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EEG-Infinity: A Mathematical Modeling-Inspired
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Abstract— The distribution of electroencephalogram
(EEG) data generally varies across datasets due to the
huge difference between the physical structure of brain-
computer interface devices, known as cross-device vari-
ability. Such variability poses great challenges in EEG
decoding and hinders the standardized utilization of EEG
datasets. In this study, we explore a new issue con-
cerning the cross-device variability problem, pointing to
the gap in the existing studies facing cross-device vari-
ability. To tackle this challenge, our paper is the first
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to model the cross-device variability problem through a
“sequentially comprehensive formula” and a “spatial com-
prehensive formula”. Inspired by this modeling, a novel
deep domain adaptation network named EEG-Infinity is
proposed, incorporating replaceable EEG feature extrac-
tion backbones with a novel structure named “alignment
head”. To show the effectiveness of the proposed EEG-
Infinity, systematic experiments are conducted across four
different EEG-based motor imagery datasets under 48
cases. The experimental results highlight the superior per-
formance of the proposed EEG-Infinity over commonly
used approaches with an average classification accuracy
improvement of 1.51% across 34 cases, laying a foundation
for research in large-scale EEG models. The code can be
assessed at https://github.com/Baizhige/cd-infinity

Index Terms— Electroencephalogram, cross-device vari-
ability, brain-computer-interface, mathematical modeling,
transfer learning.

I. INTRODUCTION

THE brain-computer interface (BCI) is a system designed
to establish a direct pathway between human neural

activity and the external environment [1], serving various
applications such as disease diagnosis [2], control of external
devices [3], and sleep stage detection [4], [5]. Electroen-
cephalogram (EEG) data is commonly utilized in BCI,
involving the strategic placement of electrodes on the scalp to
detect voltage fluctuations resulting from neuronal activity [1],
[6]. EEG has emerged as a significant tool in the development
of BCI systems due to its safety and high temporal resolution.

Enhancing the reliability of EEG signal decoding [7],
[8], [9], [10] is critical for developing user-friendly BCI
systems, where the EEG decoding represents the extrac-
tion of meaningful neural patterns associated with specific
tasks in EEG signals. The key to distinctly observing neu-
ral patterns is introducing a carefully designed experimental
setup—paradigm—aiming to activate specific brain activity
patterns in the EEG acquisition. Motor imagery (MI) repre-
sents a specific EEG paradigm in which a subject imagines
performing a physical movement without actual physical
execution, thereby reflecting the brain activation during real
movement. To date, MI decoding requires further research
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Fig. 1. Distribution Visualization in cross-device Issue with multiple
subjects. The data utilized for visualization [22] are obtained from the
openly available dataset Meng2019 [18]. The “device A” and “device B”
refer to the Neuroscan SynAmps RT and the Biosemi Active Two EEG
systems, respectively. The data from each device involves multiple sub-
jects colored with different gradient colors. Each scatter point represents
data from a single channel within the data for a single subject.

to promote the development of user-friendly BCI systems.
A challenge in MI decoding arises from the absence of
readily discernible features in the data, leading most decoding
methods to rely on statistical approaches [11], [12], [13], [14].
In such a context, the quality of MI data is crucial for effective
MI decoding. Unfortunately, the inherent variability of EEG
data presents a significant obstacle, limiting the compatibility
of statistical approaches across different contexts [1], [15].
The variability comes from various sources, such as individual
differences in brain anatomy and function [15], [16], the
dynamic nature of cognitive states [16], and variations in BCI
systems [17], [18]. Addressing the issue of data variability is
vital for advancing MI decoding techniques and significantly
improving the efficacy and user-friendliness of BCI systems.

Variability in MI data is evident across several dimen-
sions, such as cross-subject, cross-session, and cross-device
differences [19]. The cross-device issue typically involves
processing extensive data characterized by multiple sources
of variability, complicating the observation of cross-device
differences, including not only differences between devices
but also cross-subject [16] or cross-session variability [20].
Fig. 1 demonstrates how the cross-subject variability influ-
ences the observation of cross-device variability. In such a
context, approaches addressing cross-device compatibility in
MI research remain scarce, demonstrating a significant gap in
the field. Inspired by the above discussion, the cross-device
issue is complex and challenging to observe.

While substantial research efforts have aimed to mitigate
cross-subject [15] and cross-session variability [20], inves-
tigations into cross-device variability are still limited. Only
one study has addressed cross-device data variability with the
utilization of solely three common channels [21]. Overall, the
current limitations of existing MI cross-device studies can
be summarized as the following two main aspects: (1) the
issue of cross-device variability in the MI paradigm has not

been effectively resolved, with most studies focusing on the
MI paradigm within a dataset from a single device; (2) the
variability in data from cross-device interactions has yet to be
systematically characterized through mathematical modeling
techniques. No previous study has focused on explaining how
the difference across BCI devices influences EEG signals.

According to the systematic literature review on the struc-
tural components function, the cross-device variability can be
summarized into two factors:

• EEG caps factor: The EEG cap is a device designed
to measure electrical signals on the surface of the
brain, consisting of an array of electrodes, leads, and a
montage that determines the positions and numbers of
electrodes [23]. Serving as the initial point of contact
for brain electrical signal data entering the device, the
EEG cap influences the spatiotemporal structure of the
EEG signals. Electrodes with various materials, such
as dry, wet, and gel electrodes [24], [25], possessing
varying impedances [26], make acquired EEG signals
different across devices. Additionally, electrodes specified
for reference voltage and grounding [27] in amplification
circuits play a role in determining the acquired EEG
signals. The montage controls the placement and quantity
of electrodes, but even though the quantity of electrodes is
the same, variations in placement standards and individual
device differences have the potential to cause shifts in
the spatial information of EEG data [28]. In summary,
the EEG cap significantly influences the spatiotemporal
structure of EEG signals.

• Integrated circuits factor: The integrated circuit serves
to preprocess EEG signals and consists of various com-
ponents including but not limited to amplifiers, filters,
and analog-to-digital converters (ADCs) [23]. Once the
electrical signals from the brain are collected by the
EEG cap, they are transmitted to the integrated circuit
for processes such as amplification, filtering, denoising,
and analog-to-digital conversion [25], [29], [30], [31].
The configuration of amplifiers can vary from single-
stage to multi-stage amplification, each with distinct
characteristics [25], [29]. Filter implementation [32], [33]
is not standardized, and factors such as the capacitance
values of high-pass filters may differ. Different ADCs
exhibit varying levels of precision and quantization errors.
Moreover, the thermal and Flicker noise of electronic
components can vary [29], [34], [35]. In summary, the
design of integrated circuits can significantly influence
the final acquired EEG signal, impacting aspects such as
amplification ratio, amplitude and phase across different
frequency bands, and introduced noise.

Because of the aforementioned two factors, the cross-device
variability persists in practical MI experiments, hindering the
utilization of EEG datasets across devices. To mitigate the
cross-device variability and improve the performance of the
existing cross-device decoding model, we propose a novel net-
work named EEG-Infinity, incorporating the alignment head
with different feature extractions. The main contributions of
this paper are summarized as follows:
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• Systematically demonstrating, for the first time, the
impact of cross-device variability on EEG signals, pro-
viding novel theoretical guidance for interfacing with
multiple BCI systems;

• Introducing a novel alignment head that aligns data across
BCI systems, offering a precise optimization pathway for
addressing cross-device discrepancies;

• Proposing an end-to-end deep learning architecture
named EEG-Infinity for MI classification tasks, with
robust potential for classifying diverse datasets.

The remaining sections of this paper are organized as
follows: Section II comprehensively details the cross-device
issues and gives formulas to demonstrate how cross-device set-
tings influence EEG signals. Section III describes the proposed
method of EEG-Infinity with an alignment head. Section IV
details the experimental evaluations, including comparison
and ablation studies, controlled analyses on sample size,
ERD/ERS patterns, channel configuration, single-channel set-
tings, electrode-contact robustness, paradigm generalization,
and complexity analysis. Section V provides an overall dis-
cussion of the findings and limitations. Ultimately, Section VI
provides the conclusion of the paper and outlines prospects
for future research directions.

