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A B S T R A C T

High-pressure die casting (HPDC) of Al–Si alloys faces challenges in improving mechanical properties and early 
failure due to process-induced defects. Traditional quality assessment experiments and modeling methods are 
costly and lack predictive capability. This study proposed a machine learning (ML) method integrating numerical 
simulations and experimental data to predict elongation. The data were extracted from experiments and well 
validated mathematical models of the HPDC process and underwent preprocessing such as standardization and 
feature selection. The performance of twelve common ML models was evaluated, among which the eXtreme 
Gradient Boosting (XGBoost) and Gradient Boosting (GB) algorithms performed the best. By using the Crested 
Porcupine Optimizer (CPO) and Bayesian Optimization for hyperparameter optimization, the accuracy of the 
models was further improved. The R2 value of the CPO-XGBoost model reached the optimal value of 0.882. The 
SHapley Additive exPlanations (SHAP) analysis revealed that total shrinkage volume dominantly reduced 
elongation (El), while die temperature and pouring temperature negatively affected El. Validation with inde
pendent experiments demonstrated that the difference between the predicted values and the measured values 
was within 5 %. This work establishes a novel methodology combining physics-based simulations and experi
ments to comprehensively predict and analyze the failures of HPDC Al–Si alloys from multiple perspectives. It 
can be further extended to the prediction of various types of alloys or multiple mechanical properties.

1. Introduction

The HPDC process has been widely employed in manufacturing alloy 
components with low surface roughness and high dimensional accuracy 
due to its high production efficiency and exceptional capability for 
forming complex geometries [1,2]. However, the process is significantly 
affected by factors such as high pressure and speed mold filling and 
solidification shrinkage, which often lead to internal defects including 
porosity, shrinkage and inclusions, thereby compromising their ability 
to meet high-performance requirements [3,4]. In the HPDC process, the 
elongation of as-cast products usually tends to have large variabilities 
[5–7], which are closely related to the solidification and defects for
mation during the process. The obvious variation in elongation can have 
a profound negative influence on the reliability of the cast component, 
leading to unpredictable early failures of the materials. Hence, 

understanding the potential interrelations between elongation and 
HPDC process parameters is crucial in controlling the variabilities of the 
elongation and stabilizing the HPDC process.

To ensure product quality, conventional quality control systems 
typically rely on multidimensional detection methods encompassing 
computed tomography inspection, tensile mechanical property testing, 
and microstructural analysis [8,9]. Nevertheless, these approaches 
present limitations such as substantial equipment investment costs, 
prolonged inspection cycles, and heavy reliance on manual operations, 
which collectively increase production costs and constrain optimization 
efficiency in manufacturing processes. Numerous researchers [10–14] 
have investigated the influence of mechanisms of HPDC solidification 
processes and microstructural phase evolution on casting quality, aim
ing to overcome these limitations while enhancing both production ef
ficiency and product quality. However, current methodologies remain 
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insufficient to comprehensively elucidate the complex effects of HPDC 
process conditions on final product quality. In recent years, ML has 
demonstrated significant potential in the fields of materials computation 
and analysis, owing to their robust data mining and modeling capabil
ities [15,16]. Rai et al. [17] developed a Neural Network-based Casting 
Process (NN-CastPro) model, which utilized inlet melt temperature, 
mold initial temperature, inlet first phase velocity and inlet second 
phase velocity as input features to predict filling time, solidification time 
and porosity. The results demonstrated that the NN-CastPro model 
achieved accurate predictions while requiring substantially less 
computational time compared to finite element analysis software. Yar
lagadda et al. [18] integrated process simulation software with neural 
networks trained using domain expertise to predict filling time based on 
parameters such as melt temperature, die temperature, injection pres
sure, and casting weight. Soundararajan et al. [19] employed neural 
network models to predict the ultimate tensile strength (UTS) and yield 
strength (YS) of aluminum alloy tensile bars produced by gravity cast
ing, achieving correlation coefficients of 0.95 and 0.96, respectively. 
Zheng et al. [20] adopted artificial neural network (ANN) algorithms to 
analyze correlations between HPDC process parameters (e.g., mold 
temperature, pouring temperature and injection velocity) and surface 
defects.

