 

(0.839) 

0.02 

(0.740) 

0.02 

(0.688) 

0.02 

(0.688) 

0.01 

(0.642) 

0.02 

(0.679) 
 

-0.06 

(0.000) 

0.09 

(0.839) 

-0.03 

(0.000) 

0.02 

(0.763) 

VIX 0.01 

(0.401) 

0.02 

(0.146) 

0.02 

(0.178) 

0.02 

(0.178) 

0.03 

(0.048) 

0.030 

(0.118) 
 

0.01 

(0.000) 

0.01 

(0.521) 

0.01 

(0.000) 

0.00 

(0.788) 

 
           

𝒂𝟐𝟐 0.55 

(0.464) 

0.04 

(0.939) 

-0.08 

(0.935) 

0.10 

(0.920) 

0.13 

(0.790) 

-0.22 

(0.807) 
 

0.30 

(0.021) 

0.03 

(0.968) 

-0.06 

(0.511) 

0.31 

(0.615) 

𝒂𝟐𝟐
∗  - 

-0.43 

(0.297) 

0.18 

(0.369) 

-0.18 

(0.402) 

-0.25 

(0.297) 

0.27 

(0.210) 
 

-1.21 

(0.000) 

-0.51 

(0.122) 

-3.15 

(0.000) 

0.02 

(0.967) 

𝜷𝟐𝟐 -0.10 

(0.049) 

-0.11 

(0.015) 

-0.09 

(0.079) 

-0.09 

(0.079) 

-0.13 

(0.028) 

-0.13 

(0.031) 
 

-0.13 

(0.000) 

-0.11 

(0.122) 

-0.14 

(0.000) 

-0.09 

(0.032) 

𝜷𝟐𝟏 0.16 

(0.063) 

0.21 

(0.006) 

0.17 

(0.047) 

0.14 

(0.774) 

0.15 

(0.053) 

0.23 

(0.025) 
 

0.23 

(0.000) 

0.19 

(0.048) 

0.25 

(0.000) 

0.16 

(0.009) 

𝜷𝟐𝟏
∗  - 

-0.02 

(0.188) 

-0.03 

(0.767) 

0.03 

(0.532) 

0.14 

(0.122) 

-0.08 

(0.431) 
 

-0.18 

(0.586) 

0.03 

(0.830) 

-0.79 

(0.000) 

-0.23 

(0.132) 

IR -0.05 

(0.457) 

-0.01 

(0.763) 

-0.02 

(0.669) 

-0.02 

(0.669) 

-0.01 

(0.823) 

-0.00 

(0.956) 
 

-0.07 

(0.000) 

0.00 

(0.989) 

-0.03 

(0.005) 

-0.01 

(0.616) 

VIX 0.01 

(0.698) 

0.03 

(0.178) 

0.03 

(0.532) 

0.03 

(0.532) 

0.02 

(0.995) 

0.02 

(0.397) 
 

0.03 

(0.002) 

0.01 

(0.439) 

0.03 

(0.000) 

0.10 

(0.616) 

 Conditional variance equation 

𝒄𝟏𝟏 0.00 

(0.999) 

0.00 

(0.999) 

0.00 

(0.999) 

0.00 

(0.999) 

-0.000 

(0.995) 

0.37 

(0.001) 
 

0.22 

(0.130) 

0.00 

(0.999) 

-0.32 

(0.459) 

-0.00 

(0.999) 

𝒄𝟏𝟏
∗  - 

-1.00 

(0.015) 

-0.00 

(0.999) 

-0.00 

(0.999) 

0.60 

(0.021) 

-0.18 

(0.587) 
 

-0.22 

(0.117) 

-0.00 

(0.999) 

0.32 

(0.456) 

0.31 

(0.257) 

𝒈𝟏𝟏 0.94 

(0.000) 

0.81 

(0.000) 

0.90 

(0.000) 

0.90 

(0.000) 

0.88 

(0.000) 

0.86 

(0.000) 
 

0.75 

(0.000) 

1.00 

(0.000) 

0.74 

(0.000) 

0.76 

(0.000) 

𝒈𝟏𝟐 0.11 

(0.031) 

1.36 

(0.000) 

0.02 

(0.592) 

-0.12 

(0.029) 

1.59 

(0.000) 

-0.18 

(0.183) 
 

0.12 

(0.000) 

0.21 

(0.315) 

0.19 

(0.002) 

-0.35 

(0.000) 

𝒈𝟏𝟐
∗  - 

0.50 

(0.002) 

0.05 

(0.003) 

0.14 

(0.007) 

-0.21 

(0.171) 

0.01 

(0.863) 
 

0.79 

(0.000) 

0.17 

(0.094) 

0.18 

(0.002) 

-0.35 

(0.000) 

𝒂𝟏𝟏 0.00 

(0.999) 

0.13 

(0.189) 

-0.06 

(0.598) 

-0.06 

(0.598) 

0.13 

(0.059) 

-0.12 

(0.331) 
 

0.17 

(0.000) 

-0.03 

(0.743) 

0.12 

(0.000) 

0.12 

(0.298) 

𝒂𝟏𝟐 -0.31 

(0.007) 

-0.19 

(0.062) 

-0.41 

(0.021) 

-0.31 

(0.188) 

0.07 

(0.559) 

-0.50 

(0.022) 
 

-0.35 

(0.000) 

-0.43 

(0.105) 

-0.04 

(0.000) 

0.52 

(0.000) 

𝒂𝟏𝟐
∗  - 

-0.06 

(0.808) 

-0.09 

(0.441) 

-0.09 

(0.188) 

-0.29 

(0.000) 

0.12 

(0.427) 
 

0.14 

(0.005) 

-0.02 

(0.904) 

-0.02 

(0.000) 

0.66 

(0.000) 

𝒄𝟐𝟐 0.83 

(0.008) 

1.28 

(0.000) 