II. MATHEMATICAL MODELING FOR CROSS-DEVICE
VARIABILITY

This section explores the impact of cross-device variability
on EEG signals in three parts. The first part introduces the
typical setup for MI-based BCI devices and provides an
overview of the EEG data acquisition process. The second part
focuses on analyzing single-channel EEG signal processing
and illustrates how variations in electronic components affect
the signals. The third part delves into the complexities of
handling multiple data channels simultaneously, demonstrating
the multi-channel EEG signal processing. At present, only the
aggregate impact of cross-device variability can be character-
ized and mitigated, while its underlying components remain
entangled.

.A. Typical Setup for MI-Based BCI Devices
The MI-based BCI device acquires signals through two core

modules: the EEG cap and the signal-processing integrated
circuit, as depicted in Fig. 2. These core modules consist of
the following sub-modules [25], [29], [34], [36]: the EEG
cap consists of an array of electrodes, leads, and a montage
that controls the placement of the electrodes, and the signal-
processing integrated circuit includes a series of amplifiers,
filters, ADCs, and signal processors.

The above description outlines a typical BCI device
setup, and the sequence of “brain → electrode → lead →
amplifier-filter-ADC → signal processor” forms the founda-
tional hypothesis in this study, as depicted in Fig. 3. It is
important to acknowledge that variations in the combination
and sequence of these modules may be adopted, reflecting
diverse design principles inherent in EEG acquisition devices
[29]. For instance, the study [29] discusses a multi-stage
amplification circuit structure as a strategy to mitigate noise

Fig. 2. Illustration for typical MI-based BCI devices setup.

amplification [34], [37]. Despite diverse design principles, the
proposed modeling methods in this study remain applicable to
such alternative structures.

.B. Analysis of Single-Channel EEG Signal Acquisition

This part describes the acquisition of single-channel EEG
signals. The original voltage signal from the brain is denoted as
Ubra(t), and the acquired signal voltage is denoted as Uout(t).
The relationship between Ubra(t) and Uout(t) is comprehen-
sively detailed in subsequent stages. The first stage is the
voltage dividing stage illustrated in Fig. 3A, including elec-
trode contact impedance Ze, lead impedance Zl, and amplifier
input impedance Zin. The Ubra(t) passes through the electrode
and lead impedance before reaching the amplifier, forming a
voltage divider. Consequently, the input voltage of amplifier
Uin(t) can be represented by Ubra(t) using (1):

Uin(t) = Ubra(t)× Zin

Zin + Ze + Zl
+ Nin(t) (1)

where Nin(t) represents the input noise of the voltage divider
[29], [34].

The second stage is the amplifier stage, as depicted in
Fig. 3B, where the input voltage Uin is amplified to produce
Uamp. The amplifier applies varying amplification factors,
A( f ), to signals of different frequencies, making the ampli-
fication factor a frequency-dependent variable. For clarity, the
mathematical expression for the amplifier stage is presented
in the frequency domain, as described in (2):

Uamp( f ) = A( f )× Uin( f ) + Namp( f ) (2)

where Uin( f ) and Namp( f ) represent the input voltage and the
noise of the amplifier respectively [29], [34], and A( f ) denotes
the frequency-dependent amplification factor in a practical and
non-ideal amplifier application.

The third stage is the filtering stage illustrated in Fig. 3C,
where the amplified voltage Uamp( f ) passes through the filter
to remove unnecessary components, resulting in the filtered
signal U f il( f ), as described in (3):

U f il( f ) = H( f , φ( f ))× Uamp( f ) + N f il( f ) (3)
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Fig. 3. Illustration for mathematical modeling for EEG acquisition.

where H( f , φ( f )) and N f il( f ) represent the frequency and
phase response and the noise of the non-ideal filter, respec-
tively.

The fourth stage involves the analog-to-digital conversion
depicted in Fig. 3D. In this stage, the filtered signal is digitized
as the actual output of signal-processing integrated circuit
Uout(t), as described in (4):

Uout(t) = Q
�
U f il(t)

�
(4)

where Q(·) denotes the quantization operation.
By integrating the four stages mentioned above, the rela-

tionship between the output of signal-processing integrated
circuit Uout(t) and the EEG signal from brain Ubra(t) can be
represented as (5):

Uout(t) = Q(F−1(H( f , φ( f ))× (A( f )×F(Ubra(t)

× Zin

Zin + Ze+Zl
+Nin(t))+Namp( f )) + N f il( f ))) (5)

The EEG signal acquisition process, as described in (5),
involves multiple transformations encompassing various cat-
egories of analogous items. For example, Nin( f ), Namp( f ),
and N f il( f ) all serve as noise components, while H( f , φ( f )),
A( f ), and Zin

Zin+Ze+Zl
exhibit amplification and filtering effects.

To capture the aggregate impact of cross-device variability
without disentangling its underlying components, functionally
similar processes are aggregated into abstract terms. This
facilitates a concise representation of the signal acquisition
process and enables the derivation of a sequentially inter-
pretable formulation, as presented in (6):

Uout(t) = I<Q,α,W,N>(Ubra)

= Q
�
F−1 {α×W( f , φ( f ))×F {Ubra(t)}+N( f )}

�
(6)

The sequentially comprehensive formula reveals the trans-
formations involved in signal acquisition under non-ideal
conditions. To further explain the formula, Fig. 4 shows
the frequency-amplitude comparison between the Neuroscan
SynAmps RT and Biosemi Active Two EEG systems, where
the differences can be described by parameters Q(·), α,
W( f , φ( f )), and N( f ) in (6). For example, the Neuroscan
system exhibits consistently higher magnitude from the delta
through alpha range, which may be attributed to the scaling
factor α. Variations in Shape across these bands could result
from the filter W( f , φ( f )). And spikes in the Beta band (such
as spikes at around 8 Hz and 27.6 Hz) may be a result of
noise N in different devices. Despite identical task protocols
and bilaterally symmetric References, these differences persist,

Fig. 4. Frequency-magnitude comparison between Neuroscan
SynAmps RT and Biosemi active two EEG systems. The data utilized for
visualization are obtained from the publicly available dataset Meng and
He [18]. For each recording, we included all EEG channels and files,
applied an FFT to each channel, took the magnitude, and interpolated
the spectra onto a common frequency grid.

indicating systematic characteristics of the acquisition chains
rather than task-induced effects.

Considering the general context, let’s assume that there
are two devices, s and t, from the source and target domain
datasets, respectively. The transformations in these different
devices can be simplified as a model I s or It, involving four
principal aspects: analog-to-digital conversion Q(·), scaling
factor α, filtering W( f , φ( f )), and noise N( f ). By consolidating
various analogous items into these four aspects, the sequen-
tially comprehensive formula provides a clear framework for
understanding and addressing the variations in EEG data
acquisition across different devices.

.C. Analysis of Multi-Channel EEG Signal Processing
This part describes the processing of multi-channel EEG

signals. Let the acquired multi-channel EEG signal be Xout:

Xout =

264U1
out
...

Uc
out

375 =

264 I<Q,α,W,N>(U1
bra)

...
I<Q,α,W,N>(Uc

bra)

375
= I<Q,α,W,N> (Xbra) (7)

where c is the number of channels, and U i
out and U i

bra are the
acquired and brain EEG signal in the ith channel respectively.
The spatial distribution of multi-channel EEG signals Xout is
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Fig. 5. Illustration for variations in multi-channel EEG signal.

significantly influenced by montage and reference electrode
configuration, as explained below:
• The placement of electrodes is controlled by the montage

[38]. In MI-based BCI devices, typical variations in mon-
tage include the addition, deletion, and rearrangement of
channels and the difference in electrode placement stan-
dards [38], [39], as illustrated in Fig. 5A. The electrical
signal recorded by each electrode is affected by its relative
position to specific cortical areas of the brain; thereby, the
placement of electrodes would straightforwardly result in
spatial transformations to MI data.

• The reference electrode serves as a reference voltage
for each channel. In MI-based BCI devices, common
variations include the selection of reference electrodes
[18], [40], [42], and the application of reference tech-
niques [43], [44], as illustrated in Fig. 5B. Considering
the influence on spatial distribution, reference electrodes,
and techniques can be treated as a linear transformation
applied to multi-channel EEG signals [43], [44].

A spatial comprehensive formula (8) is proposed to sys-
tematically express the influence of montage and reference
electrode configurations on the EEG signal across different
devices. This formula incorporates linear transformation to
approximate the impact on spatial distribution:

Xt
out =

264U<t,1>
out
...

