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Abstract—Pedestrian detection plays a critical role in intelli-
gent perception systems in autonomous vehicles, which directly
influences the reliability and safety of the overall system. Ad-
vanced in-vehicle sensor technology has enabled the continuous
evolution of pedestrian detection systems by leveraging heteroge-
neous multimodal inputs such as RGB, infrared, depth, Light De-
tection And Ranging, and event data. Nevertheless, establishing a
robust pedestrian detection system that is capable of integrating
and processing such heterogeneous multimodal data effectively
remains a significant challenge. At the same time, growing
concerns about data privacy among automobile manufacturers
have hindered further advances in detection model performance
by restricting the sharing of private data within the industry. In
this paper, a novel personalised federated learning framework,
Kolmogorov-Arnold network-based Dual Expert Transformer
Heterogeneous Personalized Federated Learning (KDET-HPFL),
is proposed for multimodal pedestrian detection. To be specific,
the KDET pedestrian detector is developed based on an expert
feature selection module (which is designed to adaptively choose
essential features from multimodal data) and a Group-Rational
Kolmogorov-Arnold Network module, which enhances the feature
extraction capabilities and improves the detection performance
effectively. The HPFL framework is proposed for data privacy
protection on heterogeneous multimodal data, where a cross-
client aggregation (CCA) method is put forward by integrating
different aggregation methods for certain layers in the KDET
detector. With CCA, the HPFL framework achieves personalised
feature retention of multimodal data pairs on multiple clients
and improved model aggregation effect for each client. Exper-
imental findings reveal that the proposed KDET-HPFL frame-
work outperforms some existing personalised federated learning
frameworks for pedestrian detection on four public datasets (i.e.,
LLVIP, STCrowd, InOutDoor, and EventPed) with mAP scores
of 73.74%, 75.39%, 66.14%, and 79.57 %, respectively.

Index Terms—Pedestrian detection, multimodal fusion, privacy
protection, personalized federated learning, mixture of experts.

I. INTRODUCTION

Pedestrian detection has long been a prominent research
focus in computer vision due to its broad applicability and
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critical importance across various applications, such as path
planning, video surveillance, and autonomous driving [7].
In autonomous driving, reliable pedestrian detection plays a
crucial role in ensuring human safety and enabling intelligent
decision-making. System failures or anomalies during opera-
tion may lead to serious accidents, which highlights the need
for accurate and reliable pedestrian detection systems.

Traditional pedestrian detection methods depend exclusively
on RGB images captured by onboard cameras. Note that such
RGB-based systems often exhibit degraded performance under
challenging conditions, e.g., nighttime driving, backlighting, or
extreme weather conditions. By integrating multiple types of
sensor data, modern pedestrian detection systems are capable
of addressing more diverse driving scenarios compared to
single-modal systems. As illustrated in Fig. 1, Light Detec-
tion And Ranging (LiDAR) and depth cameras can provide
accurate object position information in scenarios with limited
visibility. Infrared radiation sensors are capable of capturing
discernible silhouette features in dark environments, and event
cameras facilitate the acquisition of object information with
an extended dynamic range. The modalities complement RGB
data by providing positional, thermal, and temporal informa-
tion that single-modal systems cannot obtain.

Recent advancements in onboard sensing technology have
further empowered the exploitation of multimodal data for
building reliable and robust pedestrian detection systems [44].
Many efforts have been devoted to developing advanced object
detection methods by focusing on multimodal data fusion, e.g.,
Iterative Cross-Attention Guided Feature Fusion (ICAFusion)
[32], Removal and Selection Detector (RSDET) [45], and the
Dual Vision Transformer (Dual-ViT) [42]. Among them, Dual-
ViT has been widely accepted as a powerful model due to its
strong feature fusion ability.

Similar to the original Transformer, the Multilayer Percep-
tron (MLP) is employed in the Dual-ViT to perform nonlinear
transformations and simple feature processing. Despite its
simplicity and effectiveness, MLP frequently suffers from
low parametric efficiency and feature representation capac-
ity, especially when applying to high-dimensional data for
complex tasks. Comparing with MLP, the recently proposed
Kolmogorov-Arnold Network (KAN) [33] exhibits competi-
tive performance with better interpretability while handling
challenging tasks due to its univariate functions parameterized
as splines and learnable activation functions at the edges.
However, the B-spline function employed in the KAN is not
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well-suited for parallel computing. In response to facilitating
parallel computing, Group-Rational KAN (GR-KAN) has been
introduced in [43]. It becomes a seemingly natural idea to
integrate the GR-KAN into the Dual-ViT with the hope of
further improving the feature extraction capability of the Dual-
ViT on multimodal data.

LiDAR

IR Depth

Fig. 1: Characteristics of different multimodal data.

