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A B S T R A C T

Accurate prediction of thermal conductivity of porous granular materials enables the identification and rapid 
optimisation of new composite core materials for Vacuum Insulation Panels (VIPs). To date, no computer model 
has reported the use of multi-sized particles with a combined Finite Element Analysis (FEA) and Discrete Element 
Method (DEM) approach to predict thermal conductivity of VIP core. To fill this knowledge gap, we propose a 
FEA and DEM based thermal conductivity prediction model for powdery composites, particularly suited for VIPs. 
The geometry of the model was formed using random packing of multisized spherical particles using DEM and a 
MATLAB PDE-based thermal model solver was used to obtain a solution for the generated geometry. The model 
can predict effective thermal conductivity whilst accounting for the VIP-specific fundamental heat exchange 
phenomena. The results from the model are validated against those obtained from accompanying thermal 
conductivity measurements performed using the Transient Hot Wire method, with results falling within the error 
range for temperatures <491.15 K. Effective thermal conductivity of a perlite and Silicon Carbide (SiC) core at 
0.1 mbar over a temperature range of 303 K to 803 K, with the proportion of perlite varying from 100 % to 50 % 
(by weight), as predicted by the model, is presented. The thermal conductivity of the 50 % perlite-50 % SiC 
composite had the lowest rate of increase of thermal conductivity of 46.3 %, with the value increasing from 12.1 
mW m-1 K-1 at 303 K to 17.7 mW m-1 K-1 at 803 K.

1. Introduction

Powder based Vacuum Insulation Panels (VIPs) have been widely 
studied for their use in the built environment. For example, Alam et al. 
[1], Simmler et al. [2] and Brunner et al. [3] discussed the technological 
requirements and cost factors relevant for VIPs when used in buildings. 
Future scope has been described as well, especially by Alam et al. [1]. 
Verma et al. [4], Kaushik et al. [5] and Barton et al. [6] respectively 
investigated the use of VIPs in refrigerators, high temperature appli
ances (cooking ovens), and tokamak fusion reactors, specifically pre
senting the principles of core design. The properties of powdered 
materials are an important factor in deciding the thermal conductivity of 
the vacuum insulation panels. Experimental studies have used different 
materials available in the market to choose an optimally performing 
material composition to obtain a target thermal conductivity [7–13]. 
However, this approach was limited in its scope by the number of ma
terials and their variants that could be tested due to time and cost 
factors.

A computer model would provide the flexibility to vary interfering 
factors such as particle size, pore size, density and extinction coefficient 
of materials to understand their effect on the thermal performance of 
VIPs in the most cost-effective manner. Rottmann et al. [14] used ana
lytic equations to calculate the thermal conductivity of the perlite-based 
VIPs. Their model did not consider the variation in density, particle size, 
and packing of particles as the variables influencing solid and gaseous 
thermal conductivity. However, the experimental work in their study 
showed that density had a significant effect on the total thermal con
ductivity of the VIP. Verma and Singh [15] presented a thermal con
ductivity model with square and hexagonal close packing. However, the 
study assumed particles and pores to be mono-sized and did not consider 
radiative heat transfer. Jalali et al. [9] further developed the work done 
by Verma and Singh [15] and built a validated model for heat transfer 
processes in high temperature VIPs with radiative heat transfer consid
ered. However, the particles and pores are still considered mono-sized, 
which is not the case in practical applications. Random Close Packing 
(RCP) can be used to overcome the limitations present in previously 
reported models like mono-sized particle and pore size and the effect of 
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density. Numerous articles have been published in the literature on RCP 
algorithms to simulate the packing of spherical particles inside a 
bounded geometry [16–22]. Random packing algorithms can be cat
egorised into two categories geometry-based and force/physics-based 
algorithms. Han et al. [17] used a geometric method to generate 
random packing of multisized particles. Fend et al. [23] used an 
advancing front method to generate discs in a box for discrete element 
method (DEM) based simulations. Many studies have reported the use of 
a random packing algorithm for thermal conductivity predictions for 
particle beds for various applications, like reactor beds [11]. Sahoo et al. 
[24] used FEA-DEM model to predict the thermal conductivity of pine
apple wood based filled polymer composites. Thermal conductivity of 
the pineapple wood based composite dropped from 0.342 to 0.245 
Wm-1K-1 with filler content increasing from 0 to ~18 %. Though his 
study used the FEA based model to predict the effective thermal con
ductivity, the role of vacuum (suppressed convective exchange and the 
play of gaseous conductivity) and the effect of radiation were not 
considered. Argento and Bouvard [25] showed that an increase in 
relative density leads to an increase in the effective thermal conductivity 
of the granular packings. Jayachandran and Reddy [26] have developed 
and validated an analytical model for packed particle beds in the tem
perature range of 373 K to 673 K. The effects of contact ratio, particle 
conductivity, porosity, and air pressure were studied, and an analytical 
model for predicting thermal conductivity in periodically packed beds 
was developed using the unit cell resistance method. The study con
ducted by Wang et al. [27] employed a coupled DEM-CFD-based model; 
however, it did not consider radiative exchange. Gan et al. [28] used the 
DEM approach to study conductive heat transfer in ellipsoidal particles 
and looked at the variation in thermal conductivity with aspect ratio and 
particle size. Their findings suggested an increase in thermal conduc
tivity with an increase in temperature and a decrease in thermal con
ductivity with a decrease in particle size.