1.21 

(0.000) 

1.51 

(0.000) 

0.98 

(0.000) 

1.78 

(0.000) 
 

2.27 

(0.001) 

1.22 

(0.025) 

2.13 

(0.000) 

0.88 

(0.000) 

𝒄𝟐𝟐
∗  - 

-0.58 

(0.242) 

0.30 

(0.592) 

-0.30 

(0.186) 

0.01 

(0.972) 

-0.14 

(0.503) 
 

-1.96 

(0.000) 

-0.62 

(0.241) 

-2.00 

(0.000) 

-0.88 

(0.011) 

𝒄𝟐𝟏 0.71 

(0.000) 

0.82 

(0.000) 

0.80 

(0.000) 

0.80 

(0.000) 

0.68 

(0.000) 

0.87 

(0.000) 
 

0.25 

(0.139) 

0.56 

(0.063) 

0.08 

(0.000) 

0.00 

(0.980) 

𝒈𝟐𝟐 0.87 

(0.000) 

-0.93 

(0.000) 

0.84 

(0.000) 

0.84 

(0.000) 

-1.00 

(0.000) 

0.78 

(0.000) 
 

0.53 

(0.000) 

0.75 

(0.000) 

0.53 

(0.000) 

1.02 

(0.000) 

𝒈𝟐𝟏 -0.10 

(0.000) 

0.51 

(0.002) 

-0.11 

(0.002) 

-0.06 

(0.052) 

-0.03 

(0.005) 

-0.03 

(0.469) 
 

0.17 

(0.000) 

-0.17 

(0.094) 

0.18 

(0.000) 

0.20 

(0.000) 

𝒈𝟐𝟏
∗  - 

-0.08 

(0.308) 

0.05 

(0.003) 

-0.05 

(0.003) 

-0.05 

(0.110) 

-0.12 

(0.331) 
 

0.27 

(0.000) 

0.04 

(0.486) 

0.19 

(0.000) 

-0.10 

(0.001) 

𝒂𝟐𝟐 0.32 

(0.000) 

0.35 

(0.000) 

0.44 

(0.000) 

0.44 

(0.000) 

0.24 

(0.000) 

0.53 

(0.000) 
 

0.37 

(0.000) 

0.42 

(0.010) 

0.49 

(0.000) 

-0.05 

(0.669) 

𝒂𝟐𝟏 0.28 

(0.000) 

0.24 

(0.002) 

0.32 

(0.000) 

0.32 

(0.000) 

0.19 

(0.006) 

0.35 

(0.000) 
 

0.19 

(0.000) 

0.31 

(0.000) 

0.21 

(0.000) 

0.12 

(0.142) 

𝒂𝟐𝟏
∗  - 

-0.08 

(0.380) 

0.00 

(0.972) 

0.00 

(0.972) 

0.07 

(0.138) 

0.00 

(0.978) 
 

0.14 

(0.005) 

-0.44 

(0.000) 

0.20 

(0.000) 

-0.45 

(0.000) 

            

LogLik 2634.15 2637.65 2629.70 2629.70 2626.82 2627.17  2631.77 2627.74 2630.85 2634.54 

𝑳𝑩𝑮𝒓𝒆𝒆𝒏(𝟕) 
7.62 

(0.366) 

6.85 

(0.444) 

7.93 

(0.259) 

7.93 

(0.338) 

9.45 

(0.221) 

9.62 

(0.211) 
 

7.97 

(0.334) 

7.50 

(0.378) 

9.95 

(0.190) 

5.36 

(0.616) 

𝑳𝑩𝑩𝒓𝒐𝒘𝒏(𝟕) 6.44 

(0.488) 

6.53 

(0.478) 

6.22 

(0.514) 

6.22 

(0.514) 

6.26 

(0.532) 

7.28 

(0.400) 
 

6.47 

(0.486) 

6.26 

(0.509) 

6.94 

(0.434) 

7.02 

(0.426) 

Notes: Please refer to the notes in Table 4. 
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Table 6. Estimated GARCH(1,1)-BEKK models for Japan 

 
Benchmark Energy 

shock 
Climate policy shocks  

Oil and Climate Policy Shocks 

Interaction 

 

 
 Nat. 

Pos. 

Nat. 

Neg 
Int. Pos. Int Neg.  

Oil + 

Nat. 

Pos. 

Oil + 

Nat. 

Neg 

Oil + 

Int. 

Pos. 

Oil + 

Int. 

Neg 

 Conditional mean equation 

𝒂𝟏𝟏 
0.01 

(0.945) 

0.12 

(0.627) 

0.19 

(0.442) 

-0.25 

(0.362) 

0.18 

(0.667) 

0.12 

(0.637) 
 

0.20 

(0.461) 

-0.16 

(0.585) 

0.03 

(0.890) 

-0.11 

(0.679) 

𝒂𝟏𝟏
∗  - 

0.25 

(0.450) 

-0.44 

(0.015) 

0.44 

(0.018) 

-0.27 

(0.155) 

0.22 

(0.153) 
 

-0.33 

(0.631) 

0.40 

(0.481) 

-1.08 

(0.032) 

0.23 

(0.577) 

𝜷𝟏𝟏 0.03 

(0.447) 

0.01 

(0.764) 

0.01 

(0.798) 

0.01 

(0.787) 

0.05 

(0.273) 

0.04 

(0.277) 
 

0.06 

(0.085) 

0.02 

(0.503) 

0.04 

(0.213) 

0.01 

(0.699) 

𝜷𝟏𝟐 -0.02 

(0.532) 

-0.03 

(0.214) 

-0.05 

(0.276) 

0.00 

(0.949) 

-0.00 

(0.891) 

-0.02 

(0.662) 
 

-0.03 

(0.247) 

-0.01 

(0.582) 

-0.02 

(0.371) 

-0.01 

(0.542) 