Current multimodal object detection frameworks (including
Dual-ViT) often struggle to fuse features from diverse data
modalities effectively. Such discrepancies in data distribution
and representation would lead to poor detection performance
when applied to previously unseen multimodal data [5]. For
example, the Dual-ViT (trained based on multimodal data
pairs of RGB and event data) may not perform well on
multimodal data pairs of RGB and LiDAR data due to spatial
misalignment. With the purpose of enhancing the feature
fusion ability of the detector, an Expert Feature Selection
(EFS) module (which is a novel component developed based
on the Mixture of Experts (MoE) [6] structure) is proposed
in this paper. By leveraging the dynamic routing capabilities
of MoE, the EFS module allows the detector to selectively
employ experts for handling data with different modalities,
thereby enabling effective feature fusion and improving the
overall detection performance [34].

Relying on centralized server training, traditional intelli-
gent transportation systems typically require clients to upload
sensitive data to central servers, which results in data silos
and privacy risks [38], [41], [47]. Balancing data utilization
from all vehicle enterprises while ensuring data security and
privacy has become a major challenge in designing a powerful
multimodal pedestrian detection framework for autonomous
driving. Fortunately, federated learning offers a promising
solution by enabling distributed training through parameter
sharing, thereby mitigating privacy and security risks without
exchanging raw data [18].

Note that the effectiveness of the general federated learning
framework (which is designed for homogeneous data) is con-
strained by the heterogeneity of data modalities collected by
different enterprises [17]. The heterogeneity of data modalities
limits the applicability of the detector to diverse real-world
scenarios. To address the heterogeneity issue, a personalized
federated learning strategy has been proposed in [22], which
enables each client to perform tasks tailored to its specific
requirements while balancing the collaborative training of the
global model and the optimization of local models. While
current multimodal personalized federated learning frame-
works enable model aggregation for designated multimodal
data pairs, a unified framework has yet to be thoroughly in-

vestigated, which can accommodate model aggregation across

clients with diverse multimodal data pairs.

Recent studies in personalized federated learning have
demonstrated that hierarchical personalization strategies can
effectively improve model performance under modality het-
erogeneity scenarios [1], [35]. As mentioned in [35], per-
sonalized embedding layers have been reported to effec-
tively mitigate both intra-modal and cross-modal discrepancies
among clients in multimodal federated learning. Prior studies
support embedding-level personalization and demonstrate that
the Patch Embedding layer, when properly configured in
transformer architectures, is capable of effectively modeling
modality-specific properties in multimodal settings [20], [21],
[24], [36]. Specifically, the rationality of using the “Patch
Embedding” layer close to the input as the personalization
layer has been presented in [20], [24]. In addition, the “Patch
Embedding” layer, when utilised appropriately in Transformer
structures, can successfully capture the properties of multi-
modal input data [21], [36].

Motivated by the above discussions, this paper identifies
three key challenges for developing a pedestrian detection
system based on a personalized federated learning frame-
work: 1) How to develop an effective pedestrian detector
which is capable of enhancing feature fusion across diverse
modalities and modality pairs? 2) How to design a person-
alized federated learning framework which is adaptable to
diverse modality pairs? and 3) How to improve the synergy
between the pedestrian detection framework and the person-
alized federated learning framework? To address the afore-
mentioned challenges, a novel personalised federated learning
framework, Kolmogorov-Arnold network-based Dual Expert
Transformer Heterogeneous Personalized Federated Learning
(KDET-HPFL), is put forward in this paper for pedestrian
detection using heterogeneous multimodal data. The main
contributions are summarized as follows:

(a) An object detection framework, KDET, is proposed for
multimodal pedestrian detection, where the GR-KAN is
integrated into the Dual-ViT backbone by replacing the
MLP in Dual Block and Merge Block. The learnable edge
functions and adaptive spline mapping of the GR-KAN
contribute to the improvement of the KDET framework
in terms of the feature extraction capability and object
detection performance.

(b) A feature fusion module, EFS, is put forward in this paper
to facilitate multimodal data analytics. The EFS module
utilizes fused multimodal features to guide its gating
network in learning dynamic expert weight allocation,
and combined with residual connections, enhances the
detector’s ability to dynamically select and fuse features
extracted from different modalities.

(c) An HPFL framework is developed for data privacy pro-
tection on heterogeneous multimodal data, which enables
cross-client collaborative training while preserving per-
sonalized features through a stepwise aggregation mech-
anism. The cross-client aggregation (CCA) method is
proposed based on heterogeneous aggregation and homo-
geneous aggregation to achieve personalized parameter
aggregation of the KDET framework.
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Fig. 2: The overall structure of the proposed KDET-HPFL framework.

(d) A personalized federated-learning-assisted object detec-
tion framework, KDET-HPFL, is put forward for mul-
timodal pedestrian detection. Experimental results show
that the KDET-HPFL framework outperforms some ex-
isting detection frameworks and successfully achieves a
proper balance between detection performance and data
privacy protection on four public datasets.