However, these studies were not directly focused on the VIP cores, 
which have significantly smaller pores and a thinner cross-section, 
causing the radiative mode to dominate other modes of heat transfer, 
especially at temperatures above 70 ◦C [5]. Previously published models 
for VIPs have not considered different compositions and particle size 
variation. These fail to predict and optimise the thermal conductivity of 
composite cores (cores with more than one material), which are used in 
every commercially available VIP globally.

In the current study, we use a DEM-based packing model developed 
by Rangel R [29] for 2-D circular particles. 2-D circular particles are 

Nomenclature

Symbol
A Box height
H Coupling factor
k Thermal conductivity
Kg Gaseous thermal conductivity of a pore
kgr Thermal conductivity of a porous perlite particle
kp Thermal conductivity of perlite solid matrix
L Box length
λ0 Thermal conductivity of free air
Q Heat flux
req Equivalent pore radius
T Temperature
θ Perlite porosity
ν kp/Kg

Z A constant
x Mean
σ Standard deviation
εab Radiative power from a surface

σ Stefan-Boltzmann’s constant
λr Radiative thermal conductivity
e∗R mass specific extinction coefficient
a Area
n Refractive index (real part)
C1C2 Constants
Λ Wavelength
δi Mass fraction of ith element

Abbreviations
DEM Discrete Element Method
FEA Finite Element Analysis
FTIR Fourier Transform Infrared
KBr Potassium Bromide
PxSiCy Target composition by weight, x % perlite and y % SiC
RCP Random Close Packing
SiC Silicon Carbide
THW Transient Hot Wire
VIP(s) Vacuum Insulation Panel(s)

Fig. 1. Increase in model wall length due to the compressive (normal) forces 
caused by the packing particles on walls. A and L are horizontal and vertical 
dimensions of the packing box, respectively.

Fig. 2. Thermal conductivity of a perlite P100 sample at 0.1mbar determined 
from simulations and experimental measurements.
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considered isotropic. Use of 2-D model is expected to lead to less 
computationally intensive simulations with minimal loss of accuracy, 
though there will be obvious differences in packing and pore networks in 
2-D and 3-D cases. A nonlinear, viscoelastic model developed by Bril
liantov et al. [30] and a nonlinear spring-dashpot with sliding friction 
model [31] are used to solve for the normal forces and tangential forces, 
respectively (See appendix equations A1-A4 for more). A square of 1500 
µm was considered as a representative volume element, and the size of 
the box was decided for the particle size of <30 µm as described by Zeng 
et al. [32]. Where size of the box was decided to avoid the effect of walls 
on the filling geometry. From the generated packing, an FEA readable 
geometry was generated using MATLAB. An effective thermal conduc
tivity of the packing was calculated based on the steady state Fourier’s 
law for a mean temperature range of 303 K to 803 K at a pressure of 0.1 
mbar. Radiative conductivity was added to the solution using the Mie 
model developed by Jalali et al. [9]. The model was employed to identify 
the effect of varying perlite-SiC compositions to find the properties for 
the lowest thermal conductivity. The model developed in this study is 
the first to employ DEM-FEA based random packing to predict thermal 
conductivities of VIP composite cores and optimise the core composi
tions for different operating/application temperatures.