𝜷𝟏𝟐
∗  - 

0.12 

(0.298) 

0.05 

(0.309) 

-0.05 

(0.314) 

-0.02 

(0.716) 

0.00 

(0.872) 
 

0.09 

(0.628) 

0.27 

(0.053) 

0.22 

(0.219) 

0.33 

(0.004) 

IR -0.29 

(0.691) 

-0.08 

(0.887) 

0.25 

(0.719) 

0.25 

(0.687) 

-0.34 

(0.703) 

-0.28 

(0.677) 
 

-0.07 

(0.916) 

-0.53 

(0.464) 

-0.26 

(0.708) 

-0.32 

(0.643) 

VIX 0.01 

(0.263) 

0.01 

(0.360) 

0.02 

(0.056) 

0.02 

(0.073) 

0.01 

(0.522) 

0.00 

(0.851) 
 

0.00 

(0.593) 

0.02 

(0.107) 

0.01 

(0.281) 

0.02 

(0.090) 

 
           

𝒂𝟐𝟐 -0.01 

(0.968) 

0.15 

(0.606) 

0.04 

(0.888) 

0.04 

(0.892) 

0.18 

(0.508) 

0.13 

(0.678) 
 

0.25 

(0.414) 

-0.02 

(0.926) 

0.25 

(0.937) 

0.01 

(0.976) 

𝒂𝟐𝟐
∗  - 

-0.00 

(0.976) 

0.00 

(0.985) 

-0.00 

(0.984) 

-0.10 

(0.711) 

0.06 

(0.672) 
 

1.04 

(0.122) 

-0.74 

(0.052) 

0.93 

(0.221) 

-0.92 

(0.014) 

𝜷𝟐𝟐 -0.09 

(0.008) 

-0.09 

(0.005) 

-0.08 

(0.001) 

-0.08 

(0.009) 

-0.07 

(0.023) 

-0.08 

(0.011) 
 

-0.10 

(0.000) 

-0.08 

(0.004) 

-0.10 

(0.002) 

-0.08 

(0.010) 

𝜷𝟐𝟏 0.27 

(0.000) 

0.26 

(0.000) 

0.37 

(0.000) 

0.18 

(0.000) 

0.20 

(0.029) 

0.32 

(0.000) 
 

0.28 

(0.000) 

0.27 

(0.000) 

0.29 

(0.000) 

0.26 

(0.000) 

𝜷𝟐𝟏
∗  - 

-0.18 

(0.216) 

-0.19 

(0.013) 

0.19 

(0.007) 

0.09 

(0.285) 

-0.14 

(0.103) 
 

0.11 

(0.498) 

-0.11 

(0.358) 

-0.08 

(0.607) 

-0.08 

(0.388) 

IR -0.61 

(0.435) 

-0.39 

(0.589) 

-0.54 

(0.485) 

-0.54 

(0.434) 

-0.81 

(0.279) 

-0.95 

(0.225) 
 

-0.06 

(0.429) 

0.62 

(0.457) 

-0.57 

(0.500) 

-0.35 

(0.676) 

VIX 0.01 

(0.657) 

0.00 

(0.907) 

0.00 

(0.700) 

0.00 

(0.714) 

0.02 

(0.882) 

-0.00 

(0.991) 
 

-0.01 

(0.631) 

0.01 

(0.642) 

0.00 

(0.835) 

0.01 

(0.597) 

 Conditional variance equation 

𝒄𝟏𝟏 0.00 

(0.999) 

0.00 

(0.999) 

0.29 

(0.729) 

0.00 

(0.999) 

0.97 

(0.040) 

0.00 

(0.999) 
 

0.56 

(0.493) 

0.00 

(0.999) 

0.73 

(0.081) 

0.00 

(0.999) 

𝒄𝟏𝟏
∗  - 

-0.00 

(0.999) 

-0.29 

(0.713) 

0.29 

(0.721) 

0.31 

(0.435) 

0.79 

(0.000) 
 

-0.56 

(0.514) 

1.12 

(0.043) 

-0.73 

(0.054) 

1.09 

(0.032) 

𝒈𝟏𝟏 0.89 

(0.000) 

0.99 

(0.000) 

0.97 

(0.000) 

0.97 

(0.000) 

0.80 

(0.002) 

0.85 

(0.000) 
 

0.06 

(0.663) 

0.89 

(0.000) 

0.82 

(0.000) 

0.92 

(0.000) 

𝒈𝟏𝟐 0.66 

(0.000) 

0.71 

(0.000) 

0.69 

(0.000) 

0.72 

(0.000) 

0.07 

(0.744) 

-0.10 

(0.147) 
 

0.79 

(0.000) 

0.57 

(0.000) 

0.59 

(0.000) 

0.60 

(0.000) 

𝒈𝟏𝟐
∗  - 

-0.00 

(0.977) 

0.03 

(0.681) 

-0.03 

(0.682) 

-0.07 

(0.305) 

0.06 

(0.331) 
 

-0.14 

(0.507) 

-0.29 

(0.050) 

-0.63 

(0.052) 

-0.33 

(0.023) 

𝒂𝟏𝟏 0.27 

(0.000) 

0.19 

(0.002) 

0.24 

(0.001) 

0.24 

(0.002) 

0.05 

(0.804) 

0.02 

(0.750) 
 

0.11 

(0.016) 

0.27 

(0.000) 

0.32 

(0.000) 

0.25 

(0.000) 

𝒂𝟏𝟐 -0.39 

(0.000) 

-0.45 

(0.000) 

-0.54 

(0.002) 

-0.27 

(0.005) 

-0.42 

(0.000) 

0.32 

(0.000) 
 

-0.45 

(0.000) 

-0.41 

(0.000) 

-0.31 

(0.003) 

-0.44 

(0.000) 

𝒂𝟏𝟐
∗  - 

1.14 

(0.000) 

0.27 

(0.215) 