The remaining sections of this paper are organized as fol-
lows. A novel personalized federated detection framework is
introduced in Section II. In Section III, the datasets, evaluation
metrics, implementation details, and experimental setting are
discussed. In addition, experimental results of the proposed
framework and selected methods are presented in Section III.
Finally, conclusions and future directions are drawn in Sec-
tion IV.

II. METHODOLOGY

In this section, the proposed KDET-HPFL framework is
presented in detail. Firstly, the KDET multimodal pedes-
trian detection framework is introduced, where the backbone
network (i.e., GR-KAN-Based Dual-ViT) of the detection
framework and the designed EFS module are discussed. We
explain how the GR-KAN is integrated into the Dual-ViT and
how the EFS is used to connect each stage within the detection
framework. Then, the HPFL framework is introduced with
details. The overall structure of the KDET-HPFL framework
is depicted in Fig. 2.

A. Multimodal Pedestrian Detection Framework

In this paper, the KDET detection framework is developed
for multimodal object detection. To further improve the feature
extraction ability of the detection model on multimodal data,
the GR-KAN is adopted to replace the MLP layers in the Dual-
ViT. To alleviate the problem of insufficient feature fusion
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caused by the direct connection between Transformer stages,
the EFS module is put forward to facilitate a comprehensive
integration of multimodal features.

1) GR-KAN-Based Dual-ViT: To achieve a proper balance
between the computational cost and the detection performance
while adapting to multimodal inputs, the Dual-ViT has been
presented in [42] for pedestrian detection. The Dual-ViT
receives multimodal data as input and gradually extracts fused
features through the dual block and merge block. In the dual
block, two modality-specific branches are included. In the
merge block, the self-attention [3] module facilitates internal
interaction within the feature map. To further improve the
feature representation of the detector, we attempt to embed
the recently introduced GR-KAN into the Dual-ViT pedestrian
detection model in order to improve the feature fusion of
multimodal data pairs, as inspired by [43].

In the proposed KDET framework, the GR-KAN is em-
ployed to enhance the feature extraction capability of Dual-
ViT. To facilitate the embedding of GR-KAN into Dual-ViT,
the dual block and the merge block are redesigned. The
structures of the new dual block and the new merge block
are displayed in Fig. 3.

With the input feature X € R7*WXC the feature extraction
process based on GR-KAN for dual block and merge block
can be expressed as follows:

20 = [Melass; M) E,M2E, - -« \MSE| + Epos, (1)
zy = MSA(LN(z¢-1)) + z¢—1, 2
zp = ¢(LN(z;)) + 2, ©)

where M, denotes the sequences of flattened image patches;
M 1ass denotes learnable class token embedding; K is the
resulting number of patches; E represents the linear projection
layer; E,,s denotes the position embedding; z; is the output
feature map of the [-th block; MSA(:) indicates the Multi-
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Fig. 3: Design of new Dual block and Merge block structures.

head Self-Attention mechanism; ¢(-) represents the GR-KAN
block; and LN(-) denotes the Layer Normalization operation.

Remark 1: In the proposed KDET detection framework,
the GR-KAN is employed to replace the MLP in the Dual-
ViT model. Comparing with MLP, KAN exhibits superior
representation ability and interpretability, which is capable of
approximating complex functions with high accuracy while
using fewer parameters [23]. Furthermore, with the replace-
ment of the linear weight matrix by a learnable 1D function
(i.e., the B-spline), KAN demonstrates better convergence
and generalization ability than the MLP. Due to structural
limitations, the model training of KAN is slow and unsuitable
for distributed training [43]. With the purpose of facilitating
parallel computing, the GR-KAN proposed in [43] is adopted
in this paper to replace the MLP layers in the Dual-ViT
model, leading to a proper balance between flexibility and
computational efficiency.

2) EFS Module: The MoE mechanism consists of multiple
expert networks and a gating network. The gating network
dynamically assigns weights to the experts based on the
characteristics of the input multimodal features, which allows
the model to activate the most relevant combinations of experts
for processing different input features. Motivated by MoE, the
EFS module is proposed in this paper to dynamically select
features between consecutive blocks, which enables dynamic
learning of multimodal data features. In the EFS module, the
fused features from two data modalities are employed to guide
the gating network to produce the weights for each expert
network. The obtained weights are utilized to select the most
appropriate combination of experts. With the EFS module,
the KDET framework can adaptively activate specific experts
when dealing with different multimodal data features with
promising feature fusion performance. In this case, the KDET
framework effectively accommodates unseen multimodal data,
which improves the generalisation ability of the pedestrian
detector. The structure of the EFS module is shown in Fig. 4.

The inputs S and .S, are concatenated to obtain S,j;, which
is then fed into the gating network G. The gating network
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Fig. 4: Structural representation of the EFS module.

computes S,y according to the probability distribution of N
experts. The workflow of EFS’s computational procedure for
one multimodal data is represented as follows:

San = Concat(Flatten(S; ), Flatten(Sz)), “4)
G(San) = softmax(topK(Sau . Wau)), (5)
N
Yy = Z G(Sall)iEi(xj)u (6)
i=1

where W, is a learnable weight matrix; E; denotes expert
networks; K indicates the number of activation experts; and
x; represents single data modality features.