2. General details of the model

The developed model used a DEM method to pack 2-D particles to 
create a packing with varying size distribution, following which FEA was 
employed to solve for the temperature field to predict effective thermal 
conductivity. Low pressure, small pore and particle sizes and specific 
material properties were used to make the model specifically suitable for 
use in the case of VIPs made with expanded perlite particles and SiC 
opacifier. The sections below describe the model construction and ma
terial properties in detail.

2.1. Packing and geometry creation strategy

The model creation consists of three main steps: particle generation, 
packing using the DEM based model and FEA based geometry creation. 
Once these steps are completed, boundary conditions are assigned for 
the solution.

The particle sizes and locations were generated using normal and 
uniform distributions, respectively. The radii were chosen randomly 
from a normal distribution with mean (x) and standard deviation (σ). 
Generated particle radii must lie within two standard deviations of the 
mean. Likewise, the locations were randomly chosen from a uniform 
distribution from zero to the maximum height or width of the box, 
depending on whether x or y coordinates were being chosen. The 

Fig. 3. Generated output particle size distribution (blue) and input particle size distribution (red) for different compositions of perlite and SiC composites. A bin size 
of 2.5 µm was used and the mean (x), standard deviation (σ) and skewness (skew) are shown for each output distribution in the subplot.
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initially generated particle distribution must have non-intersecting 
particles i.e., distance between two centres should be more than the 
sum of the radii of those two circles.

For bidisperse particles, the same process was used with a second 
normal distribution for the other phase. To control the relative weight 
proportion of both particles, the first phase was generated until a pre
determined mass fraction was reached, and then the second. Then the 
particles were packed using the DEM method (script provided in the 
appendix) to obtain final position of particles.

This box full of particles must be converted into a FEA readable ge
ometry before it can be used in thermal simulations, which was done 

using the inbuilt functions in MATLAB. Boundary conditions, such as 
temperature on either side of the box and material thermal conductivity 
were applied (Appendix Table A1), which were selected based on the 
application range of buildings and ovens/furnaces.

2.2. Material properties employed

Centre and radius data generated by the RCP algorithm of multisized 
spheres were used to create an analytical geometry for the MATLAB 
solver. Pristine perlite and a composite of perlite and SiC were studied. 
The area of the individual interparticle pore was calculated, and an 
equivalent radius was generated for the pore based on Eq. (1). Eq. (2)
was used to calculate the gaseous thermal conductivity of a pore. The 
constants used in the equation shown in Eqs. (3)–6, derived from Rott
mann et al. [33]. 

req =

̅̅̅̅̅̅̅̅̅̅
Area

π

√

(1) 

Kg = H(T) ∗

⎛

⎜
⎜
⎝

λ0(T)(

1 +

(
Z(T)

(2req×pressure)

)

⎞

⎟
⎟
⎠ (2) 

Fig. 4. Generated output interparticle pore size distribution for different compositions of perlite-SiC composites. A bin size of 2.5 µm was used and the mean (x), 
standard deviation (σ) and skewness (skew) are shown for each subplot.

Table 1 
Weight percentage of perlite in different compositions and the input and output 
packing compositions.