This study establishes a mathematical model of the entire HPDC 
process to acquire data on filling time, solidification time, total 
shrinkage volume, temperature at fill time, air entrainment, oxides in
dicators and so on. These data are integrated with experimental mea
surements to predict the El of Al–Si alloy castings. To address challenges 
associated with small sample machine learning, feature selection 
methods are applied, and various algorithms including Random Forest 
(RF), XGBoost, GB, Light Gradient Boosting Machine (LightGBM), Cat
egorical Boosting (CatBoost), K-Nearest Neighbors (KNN), Support 
Vector Regression (SVR), and ANN are employed to predict elongation. 
Hyperparameter optimization algorithms are implemented to enhance 
the prediction accuracy of these models, while SHAP analysis is utilized 
to visualize the importance of different parameters on the mechanical 
properties of HPDC Al–Si alloys. Finally, the predictive accuracy of the 
model is validated by comparing experimental measurements with 
model predictions. More importantly, the core methodology established 
in this work is integrating physics-based simulations, experimental 
characterization, machine learning modeling, presents a versatile 
framework. While demonstrated here for elongation prediction, this 

framework holds significant potential for application to predicting other 
critical quality metrics in HPDC, such as yield strength, ultimate tensile 
strength, or specific defect characteristics.

2. Modeling and experiment

2.1. Data acquisition from experiments and modelling

To predict the elongation of the HPDC components, a series of factors 
are considered, as shown in Fig. 1. Both the experimental process pa
rameters (piston velocities (V1, V2, V3), intensification pressure (IP), 
pouring temperature, die temperature) and the solidification charac
teristics that are difficult to obtain directly from experiments such as 
filling time, solidification time, total shrinkage volume, temperature at 
fill time, air entrainment, oxides indicator, are determined by the FEM 
model, and are utilized as supplementary input features, while elonga
tion measured from tensile tests served as the target output. Pre
processing of the collected experimental and simulated data was 
performed, followed by regression prediction analysis using machine 
learning methods. The key experimental process parameters used in this 
research are obtained from the HPDC machine’s control panel, as is 
indicated in Fig. 2.

The numerical simulation of a cold chamber HPDC machine was 
implemented based on the Finite Element Method (FEM) using the 
ProCAST software platform, primarily involving three critical steps: 
finite element mesh generation, discretized computation and post pro
cessing. The three-dimensional geometric model of the HPDC process, 
constructed using CAD software, adopted a semi-symmetric structure to 
significantly improve simulation efficiency while ensuring computa
tional accuracy. The machine configuration and the corresponding FEM 
model are shown in Fig. 3. Key parameters of the model and validation 
methodologies are referenced from the authors’ prior research [21–24], 
as shown in Table 1.

According to the machine configuration in Fig. 3(a), to start the 
experiment, a typical HPDC process is carried out, which include: 1) 
Pouring of the A356 melt (added 0.5 % Mn) into the shot sleeve, 2) 
Moving of the piston towards the biscuit to inject the melt into the die 
region as well as the instant cooling and solidification of the melt, 3) 
Continual movement of the piston towards the biscuit under the inten
sification pressure to ensure adequate feeding of the melt to avoid 
excessive porosities in the as-cast components. The experimental 

Fig. 1. Data acquisition from experiments and numerical simulations.
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procedures after the HPDC process involved aging the tensile specimens 
at room temperature for 24 h after demolding, followed by internal 
porosity characterization using an X-ray computed tomography system. 
A casting containing eight round tensile specimens was prepared in each 
high-pressure die casting, as shown in Fig. 3 (b). The gauge diameter and 
gauge length of the tensile specimens were prepared as 6.35 mm and 55 
mm, respectively. Quasi-static tensile testing of the specimens was 
conducted on a universal testing machine at a loading rate of 1 mm/min 
until fracture. For each tensile sample position, 4 tests were conducted 
for repeatability of the elongation. For analyzing pore morphology and 
distribution characteristics, standard metallographic preparation pro
cedures were employed, with multiscale characterization performed 
using optical microscopy (OM).

Based on the above experiments and FEM modelling, all 12 features 
and corresponding label mentioned in Fig. 1 can be obtained and sum
marized in Table 2. Fig. 4 presents a comprehensive feature analysis 
matrix, which includes scatter plots, individual feature distributions, 
and a correlation heatmap. The scatter plots highlight the pairwise re
lationships among process parameters. Due to the practical constraints 
in the industrial experiments, features such as V1, V2, and V3 exhibit a 
skewed distribution. The scatter plots of these features indicate a strong 
linear relationship. The correlation heatmap reveals several important 
patterns. V1 and V2 show a strong positive correlation, indicating 

potential redundancy. Both V1 and V2 also exhibit strong negative 
correlations with total shrinkage volume and pouring temperature and 
filling time are positively correlated. While multicollinearity exists be
tween a few features, it can be addressed through appropriate feature 
selection strategies to ensure model stability and interpretability.