Remark 2: Leveraging the MoE mechanism, the proposed
EFS module enables the detector to quickly adapt to different
multimodal data while effectively reducing the risk of over-
fitting, thus demonstrating satisfactory generalization ability
in the face of unseen modal data. In addition, the residual
connection mechanism is embedded into the EFS module
to bridge different stages in the Transformer to ensure the
complete retention and smooth transmission of original feature
information, which could effectively alleviate the problems of
feature information loss and vanishing gradient that may occur
during the training process of the detector.

B. Personalized Federated Learning Framework

To enable effective personalized feature retention for var-
ious multimodal data pairs across different tasks, this paper
introduces a CCA method. The CCA method consists of
two parts: 1) heterogeneous aggregation and 2) homogeneous
aggregation. The detailed aggregation process is illustrated in
Fig. 5.

1) Heterogeneous Aggregation: The information interac-
tion among the clients is of vital importance in the person-
alized federated learning process, which means that differ-
ent clients (with specific multimodal data) are capable of
exchanging knowledge and benefiting from complementary
information. In this paper, the KDET detector is divided into
a pre-encoder and an encoder-decoder. As shown in Fig. 2,
the pre-encoder corresponds to the Patch Embedding part
of the first stage of the detector, while the encoder-decoder
corresponds to the feature extraction part of the detector in
addition to the Patch Embedding.
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Fig. 5: Tllustration of Heterogeneous Aggregation and
Homogeneous Aggregation. Here, 07 and ;0] respectively
represent the parameters transmitted between clients and the central
server during the Heterogeneous Aggregation. 0F and 6F
respectively denote the parameters transmitted between clients and
the central server during the Homogeneous Aggregation.

Note that multimodal data (i.e., RGB, infrared, depth,
LiDAR, and event data) collected from advanced sensors by
different vehicle manufacturers exhibit distinct characteristics.
In real-world scenarios, the availability of the aforementioned
modalities often varies significantly across clients, which
brings considerable challenges related to data heterogeneity
and fusion [9], [13]. To address the challenge of heterogene-
ity of multimodal data between different clients, the cross-
attention mechanism is deployed to facilitate effective infor-
mation exchange between clients. Heterogeneous aggregation
is proposed in this paper for the pre-encoder, where the central
server maintains a dedicated set of weights for each client.
Heterogeneous aggregation considers the discrepancy between
multimodal data among the local updates of different clients,
which makes parameter updates influenced by interactions
across multiple clients.

The client’s model parameter update process is described as
follows:

C =[A07,...,A0%]", @)

~ AGFCT
67 = Softmax <7> C, 8
7 ®)
0, =070 16y, ©)

where AAF represents the original parameter update; d is the
dimension of A#F; éf represents the aggregated update for
the ¢-th pre-encoder; 9;3 (") denotes the pre-encoder parameters
of the i-th client at round r; and wfr) is the parameter of
the i-th client, which is learnable. Here, z/zzm is dynamically
updated during the training process, which ensures adaptive
optimization by integrating personalized weights with the
overall optimization objective. The parameter wfr) in (9) is
a learnable parameter that is updated during model training
phase as follows:

() _ -1 _ 9L
Vi = e
where 7) is the learning rate; and £; is the local loss function of
the i-th client. The parameter v; is constrained to the range
[0,1]. According to the characteristics of its client data, 1;
adaptively learns the optimal degree of personalization.

(10)

2) Homogeneous Aggregation: In addition to implementing
heterogeneous aggregation for the pre-encoder, homogeneous
aggregation is put forward for the encoder-decoder, which
allows all participating clients to share information through
a parameter-sharing mechanism, thereby obtaining common
feature parameters across clients. Homogeneous aggregation
effectively leverages the correlations among individual clients,
which enhances the generalization of the detection model.

Assume that there are N clients involved in training, and
each client has an independent local detector. The parameter
aggregation process of the encoder-decoder architecture is

expressed by:
N
GEr) _ L ) (")
N3 b

where 9? (") denotes the independent encoder-decoder pa-
rameters of the i-th client at round r; HF-(") denotes the
aggregated parameters of each client. The global detection
model is updated by summing gradients derived from various
multimodal data pairs, thereby learning from multiple data
domains.

Y

C. The overall KDET-HPFL Framework

This paper proposes the KDET-HPFL framework for pedes-
trian detection, which enables the training of a personalised
pedestrian detection framework adapted to the specific data
characteristics of each client while preserving data privacy.
The detector is divided into a pre-encoder and an encoder-
decoder, which are adaptively trained using heterogeneous
aggregation and homogeneous aggregation strategies, respec-
tively. The main steps of the proposed KDET-HPFL frame-
work are presented in Algorithm 1.