Compositions Perlite weight input (%) Perlite weight output (%)

P100 100 100
P90SiC10 90 93.12
P80SiC20 80 84.93
P70SiC30 70 76.55
P60SiC40 60 67.8
P50SiC50 50 51.77
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kp = 0.75 ×
(
0.3049+0.006197×T −

(
1.153×10− 5)T2

+
(
1.034×10− 8)T3 −

(
3.352×10− 12)T4) (3) 

Z (T) =
(
6.319+ 0.01526 ×T+0.004045 ×T2 −

(
2.468 ×10− 6)T3

+
(
6.326 ×10− 10)T3) × 10− 4

(4) 

λ0(T) =
(
0.5180(T − 46.85)0.7104)

× 10− 3 (5) 

H(T) = 2.142 − 5.843 × 10− 4 × T (6) 

Fig. 5. Density variation with box height. The box has been divided in 9 equal 
bins with bin 1 at the bottom of the box and bin 9 at the top. A Bayesian 
correlation test has been conducted to test the correlation between height and 
density, where a strong correlation factor is defined as 0.7. All the compositions 
are well below the limit of 0.7, with 0.515 for P80SiC20 being the highest and 
0.111 for P70SiC30 being the lowest. For more details, refer to Table A3 in 
the Appendix.

Fig. 6. Positions of SiC particles in the packing of various compositions as predicted by the model. As the weight percentage of SiC increases in the composition, the 
number and proximity of SiC particles increases forming linked agglomerates as highlighted by red circles.

Fig. 7. Percentage of SiC agglomerates containing >2 particles at a cut-off 
distance of 5 µm.
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Thermal conductivity of Silicon carbide is calculated using Eq. (7). 

kSiC = 0.0004⋅T2 − 0.8423⋅T + 529.3 (7) 

where req is the equivalent radius of a pore and Area the cross-sectional 
area of a pore, T is the temperature, kp the thermal conductivity of the 
perlite solid matrix, Kg the gaseous thermal conductivity of a pore, Z the 
combination of constants and parameters, λ0 the thermal conductivity of 
free air and H is the coupling factor. The thermal conductivity of each 
particle was calculated using Eq. (8), known as Russel’s equation. A 
porosity of 95 % was considered with an average pore size of 5 µm for a 
single particle of perlite. 

Kgr = kp ×

(
θ2/3 + ν

(
1 − θ2/3)

θ2/3 − θ + ϑ
(
1 − θ2/3 + θ

)

)

(8) 

where Kgr is the thermal conductivity of the porous perlite particle, θ the 
porosity of perlite and ν the ratio of kp to Kg (kp/Kg).

A pressure of 0.1 mbar was considered in all pores to calculate 
gaseous thermal conductivity using Eq. (2). The thermal conductivity of 
the pores and the solid matrix was considered to vary with the tem
perature as described in Eqs. (2)–8. The thermal conductivity values at 
the linear mean temperature were assigned to predict the effective 
thermal conductivity of the model, meaning the average of the tem
perature at the boundaries was used as an input in the equations above. 
The output for different boundary conditions was used as material 
properties. The effect of variation of the temperature inside the repre
sentative volume element was ignored to save computational cost, as it 
will have a minimal effect on the properties due small size and 

temperature difference.
The particles were compressed against the wall, and the length of the 

wall increases due to the forces exerted by the particles on the wall of the 
box, as seen in Fig. 1. This increases the length of the wall for boundary 
conditions. As each packing was different, the length of the wall for 
boundary conditions will be different for each packing. Hence, we 
cannot use the length (L) and height (A) of the wall as input box di
mensions for determining thermal conductivity. To calculate the L/A 
ratio, we used a known thermal conductivity of 1 W m-1 K-1 for the 
materials in the geometry. The L/A ratio was independent of the thermal 
conductivity value used in the model, and it was calculated using Eq. (9). 
Further, Fourier’s law was used for thermal conductivity calculations as 
shown in Eq. (10). 
(

L
A

)

=
k⋅ΔT

Q
(9) 

For thermal conductivity 

k =
Q⋅L

A⋅ΔT
(10) 

where Q is the heat flux, ΔT the temperature difference between hot and 
cold surfaces and A and L the vertical and horizontal length of the 
geometry.

The mesh size was selected after a convergence study to be 69,303 
elements with varying sizes as shown in the appendix (Figure A1). To 
check the effect of randomness in modelling results, a repeatability 
study was also conducted, shown in the appendix (Table A2).