U<t,c>
out

375
= T<s,t>

264U<s,1>
out
...

U<s,c>
out

375 + ε<s,t>

= T<s,t>Xs
out + ε<s,t> (8)

where Xs
out and Xt

out denote the multi-channel EEG signals
obtained from devices s and t respectively, U<s,i>

out and U<t,i>
out

represent the EEG signals acquired from the ith channel of
devices s and t respectively, and T<s,t> and ε<s,t> denote the
linear transformation and approximation error from device s
to device t respectively.

III. PROPOSED EEG-INFINITY FOR CROSS-DEVICE
VARIABILITY

This section presents the methodology for addressing cross-
device variability—EEG-Infinity. The proposed EEG-Infinity
employs transfer learning in both data and feature spaces,
following a systematic learning schedule as illustrated in
Fig. 6. The subsequent contents discuss the strategies for
data alignment, feature alignment, and optimization process
of EEG-Infinity.

.A. Data Alignment by Alignment Head
A novel structure called alignment head is introduced in

the data space to synchronize EEG data across spatial and
time-frequency domains. This is illustrated in the first yellow-
highlighted part in section A of Fig. 6, where a spatial filtering
block (SFB) is designed to align the spatial distribution in
EEG data. The SFB incorporates both prior spatial transfor-
mations (T s

p and T t
p) and fine-tuning spatial transformations

(T s
f and T t

f ). While these transformations employ similar
matrix operations, they serve different roles within the model.
Initially, the prior spatial transformations pre-align the data
using predetermined weights derived from prior knowledge,
including electrode information and interpolation algorithms.
In contrast, the fine-tuning spatial transformations start with
identity weights and are adjusted during training to correct
any errors from the initial alignment. To effectively train the
fine-tuning transformation matrix, a loss is computed using the
transformed data from both the source and target domains, as
shown in (9):

Lcov = E
�
‖T s

f T
s
pXs

out − T t
f T

t
pXt

out‖
�

= E
�
‖T s

f T
s
pXs

out − T t
f T

t
p

�
T<s,t>Xs

out + ε<s,t>
�
‖
�

= E
�
‖T s

f T
s
pXs

out − T t
f T

t
pT<s,t>Xs

out + ε′<s,t>‖
�

(9)

where T s
p and T s

f refer to the prior and fine-tuning transfor-
mation matrices for the source domain, T t

p and T t
f refer to

those for the target domain, ‖ · ‖ represents the measurement
of distance, and E [·] represents the expectation. Regarding
Lcov, the measurement of distance is computed via the cosine
distance of row vectors in the average covariance matrix of
mini-batches from the source and target domains. When min-
imizing Lcov, the goal is to minimize the difference between
transformations T s

f T
s
p and T t

f T
t
pT<s,t>.

As shown in the second yellow-highlighted part in section A
of Fig. 6, a frequency filtering block (FFB) is designed to filter
noise introduced by I s

<Q,α,W,N> and It
<Q,α,W,N>. The FFB utilizes

a convolutional kernel, as the convolution theorem suggests
that one-dimensional convolution can be conceptualized as a
finite impulse response filter with adjustable weights [45]. Due
to the difficulties in obtaining I s

<Q,α,W,N> and It
<Q,α,W,N>, data
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Fig. 6. Overview of EEG-infinity architecture.

from both source and target domains are utilized to compute
a loss and find a solution, as shown in (10):

L f re = E
�
‖ f s

f re

�
T s

f T
s
pXs

out

�
− f t

f re

�
T t

f T
t
pXt

out

�
‖
�

= E
�
‖ f s

f re

�
T s

f T
s
pI s �Xs

bra

��
− f t

f re

�
T t

f T
t
pIt �Xt

bra

��
‖
�

(10)

Regarding L f re, the distance measurement is computed by
taking the average L1 distance between mini-batches from the
source and target domains. During the minimization process of
L f re, it is possible to reduce the difference between the filtering
effects I s and It. Furthermore, to prevent the introduction of a
direct current bias or the attenuation of the EEG signal, the use
of regularization losses Ls

reg and Lt
reg is necessary, as shown

in (11) and (12):

Ls
reg =

 
zX
i

�
ws

i

�
− 1

!2

(11)

Lt
reg =

 
zX
i

�
wt

i

�
− 1

!2

(12)

where ws
i and wt

i denote the parameters of the convolutional
kernel for the source and target domains, respectively.

.B. Feature Alignment by Wasserstein Guided Domain
Adaptation

To address the nonlinear effects inherent in cross-device
variability captured by N( f ) and ε<s,t>, a Wasserstein-guided
domain adaptation approach [46], [47], [48], [49] is utilized
to align features within unified representations, as illustrated
in section B of Fig. 6. This strategy specifically targets the
removal of noise components N and ε<s,t> that cannot be elim-
inated through spatial transformation and filtering techniques.
The architecture for Wasserstein-guided domain adaptation
comprises three key components [46]: a feature extractor for
obtaining domain-representative features from EEG data, a

label classifier for predicting task-related labels using the
extracted features, and a domain classifier for determining the
domain of the extracted features and measuring the feature
distance between source and target domains.

For concurrent training of the feature extractor and the
domain classifier, a gradient reversal layer is employed to
reverse the gradients during training. In this study, any
commonly used network in EEG research can serve as the
feature extractor [11], [50], [51]. Both the label and domain
classifiers are implemented using multi-layer perceptions, with
the classification loss denoted by Ly in (13):

Ly = −E
�
y log

�
Gy
�
G f
�

f t
f re

�
T t

f T
t
pXt

out

����
+ (1 − y) log

�
1 −Gy

�
G f
�

f t
f re

�
T t

f T
t
pXt

out

�����
(13)

where y denotes the true label, Gy denotes the label classifier,
and G f denotes the feature extractor.

The domain classifier is trained to differentiate between
samples from source and target domains, with the loss of
domain classifier serving as an approximation of the Wasser-
stein distance [47], [48], [52] between the two distributions,
as shown in (14):

Ld = E
�
Gd
�
G f
�

f s
f re

�
T s

f T
s
pXs

out

����
− E

�
Gd
�
G f
�

f t
f re

�
T t

f T
t
pXt

out

����
(14)

where Gd denotes the domain classifier.

Remark 1: Ensuring adherence to the 1-Lipschitz continuity
condition is crucial for accurate approximation throughout the
training process of the domain classifier. In this study, weight
clipping during the training phase of the domain classifier
fulfills such condition [47].

.C. Optimization Process
The optimization process of EEG-Infinity involves a vari-

ety of loss functions. During the training process, the loss
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Fig. 7. Flowchart of proposed approach.

functions can be categorized into three types based on their
objectives:
• classification loss Ly;
• alignment losses, including Lcov, L f re, and Ld;
• regularization losses, Ls

reg and Lt
reg.

In previous studies, solutions have been proposed to handle
the challenge of dealing with multiple loss functions [53], [54],
[55], [56]. Inspired by these preliminary studies, a specific
multi-loss function training [57], [58] framework is designed
for EEG-Infinity, incorporating both scaling coefficients and
adjustment weights:
• Scaling coefficients: Each task-specific loss is initially

scaled by a corresponding coefficient to ensure that gradi-
ent magnitudes are of comparable scale. The coefficients
are estimated by computing the average gradient magni-
tude for each task during a testing epoch.

• Adjustment weights: In addition to initial scaling, each
loss is multiplied by an adjustment weight. During
training, the adjustment weights for classification and
regularization losses remain fixed at 1. In contrast, align-
ment losses are assigned varying adjustment weights to
form a composite loss. The adjustment weights allow the
contributions of Lcov, L f re, and Ld to be emphasized in
a specific sequence throughout the training process.

In summary, the loss function of EEG-Infinity is constructed
as illustrated in (15):

L =

266664
µy

µreg

µcov

µ f re

µd

377775
>266664

Ly

Lreg

vcovLcov

v f reL f re

vdLd

377775 (15)

where Lreg = Ls
reg + Lt

reg. The scaling coefficients for each
loss are represented by µy, µreg, µcov, µ f re, and µd, while
the adjustment weights for each loss are represented by vcov,
v f re, and vd. The alignment heads are designed to align the
EEG data from different devices rather than for classification
purposes; therefore, the gradients of alignment heads derived
from Ly are set to zero.