-0.27 

(0.213) 

-0.13 

(0.236) 

0.05 

(0.572) 
 

-0.04 

(0.806) 

0.74 

(0.000) 

0.11 

(0.415) 

0.90 

(0.000) 

𝒄𝟐𝟐 1.61 

(0.000) 

1.95 

(0.000) 

1.56 

(0.000) 

2.00 

(0.000) 

1.34 

(0.000) 

1.29 

(0.001) 
 

1.38 

(0.000) 

1.68 

(0.000) 

1.64 

(0.000) 

1.73 

(0.000) 

𝒄𝟐𝟐
∗  - 

-1.10 

(0.323) 

0.43 

(0.125) 

-0.43 

(0.169) 

-0.24 

(0.663) 

0.22 

(0.079) 
 

0.36 

(0.761) 

-2.29 

(0.000) 

2.06 

(0.023) 

-2.32 

(0.000) 

𝒄𝟐𝟏 -0.91 

(0.000) 

-0.59 

(0.003) 

-0.69 

(0.031) 

-0.69 

(0.053) 

0.11 

(0.937) 

1.10 

(0.002) 
 

-0.45 

(0.077) 

-0.79 

(0.000) 

-0.76 

(0.008) 

-0.79 

(0.000) 

𝒈𝟐𝟐 0.34 

(0.002) 

0.15 

(0.279) 

0.29 

(0.274) 

0.20 

(0.311) 

0.81 

(0.000) 

0.86 

(0.000) 
 

0.21 

(0.000) 

0.41 

(0.000) 

0.41 

(0.009) 

0.36 

(0.000) 

𝒈𝟐𝟏 -0.02 

(0.867) 

-0.13 

(0.173) 

-0.11 

(0.543) 

-0.10 

(0.630) 

0.08 

(0.776) 

-0.09 

(0.038) 
 

0.78 

(0.000) 

0.03 

(0.715) 

0.06 

(0.581) 

-0.01 

(0.981) 

𝒈𝟐𝟏
∗  - 

-0.48 

(0.000) 

0.01 

(0.843) 

-0.01 

(0.846) 

-0.03 

(0.672) 

0.07 

(0.124) 
 

0.27 

(0.000) 

0.04 

(0.486) 

0.19 

(0.000) 

-0.10 

(0.001) 

𝒂𝟐𝟐 0.36 

(0.000) 

0.29 

(0.000) 

0.32 

(0.000) 

0.32 

(0.000) 

0.04 

(0.448) 

-0.01 

(0.746) 
 

0.00 

(0.989) 

-0.74 

(0.000) 

0.14 

(0.403) 

-0.62 

(0.000) 

𝒂𝟐𝟏 0.08 

(0.055) 

0.11 

(0.000) 

0.06 

(0.100) 

0.11 

(0.052) 

-0.37 

(0.003) 

0.22 

(0.001) 
 

-0.30 

(0.000) 

0.06 

(0.272) 

0.05 

(0.361) 

0.07 

(0.078) 

𝒂𝟐𝟏
∗  - 

0.43 

(0.007) 

0.04 

(0.540) 

-0.04 

(0.538) 

0.15 

(0.147) 

0.07 

(0.350) 
 

-0.22 

(0.082) 

0.13 

(0.537) 

-0.41 

(0.007) 

0.22 

(0.207) 

            

LogLik 3786.94 3778.86 3777.23 3777.23 3764.26 3757.87  3765.52 3772.12 3778.32 3768.66 

𝑳𝑩𝑮𝒓𝒆𝒆𝒏(𝟕) 
0.96 

(0.995) 

0.63 

(0.998) 

1.56 

(0.980) 

1.56 

(0.980) 

1.34 

(0.987) 

1.17 

(0.991) 
 

3.04 

(0.880) 

1.03 

(0.994) 

1.26 

(0.989) 

0.79 

(0.997) 

𝑳𝑩𝑩𝒓𝒐𝒘𝒏(𝟕) 
4.78 

(0.686) 

 

4.43 

(0.729) 

 

3.61 

(0.820) 

3.64 

(0.820) 

 

4.74 

(0.692) 

 

4.54 

(0.715) 

 

 

5.01 

(0.658) 

 

4.96 

(0.664) 

 

4.84 

(0.679) 

 

5.05 

(0.654) 

 

Notes: Please refer to the notes in Table 4. 
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Table 7. Estimated GARCH(1,1)-BEKK models for the United Kingdom 

 
Benchmark Energy 

shock 
Climate policy shocks  

Oil and Climate Policy Shocks 

Interaction 

 

 
 Nat. 

Pos. 

Nat. 

Neg 
Int. Pos. Int Neg.  

Oil + 

Nat. 

Pos. 

Oil + 

Nat. 

Neg 

Oil + 

Int. 

Pos. 

Oil + 

Int. 

Neg 

 Conditional mean equation 

𝒂𝟏𝟏 
-0.15 

(0.503) 

-0.13 

(0.553) 

-0.27 

(0.151) 

-0.28 

(0.240) 

0.07 

(0.766) 

-0.12 

(0.619) 
 

-0.10 

(0.673) 

-0.09 

(0.683) 

-0.00 

(0.984) 

-0.30 

(0.255) 

𝒂𝟏𝟏
∗  - 

-0.88 

(0.028) 

-0.23 

(0.052) 

0.16 

(0.215) 

-0.19 

(0.134) 

0.19 

(0.156) 
 

-0.10 

(0.732) 

-1.87 

(0.312) 

-0.32 

(0.293) 

-1.92 

(0.342) 

𝜷𝟏𝟏 -0.00 

(0.930) 

-0.04 

(0.340) 

0.01 

(0.695) 

-0.02 

(0.577) 

0.00 

(0.940) 

0.00 

(0.839) 
 

0.00 

(0.908) 

-0.02 

(0.513) 

0.00 

(0.929) 