2.3. Radiative conductivity

Rise in temperature leads to a rise in radiative heat transferred 
following Stefan-Boltzmann’s law, Eq. (11). 

εab = σaT4 (11) 

where εAb is the radiative power from a surface, σ the Stefan-Boltz
mann’s constant, a the area, T the temperature of the surface.

The radiative thermal conductivity of a diffusive material (optical 
thickness > 15) can be calculated using Eq. (12) [9,34]. 

λr =
16σn2T3

3ρe∗R(Tr)
(12) 

where λr is the radiative thermal conductivity, n the refractive index 
(real part), ρ the density of material, and e∗R the mass specific extinction 
coefficient.

The mass specific extinction coefficient is the sum of absorption and 
scattering coefficients. In the current work, Mie scattering theory is used 
to obtain the spectral mass specific extinction coefficient [9] following 
which Eqs. (13) and 14 are used to calculate the mean mass specific 
extinction coefficient. 

1
e∗R(T)

=

∫λ2

λ1

1
e∗Λ(Λ)

∂εΛb

∂εb
(13) 

1
e∗R(T)

=

∫λ2

λ1

1
e∗Λ(Λ)

∂εΛb

∂εb

∂εΛb

∂εb
=

πC1C2

2Λ6ε5/4
b

exp
[
(C2/Λ)(σ/εb)

1/4
]

{
exp
[
(C2/Λ)(σ/εb)

1/4
− 1
]}2

(14) 

where εb = εAb/A, C1 and C2 are constants and e∗Λ is the spectral mass 
specific extinction coefficient. To obtain the effective spectral mass 
specific extinction coefficient for composite cores we used Eq. (15). 

e∗Λ,eff =
∑n

1
δie∗Λ,i (15) 

Table 2 
Post-packing density and packing efficiency of different compositions were 
modelled. Packing efficiency was calculated as the fraction of the total box area 
occupied by circles, providing a representation of interparticle porosity.

Composition Density (kg/m3) Packing efficiency (%)

P100 165.2 83.8
P90SiC10 178.9 84.1
P80SiC20 195.4 84.1
P70SiC30 212.6 83.8
P60SiC40 231.6 85.7
P50SiC50 299.1 84.2

Fig. 8. Total thermal conductivity of core composites predicted by the model.
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where e∗Λ,eff is the effective spectral mass specific extinction coefficient of 
the composite material, n the number of components in the powder 
composite, δi mass fraction of the ith material and e∗Λ,i the spectral 
extinction coefficient of the ith material.

A wavelength range of 2 µm to 20 µm is considered for the calcula
tions. Accordingly, IR transmission spectra of perlite and SiC particles 
are also measured in that wavelength range using KBr pellet method.

Radiative heat exchange is considered parallel to the solid and 
gaseous conduction. The density and composition, as input parameters, 
are taken from the generated FEA-DEM geometry. Hence, the solid and 
gaseous thermal conductivity obtained from the FEA solution of the 
generated geometry is added to the radiative thermal conductivity 
calculated using Eq. (12). This provides the total thermal conductivity of 
the composite core.

3. Validation

The Transient Hot Wire (THW) method was used to experimentally 
measure the thermal conductivity of perlite samples and validate the 
results from the model. THW method has been used to measure the 
thermal conductivity of solids and liquids under varying pressures and 
temperatures [35–41]. The thermal conductivity of P100 sample (den
sity 150 ± 5 kg/m3) was measured at 0.1 mbar and four temperatures 
(299.9 K, 491.15 K, 557.15 K, 767.15 K) and compared against those 