Fig. 7 outlines the flowchart of the proposed approach. In
the training phase, as shown in Fig. 7A, the EEG data Xs

out

and Xt
out are aligned by alignment heads, then processed by

feature extractor G f . The features feed into Gd for domain
discrimination and Gy for label prediction. The weights of the
network are optimized via multi-objective optimization. In the
testing phase, as shown in Fig. 7B, inputs Xt

out go through
the alignment head and G f , then Gy for prediction, skipping
domain classifier.

Particularly, the total partial derivative with respect to the
alignment head for the source and target domains, denoted as
As/At, can be expressed as follows:

∂L
∂θAs

=
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∂Ld
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37775 (16)

where θAs and θAt denote the parameter of alignment heads of
source and target domains, respectively.

When using stochastic gradient descent (SGD) as an opti-
mizer, the parameter updates for As and At during one
mini-batch can be concisely expressed as:

θ(t+1)
As = θ(t)

As − η
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where θ(t)
As and θ(t)

At denote the parameters of the alignment
modules As and At before the t-th iteration respectively and η
is the learning rate. The pseudocode for training and testing
the EEG-Infinity model is shown in Algorithm 1.

IV. EXPERIMENT AND RESULT ANALYSIS

.A. Dataset Description and Experimental Setting

To fully evaluate the effectiveness of the proposed approach,
four MI datasets with similar tasks but different devices are
used in this study, including BCI Competition IV 2a (B),
Meng2019 experiment 3 (M3), Meng2019 experiments 1/2
(M12) (with differences between M3 and M12 in the devices
and subjects involved), and PhysioNet motor imagery (P).
Considering cross-device issues, only data related to simi-
lar tasks from each dataset are extracted, specifically trials
involving tasks related to left and right hands. All data are
downsampled to 128 Hz for consistency, and the length of the
segmentation window is set to 3 seconds, as a compromise
that is suitable for the majority of the datasets. A summarized
detail is available in Table I. All datasets are divided using 5-
fold cross-validation, with the training, validation, and testing
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Algorithm 1 Training and Testing EEG-Infinity Model
1: Input: Xs

out, Y s, Xt
out, T s

p, T t
p, model M, max epochs E,

optimizer O
2: Output: Trained model M∗

3: Initialize: Initialize M with T s
p,T

t
p, and optimizer O

4: for epoch ← 1 to E do
5: for each minibatch (Xs

batch,Y
s
batch) and (Xt

batch) in
Xs

out,Y
s and Xt

out do
6: Forward Pass (Source Domain):
7: Compute model output Ŷ s =M(Xs

batch,T
s
p)

8: Compute Losses (Source Domain):
9: Compute Lcov, L f re, Ls

reg, Ly, Ld and L through
(9)-(15)

10: Backward Pass (Source Domain):
11: Backpropagate gradients and delete L
12: Retain the gradients of model M
13: Set gradients of alignment head with respect to Ly

to zero
14: Forward Pass (Target Domain):
15: Compute model output Ŷ t =M(Xt

batch,T
t
p)

16: Compute Losses (Target Domain):
17: Compute Lcov, L f re, Ls

reg, Ld and L through (9)-12,
14-15)

18: Backward Pass (Target Domain):
19: Backpropagate gradients and delete L
20: Update Model Parameters:
21: update M by O
22: set gradients to zeros
23: end for
24: Validation:
25: Evaluate M on validation set, save best parameters
26: end for
27: Testing:
28: Load best parameters into M∗, evaluate on test set

datasets set at a ratio of 6:2:2. In the experiments, the perfor-
mance of the method across all datasets is evaluated using the
weighted accuracy metric Accw, incorporating weights based
on the sample size of each dataset:

Accw =

Pm
i=1 wiAcciPm

i=1 wi
(18)

where wi represents the number of trials in the target domain
for the i-th transfer case, and Acci represents the accuracy of
the model on the i-th cases.

In both the comparison and ablation studies, the batch
size and max epoch are set to 32 and 100, respectively.
Additionally, the stochastic gradient descent optimizer with
momentum is employed to train the model, with the learning
rate µ specified by (19):

µ =
µ0

1 + (αp)β
(19)

where µ0, β, and α are constant, and p denotes the progress
of the training process, which ranges from 0 to 1.

TABLE I
DESCRIPTION OF DATASETS USED IN EXPERIMENTS

.B. Comparison Study

1) Comparison Study Setting: A comparison study is
designed to evaluate the performance of the proposed approach
against four typical transfer learning approaches used in the
field of EEG:

• Deep Domain Confusion (DDC) [59] aims to minimize
discrepancies between domains by aligning the features
of the source and target domains, utilizing a domain
confusion loss.

• Deep Coral [60] addresses domain adaptation by min-
imizing the disparities in the second-order statistical
characteristics between the source and target domain
features.

• Domain-Adversarial Neural Network (DANN) [46]
adopts an adversarial strategy for domain adaptation
inspired by generative adversarial networks, incorporating
a gradient reversal layer designed to smooth the training
process.

• Wass-DANN [49], [52], an extension of DANN, inte-
grates the Wasserstein distance into the adversarial
training framework, providing a robust and theoretical
sound training process.

• DANet [61] addresses domain adaptation by minimiz-
ing the discrepancy between the processed EEG data
(obtained through a neural network) and the original EEG
signals using the mean squared error metric.

• PSAT [62], which stands for prototype-supervised adver-
sarial transfer learning, employs a domain discriminator
to reduce discrepancies and a prototype mapper to con-
strain non-stationarity.

Prior to applying traditional transfer learning methods, addi-
tional preprocessing steps must be taken due to discrepancies
in data structures. This involves aligning the channels from
the source domain to match those of the target domain, and
utilizing linear interpolation to address any missing channels.
This process is referred to as the “Baseline” configuration.

2) Comparison Study Result Analysis: The comparison
study evaluated the performance of eight transfer learning
configurations across 48 cases, incorporating 12 transfer cases
and four backbones. The performance results for each case are
detailed in Table II, with the best performance highlighted in
bold and the second best underlined. The weighted accuracy
is provided in the last column, taking into account the sample
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TABLE II
EXPERIMENTAL RESULTS FOR COMPARISON STUDY (P-VALUE < 0.05, EEG-INFINITY VS. OTHERS, USING WILCOXON SIGNED-RANK TEST)

size of the target domain as the weights. The experimental
results are analyzed in terms of performance and applicability:

• From the aspect of performance, the EEG-Infinity model
demonstrated superior performance in most cross-device
cases. Specifically, the EEG-Infinity achieved the best
performance in 31 out of 48 cases and ranked second-
best in 3 cases. The above findings highlight the overall
superiority of EEG-Infinity in handling a wide range of
cross-device variations. The weighted accuracy results in
Table II further support the leading performance of the
proposed method in these cases. Particularly, comparing
the experimental results of Wass-DANN and EEG-Infinity
reveals that the proposed alignment head structure signif-
icantly improves the stability and efficiency of handling
cross-device variability. This is particularly important as
cross-device cases involve other variabilities whose dis-
tribution differences can interfere with traditional transfer
learning methods. The proposed alignment head struc-
ture, meticulously constructed based on mathematical

modeling of cross-device issues, provides the model
with a precise optimization direction for minimizing
cross-device variability, ultimately leading to superior
performance in these challenging cross-device issues.

• From the aspect of applicability, none of the meth-
ods demonstrate good performance when using the “B”
dataset as the source domain, except for PSAT. In fact,
many cases show negative impacts, as illustrated in the
first three columns of Table II. However, when the “B”
dataset served as the target domain, transfer learning
still had an effect compared with “Baseline”, as shown
in columns 4, 7, and 10. This suggests the asymmet-
ric difficulty of handling cross-device variability, since
the source domain data does not completely cover the
knowledge required to learn specific patterns in the target
domain. Specifically, the mathematical modeling method
highlights two potential limitations in “B” dataset transfer
learning: first, the spatial transformations and filtering
actions of the source domain data occur within a relatively
compressed space; second, the noise in the source domain
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TABLE III
EXPERIMENTAL RESULTS FOR ABLATION STUDY

data is difficult to eliminate. Both factors prevent the
model from effectively learning the patterns of the target
domain.