Fig. 2. Control panel of the HPDC machine indicating process parameters such 
as velocity and pressure.

Fig. 3. (a) Configuration and FEM model of the cold chamber HPDC machine used in this research and (b) geometry of the tensile samples (dimensions in mm) 
prepared by HPDC.

Table 1 
The key parameters of process and boundary conditions of FEM model.

Key parameters Value Key parameters Value

Alloy type A356 Initial average die surface 
temperature

150 ◦C

Liquidus 
temperature

614 ◦C Die blowing end time 55 s

Solidus temperature 553 ◦C Ambient Air heat transfer 
coefficient

20 W/ 
m2⋅K

Pouring 
temperature

680 ◦C Ambient temperature 25 ◦C

Part ejection time 20 s Die spray cooling heat transfer 
coefficient

500 W/ 
m2⋅K

Shot sleeve 
temperature

180 ◦C Spray temperature 20 ◦C

Shot sleeve length 480 mm Die air-blow cooling heat transfer 
coefficient

300 W/ 
m2⋅K

Die and sleeve 
material

H13 
steel

Air-blow temperature 20 ◦C

Table 2 
Summary of feature and label values.

Feature and label Values

Min Max Mean

V1, m/s 0.2 0.4 0.323
V2, m/s 0.3 0.6 0.485
V3, m/s 2.2 4.2 3.371
IP, bar 100 320 264.377
Pouring temperature, ◦C 670.1 679.7 674.584
Die temperature, ◦C 123.2 166.6 144.028
Filling time, ms 8 23 15.553
Solidification time, s 0.93 1.04 0.989
Total shrinkage volume, mm3 0.051 2.774 0.243
Temperature at fill time, ◦C 593.1 624 611.704
Air entrainment, g 0.002 0.009 0.004
Oxides indicator, cm2⋅s 2.61 3.46 3.025
Elongation, % 2.08 15.8 11.7
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2.2. Machine learning algorithm

RF, XGBoost, LightGBM, GB, CatBoost [25,26], KNN [27], SVR [28], 
and ANN [29,30] are commonly used to predict the mechanical prop
erties of alloys. These approaches facilitate the exploration of the in
fluence of input features on alloy performance and can even be 
combined with optimization algorithms to design novel materials with 
enhanced properties.

RF, XGBoost, LightGBM, GB, and CatBoost are all improved variants 
of tree-based algorithms. For regression tasks, RF operates by averaging 
predictions from multiple decision trees (CART trees). Its ensemble 
prediction formula is expressed as: 

ŷ =
1
T
∑T

t=1
ht(x) (1) 

where ht(x) denotes the prediction of the t-th tree, and T represents the 
total number of trees.

The XGBoost algorithm iteratively optimizes its objective function, 
which combines a loss function and regularization terms, through an 
additive modeling framework. The total loss consists of prediction error 
and regularization components, formulated as: 

L
(t)
=

∑n

i=1
L
(
yi, ŷi

(t− 1)
+ ft(xi)

)
+

∑t

k=1

Ω(fk) (2) 

Ω(fk)= γTt + 1

/

2λ
∑Tt

j=1
ω2

j (3) 

ω*
j = −

∑
i∈Ij gi

∑
i∈Ij hi + λ

(4) 

where L (t) is the total loss at the t-th iteration, L
(
yi, ŷi

)
is the loss 

function for the i-th sample, ŷi
(t− 1) denotes the cumulative prediction 

from the first t-1 iterations, ft(xi) represents the output of the t-th tree for 
the i-th sample, Ω

(
fk
)

is the regularization term for the k-th tree. γ is the 
minimum gain threshold for leaf node splitting, Tt is the number of leaf 
nodes in the k-th tree, λ is the L2 regularization coefficient for leaf 
weights ωj, ωj denotes the weight of the j-th leaf node, Ij represents the 
set of samples assigned to the j-th leaf node.

The KNN algorithm predicts outcomes based on local similarity. It 
employs Euclidean distance (Eq. (5)) or Manhattan distance (Eq. (6)) to 
measure spatial proximity between samples. Weighted KNN formulas 
(Eqs. (7) and (8)) are applied for prediction. 

d
(
xi, xj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑p

m=1

(
xi,m − xj,m

)2

√

(5) 

d
(
xi, xj

)
=

∑p

m=1

⃒
⃒xi,m − xj,m

⃒
⃒ (6) 

ŷ =

∑k
i=1δiyi

∑k
i=1δi

(7) 

δi =
1

d(x, xi)
p (8) 

where δi denotes the weight of the i-th neighbor, and p represents the 
power function exponent for distance weighting.