predicted by the model, see Fig. 2. Results were found to be within the 
error range up to 491.15 K. The rate of increase of thermal conductivity 
was different for the experimental and predicted thermal conductivity, 
with the predicted being higher. This could be attributed to the under
measurement of radiative thermal conductivity by THW method as 
shown by Rottmann et al. [41]. The error in thermal conductivity 
measurement in THW method was calculated using the extinction co
efficient of the sample. For this study, we used KBr pellet and trans
mission FTIR to collect quantitative spectral data. As the KBr method 
does not consider back scattering by particles, this will underpredict the 
extinction coefficient in the spectral range where particle size and the 
wavelength are of the same order and will not consider the effect of 
change in particle density [42]. This underprediction causes the rate of 
increase in the predicted thermal conductivity to rise, while THW is not 
able to account for the underprediction of thermal conductivity. This 
double effect causes the measured and predicted thermal conductivity 
values to deviate at elevated temperatures, above 491.15 K in this study, 
as shown in Fig. 2. Future modellers can use infrared spectral data 
collected using the integrated sphere technique as described by Kuhn 
et al. [42]. A minimum deviation of 7.4 % was observed between 
experimental and simulation data for 303.15 K mean temperature and a 
maximum deviation of 30.7 % was observed for mean temperature of 
803.15 K.

The proposed model can minimise the number of experiments 

Fig. 9. Radiative (orange) and solid+gaseous (blue) thermal conductivities predicted by the model.

D. Kaushik et al.                                                                                                                                                                                                                                Results in Engineering 29 (2026) 109035 

7 



required to determine an optimal composition for a given particle size of 
the spherical perlites and SiC. Readers should keep in mind the limita
tions of using 2-D circular particles and FTIR data measured using the 
KBr pellet method. The model was validated for one composition due to 
the expensive experimental measurements at high temperatures. 
Guarded Hot Plate (GHP) method can also be used to validate thermal 
conductivity measurements presented here. Commercially available 
GHPs can offer an accuracy of ~2 % irrespective of the extinction co
efficients of the materials being tested. But the cost of testing using a 
GHP is much higher than that incurred when using THW equipment. 
Thermal conductivity measurements reported by Rottmann et al. [14] 
were performed using GHP equipment, which were of the same order as 
those provided in Fig. 2. The variation between the results is attributed 
to the different grades of perlites used in both studies. Further validation 
of the model with more compositions can be prioritised for future work.

4. Model results and discussion

The effect of particle size distribution and the composition of the core 
material was investigated, and temperature-dependent thermal con
ductivity was predicted to identify temperature specific optimal com
positions. Particles were considered to have a spherical shape (circular 
for 2-D). It is understood that SiC and perlite may have a more angular/ 
irregular shape in practical applications, which may affect the conduc
tive heat transfer phenomenon as the contact between two particles 
changes.

4.1. Pore and particle size distribution

The compositions with 100 % perlite (pristine perlite) to 50 % 
perlite-50 % SiC were generated with a 10 % step change. Since the 
model follows a random approach to generate the packing the exact 
weight ratios of the materials cannot be achieved as input. Hence, an 
understanding must be developed of the finally achieved weight ratio of 
perlite and SiC. The output particle and pore size distribution were also 

studied to ensure the desired material properties in the packing were 
achieved. Fig. 3 and Fig. 4 show the particle size and pore size distri
bution for various packings. The input distribution of the P100 (see 
Table 1) was a normal distribution with a mean value of 30 µm and a 
standard deviation of 15 µm. The output particle size was not a normal 
distribution, as the initial packing scheme with no overlapping would 
favour smaller particle sizes as the box filled up. This skew towards 
smaller particle sizes is shown in Fig. 3. This skew towards smaller 
particles of perlite occurred less when the proportion (by weight) of the 
perlite was lower. Hence, in the case of P80SiC20, P70SiC30 and 
P60SiC40 we observed an increase in mean particle size and a decrease 
in the measure of skewness, as shown in Fig. 3, as more perlite particles 
were generated according to normal distribution. This particle genera
tion and packing algorithm introduced a deviation between input and 
output proportions of perlite and SiC as seen in Table 1.

As the proportion of SiC in the composition increased, the number of 
smaller particles in the packing proportionately increased as the mean 
particle size of SiC used was 8 µm with a standard deviation of 3 µm. 
Interparticle pore sizes in the packing reduced with increasing SiC 
proportion, reducing the gaseous conduction. Reduction in average pore 
size can be attributed to the migration of smaller SiC particles into larger 
interparticle pores.