• From the aspect of transfer learning performance, the
transfer case from “P” dataset to “M3” dataset shows
that the proposed method did not outperform other meth-
ods, indicating that the transformations applied to the
data by devices associated with “P” dataset are difficult
to map to the common space described by the “M3”
dataset. The experimental results reveal an unexpected
negative transfer effect associated with the Deep Coral
method. Two potential explanations can account for the
phenomenon: 1) Based on the mathematical modeling
presented in this study, the EEG signals obtained from
the two devices exhibit subtle pattern differences that are
difficult to discern; 2) The similarity of the covariance
matrices (on which the Deep Coral depends) may not
be adequate to address the subtle differences across EEG
devices. In this context, leveraging Deep Coral to mitigate
such discrepancies may require extensive hyperparameter
tuning or even be infeasible.

The observed improvement of weighted accuracy, while
moderate in magnitude, holds practical value in application
scenarios where reliability and precision are critical. In medi-
cal BCI systems and neural-controlled assistive devices, even
slight gains in decoding performance can lead to a measur-
able reduction in misclassification events, thereby improving
operational stability and user trust. For example, in motor
imagery-based control tasks, enhanced accuracy contributes
to more consistent device responses and reduces the risk
of unintended actions, ultimately mitigating user fatigue and
enhancing usability. These considerations underscore the real-

world relevance of the proposed method, particularly in
safety-sensitive or user-centered BCI applications.

.C. Ablation Study
1) Ablation Study Setting: To verify the efficacy and ratio-

nality of the proposed configuration, an ablation study is
conducted by comparing five different configurations men-
tioned below, with all other settings (optimizer, dataset, and
backbone network) remaining consistent throughout the com-
parison study:
• using the traditional classification loss function for

domain classifier, referred to as EEG-infinity (A1);
• utilizing a multi-objective loss function based on Frank-

Wolfe-based optimizer [53], referred to as EEG-infinity
(A2);

• the proposed configuration, excluding the SFB, referred
to as EEG-infinity (A3);

• the proposed configuration, excluding the FFB, referred
to as EEG-infinity (A4);

• the proposed configuration, referred to as EEG-infinity
(A5).

2) Ablation Study Result Analysis: The ablation study
evaluated the performance of five different EEG-Infinity con-
figurations across 48 cases that were identical to those in
the comparison study. The results of all the aforementioned
ablation approaches are presented in Table III, with the best
performance highlighted in bold and the second best under-
lined. From Table III, the proposed EEG-Infinity configuration
(A5) achieves the best performance in 14 out of 48 cases
and the second-best performance in 11 cases, demonstrating
its superiority over the other four configurations. Specifically,
Table III reveals the following findings:
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Fig. 8. Visualization of data and feature in EEG-infinity.

• Adversarial Loss: Compared with the configuration
(A1), the proposed configuration (A5) leads to a 0.18%
increase in classification accuracy. Although the differ-
ence between the configurations (A1) and (A5) may
appear insignificant, the adversarial loss function based
on Wasserstein distance (configuration (A5)) has been
theoretically demonstrated to outperform the original
loss function configuration (configuration (A1)). Thus,
the observed phenomenon is consistent with theoretical
expectations and highlights the importance of improving
loss functions for model performance optimization, espe-
cially in complex cases of transfer learning environments.

• Multi-objective Learning: Compared with the config-
uration (A2), the proposed configuration (A5) further
increases the classification accuracy by 1.84%. Such
results demonstrate that the designed multi-objective
learning method significantly improves the stability of
the proposed EEG-Infinity, highlighting the effectiveness
of the designed loss function over the multi-objective
loss function based on a Frank-Wolfe-based optimizer.
Experimental results indicate that the multi-objective
optimization discussed in this paper involves a com-
plex trade-off scenario. Theoretically, the dynamically
scaled weights designed in configuration (A5) balance the
weights of multiple objectives, minimizing conflicts and
enhancing training stability. Consequently, this configura-
tion improves average performance across multiple cases.

• Validation of the Effectiveness of SFB and FFB:
Compared with the configuration (A3), which excludes
the SFB, configuration (A5) resulted in a significant
increase in classification accuracy (0.82%). The improve-
ment indicates that the SFB consistently contributes
positively to the performance of the model in most
cases, demonstrating its universal applicability. Com-
pared with configuration (A4), which excludes the FFB,
configuration (A5) resulted in a slight increase in clas-
sification accuracy (0.02%). Although the improvement
may seem negligible in terms of weighted accuracy, the
performance difference varies across different cases, high-
lighting the complexity of transfer learning in this context.
Specifically, when the source domain is set to “P”, the
FFB demonstrates a significant positive impact. However,

when “M12” is used as the source domain, the FFB has
a negative effect, suggesting that the frequency domain
of the “M12” dataset differs substantially from that of
other datasets, potentially hindering the effectiveness of
the FFB.

The scatter plots in Fig. 8, visualized by t-SNE [63],
demonstrate a continuous alignment effect in the proposed
architecture. They are generated from the Meng2019 dataset,
specifically using data from M12 and M3. M12 was recorded
with the Neuroscan SynAmps RT system, while M3 used the
Biosemi Active Two system, providing a suitable setting for
evaluating cross-device generalization. Firstly, the inclusion of
an interpolation matrix and a common average reference for
prior spatial transformation initially aligns the data from the
two devices, resulting in a similar center of distribution after
dimension reduction, as shown in Fig. 8A. Then, further fine-
tuning spatial transformations in the SFB layer leads to similar
variance between two clusters, as shown in Fig. 8B. The
progressive transfer effect is also evident in Fig. 8C. Finally,
the data distributions processed by the feature extractor display
insignificant differences, as shown in Fig. 8D, implying that
the data from two different devices have been successfully
mapped to the same space. Overall, the experimental result
demonstrates the continuous alignment progression in the data
processing workflow, demonstrating the effectiveness of the
proposed approach.

Similarly, Fig. 9, visualized with t-SNE using features
from the initial layers of the feature extractor, illustrates
the alignment effect during training. The visualizations are
generated from the B (source) and M3 (target) datasets. Three
main observations can be drawn: 1) Figs. 9A-B compare task
labels at epoch 0 and epoch 37. At epoch 37, the distribution
is more separable between task labels than before, with dark
dots clustered near the lower-right corner (similar to Fig.
D), indicating improved class discrimination after training;
2) Figs. 9C-D compare domain labels at epoch 0 and epoch
37. At epoch 37, the distributions of the two domains (red
and blue) become less separable than before, suggesting that
features from different domains converge after training; 3)
Fig. 9 E presents the Wasserstein distance trend across five-
fold cross-validation. The curve shows the mean normalized
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TABLE IV
EXPERIMENTAL RESULTS UNDER SAME SAMPLE SIZE CONTROL (SAMPLE SIZE FOR TRAINING DATASETS ARE SET TO 700)

Fig. 9. Visualization of progressive alignment during the training
process of EEG-infinity.

Wasserstein distance, which decreases stepwise, indicating
progressive domain alignment.

.D. Analysis of Experimental Design With Controlled
Sample Size

To further evaluate the performance of the EEG-Infinity,
we conducted an experiment controlling for sample size. The
objective was to compare the differences between EEG-Infinity
and the “Baseline” configuration using an identical number of
experimental samples across each dataset. Specifically, in this
experiment, both the source and target domain training sets

were set to the same sample size. Considering the sample size
limitations of each dataset, the training set size is set to 700
samples, while maintaining consistency in other experimental
settings with the comparison study. The experimental results
are presented in Table IV. As observed in Table IV, transfer
tasks involving the “B” dataset exhibit higher transfer difficulty
than other cases, possibly due to discrepancies in channel
configurations within the “B” dataset. Compared to the other
three datasets, the “B” dataset demonstrates significant varia-
tions in channel configurations, leading to larger differences in
the marginal distributions between the source and target tasks.
Theoretically, substantial differences in marginal distributions
typically inhibit the effectiveness of transfer learning, thereby
rendering transfer tasks involving the “B” dataset challenging.
Besides, two key observations can be made from Table IV:
• Changes in Weighted Accuracy: Due to the reduction in

sample size, the weighted accuracy of both the “Baseline”
and EEG-Infinity decreased by 2.52% and 2.23%, respec-
tively. The declining trends for both methods are similar,
with a slight increase in performance disparity. The result
indicates that the set sample size does not constrain the
performance of the EEG-Infinity method.