The SVR algorithm addresses the primal optimization problem by 
maximizing the classification margin while minimizing misclassification 
penalties. For nonlinear classification, the primal problem is trans

Fig. 4. A comprehensive feature analysis matrix: scatter plots, feature distributions and a correlation heatmap.
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formed into a dual problem using kernel functions K(xi,xj) to implicitly 
map data into a higher-dimensional space: 

min
ω,d,ξ1 /2||θ||2 +C

∑n

i=1
ξi s.t. yi

(
θTxi + d

)
≥1 − ξi, ξi ≥ 0 (9) 

max

α

∑n

i=1
αi −

1
2
∑

i,j
αiαjyiyj K

(
xi, xj

)
s.t. 0≤αi ≤C,

∑n

i=1
αiyi =0 (10) 

where θ is the hyperplane normal vector, d is the bias term, ξi are slack 
variables, C is the penalty parameter, and αi are Lagrange multipliers.

ANN algorithm computes outputs through forward propagation (Eq. 
(11)), where each layer’s activation is derived from a linear trans
formation (weight matrix W and bias b) followed by a nonlinear acti
vation function. The cross-entropy loss function is employed to quantify 
the discrepancy between the predicted probability distribution and the 
true distribution. Gradients of the loss with respect to the weights are 
computed via the chain rule, and the weights are iteratively updated in 
the direction opposite to these gradients to progressively reduce the loss. 

z(l) =W(l)a(l− 1) + b(l), a(l) = σ
(
z(l)

)
(11) 

L nn = −
1
n
∑n

i=1
[yi logŷi +(1 − yi)log(1 − yi)] (12) 

W(l) ← W(l) − η ∂L nn

∂W(l) (13) 

where z(l) is the linear output of the l-th layer, W(l) and b(l) are the weight 
matrix and bias vector of the l-th layer, a(l) is the activation value, and σ 
is the activation function.

For optimization algorithms, Bayesian Optimization (BO) is groun
ded in Bayesian theorem and employs probabilistic models to model and 
infer the objective function. Its primary steps include constructing a 
probabilistic model, calculating the acquisition function, selecting the 
next sampling point, and iterating the optimization process. This 
framework enables BO to effectively balance exploration and exploita
tion, achieving optimal solutions with fewer function evaluations.

The CPO algorithm, proposed by Abdel-Basset et al. [31] in 2024, 
simulates four defense behaviors of crested porcupines, where the first 
and second defense strategies represent the exploratory behavior of 
CPO, while the third and fourth strategies correspond to its exploitative 
behavior. The algorithm introduces a cyclic population reduction tech
nique, which enhances convergence speed and population diversity. 
Compared to other optimizers, CPO exhibits superior performance 
across most benchmark test functions.

Given the superior convergence speed and diversity preservation 
performance demonstrated by CPO on benchmark test functions, as well 
as its potential for handling complex nonlinear optimization problems, 
this study selected CPO as the primary hyperparameter optimization 
algorithm and conducted comparative verification with the widely used 
BO. The key algorithm parameters were set as population size = 30, 
maximum number of iterations = 200. The optimization process 
terminated upon reaching the maximum iteration count. The objective 
function for CPO and BO was the minimization of the root mean squared 
error (RMSE) estimated via 3-fold cross-validation on the training set.

To evaluate the accuracy of regression model training, three 
commonly used evaluation metrics are employed: RMSE, mean absolute 
error (MAE), and coefficient of determination (R2). The corresponding 
calculations are shown as: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(p̂i − pi)

2
√

(14) 

MAE=
1
n
∑n

i=1
|p̂i − pi| (15) 

R2 =1 −

∑n
i=1(p̂i − p)2

∑n
i=1(pi − p)2 (16) 

where n, pi and p̂i denote the number of data, real and predicted per
formance values, respectively. Furthermore, p is the average of the real 
performance values.

By quantifying each feature’s marginal contribution to prediction 
outcomes, SHAP analysis [32] interprets feature-specific influences on 
final model predictions. The computation of SHAP values evaluates all 
possible feature subsets, which fundamental equation is shown as: 

φi =
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

(v(S∪{i}) − v(S)) (17) 

where φi denotes the SHAP value for feature, S represents a feature 
subset, N is the complete feature set, v(S) is the model output with 
feature subset S, and v(S∪{i}) is the output when feature i is added to S.

The computational procedure involves: (1) enumerating all possible 
feature subsets, (2) calculating each feature’s marginal contribution 
across these subsets, and (3) averaging contributions to determine 
feature importance. SHAP analysis was characterized by its consistency, 
fairness, local-global interpretability, and model compatibility.