-0.02 

(0.473) 

𝜷𝟏𝟐 -0.00 

(0.932) 

0.00 

(0.946) 

-0.07 

(0.004) 

0.00 

(0.949) 

-0.02 

(0.734) 

0.01 

(0.616) 
 

-0.03 

(0.195) 

-0.01 

(0.612) 

-0.03 

(0.209) 

0.00 

(0.946) 

𝜷𝟏𝟐
∗  - 

-0.07 

(0.663) 

0.12 

(0.000) 

-0.05 

(0.314) 

0.03 

(0.568) 

-0.03 

(0.618) 
 

0.05 

(0.531) 

-0.43 

(0.034) 

0.00 

(0.953) 

-0.11 

(0.435) 

IR -0.02 

(0.709) 

-0.09 

(0.241) 

-0.00 

(0.962) 

0.25 

(0.687) 

-0.02 

(0.754) 

-0.02 

(0.744) 
 

-0.05 

(0.329) 

-0.08 

(0.158) 

-0.06 

(0.344) 

-0.10 

(0.085) 

VIX 0.02 

(0.070) 

0.02 

(0.030) 

0.03 

(0.000) 

0.02 

(0.046) 

0.01 

(0.271) 

0.01 

(0.182) 
 

0.02 

(0.142) 

0.02 

(0.068) 

0.01 

(0.293) 

0.03 

(0.031) 

 
           

𝒂𝟐𝟐 -0.68 

(0.023) 

-0.49 

(0.120) 

-0.67 

(0.014) 

-0.87 

(0.015) 

-0.37 

(0.215) 

-0.71 

(0.040) 
 

-0.31 

(0.337) 

-0.53 

(0.123) 

-0.25 

(0.455) 

-0.42 

(0.215) 

𝒂𝟐𝟐
∗  - 

-0.49 

(0.433) 

-0.30 

(0.075) 

0.44 

(0.017) 

-0.33 

(0.153) 

0.33 

(0.173) 
 

0.00 

(0.993) 

-3.46 

(0.073) 

-0.48 

(0.156) 

-1.83 

(0.610) 

𝜷𝟐𝟐 0.06 

(0.133) 

-0.08 

(0.035) 

0.11 

(0.001) 

0.07 

(0.054) 

0.09 

(0.052) 

0.09 

(0.089) 
 

0.05 

(0.146) 

0.03 

(0.326) 

0.03 

(0.370) 

0.09 

(0.021) 

𝜷𝟐𝟏 0.01 

(0.855) 

-0.05 

(0.423) 

-0.08 

(0.130) 

0.05 

(0.354) 

-0.02 

(0.699) 

0.02 

(0.734) 
 

-0.01 

(0.851) 

-0.01 

(0.851) 

-0.00 

(0.982) 

-0.04 

(0.427) 

𝜷𝟐𝟏
∗  - 

-0.25 

(0.356) 

0.11 

(0.082) 

-0.11 

(0.135) 

0.05 

(0.553) 

-0.05 

(0.624) 
 

-0.00 

(0.993) 

-0.82 

(0.000) 

-0.11 

(0.578) 

-0.63 

(0.175) 

IR -0.01 

(0.811) 

-0.11 

(0.332) 

-0.04 

(0.545) 

-0.05 

(0.454) 

0.00 

(0.967) 

0.00 

(0.965) 
 

-0.04 

(0.619) 

-0.09 

(0.233) 

-0.09 

(0.351) 

-0.08 

(0.407) 

VIX 0.04 

(0.007) 

0.04 

(0.024) 

0.05 

(0.000) 

0.04 

(0.026) 

0.03 

(0.054) 

0.03 

(0.044) 
 

-0.02 

(0.211) 

0.04 

(0.033) 

0.03 

(0.141) 

0.03 

(0.131) 

 Conditional variance equation 

𝒄𝟏𝟏 0.27 

(0.002) 

0.00 

(0.999) 

0.00 

(0.999) 

0.33 

(0.000) 

-0.16 

(0.573) 

0.37 

(0.078) 
 

0.00 

(0.999) 

0.00 

(0.999) 

0.00 

(0.999) 

0.00 

(0.999) 

𝒄𝟏𝟏
∗  - 

1.13 

(0.005) 

0.45 

(0.064) 

-0.33 

(0.019) 

-0.21 

(0.478) 

-0.53 

(0.159) 
 

-0.00 

(0.999) 

-0.00 

(0.999) 

0.00 

(0.999) 

-3.10 

(0.000) 

𝒈𝟏𝟏 0.89 

(0.000) 

0.97 

(0.000) 

0.77 

(0.000) 

0.89 

(0.000) 

0.87 

(0.000) 

0.87 

(0.000) 
 

-0.70 

(0.000) 

0.45 

(0.002) 

0.44 

(0.003) 

-0.97 

(0.000) 

𝒈𝟏𝟐 0.09 

(0.003) 

0.57 

(0.000) 

1.77 

(0.000) 

-0.09 

(0.000) 

-0.14 

(0.026) 

-0.05 

(0.285) 
 

-1.16 

(0.000) 

-0.20 

(0.124) 

-0.15 

(0.460) 

-1.40 

(0.000) 

𝒈𝟏𝟐
∗  - 

-0.28 

(0.177) 

-0.07 

(0.607) 

0.03 

(0.361) 

0.09 

(0.148) 

-0.09 

(0.195) 
 

-0.77 

(0.000) 

0.58 

(0.107) 

-0.14 

(0.268) 

0.16 

(0.719) 

𝒂𝟏𝟏 0.33 

(0.000) 

-0.08 

(0.337) 

0.32 

(0.000) 

0.37 

(0.000) 

0.38 

(0.000) 

0.38 

(0.000) 
 

-0.08 

(0.358) 

0.02 

(0.903) 

0.02 

(0.809) 

-0.23 

(0.062) 