• Changes in Each Dataset: In the transfer case from “P”
to “M3”, a decline in performance was observed, which
can be attributed primarily to two reasons according to the
theory of negative transfer: 1) The “P” or “M3” datasets
exhibit internal uneven data distributions (e.g., due to
cross-subject variability), leading to a significant increase
in distribution differences between the two datasets, even-
tually increasing the difficulty of the task; 2) The “P”
to “M3” transfer case is inherently complex, causing the
model to struggle to effectively transfer useful informa-
tion with small sample size, resulting in the occurrence
of negative transfer phenomena.

.E. Analysis of ERD and ERS Across Different Datasets
To further investigate the difference in transfer learning

performance across datasets, event-related desynchroniza-
tion (ERD) and event-related synchronization (ERS) features
across various datasets are visualized. ERD/ERS refers to
the dynamic changes in the synchrony or desynchrony of
EEG signals in response to specific event stimuli [65]. In
this study, a time-frequency decomposition method is used
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Fig. 10. Visualization of mean and median ERD/ERS across datasets.

to quantify ERD/ERS [65], [66]. The resulting quantified
ERD/ERS across datasets are illustrated in Fig. 10. In each
subplot of Fig. 10, the y-axis represents the percentage change
in spectral time-domain power relative to the baseline interval
(-1 to 0 seconds), while the x-axis represents the time range
from -1 second to 2 seconds. To accurately capture the neural
characteristics of motor imagery, the C3 and C4 electrode
channels are used to analyze ERD/ERS features within the
θ, α, and β frequency bands. The red and blue curves denote
ERD/ERS features of all samples under left-hand and right-
hand motor imagery conditions, respectively, while the shaded
regions indicate the 95% confidence intervals. Specifically, the
observations from Fig. 10 are as follows:

• Commonalities in ERD/ERS Features across Datasets:
All four datasets demonstrate similar ERS characteris-
tics during motor imagery tasks. Following the onset
of an event, the spectral energy at both C3 and C4
electrodes shows an increasing trend in synchrony. The
similarity provides a data foundation for implement-
ing transfer learning. In all datasets, the ERS features
generally correspond to the neural patterns associated
with motor imagery, with ipsilateral electrodes exhibiting
stronger ERS responses than contralateral electrodes [18].
Additionally, the median values across all datasets are
generally lower than the means, indicating a right-skewed
distribution. The right skew suggests that only a subset
of samples exhibits pronounced ERS effects.

• Impact of Cross-Device Factors on ERD/ERS Sig-
nals: The “M3” and “M12” datasets maintain complete
consistency in the motor imagery paradigms, with the
only differences being the subjects and the devices used.

Despite averaging across all samples, inconsistencies
stemming from subject and device variability persist.
These inconsistencies indicate that both individual differ-
ences among subjects and variations in device parameters
influence the observed ERD/ERS signals, introducing
uncertainties in cross-device transfer learning scenarios.

.F. Analysis of Channel Configuration Influence on Model
Adaptability

In this section, to further analyze how channel configura-
tion has an influence on transfer learning performance, we
quantify both the transfer learning performance and the layout
differences between source and target domains. The transfer
learning performance Rt is calculated by (20).

Rt =
Acct − Accr

Accs − Accr
(20)

where Acct stands for the test accuracy when the dataset serves
as the target domain in unsupervised learning; Accs the test
accuracy when the dataset serves as the source domain; and
Accr is the accuracy of a random prediction.

Before quantifying the differences in channel configuration,
we define the electrode positions in the source and target
domains as {ps

i }i=1,...,N and {pt
i}i=1,...,M , respectively. The layout

difference Dl is quantized by (21).

Dl =
1
2

0@ 1
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NX
i=1

min
j
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i − pt
j‖ +

1
M

MX
j=1

min
i
‖ps

j − pt
i‖

1A (21)

Next, the difference in the number of channels Dc is quantized
by (22).

Dc =
|N − M|

max(M,N)
(22)
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TABLE V
CHANNEL CONFIGURATION AND TRANSFER LEARNING PERFORMANCE ANALYSIS

Given the aforementioned setting, we can generate Table V
and observe the following about channel configurations:
• Differences Across Transfer Cases: Based on the quan-

tification metrics, channel differences are categorized into
three levels: 1) combinations involving dataset B; 2)
combinations of datasets M12 and M13, as well as P
and M12; and 3) the combination of P and M3. As the
differences decrease, the transfer learning performance Rt

consistently improves;
• Comparison of EEG-Infinity with Other Transfer

Configurations: EEG-Infinity consistently outperforms
other algorithms across three levels of channel differ-
ences. The greatest performance improvement is observed
in the combinations of M12 and M3, and P and M12, with
an absolute improvement of Rt up to 9.78%.

.G. Evaluation on Single-Channel Configuration

To validate the effectiveness of the proposed method under
minimal electrode settings, a single-channel evaluation is
conducted using only the C3 electrode, which is commonly
associated with motor imagery of hand movements. All exper-
imental configurations, including model architectures, training
procedures, and hyperparameters, are kept identical to the
main comparison study to ensure consistency. Two represen-
tative cross-device scenarios, M3 →M12 and M3 →P, are
adopted to demonstrate performance under realistic domain
shifts.

As shown in Table VI, the proposed method achieves
the highest weighted accuracy (67.30%) across all settings.
These results suggest that the proposed method effectively
retains discriminative and transferable representations, even
when using only a single electrode. This demonstrates the
robustness and generalization capabilities of the approach in
low-density EEG configurations, highlighting its potential for
use in resource-constrained or portable BCI applications.

.H. Evaluation on Electrode Contact Robustness

To examine the robustness of the proposed algorithm
under realistic electrode contact issues (including loosening,
positional shifts, and shorting), we conducted a controlled

TABLE VI
THE RESULTS IN SINGLE-CHANNEL CONFIGURATION

simulation study designed to simulate common forms of con-
tact degradation. Three degradation modes were implemented:
1) Noise Injection, where zero-mean Gaussian noise (scaled
to the signal amplitude) was added to a subset of chan-
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Fig. 11. Simulated electrode contact degradation in EEG-Infinity.

Fig. 12. Accuracy on the Target Domain versus sample size.

nels to simulate mild loosening or small positional drift; 2)
Noise Replacement, where selected channels were completely
replaced by Gaussian noise of matched scale to simulate full
detachment or failed interpolation; and 3) Channel Substitu-
tion, where the signal of one channel was replaced by that
of another to model shorting effects. For each degradation
mode, the ratio of affected channels (damage ratio) was
systematically varied to assess the tolerance of the model to
increasing levels of disruption.

The perturbations were applied exclusively to the training
data, while evaluation was consistently performed on the
target-domain test set, ensuring that performance estimates
reflect realistic deployment conditions rather than overfitting
to damaged inputs. The resulting trends are summarized in
Fig. 11, which plots target-domain accuracy against damage
ratio for each degradation type. The shaded region indicates
the 95% confidence interval across five cross-validation folds.

As shown in Fig. 11, the algorithm demonstrates distinct
degradation patterns across the three modes. In both the noise
injection and channel substitution settings, accuracy decreases
as damage severity increases, but with different trajectories:
noise injection leads to a gradual decline consistent with
damage ratio reduction, whereas channel substitution remains
relatively stable until higher damage ratios (around 80%),
where accuracy drops sharply (from 66.5% to 62.6%) due to
loss of spatial diversity. In contrast, the noise replacement con-
dition shows minimal or even slightly improved performance,
echoing prior findings [50] that controlled perturbations can
act as implicit regularization, mitigating over-reliance on indi-
vidual channels.

TABLE VII
THE RESULTS IN SLEEP STAGE DETECTION

Overall, under mild degradation (10)-30% of channels
affected), EEG-Infinity maintains consistent target-domain
accuracy within narrow confidence bounds, demonstrating
practical resilience to the kinds of electrode contact variability
that commonly arise in real-world EEG recording scenarios.
This evaluation confirms that the proposed method retains
stable performance even in the presence of moderate spatial
disturbances.