2.3. Construction procedure for ML model

This study was conducted using an initial dataset comprising 313 
samples, which included twelve input features and one target output 
variable. An ensemble feature importance evaluation approach was 
implemented by integrating RF, Mutual Information (MI), and Lasso. 
This integration leverages the strengths of each method: RF captures 
nonlinear interactions between parameters; MI compensates for the 
potential insensitivity of tree-based models to weaker nonlinear re
lationships; and Lasso enforces sparsity through L1 regularization, pre
venting interference from multicollinearity. The normalized importance 
scores from each method were aggregated using weights of RF: MI: 
Lasso = 0.35:0.35:0.3 to generate a consolidated feature relevance 
ranking. To determine the optimal feature subset size, the top k features 
(k = 1, 2, …, 12) from this ranking list were used. The performance of 
models trained on these subsets was evaluated using 5-fold cross- 
validation on the training set. As illustrated in Fig. 5 (b), using the 
XGBoost model as an example, model performance reached its optimal 
state when k = 5. Further increasing the number of features leads to 
performance degradation due to overfitting. And decreasing the number 
of features results in a sharp decrease in model performance, which is 
attributable to underfitting.

The refined dataset was standardized and partitioned into training 
and testing sets at a 0.8:0.2 ratio. Base models including RF, LightGBM, 
XGBoost, CatBoost, KNN, and ANN and so on, were evaluated based on 
R2, RMSE, and MAE metrics. The top two performing models were 
selected for hyperparameter optimization using the BO and CPO algo
rithms to enhance their generalization capabilities. Feature importance 
analysis was employed to visualize the impact of different features on 
the elongation of HPDC Al–Si alloys. Finally, the accuracy of the pre
diction results of the ML model is verified using experimental data. The 
flowchart of experimental procedure is shown in Fig. 5(a).

Model training, hyperparameter optimization and evaluation were 
performed on a computational workstation equipped with an Intel Xeon 
Gold 6234 CPU and an NVIDIA RTX 5080 GPU. All machine learning 
models were implemented using Python 3.9.7. The BO was performed 
using the ‘BayesSearchCV’ function from the scikit-optimize library and 
the CPO was implemented based on the description in references. The 
SHAP analysis was conducted using the ‘shap’ library. The ANN model 
was accelerated using the GPU for training. Tree-based models and other 
algorithms were primarily executed on the CPU. Hyperparameter opti
mization of the XGBoost model using CPO took approximately 45 min to 
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evaluate 100 iterations. The final training time for the optimized CPO- 
XGBoost model was under 4 s.

3. Results and discussion

3.1. Solidification and defects formation

Before constructing the machine learning model for elongation pre
diction, the datasets needed to be clearly validated, especially regarding 
the features that are obtained via the finite element modelling. Hence in 
this section, a series of validations are performed regarding the solidi
fication and defects formation in the HPDC process. Regarding the 
thermal profile of the die in the HPDC process, the actual temperature 

distribution during the experiment was measured and visualized via 
infrared camera, as is indicated in Fig. 6 (a) while the corresponding 
simulated temperature distribution is shown Fig. 6 (b). The thermal field 
from experiment and modelling are quite similar in both distribution 
and magnitude, as shown in Fig. 6 (c). This provides proof for the reli
ability of the model.

Based on thermal modelling, the defect formation, such as total 
shrinkage porosities, air entrainment and oxides in the HPDC compo
nents are further modeled based on POROS model and GAS model in 
ProCAST [33], with the run parameter JUNCTION = 15. To further 
validate this case, the actual cast components are obtained. The corre
sponding positions, as indicated by the red dot dash line in Fig. 7 (a), 
were cut, polished, etched and observed using OM. It can be clearly seen 

Fig. 5. (a) Flowchart of the ML model construction procedure, (b) the R2 of model with different numbers of optimized features.

Fig. 6. The thermal profiles for the die piece: (a) measurement, (b) modelling and (c) verification of the accuracy.
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that for the locations where the modelling indicated a larger value in the 
total shrinkage porosity legend, obvious porosity can be found in actual 
OM results, as shown in Fig. 7 (b). Hence, the POROS 1 model is valid for 
defect prediction. Fig. 8 shows some modelling results of distribution of 
defects such as temperature at fill time, oxides indicator and air 
entrainment. It could be seen that for each HPDC component, the dis
tribution of defects varies from each other, which is a key result of 
elongation variability.