III. EXPERIMENTS AND ANALYSIS

This section begins by introducing the utilized benchmark
datasets and experimental settings. Then, the evaluation of
the KDET pedestrian detection model is conducted by com-
paring it with existing multimodal object detection methods.
Next, the proposed KDET-HPFL framework is compared with
several selected personalized federated learning frameworks
to demonstrate its effectiveness in handling heterogeneous
multimodal data. The ablation experiments are carried out to
validate the effectiveness of the proposed modules and frame-
works. Comprehensive discussions are presented to analyse
the experimental results.

A. Datasets and Evaluation metrics

To validate the effectiveness of the proposed KDET-HPFL
framework, Average Precision (AP) and Log-average Miss
Rate (MB~2), are used for comprehensive performance eval-
uation [32]. The proposed method is validated on four public
datasets, including LLVIP [15], STCrowd [2], InOutDoor [28],
and EventPed [44]. The LLVIP public dataset is a visible-
infrared paired dataset designed for low-light vision tasks,
which consists of 33,672 images (16,836 pairs). The STCrowd
public dataset comprises 219K annotated pedestrian instances,
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Algorithm 1 Main Steps of the KDET-HPFL Framework.

Input: N clients {Cy,...,Cn} with private multimodal
datasets { D1, ..., Dy} for pedestrian detection, personal-
ized federated learning iteration number R, local iteration
number F, client learning rate 77,( }%%gregation interval ¢

Output: Trained models ©(R) = {67, ..., 95\?)}
1: Clients initialize KDET frameworks ©(0) =
{9%0),...,95\?)}, each model 6; consists of a shared

encoder-decoder ;  and pre-encoder 6; p
2: Initialize local iteration counter k < 0
3: procedure FEDERATED TRAINING
4: for each global round r € {1,..., R} do

5 for each client C; in parallel do

6: k< k+1

7 A6 « LOCAL_TRAINING (6" V)

8 if £ =t then

9: Server disassembles A@y) into:

10: - Pre-encoder updates Ag; p

11: - Encoder-decoder updates A¢; g

12: Homogeneous Aggregation to {Af; g}
13: Heterogeneous Aggregation to {Af; p}
14: Broadcast aggregated model ©(")

15: k<« 0

16: end if

17: end for

18: end for

19: end procedure
20: procedure LOCAL_TRAINING(GET_I))

21 0; < ng_l)

22: for each local epoch e € {1,..., E} do

23: for batch B; . C D; do

24: Compute model losses L;

25: Update local model 6; < 6; — nVg, L;
26: end for

27: end for

28 return A9 =g, — 6"V
29: end procedure

averaging 20 individuals per frame, and encompasses varying
degrees of occlusion. The EventPed public dataset is a recently
collected RGB-event paired dataset focusing on pedestrian
detection in outdoor scenarios such as parks and sidewalks.
The dataset includes 7,195 image pairs in the training set and
2,435 image pairs in the test set. The InOutDoor public dataset
contains 8605 annotated RGB-D frames collected by the robot
at a frame rate of 30 Hz.

B. Implementation Details

The proposed KDET-HPFL framework uses Dual-ViT as
the backbone network. In this paper, we pre-train the Dual-
ViT model for 12 epochs on a combined RGB-based dataset.
The pre-trained model is then trained on multimodal datasets.
The KDET-HPFL framework in this paper is implemented
using the MMDetection framework, known for its flexibility
and modularity. The experimental platform is CUDA 11.1 and

GTX 3090 GPU x8 with data parallelism, and the code is
implemented using Pytorch 1.8.1.

C. Experimental Setting

The comparison study in this paper can be divided into
two parts, the pedestrian detection experiment and the
personalized federated learning experiment. Furthermore, an
ablation study is conducted on four public datasets (in which
each modification rule is implemented separately) to verify
the effectiveness of the proposed modules.

Pedestrian Detection Experiment: In this experiment, we
focus on the pedestrian detection task using Dual-ViT as
the backbone network. The model incorporates multi-head
attention mechanisms and hierarchical embeddings for feature
extraction. For optimization, we employ the AdamW optimizer
with an initial learning rate of le-4 and a weight decay coeffi-
cient of 1e-4. To achieve differentiated optimization, a learning
rate reduction factor of 0.1 is applied to the backbone network.
The total loss function of the detector comprises four key
components: the RPN head loss (Lossgrpn), the Query head
loss (LossqQuery), the Rol head loss (Lossgrer), and the ATSS
head loss (LossaTss). In such heads, Focal loss, CrossEntropy
loss, and Quality Focal loss are used as categorical loss. L
loss and GIoU Loss are used as regression loss [44]. The total
loss function is obtained by computing the weighted sum of
the aforementioned individual loss components:

Loss = Lossrpn + LossqQuery + Lossror + Lossatss. (12)

Personalized Federated Learning Experiment: This ex-
periment is designed based on the KDET pedestrian detection
framework to validate the data privacy protection performance.
The public datasets (i.e., LLVIP, STCrowd, InOutDoor, and
EventPed) are adopted separately as multimodal training data
for each individual client. To ensure the data balance, random
sampling is employed to establish the training sets with 4,000
samples each, and the validation sets with 1,000 samples
each. Within the federated learning framework, the training
configurations for individual clients remain consistent with
the configurations in the pedestrian detection experiment. For
model aggregation, we implement a strategy where model
parameters are aggregated after every 2,000 iterations per
client, with a total of 30 aggregation rounds throughout the
training process.