𝒂𝟏𝟐 0.12 

(0.098) 

0.29 

(0.188) 

0.17 

(0.010) 

0.27 

(0.017) 

0.25 

(0.019) 

0.02 

(0.800) 
 

-0.16 

(0.014) 

0.02 

(0.791) 

-0.08 

(0.243) 

-0.25 

(0.009) 

𝒂𝟏𝟐
∗  - 

-0.64 

(0.177) 

-0.32 

(0.000) 

-0.18 

(0.123) 

-0.23 

(0.048) 

0.23 

(0.099) 
 

-0.03 

(0.782) 

0.82 

(0.000) 

0.19 

(0.130) 

-0.06 

(0.695) 

𝒄𝟐𝟐 0.75 

(0.000) 

0.01 

(0.970) 

0.51 

(0.001) 

0.60 

(0.000) 

0.71 

(0.000) 

0.80 

(0.000) 
 

-1.22 

(0.000) 

-0.94 

(0.000) 

0.88 

(0.028) 

0.80 

(0.000) 

𝒄𝟐𝟐
∗  - 

-2.28 

(0.036) 

0.02 

(0.795) 

-0.04 

(0.823) 

0.09 

(0.609) 

-0.09 

(0.655) 
 

-0.28 

(0.104) 

-0.81 

(0.580) 

0.151 

(0.645) 

3.29 

(0.000) 

𝒄𝟐𝟏 0.60 

(0.000) 

-0.71 

(0.000) 

0.52 

(0.000) 

0.55 

(0.000) 

0.59 

(0.000) 

0.59 

(0.000) 
 

-1.48 

(0.000) 

-1.59 

(0.000) 

1.64 

(0.000) 

0.64 

(0.000) 

𝒈𝟐𝟐 0.94 

(0.000) 

0.70 

(0.000) 

-0.83 

(0.000) 

0.96 

(0.000) 

0.95 

(0.000) 

0.95 

(0.000) 
 

1.06 

(0.000) 

0.94 

(0.000) 

0.94 

(0.000) 

1.01 

(0.000) 

𝒈𝟐𝟏 0.00 

(0.965) 

-0.18 

(0.000) 

0.14 

(0.000) 

0.01 

(0.434) 

0.04 

(0.410) 

0.00 

(0.966) 
 

0.13 

(0.000) 

-0.00 

(0.715) 

0.06 

(0.581) 

-0.01 

(0.981) 

𝒈𝟐𝟏
∗  - 

0.07 

(0.301) 

-0.02 

(0.280) 

-0.01 

(0.381) 

-0.04 

(0.672) 

0.04 

(0.354) 
 

0.27 

(0.000) 

0.04 

(0.803) 

0.00 

(0.939) 

0.08 

(0.493) 

𝒂𝟐𝟐 0.28 

(0.000) 

0.08 

(0.626) 

0.17 

(0.000) 

0.19 

(0.000) 

0.25 

(0.000) 

0.25 

(0.000) 
 

0.05 

(0.271) 

0.39 

(0.000) 

0.41 

(0.000) 

0.24 

(0.000) 

𝒂𝟐𝟏 -0.01 

(0.872) 

0.29 

(0.000) 

-0.01 

(0.582) 

-0.06 

(0.124) 

0.09 

(0.211) 

-0.02 

(0.724) 
 

-0.23 

(0.000) 

0.31 

(0.000) 

0.32 

(0.001) 

0.00 

(0.979) 

𝒂𝟐𝟏
∗  - 

-0.10 

(0.487) 

0.04 

(0.322) 

0.04 

(0.398) 

0.07 

(0.472) 

-0.07 

(0.399) 
 

0.11 

(0.329) 

-0.95 

(0.000) 

-0.05 

(0.711) 

0.17 

(0.313) 

            

LogLik 3422.08 3434.01 3403.68 3414.55 3414.55 3414.55  3423.40 3424.18 3438.64 3412.79 

𝑳𝑩𝑮𝒓𝒆𝒆𝒏(𝟕) 
6.77 

(0.452) 

5.55 

(0.489) 

7.22 

(0.405) 

6.77 

(0.453) 

7.29 

(0..399) 

7.29 

(0.399) 
 

7.99 

(0.333) 

8.04 

(0.328) 

9.04 

(0.249) 

5.16 

(0.640) 

𝑳𝑩𝑩𝒓𝒐𝒘𝒏(𝟕) 
10.57 

(0.158) 

11.58 

(0.115) 

11.65 

(0.112) 

11.29 

(0.126) 

10.93 

(0.141) 

10.93 

(0.141) 
 

11.62 

(0.113) 

11.73 

(0.109) 

12.59 

(0.082) 

11.49 

(0.118) 

Notes: Please refer to the notes in Table 4. 
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Table 8. Estimated GARCH(1,1)-BEKK models for the United States 

 
Benchmark Energy 

shock 
Climate policy shocks  

Oil and Climate Policy Shocks 

Interaction 

 

 
 Nat. 

Pos. 

Nat. 

Neg 
Int. Pos. Int Neg.  

Oil + 

Nat. 

Pos. 

Oil + 

Nat. 

Neg 

Oil + 

Int. 

Pos. 

Oil + 

Int. 