3.2. ML model selection and feature analysis

Table 3 summarizes the performance of various ML models in pre
dicting the elongation of HPDC Al–Si alloys. By comparing three key 
metrics including R2, RMSE, and MAE, the differences in prediction 
accuracy and stability among the models were systematically analyzed. 
The results indicate that the XGBoost delivered the best overall perfor
mance, achieving an exceptional R2 value of 0.8719 alongside the lowest 
RMSE (0.3800) and MAE (0.2571), underscoring its capability to cap
ture complex nonlinear relationships inherent in the HPDC process pa
rameters. Gradient Boosting and RF also demonstrated strong predictive 

Fig. 7. Comparison of shrinkage porosities for the as-cast HPDC components between (a) modelling and (b) OM images at specific locations indicated by the red dot 
dash lines on modelling results.

Fig. 8. Modelling results of (a) temperature at fill time, (b) oxides indicator and (c) air entrainment.
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capabilities, with R2 values of 0.8307 and 0.7819, respectively. 
Conversely, simpler linear models such as Linear, RidgeCV, and SGD 
exhibited limited performance (R2 < 0.37), due to their inability to 
model the nonlinear dependencies between process variables and me
chanical properties. Notably, KNN and SVR underperformed signifi
cantly, with R2 values of 0.1231 and 0.0735, respectively, suggesting 
challenges in generalizing to the dataset.

As shown in Fig. 9, the Taylor diagram further highlights the 
dominance of tree-based models in predicting elongation after opti
mizing input parameters. The correlation coefficient is represented by 
the angle, with the top position corresponding to 1.0 and decreasing 
clockwise. The standard deviation is indicated by radial distance, while 
the RMSE is denoted by a blue dashed line. Compared to other models, 
the XGBoost and GB models are positioned closer to the black reference 
point in the diagram, exhibiting higher correlation coefficients, standard 
deviations closer to the true values, and lower RMSE values. The 
XGBoost model achieves the highest correlation coefficient, whereas the 
GB model demonstrates a higher standard deviation than XGBoost, 
indicating that the GB model exhibits superior adaptability to data 
fluctuations. Consequently, both XGBoost and GB models were selected 
for subsequent hyperparameter optimization to enhance their general
ization capabilities.

The importance of hyperparameter optimization in machine learning 
cannot be ignored, as it directly impacts model performance, general
ization capability, and training efficiency. Systematic hyperparameter 
optimization to identify optimal hyperparameter configurations serves 
as an effective approach to significantly enhance model performance. In 

this study, the employed optimization algorithms evaluated base models 
on the training set using 3-fold cross-validation, with cross-validation 
average scores guiding the hyperparameter optimization process to 
ensure stable and reliable performance assessment. The test set was 
exclusively reserved for final model evaluation and remained entirely 
independent of model selection or parameter tuning. To guarantee 
reproducibility, a random seed was fixed at 42 throughout all experi
ments. Hyperparameter optimization for both CPO and BO was per
formed with the objectives of minimizing RMSE, MAE and maximizing 
R2. Table 4 presents the hyperparameter search ranges and optimal 
values for XGBoost and GB models obtained through CPO and BO 
optimization.

Fig. 10 shows the comparison of the predictive performance of 
elongation by four different models. A red dashed line indicates the ideal 
fit and gray points represent sample data. All four models demonstrate 
high predictive accuracy, with R2 values exceeding 0.86, indicating 
strong alignment between predictions and experimental results. Among 
them, the CPO-XGBoost model achieves the best performance, with R2, 
RMSE, and MAE values of 0.882, 0.559 %, and 0.383 %, respectively, 
slightly outperforming the other three models. Additionally, XGBoost- 
based models generally surpass GB in elongation prediction tasks, and 
the CPO optimization method further enhances model performance. 
CPO required approximately 45 % fewer average iterations than BO 
when achieving similar performance. Furthermore, the model optimized 
by CPO attained a higher R2 and a lower RMSE on the test set compared 
to the model optimized by BO. However, since the CPO algorithm per
forms 3-fold cross-validation for each evaluation, its execution time was 
4.22 times longer than that of the BO algorithm.

To assess the novelty and effectiveness of the CPO-XGBoost model, 
some research was conducted and compared in Table 5, those on the 
prediction of the El of Al-based alloy. The CPO-XGBoost model has su
perior performance in predicting the El rate of HPDC Al–Si alloy. 

Table 3 
The prediction results of El for HPDC aluminum-silicon alloy.