D. Results and Discussions of Detection Framework

To validate the effectiveness of the proposed pedestrian
detection framework, comparative experiments are carried out
with some mainstream multimodal object detection models, in-
cluding YOLOVS [37], Faster R-CNN [31], YOLOX [12], Co-
DETR [46], Swin Transformer [19], ICAFusion [32], Dual-
ViT [42] and RSDet [45]. The evaluation process employed
three metrics: AP and MB~2. To thoroughly validate the
generalization ability and robustness of the KDET pedestrian
detection framework across different scenarios, four distinct
datasets are employed for model training and testing, which
enables a comprehensive assessment of the model’s pedestrian
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Fig. 6: Visualization of features extracted by the KDET framework.

detection performance on multimodal data. The results are
shown in Table I. The pedestrian detection framework KDET
proposed in this paper has achieved the best performance on
all four test datasets. The KDET’s mAP improves by 3.78%,
3.74%, 3.36%, and 4.11% compared to the best-performing
comparison method RSDet on the LLVIP, STCrowd, InOut-
Door, and EventPed public datasets, respectively.

TABLE I: Comparisons of multimodal-based pedestrian detection
methods in recent years. T means higher is better, while | means
lower is better.

LLVIP STCrowd InOutDoor EventPed

Method

mAPt MB-2| mAPt MB2| mAP{ MB~2| mAP+ MB~2|
YOLOVS [37] 51.32 32.65 54.18 34.10 45.20 43.10 53.57 41.80
Faster R-CNN [31] 53.06 31.80 55.41 3250 46.05 41.97 54.11 39.47
YOLOX [12] 59.13 28.78 62.14 25.34 52,07 37.56 63.86 29.27
Co-DETR [46] 56.74 36.92 59.76 27.05 49.80 38.95 59.98 33.10
Swin Transformer [19]  59.66 28.93 63.49 26.78 50.94 38.40 61.40 3129
ICAFusion [32] 54.75 30.78 56.04 33.40 47.37 40.59 55.44 40.73
Dual-ViT [42] 60.47 2791 64.06 26.17 53.78 35.94 62.11 2551
RSDet [45] 61.30 26.02 64.11 24.68 55.14 35.74 65.69 25.26
Ours 65.08 24.02 67.85 2274 58.50 32.50 69.80 21.40

To evaluate the feature extraction capabilities of the pro-
posed KDET framework, visualization analysis of the ex-
tracted features is conducted. Results of the visualization
analysis are illustrated in Fig. 6. We can see that KDET
consistently captures key pedestrian features across diverse
scenarios (including daytime, nighttime, indoor, and outdoor
environments) and multiple datasets, which indicates that the
proposed KDET framework is capable of effectively extracting
key features robustly.

The detection results of KDET framework on the benchmark
datasets are shown in Fig. 7, which verifies the generalization
ability of the KDET framework. The detection results show
that the KDET framework is able to accurately identify objects
in different multimodal data pairs and take advantage of the
complementary strengths of the different modalities to better
perform the detection task. For example, in the IR and RGB
data pairs, IR data can provide additional information to make
up for the deficiencies caused by light and shadow interfer-
ence, thus enabling the detector to perform the detection task
more accurately. Similarly, in Event and RGB data pairs, RGB
images are difficult to adequately represent the object features
at night, and with the supplement of Event data, the detector
can also better realize the detection task.

Event + RGB
#

IR + RGB Depth + RGB

Ground
Truth

Detection
Results (Ours)

Fig. 7: Visualization of pedestrian detection results of four
multimodal data pairs.

To further evaluate the learning ability of the KDET frame-
work on the pedestrian object features, t-SNE visualization is
performed on the test set of the LLVIP public dataset, mapping
the high-dimensional features of each sample to the two-
dimensional plane. The corresponding results are displayed in
Fig. 8. It can be seen in Fig. 8 that after adding the EFS module
and GR-KAN structure, the feature extraction performance of
the baseline is significantly improved, which is reflected by
a tighter distribution of features and clearer differentiation.
This finding indicates that the KDET framework is able to
distinguish the features of the test samples more accurately.
In Fig. 8(d), we analyze the distribution of outlier points,
the number of outliers is significantly reduced compared with
Fig. 8(a), which further shows that most of the features of the
test samples can be effectively distinguished by the KDET
framework.