The SiC particles were denser, which means if the model was not able 
to control packing parameters, they could settle at the bottom of the 
packing. The settlement of heavier particles was avoided using random 
initial placement of particles and using high friction and damping fac
tors in the DEM simulation. To confirm this quantitatively, we divided 
the box into 9 bins in the vertical direction. The density variation with 
bins for each packing is shown in Fig. 5. Density showed minimal to no 
specific trend and variation with height, showing that there was no 
settlement of particles.

The distribution of SiC particles within the packing was visualised, to 
ensure uniformity, after the packing was finished for all compositions, as 
shown in Fig. 6. It shows that as the weight ratio of SiC increases in the 
composition, they form “linked agglomerates” (circled in Fig. 6) after 
their concentration exceeds a certain threshold. This leads to an increase 
in the overall solid conductivity, due to a larger area of the packing 
being high conductivity. For perlite and SiC with mean particle size of 30 
µm and 8 µm respectively the threshold comes between a perlite weight 
ratio of 76.55 % and 67.8 % as the solid thermal conductivity increases, 
as shown in Fig. 9.

To quantitatively measure the “linked agglomeration” of particles, 
we used a clustering algorithm to identify different clusters of SiC par
ticles. Fig. 7 shows the proportion of agglomerates with a size of >2 
particles at a cut-off distance of 5 µm. Linked agglomeration increased 
sharply for composites containing <70 % perlite, such as P60SiC40 and 
P50SiC50, which explains the increase in the solid+gaseous thermal 
conductivity for these compositions. Furthermore, this also explains the 
low thermal conductivity of composites containing ≥70 % perlite, such 
as P70SiC30, as predicted by the model.

4.2. Effect of composition and temperature

A range of pre-determined weight proportions of the perlite and SiC 
were used to obtain different target compositions of the VIP cores and 
the post packing parameters were calculated as shown in Table 2. The 
density of Perlite particles is considered as 200 kg/m3 and the density of 
the SiC particle is considered as 2000 kg/m3.

The rate of increase of the total thermal conductivity of the core 
decreased as the proportion of SiC increased, because SiC has a higher 
density and extinction coefficient than perlite (Fig. 8). Whereas radia
tive conductivity simply decreases with rising core density and extinc
tion coefficient, Fig. 9, the variation of solid+gaseous conductivity with 
changing SiC weight proportion is a complex phenomenon; SiC particles 
have a higher solid thermal conductivity than perlite particles (Eq. (7)) 
[41]. Similar results have been reported by Verma et al. [7], who studied 

Fig. 10. Overall thermal conductivity of the core composites with varying 
amounts of perlite; the optimum compositions move to a lower SiC percentage 
with decreasing temperature. The optimal composition for each temperature is 
marked and listed as (Weight proportion of perlite in composition, Thermal 
conductivity).
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the effect of adding different opacifiers to perlites up to 70 ◦C. This 
highlights the need for identifying the optimal proportions of SiC and 
perlite for the core to have a minimum overall thermal conductivity. 
According to Jalali et al. [9] as the density of the core increased, the 
solid+gaseous conductivity increased as well due to denser and less 
porous perlite particles, which have a higher solid conductivity based on 
Eq. (8). However, in the current study, the core density did not increase 
due to denser perlite particles, but rather due to the presence of SiC 
particles in the packing. These SiC particles were smaller in size (mean 
diameter 8 µm), and consequently, a greater number of them were able 
to be filled in the core composite. Such a packing is expected to offer a 
more tortuous path for heat flow when there are fewer SiC particles or 
none. SiC particles partake a smaller volume in the packing and are 
scattered in the whole packing space, leading to a lower rise in the 
solid+gaseous conductivity (Fig. 6). We observe a sudden increase in 
solid+gaseous conductivity when SiC proportion increases from 30 % 
(sample P70SiC30) to 40 % (sample P60SiC40). This is attributed to 
“agglomeration/clustering” of SiC particles as shown in Fig. 7, with 
P70SiC30 showing 5.2 % and P60SiC40 showing 9.2 % agglomeration. 
The optimal proportion of perlite and SiC particles by weight for a 
minimum core thermal conductivity was predicted to be 3.26:1 for the 
temperatures of 503 K and 603 K in the output geometry, as shown in 
Fig. 10. For temperatures above 603 K, P50SiC50 shows the lowest 
thermal conductivity. For temperatures lower than 503 K, P80SiC20 was 
found to be the optimum composition. This phenomenon of a decrease in 
solid+gaseous thermal conductivity with the addition of SiC in 
perlite-based VIPs was also observed in [7].