.I. Evaluation on Sleep Stage Detection Paradigm
To further assess the generalization capability of the pro-

posed EEG-Infinity framework across a broader range of
paradigms, an extra experiment is conducted in the sleep stage
detection task—a representative classification problem that
differs in both task structure and signal characteristics from
the motor imagery evaluated previously. In this experiment,
two public datasets are selected—HMC Sleep Stage [67] and
CAP Sleep [68]. To ensure experimental consistency, the data
preprocessing pipeline (including segmentation, normalization,
and train-test splits) follows the same protocol in the compar-
ison study.

As summarized in Table VII, all backbone models
exhibit significant performance gains when equipped with
EEG-Infinity. EEG-Infinity improve weighted accuracy from
50.74% to 77.62%. This consistent performance boost across
all backbones and datasets suggests that EEG-Infinity effec-
tively captures robust task-invariant representations across
datasets. These findings validate the applicability of EEG-
Infinity to other tasks and suggest its broader utility in
real-world EEG systems where task diversity and sensor
heterogeneity are prevalent.

.J. Evaluation on Sample Size Effects
To further investigate the impact of training sample size on

the transfer learning performance achieved by EEG-Infinity,
we conducted an additional experiment. Specifically, we var-
ied the number of training samples under the representative
transfer case (M12 →M3) to analyze how the model accuracy
changes from data-scarce to data-rich conditions. The results
are presented in Fig. 12, which plots target-domain accuracy
versus the number of training samples. To examine this effect
closely, we considered three different scenarios in limiting
the sample size: 1) in the source domain only, marked by
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TABLE VIII
COMPLEXITY SUMMARY OF KEY COMPONENTS

“source”; 2) in the target domain only, marked by “target”; and
3) both domains simultaneously, marked by “source+target”.
All curves in Fig. 12 mean across five cross-validation folds,
with 95% confidence intervals. In Fig. 12, we can see that:
• Target-domain accuracy increases steadily as the number

of training samples grows, approximately following a
logarithmic trend (across all three curves). Across these
settings, sample sizes in both domains influence transfer
learning performance. In particular, the effect of the
source-domain sample size is markedly stronger than the
target domain, which indicates that expanding the source-
domain dataset substantially enhances the ability of the
model to generalize to unseen target domains.

• Within the tested range of sample sizes (32-2048), no
clear saturation effect is observed. Due to dataset con-
straints, the 4096-sample configuration could not be
evaluated. Regarding overfitting, although large mod-
els can be prone to this issue under empirical risk
minimization, our training protocol employed 5-fold
cross-validation with validation-based model selection.
The model achieving the highest validation accuracy was
subsequently tested once on the held-out target set, to
provide a reliable performance estimate.

Overall, this evaluation demonstrates that the proposed
algorithm benefits consistently from large sample sizes, par-
ticularly within the source domain, while maintaining stable
generalization behavior without observable overfitting across
the explored data scales.

.K. Complexity Analysis
This subsection provides a theoretical and empirical com-

plexity analysis of the key computational components in the
proposed model. Table VIII summarizes time and space com-
plexities in terms of asymptotic behavior and typical runtime
statistics.

In Table VIII, the results are organized into four columns:
• Structure lists the modules analyzed: SFB, FFB, G f , and

Gd/Gy;
• Big O gives the asymptotic complexity with respect to

symbolic input size;
• MACs (M) refers to the number of multiply-accumulate

operations, measured in millions;
• Params (k) indicates the number of parameters in thou-

sands.
The symbols used in Table VIII are defined as follows:

l denotes the sequence length; ne the channel count; nc the
channel count for projection; n f the filter count; N f the order
of the filters; di the ith layer width of Gd/Gy.

Note: The reported MACs and parameter counts represent
typical ranges under experimental configuration in this study,
as these metrics can vary significantly depending on specific
model hyperparameters and input dimensions. The Big O
complexity of module G f is not reported, as it depends on
the specific backbone architecture and cannot be meaningfully
defined in a general form.

The theoretical time complexities listed in the Big O column
are derived as follows:
• For SFB, the complexity O(l(nenc + (nc)2)) arises from

two consecutive matrix multiplications over a sequence
of length l;

• For FFB, the expression O(lncn f Nf) captures the cost of
applying n f filters of order N f to each of the nc channels;

• For the classifier networks Gd/Gy, the complexity follows
a standard multi-layer perception structure, represented as
O(d0d1 + d1d2 + d2d3).

The analysis demonstrates that the computational and spatial
costs of the alignment heads (SFB and FFB) are comparable
to those of typical modules, underscoring their efficiency and
suitability for the overall model design.

V. DISCUSSION

This paper models cross-device variability in EEG as
transformations introduced by different recording systems and
implements a practical solution—EEG-Infinity, that combines
an alignment head with a deep domain adaptation framework.
Across multiple transfer cases on MI datasets, EEG-Infinity
demonstrates progressive alignment at both structural and
temporal levels, achieving consistently strong performance in
the target domain. Analyses of channel configuration (such
as layout difference Dl and channel-count difference Dc),
sample-size scaling, and simulated electrode-contact degrada-
tion jointly suggest that incorporating device topology into
the alignment head is beneficial under realistic recording
conditions.

The alignment head encodes approximate electrode posi-
tions and channel relationships, helping preserve spatial
patterns that are informative for classification. Empirically,
as the layout and channel-count differences between devices
decrease, transfer learning performance Rt increases; the
improvement is most evident in moderate-discrepancy settings.
In addition, accuracy increases steadily with the number of
training samples within the tested range and remains stable
under mild contact perturbations, indicating that the approach
is robust in common usage scenarios. Our results indicate
that transfer performance is primarily driven by the source-
domain distribution—data quality and sample size—while
only a small amount of target-domain data is required for
adaptation. However, large discrepancies in electrode number
or placement expose an upper bound tied to channel configura-
tion: 1) High-density EEG: A promising path is to adopt more
expressive backbones (such as transformer-style models that
treat multi-channels data as flexible input tokens. Such designs
naturally ingest variable channel sets and might model long-
range spatial dependencies; 2) For portable devices with fewer
or varying electrodes, unsupervised auxiliary datasets from the
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same or similar hardware can serve as intermediate alignment
references for pre-adaptation. Meanwhile, channel masking
and random electrode dropout during training encourage
invariance to missing or permuted channels, enabling label-
efficient adaptation in the realistic condition. In this study, the
limitations include: 1) Sensitivity to extreme spatial mismatch:
Without reliable electrode metadata or when geometry gaps are
very large, spatial priors in the current alignment head may
be insufficient; 2) Task scope: Empirical validation focuses on
motor imagery due to limited public cross-device resources
for other paradigms.

VI. CONCLUSION

The study systematically describes the cross-device issues
of EEG through mathematical description and introduces an
innovative alignment head structure with the application of the
EEG-Infinity cross-device network for MI data. The proposed
approach has been experimentally validated in twelve transfer
cases, providing a new research perspective for exploring EEG
cross-device issues and significantly enhancing the capability
to handle compatibility between different devices through
alignment head structure, thereby expanding the research
scope of EEG data analysis. Although current research pri-
marily focuses on MI datasets, this study demonstrates the
potential for expansion to multimodal biometric data. In the
field of BCI control, this finding can enhance the user’s sense
of control and reduce cognitive fatigue. Overall, this study
serves as a preliminary attempt to address compatibility issues
between EEG devices and lay the foundation for large-scale
processing and analysis of future EEG data. Looking ahead,
future work will focus on: 1) integrating token formulations
with explicit spatial priors into the training objective to
better address variable and sparse montages; 2) constructing
a multi-device dataset for self-supervised pre-alignment and
systematically evaluating channel masking/electrode dropout;
and 3) expanding the evaluation to other paradigms and
modalities, reporting performance-compute trade-offs, and
electrode-count-accuracy curves to further quantify adaptabil-
ity.

REFERENCES

[1] D. Wu, Y. Xu, and B.-L. Lu, “Transfer learning for EEG-based
brain–computer interfaces: A review of progress made since 2016,”
IEEE Trans. Cognit. Develop. Syst., vol. 14, no. 1, pp. 4–19, Mar. 2022.

[2] M. Sharifshazileh, K. Burelo, J. Sarnthein, and G. Indiveri, “An elec-
tronic neuromorphic system for real-time detection of high frequency
oscillations (HFO) in intracranial EEG,” Nature Commun., vol. 12,
no. 1, p. 3095, May 2021.

[3] C. I. Penaloza and S. Nishio, “BMI control of a third arm for
multitasking,” Sci. Robot., vol. 3, no. 20, p. 1228, Jul. 2018.