Neg 

 Conditional mean equation 

𝒂𝟏𝟏 
-0.47 

(0.061) 

-0.28 

(0.198) 

-0.44 

(0.039) 

-0.46 

(0.091) 

-0.30 

(0.247) 

-0.44 

(0.049) 
 

-0.40 

(0.061) 

-0.06 

(0.214) 

-0.32 

(0.147) 

-0.40 

(0.000) 

𝒂𝟏𝟏
∗  - 

-0.52 

(0.186) 

-0.23 

(0.771) 

0.05 

(0.709) 

-0.01 

(0.936) 

0.10 

(0.504) 
 

-0.38 

(0.640) 

-0.29 

(0.523) 

-0.41 

(0.084) 

-1.58 

(0.607) 

𝜷𝟏𝟏 -0.00 

(0.941) 

0.02 

(0.564) 

0.04 

(0.216) 

0.03 

(0.256) 

0.02 

(0.482) 

0.028 

(0.460) 
 

0.03 

(0.415) 

0.17 

(0.713) 

0.02 

(0.438) 

0.03 

(0.079) 

𝜷𝟏𝟐 -0.07 

(0.025) 

-0.07 

(0.003) 

-0.03 

(0.259) 

-0.08 

(0.002) 

-0.04 

(0.238) 

-0.06 

(0.026) 
 

-0.06 

(0.024) 

-0.05 

(0.068) 

-0.07 

(0.001) 

-0.07 

(0.004) 

𝜷𝟏𝟐
∗  - 

0.05 

(0.396) 

-0.07 

(0.057) 

0.03 

(0.529) 

0.03 

(0.435) 

-0.07 

(0.277) 
 

-0.03 

(0.837) 

0.00 

(0.984) 

0.06 

(0.203) 

0.18 

(0.533) 

IR 0.01 

(0.814) 

-0.02 

(0.631) 

-0.02 

(0.581) 

-0.01 

(0.809) 

-0.02 

(0.649) 

-0.00 

(0.888) 
 

-0.00 

(0.861) 

-0.02 

(0.658) 

-0.01 

(0.674) 

-0.00 

(0.875) 

VIX 0.04 

(0.000) 

0.04 

(0.001) 

0.05 

(0.000) 

0.04 

(0.000) 

0.04 

(0.002) 

0.04 

(0.000) 
 

0.04 

(0.000) 

0.04 

(0.005) 

0.04 

(0.001) 

0.04 

(0.000) 

 
           

𝒂𝟐𝟐 -1.10 

(0.000) 

-0.65 

(0.015) 

-0.88 

(0.001) 

-0.74 

(0.018) 

-1.01 

(0.018) 

-0.85 

(0.002) 
 

-0.83 

(0.001) 

-0.79 

(0.012) 

-0.71 

(0.006) 

-0.85 

(0.000) 

𝒂𝟐𝟐
∗  - 

-0.72 

(0.168) 

0.13 

(0.421) 

-0.06 

(0.749) 

0.03 

(0.885) 

0.07 

(0.769) 
 

0.28 

(0.817) 

-0.84 

(0.225) 

-0.60 

(0.040) 

-4.03 

(0.275) 

𝜷𝟐𝟐 -0.07 

(0.091) 

-0.04 

(0.257) 

-0.07 

(0.020) 

-0.06 

(0.007) 

0.00 

(0.947) 

-0.06 

(0.105) 
 

-0.05 

(0.169) 

-0.02 

(0.433) 

-0.05 

(0.052) 

-0.07 

(0.010) 

𝜷𝟐𝟏 0.06 

(0.335) 

0.06 

(0.225) 

0.14 

(0.003) 

0.06 

(0.227) 

0.08 

(0.295) 

0.11 

(0.107) 
 

0.07 

(0.169) 

0.07 

(0.151) 

0.07 

(0.053) 

0.08 

(0.000) 

𝜷𝟐𝟏
∗  - 

0.02 

(0.880) 

-0.06 

(0.266) 

0.06 

(0.540) 

-0.00 

(0.947) 

-0.11 

(0.331) 
 

0.22 

(0.278) 

-0.41 

(0.186) 

-0.07 

(0.628) 

0.09 

(0.824) 

IR -0.03 

(0.573) 

-0.09 

(0.110) 

-0.08 

(0.063) 

-0.08 

(0.250) 

-0.10 

(0.242) 

-0.06 

(0.238) 
 

-0.07 

(0.330) 

-0.11 

(0.045) 

-0.08 

(0.113) 

-0.06 

(0.303) 

VIX 0.07 

(0.007) 

0.05 

(0.000) 

0.07 

(0.000) 

0.06 

(0.000) 

0.07 

(0.000) 

0.06 

(0.000) 
 

0.06 

(0.000) 

0.05 

(0.001) 

0.06 

(0.000) 

0.06 

(0.000) 

 Conditional variance equation 

𝒄𝟏𝟏 -0.00 

(0.998) 

0.13 

(0.076) 

0.258 

(0.031) 

0.07 

(0.656) 

0.00 

(0.999) 

0.20 

(0.000) 
 

0.22 

(0.000) 

0.13 

(0.107) 

0.149 

(0.008) 

0.18 

(0.023) 

𝒄𝟏𝟏
∗  - 

-0.13 

(0.258) 

-0.25 

(0.029) 

-0.33 

(0.046) 

-0.39 

(0.061) 

-0.20 

(0.004) 
 

-0.22 

(0.085) 

-0.13 

(0.226) 

-0.15 

(0.385) 

-0.18 

(0.566) 

𝒈𝟏𝟏 0.42 

(0.000) 

0.88 

(0.000) 

0.88 

(0.000) 

0.90 

(0.000) 

1.07 

(0.000) 

0.91 

(0.000) 
 

0.90 

(0.000) 

0.88 

(0.000) 

0.90 

(0.000) 

0.91 

(0.000) 

𝒈𝟏𝟐 1.56 

(0.000) 

-0.07 

(0.050) 

-0.01 

(0.705) 

-0.07 

(0.482) 

0.98 

(0.000) 

-0.03 

(0.351) 
 

0.04 

(0.173) 

-0.08 

(0.176) 

-0.05 

(0.116) 

-0.03 

(0.234) 

𝒈𝟏𝟐
∗  - 

0.03 

(0.490) 

-0.10 

(0.011) 

0.06 

(0.164) 

-0.10 

(0.231) 

-0.02 

(0.201) 
 

0.02 

(0.818) 

-0.90 

(0.016) 

0.01 

(0.829) 