Model Test set

R2/1 RMSE/% MAE/%

Linear 0.3663 0.8452 0.6224
RF 0.7819 0.4959 0.3088
ANN 0.5581 0.7058 0.5557
RidgeCV 0.3601 0.8493 0.6234
SGD 0.3647 0.8463 0.6215
KNN 0.1231 0.9943 0.7633
SVR 0.0735 1.0220 0.6977
Decision Tree 0.2653 0.9101 0.4858
CatBoost 0.6658 0.6139 0.4690
XGBoost 0.8719 0.3800 0.2571
Gradient Boost 0.8307 0.4368 0.2600
LightGBM 0.4455 0.7906 0.5371

Fig. 9. The Taylor diagram of the predicted results of different ML models.

Table 4 
The optimization of hyperparameters for XGBoost and GB models by CPO and 
BO algorithm.

Moldel Hyperparameter 
optimization algorithm

Hyperparameters 
and range

Optimized 
hyperparameters

XGBoost BO n_estimators [200, 
1200]

971

max_depth [1,10] 6
learning_rate [0.001, 
0.1]

0.02

subsample [0.1, 1.0] 0.854
colsample_bytree 
[0.1, 1.0]

1.0

CPO n_estimators [200, 
1200]

1141

max_depth [1,10] 6
learning_rate [0.001, 
0.1]

0.018

subsample [0.1, 1.0] 0.822
colsample_bytree 
[0.1, 1.0]

0.863

GB BO n_estimators [200, 
1200]

937

max_depth [1,10] 7
learning_rate [0.001, 
0.1]

0.008

subsample [0.1, 1.0] 0.643
max_features [0.1, 
1.0]

0.806

CPO n_estimators [200, 
1200]

1067

max_depth [1,10] 8
learning_rate [0.001, 
0.1]

0.011

subsample [0.1, 1.0] 0.709
max_features [0.1, 
1.0]

1
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However, due to the small number of samples in the model, there is still 
a lot of room for optimization.

The residuals represent the discrepancies between actual values and 
the regression line. The goodness of fit of the model is quantified by the 
sum of squared errors. By analyzing the distribution and trends of 

residuals, the predictive model’s alignment with experimental data can 
be evaluated. As shown in Fig. 11, the residuals exhibit a random, un
structured pattern following a normal distribution, with a mean of 
− 0.1135 and a standard deviation of 0.5477. These statistical charac
teristics indicate that the CPO-XGBoost model achieves a robust fit to the 
data (see Fig. 12).

Based on 5-fold cross-validation, the average absolute SHAP value of 
each fold model on the validation set was calculated. Fig. 12 (a) presents 
the box plot of the SHAP values for the features. Total shrinkage volume 
emerges as the most critical parameter influencing elongation, with a 
SHAP value of 0.475, significantly surpassing other features. Elongation 
reflects the material plastic deformation capability during tensile 
loading. Shrinkage cavities as internal defects, act as stress concentra
tion points, promoting crack initiation and propagation under load, 

Fig. 10. The prediction performance of the models after hyperparameter optimization.

Table 5 
The comparison with previous studies related to El prediction in Al–Si alloys.

Alloy Model R2 of El Ref.

Thixoformed Al–Si–Cu alloy RF 0.87 [34]
Heat treatment-free Al–Si–Mg alloy AdaBoost 0.84 [35]
HPDC Al7Si0.2 Mg alloy 3D CNN 0.786 [36]
HPDC Al–Si alloy CPO-XGBoost 0.882 This work

Fig. 11. (a) Residual plot and (b) residual distribution of the elongation of HPDC Al–Si alloy.
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thereby drastically reducing elongation. Consequently, larger shrinkage 
volumes correlate with lower elongation, aligning with the SHAP 
analysis.

Fig. 12 (b) illustrates the directional influence and magnitude of the 
features on the prediction of model for a single sample. In this case, the 
relatively low total shrinkage volume exerts a positive contribution to 
the elongation prediction. Likewise, lower values of IP and temperature 
at fill time also provide a little positive contribution to the elongation 
prediction. In contrast, elevated die temperature and pouring tempera
ture contribute negatively, with SHAP values of − 0.006 and − 0.003, 
respectively.

Total shrinkage volume is identified as the most critical factor in 
reducing elongation [37–39], as it arises from the cooling and solidifi
cation process. However, because shrinkage volume cannot be directly 
controlled, it is essential to optimize other process parameters to mini
mize this defect. Moderately reducing the piston velocity helps suppress 
cavitation and improve feeding during solidification [40], increasing the 
IP enhances die filling and feeding efficiency, compensating for volu
metric contraction during solidification [41]. Temperature variations 
can lead to antagonistic effects [42,43]. As the temperature increases, 
the viscosity of the molten metal decreases, thereby improving fluidity 
and reducing solidification shrinkage and porosity. However, exces
sively high pouring temperatures may lead to undesirable grain growth, 
which can degrade the mechanical strength of the casting. These insights 
suggest that process optimization should prioritize simulation driven 
and inspection-based strategies to minimize shrinkage defects, followed 

by control adjustments of temperature and pressure parameters within 
optimal ranges.