The solid thermal conductivity of the SiC particles decreases as 
temperature rises, and the rate of increase of solid+gaseous thermal 
conductivity of perlite also decreases with the increase in temperature, 
leading to perlite-SiC composites achieving a lower rate of increase in 
solid+gaseous conductivity at higher temperatures. The model was able 
to predict this behaviour, as shown in Fig. 9. The highest increase in 
solid+gaseous thermal conductivity with temperature was predicted for 
P100 composition (pristine perlite), with thermal conductivity 
increasing from 9.8 mW m-1 K-1 at 303 K to 31.08 mW m-1 K-1 at 803 K, a 
rise of 217.1 %. The lowest increase in the thermal conductivity was 
observed for P50SiC50, from 12.1 mW m-1 K-1 at 303 K to 17.7 mW m-1 

K-1 at 803 K, a rise of 46.3 %. The increase in thermal conductivity for 
the intermediate composition P70SiC30 was 118 %, from 9.7 mW m-1 K- 

1 at 303 K to 21.2 mW m-1 K-1 at 803 K. There was a slight increase in the 
thermal conductivity of P90SiC10 compared to P100 at lower temper
atures, but it lies within the repeatability error range of the simulation 
(±5.6 %) as shown in appendix (Table A2). The deviation in results 
occurred due to the random generation of packing.

For compositions with higher perlite and lower SiC weight pro
portions, the increase in the overall thermal conductivity with rising 
temperature was due to the increase in the radiative component. Caps 
et al. [43] found a similar trend. On the other hand, for composites with 
lower perlite and higher SiC proportions, the overall thermal conduc
tivity increase was largely contributed by increased solid+gaseous 
conductivity. For example, 65.8 % of the increase in the overall thermal 
conductivity from 303 K to 803 K was contributed by solid conductivity 
for P50SiC50 composite as opposed to 13.2 % for P100 material, as 
shown in Fig. 9.

5. Conclusions

A random packing-based effective thermal conductivity prediction 
model to predict the optimum composite mix for vacuum insulation 
panels is presented. The model is unique on account of its capabilities to 
predict effective thermal conductivity of powder based vacuum insu
lation cores using a combination of DEM and FEA methods. It enables 
the understanding and evaluation of the effect of properties like particle 
size, density, temperature and material compositions on the increase of 
thermal conductivity components. As an example, perlite-SiC composite 

VIP cores were simulated to identify an optimum core composition for a 
given operation temperature, with the modelled results validated 
against experimental results obtained using the THW method. The 
P70SiC30 sample with SiC weight percentage of 23.45 % was predicted 
to have the lowest solid+gaseous and overall thermal conductivity over 
the range of 300 K to 603 K, and the P50SiC50 sample over 703 K to 803 
K. This is attributed to the lower radiative conductivity for the compo
sitions with higher proportions of opacifier. This effect of the opacifier is 
likely to be predominant at higher temperatures, where radiative con
ductivity is significantly higher. The developed model could help reduce 
the number of expensive experiments that are otherwise needed to 
develop new VIP core compositions. The model is capable of designing 
VIP core compositions suitable for applications across different tem
perature ranges, such as cooking ovens (50 – 500 ◦C), furnaces (>100 
◦C), refrigeration (− 25 to 80 ◦C) and buildings (< 50 ◦C). Further work is 
proposed to extend the model’s capabilities to include different 3-D 
particle shapes (e.g. ellipsoids), which are closer to real particles.
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