0.63 

(0.000) 

𝒂𝟏𝟏 0.22 

(0.014) 

0.26 

(0.050) 

0.15 

(0.038) 

0.17 

(0.177) 

0.29 

(0.000) 

0.19 

(0.070) 
 

0.18 

(0.048) 

0.31 

(0.141) 

0.24 

(0.055) 

0.14 

(0.073) 

𝒂𝟏𝟐 0.01 

(0.898) 

0.03 

(0.803) 

-0.21 

(0.099) 

0.00 

(0.999) 

-0.68 

(0.000) 

-0.07 

(0.507) 
 

-0.09 

(0.375) 

0.11 

(0.649) 

0.01 

(0.928) 

-0.12 

(0.190) 

𝒂𝟏𝟐
∗  - 

0.07 

(0.625) 

0.28 

(0.005) 

-0.15 

(0.175) 

0.67 

(0.000) 

0.11 

(0.201) 
 

0.23 

(0.103) 

0.52 

(0.001) 

0.00 

(0.972) 

0.09 

(0.538) 

𝒄𝟐𝟐 0.53 

(0.000) 

0.54 

(0.000) 

0.50 

(0.000) 

0.579 

(0.003) 

2.31 

(0.000) 

0.59 

(0.000) 
 

0.577 

(0.000) 

0.59 

(0.000) 

0.568 

(0.000) 

0.61 

(0.000) 

𝒄𝟐𝟐
∗  - 

-0.01 

(0.934) 

0.17 

(0.357) 

-0.08 

(0.649) 

-0.90 

(0.000) 

0.12 

(0.357) 
 

-0.23 

(0.845) 

0.19 

(0.439) 

0.30 

(0.479) 

-0.11 

(0.565) 

𝒄𝟐𝟏 0.65 

(0.000) 

0.60 

(0.000) 

0.62 

(0.000) 

0.56 

(0.000) 

-0.14 

(0.338) 

0.56 

(0.000) 
 

0.55 

(0.000) 

0.62 

(0.000) 

0.59 

(0.000) 

0.57 

(0.000) 

𝒈𝟐𝟐 -0.53 

(0.000) 

0.94 

(0.000) 

0.92 

(0.000) 

0.92 

(0.000) 

-0.01 

(0.874) 

0.91 

(0.000) 
 

0.92 

(0.000) 

0.93 

(0.000) 

0.93 

(0.000) 

0.91 

(0.000) 

𝒈𝟐𝟏 1.57 

(0.000) 

-0.03 

(0.032) 

-0.02 

(0.098) 

-0.05 

(0.005) 

-0.21 

(0.001) 

-0.05 

(0.000) 
 

-0.04 

(0.001) 

-0.03 

(0.148) 

-0.04 

(0.015) 

-0.05 

(0.000) 

𝒈𝟐𝟏
∗  - 

-0.04 

(0.020) 

-0.03 

(0.028) 

0.01 

(0.343) 

-0.08 

(0.068) 

-0.01 

(0.061) 
 

-0.10 

(0.003) 

-0.00 

(0.907) 

-0.01 

(0.827) 

0.439 

(0.000) 

𝒂𝟐𝟐 0.44 

(0.000) 

0.39 

(0.000) 

0.46 

(0.000) 

0.45 

(0.000) 

0.56 

(0.000) 

0.44 

(0.000) 
 

0.44 

(0.000) 

0.37 

(0.007) 

0.41 

(0.000) 

0.46 

(0.000) 

𝒂𝟐𝟏 0.18 

(0.000) 

0.18 

(0.028) 

0.22 

(0.000) 

0.27 

(0.000) 

0.07 

(0.043) 

0.21 

(0.001) 
 

0.21 

(0.000) 

0.52 

(0.001) 

0.19 

(0.025) 

0.23 

(0.00) 

𝒂𝟐𝟏
∗  - 

0.09 

(0.247) 

0.11 

(0.009) 

-0.05 

(0.411) 

0.18 

(0.002) 

0.09 

(0.102) 
 

0.23 

(0.008) 

0.12 

(0.050) 

0.05 

(0.629) 

0.239 

(0.000) 

            

LogLik 3513.02 3493.12 2116.98 2116.98 2116.98 2116.98  2116.98 2116.98 2116.98 2116.98 

𝑳𝑩𝑮𝒓𝒆𝒆𝒏(𝟕) 
9.71 

(0.205) 

8.33 

(0.401) 

7.51 

(0.378) 

7.97 

(0.334) 

7.28 

(0.400) 

8.73 

(0.272) 
 

8.16 

(0.318) 

6.75 

(0.455) 

7.90 

(0.333) 

7.62 

(0.367) 

𝑳𝑩𝑩𝒓𝒐𝒘𝒏(𝟕) 
13.57 

(0.059) 

 

8.35 

(0.302) 

8.86 

(0.262) 

 

9.19 

(0.239) 

 

4.77 

(0.687) 

 

9.79 

(0.200) 
 

8.99 

(0.252) 

 

7.83 

(0.348) 

 

9.19 

(0.239) 

 

8.56 

(0.285) 

 

Notes: Please refer to the notes in Table 4. 
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Figure 1. Stock Returns and Conditional Correlations 
 

 

 

Notes: To examine the combined effects of climate policy shocks and energy shocks, we incorporate interaction dummies 

that account for the simultaneous occurrence of both types of shocks. Specifically, the figures at the bottom illustrate the 

interaction dummy representing instances where national climate policies in favour of a green transition coincide with oil 

shocks. Furthermore, the time-varying conditional correlation (12,t = h12,t/(√h11,t√h22,t) is estimated using the multivariate 

GARCH(1,1)-BEKK model, which explicitly includes the interaction dummies discussed. 
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Figure 2. Stock Returns and Conditional Correlations 
 

 

 

 

Notes: Please refer to the notes in Figure 1. 
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