E. Results and Discussions of HPFL Framework

To validate the performance of the HPFL framework, four
public datasets are assigned to each of the four simulated
client training nodes, where the 1st node is designated as
the central server responsible for parameter aggregation and
distribution. All the clients involved in training are distributed
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(d) KDET

(c) Baseline + EFS

Fig. 8: Visualization of features extracted by different methods
based on t-SNE.

according to the aforementioned experimental setup. Table II
shows the experimental results of the proposed HPFL frame-
work and chosen federated learning frameworks, including
the traditional federated learning frameworks FedAvg [27]
and DeceFL [41], and the personalised federated learning
frameworks FedProx [25], FedAMP [14], FedRep [4], and
Ditto [26].

As demonstrated in Table II, the HPFL framework out-
performs the chosen federated learning frameworks on all
four datasets. Specifically, our framework achieves the highest
detection accuracy to both traditional federated learning frame-
works and personalised federated learning frameworks. Com-
pared to the best-performing baseline framework FedAMP, the
HPFL framework achieves absolute improvements of 5.13%,
5.35%, 5.19%, and 8.71% in mAP on LLVIP, STCrowd,
InOutDoor, and EventPed public datasets, respectively. Results
demonstrate the robustness and generalisation ability of our
proposed framework on multimodal data. To evaluate the

TABLE II: Comparison to representative methods using four
different datasets each assigned to a client.

Method Client 1 Client 2 Client 3  Client 4
LLVIP STCrowd InOutDoor EventPed
FedAvg [27] 51.47 42.65 46.18 58.12
DeceFL [41] 49.22 40.19 42.02 55.71
FedProx [25] 55.13 46.78 49.74 62.54
FedAMP [14] 68.61 70.04 60.95 70.86
FedRep [4] 66.73 68.46 59.17 69.39
Ditto [26] 61.53 56.68 55.51 67.10
Ours 73.74 75.39 66.14 79.57

effectiveness of the proposed HPFL framework under varying
numbers of clients, we add more testing using a range of
client counts. In this experiment, the performance is measured

by calculating the mAP for each local client. The mAP is
computed independently for each client (without parameter
aggregation) using the following formula:

Pup ;i —
pNZHP

PLOCdl i

PLOCdl i (13)

where NN is the number of clients; Pup; and Pocali cOr-
respond to the efficiency of client ¢ for federated learning
methods and the local model, respectively.

The number of clients involved in training is gradually
increased from one to four using LLVIP, STCrowd, InOutDoor,
and EventPed datasets. As demonstrated in Fig. 9, the pro-
posed KDET-HPFL framework consistently outperforms the
compared methods across all configurations. We find that the
increase of number of clients will lead to improved detection
performance. This finding demonstrates that federated learning
enhances model performance while safeguarding data security.
Furthermore, by accounting for the heterogeneity of different
multimodal data, the KDET-HPFL framework achieves more
significant performance gains as the number of training clients
increases.

10 r//
01 §==============ss=s=fgesss=s=IzIIIIIzzics 2
-4- Local
O\Z —e— FedAvg
< -10 —=— DeceFL
FedProx
~20 FedAMP
--o-- FedRep
Ditto
2c 3C 4ac —— Ours

Clients Scale

Fig. 9: Comparison of the impact of client additions on the
detection performance of frameworks.

To demonstrate the practicality of the HPFL framework
proposed in this paper, we have compared the total com-
munication overhead required for different federated learning
frameworks to achieve mAP value of 50%, 60%, and 70%. Ta-
ble III clearly demonstrates the superiority of our method. For
client-specific models on the LLVIP public dataset, achieving
an mAP value of 50% requires a total communication cost
of 7.41 GB using the HPFL framework, which is lower than
the communication overhead of other centralized federated
learning frameworks. In comparison with total communication
overhead of FedRep (17.66 GB), FedAMP (18.54 GB), and
Ditto (33.37 GB), our method requires a total communication
overhead of 11.12 GB when the detection model for specific
clients using the LLVIP public dataset with an mAP value of
60%. Note that in our experiments, only our federated learning
framework can achieve mAP value of 70%. In summary, in
the scenario of personalization of multimodal data, our HPFL
framework achieves the optimal performance with the minimal
total communication overhead compared to other centralized
federated learning frameworks. This highlights the practical
value of HPFL framework in real-world IoT scenarios.

The convergence of three detection models based on KAN,
MLP and GR-KAN in federated learning is studied using a
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TABLE III: Comparison of total communication overheads for
different federated learning frameworks to achieve specified mAP
value.

Total Comm. Total Comm. Total Comm.