[4] E. Eldele et al., “An attention-based deep learning approach for sleep
stage classification with single-channel EEG,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 29, pp. 809–818, 2021.

[5] E. Eldele, M. Ragab, Z. Chen, M. Wu, C.-K. Kwoh, and X. Li,
“Self-supervised learning for label-efficient sleep stage classification:
A comprehensive evaluation,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 31, pp. 1333–1342, 2023.

[6] R. Wang and J. Liang, “The effect of multiscale parameters on the
spiking properties of the morphological neuron with excitatory autapse,”
Syst. Sci. Control Eng., vol. 12, no. 1, Dec. 2024, Art. no. 2313865.

[7] I. Carrara and T. Papadopoulo, “Classification of BCI-EEG based on
the augmented covariance matrix,” IEEE Trans. Biomed. Eng., vol. 71,
no. 9, pp. 1–17, Sep. 2024.

[8] S. Park, J. Ha, and L. Kim, “Improving performance of motor imagery-
based brain–computer interface in poorly performing subjects using
a hybrid-imagery method utilizing combined motor and somatosen-
sory activity,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 31,
pp. 1064–1074, 2023.

[9] X. Tang, C. Yang, X. Sun, M. Zou, and H. Wang, “Motor imagery
EEG decoding based on multi-scale hybrid networks and feature
enhancement,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 31,
pp. 1208–1218, 2023.

[10] Q. She, T. Chen, F. Fang, Y. Gao, and Y. Zhang, “Discriminative
adversarial network based on spatial–temporal–graph fusion for motor
imagery recognition,” IEEE Trans. Computat. Social Syst., vol. 12,
no. 3, pp. 972–983, Jun. 2025.

[11] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain–computer interfaces,” J. Neural Eng., vol. 15, no. 5,
Oct. 2018, Art. no. 056013.

[12] L. Zhao and B. Li, “Adaptive fixed-time control for multiple switched
coupled neural networks,” Int. J. Netw. Dyn. Intell., Sep. 2024, Art. no.
100018.

[13] F. Deng, Y. Ming, and B. Lyu, “CCE-Net: Causal convolution embedding
network for streaming automatic speech recognition,” Int. J. Netw. Dyn.
Intell., vol. 3, no. 3, Sep. 2024, Art. no. 100019.

[14] N. N. Ahmed, T. K. Bhat, and O. S. Powar, “Stacked ensemble machine
learning approach for electroencephalography based major depressive
disorder classification using temporal statistics,” Syst. Sci. Control Eng.,
vol. 12, no. 1, Dec. 2024, Art. no. 2427028.

[15] Z. Chen, R. Yang, M. Huang, Z. Wang, and X. Liu, “Electrode domain
adaptation network: Minimizing the difference across electrodes in
single-source to single-target motor imagery classification,” IEEE Trans.
Emerg. Topics Comput. Intell., vol. 8, no. 2, pp. 1–15, Apr. 2024.

[16] Y. Chen, R. Yang, M. Huang, Z. Wang, and X. Liu, “Single-source
to single-target cross-subject motor imagery classification based on
multisubdomain adaptation network,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 30, pp. 1992–2002, 2022.

[17] J. Han, X. Wei, and A. A. Faisal, “EEG decoding for datasets with
heterogenous electrode configurations using transfer learning graph
neural networks,” J. Neural Eng., vol. 20, no. 6, Dec. 2023, Art. no.
066027.

[18] J. Meng and B. He, “Exploring training effect in 42 human subjects
using a non-invasive sensorimotor rhythm based online BCI,” Frontiers
Human Neurosci., vol. 13, Apr. 2019, Art. no. 128.

[19] Y. Gao, M. Li, Y. Peng, F. Fang, and Y. Zhang, “Double stage
transfer learning for brain–computer interfaces,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 31, pp. 1128–1136, 2023.

[20] W. Liu, C. Guo, and C. Gao, “A cross-session motor imagery clas-
sification method based on Riemannian geometry and deep domain
adaptation,” Expert Syst. Appl., vol. 237, Mar. 2024, Art. no. 121612.

[21] L. Xu, M. Xu, Y. Ke, X. An, S. Liu, and D. Ming, “Cross-dataset
variability problem in EEG decoding with deep learning,” Frontiers
Human Neurosci., vol. 14, Apr. 2020, Art. no. 103.

[22] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform mani-
fold approximation and projection for dimension reduction,” 2020,
arXiv:1802.03426.

[23] G. Niso, E. Romero, J. T. Moreau, A. Araujo, and L. R. Krol, “Wireless
EEG: A survey of systems and studies,” NeuroImage, vol. 269, Apr.
2023, Art. no. 119774.

[24] Y. Zhao et al., “Ultra-conformal skin electrodes with synergistically
enhanced conductivity for long-time and low-motion artifact epidermal
electrophysiology,” Nature Commun., vol. 12, no. 1, p. 4880, Aug.
2021.

[25] L. Hu, J. Zhu, S. Chen, Y. Zhou, Z. Song, and Y. Li, “A wearable asyn-
chronous brain–computer interface based on EEG–EOG signals with
fewer channels,” IEEE Trans. Biomed. Eng., vol. 71, no. 2, pp. 504–513,
Feb. 2023.

[26] G. Qian, Y. Suo, Q. Cai, Y. Lian, and Y. Zhao, “A 382nVrms
100GΩ@50Hz active electrode for dry-electrode EEG recording,”
IEEE Trans. Biomed. Circuits Syst., vol. 19, no. 2, pp. 332–343,
Apr. 2024.

[27] X. Lei and K. Liao, “Understanding the influences of EEG reference:
A large-scale brain network perspective,” Frontiers Neurosci., vol. 11,
Apr. 2017, Art. no. 205.

[28] M. Sazgar and M. G. Young, “Overview of EEG, electrode place-
ment, and montages,” in Absolute Epilepsy and EEG Rotation
Review: Essentials for Trainees. Cham, Switzerland: Springer, 2019,
pp. 117–125.



4686 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 33, 2025

[29] M. Tohidi, J. Kargaard Madsen, and F. Moradi, “Low-power high-input-
impedance EEG signal acquisition SoC with fully integrated IA and
signal-specific ADC for wearable applications,” IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 6, pp. 1437–1450, Dec. 2019.

[30] D. Dai, J. Li, Y. Song, and F. Yang, “Event-based recursive filtering
for nonlinear bias-corrupted systems with amplify-and-forward relays,”
Syst. Sci. Control Eng., vol. 12, no. 1, Dec. 2024, Art. no. 2332419.

[31] F. Jin, L. Ma, C. Zhao, and Q. Liu, “State estimation in networked
control systems with a real-time transport protocol,” Syst. Sci. Control
Eng., vol. 12, no. 1, Dec. 2024, Art. no. 2347885.

[32] S. Liu, L. Wang, Y. Zhang, Y.-A. Wang, and H. Dong, “Recursive
filtering of networked systems with communication protocol schedul-
ing: A survey,” Int. J. Syst. Sci., vol. 56, no. 11, pp. 2499–2516,
Aug. 2025.

[33] W. Wang, X. Kan, D. Ding, H. Liu, and X. Gao, “Distributed correntropy
Kalman filtering over sensor networks with FlexRay-based protocols,”
Int. J. Syst. Sci., vol. 56, no. 6, pp. 1347–1359, Apr. 2025.

[34] A. Bagheri, M. T. Salam, J. L. Perez Velazquez, and R. Genov, “Low-
frequency noise and offset rejection in DC-coupled neural amplifiers:
A review and digitally-assisted design tutorial,” IEEE Trans. Biomed.
Circuits Syst., vol. 11, no. 1, pp. 161–176, Feb. 2017.

[35] N. K. Yadav, A. Dhawan, M. Tiwari, and S. K. Jha, “A state-of-the-art
survey on noise removal in a non-stationary signal using adaptive finite
impulse response filtering: Challenges, techniques, and applications,”
Int. J. Syst. Sci., vol. 56, no. 4, pp. 885–918, Mar. 2025.

[36] Y. Zhang et al., “A batteryless 19 µW MICS/ISM-band energy harvesting
body sensor node SoC for ExG applications,” IEEE J. Solid-State
Circuits, vol. 48, no. 1, pp. 199–213, Jan. 2013.
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