3.3. Validation of ML model

An extra comprehensive evaluation of the model’s generalization 
performance was performed through ten sets of experimental and nu
merical simulations with different process parameter combinations. 
Table 6 shows the test values and predicted values under different 
process parameters. These datasets, containing the same feature col
umns as those used during training, were imported into the model. The 
predicted elongation values were then compared with experimental 
measurements, and a comparative scatter plot was generated, with error 
bars representing a relative error range of 5 % for the experimental data. 
As shown in Fig. 13, while slight deviations exist between predicted and 
measured elongation values, most predictions fall within the experi
mental error margins. When accounting for the error range compre
hensively, these results confirm the high reliability of the prediction of 
CPO-XGBoost model.

3.4. Future work

While the proposed model demonstrates high predictive accuracy for 
elongation within the process parameter range, several limitations 
warrant consideration and suggest avenues for future research. Firstly, 
the current model is trained on 313 samples generated from a specific 

Fig. 12. (a) The box plot of the SHAP values for the features and (b) waterfall 
plot for an individual sample.

Table 6 
The test values and predicted values under different process parameters.

Sample Features Predicted values Test values

Total shrinkage volume Die temperature IP Pouring temperature Temperature at fill time

1 0.23531 150.0 320 672.6 623.3 12.4412 13.0
2 0.22256 140.6 170 677.1 619.3 11.7467 12.0
3 0.24125 166.6 170 671.7 621.5 12.2301 11.7
4 0.28417 144.2 180 670.3 623.6 11.1863 10.8
5 0.28548 165.8 230 674.8 598.7 10.1262 10.4
6 0.23356 129.5 320 676.2 618.8 12.2684 12.4
7 0.23531 150.0 320 672.6 623.3 12.4412 12.7
8 0.24351 149.3 200 677.3 604.6 11.0884 11.2
9 0.23811 127.6 180 675.0 598.2 13.1075 12.5
10 0.18245 155.7 230 672.8 620.8 13.6437 13.9

Fig. 13. The comparison between the measured and the predicted values 
of elongation.
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Al–Si alloy, die geometry, and process parameter ranges. Although 
sufficient for establishing a robust model within these bounds, 
expanding the dataset to encompass broader operational windows and 
material variations would enhance model robustness. Secondly, 
exploring faster surrogate models for these physics-based simulations or 
investigating the feasibility of models relying on measurable process 
parameters could improve practical deployment efficiency. Future work 
will focus on: (1) Expanding the dataset to include more diverse alloys 
and process conditions; (2) Extending the ML framework to predict other 
mechanical properties or defect metrics; (3) Investigating transfer 
learning techniques to adapt the model to new die geometries or alloys 
with reduced data requirements; (4) Exploring real-time deployment 
strategies considering computational trade-offs.

4. Conclusion

1) This study further addressed the limitations of traditional quality 
assessment methods in HPDC Al–Si alloys by establishing a hybrid 
framework that integrates numerical simulations with experimental 
datasets. Solidification and defect formation are studied and vali
dated to obtain reliable datasets are obtained from FEM modelling 
and HPDC experiments. Datasets were preprocessed through stan
dardization and feature selection, resulting in the screening of five 
important features. Twelve ML models were evaluated, among which 
the XGBoost and GB models had excellent prediction performance.

2) Hyperparameter optimization was performed on the XGBoost and GB 
models using BO and CPO, respectively. The CPO-XGBoost model 
achieved a superior R2 of 0.882. The SHAP analysis revealed the key 
influencing factors, and its stability analysis under different data 
divisions further confirmed the reliability of the conclusion that the 
total shrinkage volume is the dominant factor limiting the elonga
tion. Additionally, the die temperature and pouring temperature 
exhibited negative correlations.

3) The performance of the CPO-XGBoost model was tested using ten 
independent experimental datasets, with the predicted values falling 
within the 5 % error margin of measured elongation values. Future 
work can continuously supplement experimental data while further 
modifying model parameters to improve the prediction accuracy of 
elongation. Furthermore, the model should be considered for appli
cation in predicting other key mechanical properties and defect 
formation metric, and it should be expanded for use in the produc
tion of various types and complex processes of alloys.
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