Method Per-Round Comm.

to 50% mAP  to 60% mAP to 70% mAP
(MB) (GB) (GB) (GB)
FedAvg 474.5 25.95
FedProx 474.5 22.24 -
FedAMP 474.5 11.12 18.54
FedRep 205.5 8.03 17.66
Ditto 474.5 14.83 33.37 -
Ours 474.5 7.41 11.12 25.95

distributed training framework. The trends of the mAP changes
on the four clients, and the results are shown in Fig. 10. We can
see that the GR-KAN-based KDET-HPFL framework achieves
the optimal performance among the KAN-based KDET-HPFL
framework and the MLP-based KDET-HPFL framework. Fur-
thermore, our GR-KAN-based KDET-HPFL framework not
only speeds up the training process but also maintains better
detection performance in terms of mAP across all experimental
settings. To summarize, GR-KAN-based KDET-HPFL frame-
work consistently outperforms the KAN-based KDET-HPFL
framework and the MLP-based KDET-HPFL framework while
exhibiting stable post-convergence behaviour.
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S 8
g g
E E
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Fig. 10: Comparison of mAP change trends of four clients under
different frameworks.

F. Ablation Study

The effectiveness of the designed modules in the proposed
KDET framework is demonstrated in the ablation experiments
on the LLVIP, STCrowd, InOutDoor, and EventPed public
datasets. The ablation experimental results are presented in
Table IV. According to the experimental results, the influences
of each module in the proposed KDET framework are sum-
marized below.

(a) The influence of the EFS module is presented in the
second row of Table IV. By employing the EFS module,
the detector’s mAP improves by 3.67%, 3.05%, 3.41%,
and 4.99% compared to the baseline (Dual-ViT) on
the LLVIP, STCrowd, InOutDoor, and EventPed public
datasets, respectively.

(b) The influence of the GR-KAN module is shown in the
third row of Table IV. Compared with the baseline
(Dual-ViT), the GR-KAN module enhances the detector’s
mAP by 2.01%, 1.91%, 1.45%, and 3.62% on LLVIP,
STCrowd, InOutDoor, and EventPed public datasets, re-
spectively.

The KDET framework (which includes the EFS and the
GR-KAN modules) achieves the best overall detection per-
formance with significant improvements in mAP of 4.61%,
4.79%, 4.72%, and 7.69% across all datasets, showing the
effectiveness of our proposed architecture.

TABLE IV: Results of ablation experiments for KDET detection
framework.

Module Dataset
EFS GR-KAN Method LLVIP STCrowd InOutDoor EventPed
X X Dual-ViT (Baseline) 60.47 64.06 53.78 62.11
v X KDET (without GR-KAN) 64.14 67.11 57.19 67.10
X v KDET (without EFS) 62.48 65.97 55.23 65.73
v v KDET 65.08 68.85 58.50 69.80

Remark 3: Based on the above comparative experimental
results, we can conclude that the proposed EFS module for
dynamic feature selection can effectively enhance the feature
extraction capability of the model. In addition, the introduction
of GR-KAN structure instead of MLP in Transformer block
not only improves the detection performance of the model,
but also meets the demand of distributed training. The HPFL
framework proposed in this paper effectively achieves person-
alized aggregation on each client on the basis of protecting
data privacy, and significantly improves the performance of
the clients in the object detection task. In summary, the effec-
tiveness of the proposed KDET-HPFL framework is compre-
hensively demonstrated on the LLVIP, STCrowd, InOutDoor,
and EventPed public datasets.

IV. CONCLUSION

In this paper, the KDET-HPFL framework has been pro-
posed for multimodal pedestrian detection with preserved data
privacy in the field of autonomous driving. To be specific,
the detection framework, KDET, has been developed for
multimodal pedestrian detection, where the GR-KAN has been
employed to enhance the feature extraction capability of the
detector. The EFS module has been put forward to enhance
the multimodal feature extraction and fusion capabilities of
the detector using dynamic feature selection and residual
connection. The personalised federated learning framework,
HPFL, has been proposed to guarantee the data protection
of the detection framework and address the challenges of
multimodal data processing in intelligent perception systems.
The HPFL framework incorporates both heterogeneous and
homogeneous aggregation mechanisms to enable cross-client
collaborative training while preserving personalized features.
The developed KDET-HPFL framework has been evaluated on
four public datasets and demonstrated superior performance
compared to existing frameworks. Experimental results have
shown that our KDET-HPFL framework effectively handles
multimodal feature dynamic fusion, while the KDET-HPFL
framework enables personalized federated learning across mul-
tiple heterogeneous multimodal data clients. We can conclude
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that the proposed KDET-HPFL framework further ensures
the safety of autonomous driving under complex scenarios.
In the future, we aim to: 1) extend the framework to other
tasks (e.g., state estimation [16], dual-task learning [29], and
representation learning [40]); 2) reduce the communication
and computation overhead of the HPFL framework and im-
prove its communication efficiency [8], [30]; and 3) explore
advanced personalization strategies by integrating optimization
algorithms [11]) and novel feature extraction methods [10],

[39].
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