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High-pressure die casting (HPDC) of Al-Si alloys faces challenges in improving mechanical properties and early
failure due to process-induced defects. Traditional quality assessment experiments and modeling methods are
costly and lack predictive capability. This study proposed a machine learning (ML) method integrating numerical

)c(l(a}gOOSt simulations and experimental data to predict elongation. The data were extracted from experiments and well
SHAP analysis validated mathematical models of the HPDC process and underwent preprocessing such as standardization and
Solidification feature selection. The performance of twelve common ML models was evaluated, among which the eXtreme

Gradient Boosting (XGBoost) and Gradient Boosting (GB) algorithms performed the best. By using the Crested
Porcupine Optimizer (CPO) and Bayesian Optimization for hyperparameter optimization, the accuracy of the
models was further improved. The R? value of the CPO-XGBoost model reached the optimal value of 0.882. The
SHapley Additive exPlanations (SHAP) analysis revealed that total shrinkage volume dominantly reduced
elongation (El), while die temperature and pouring temperature negatively affected El. Validation with inde-
pendent experiments demonstrated that the difference between the predicted values and the measured values
was within 5 %. This work establishes a novel methodology combining physics-based simulations and experi-
ments to comprehensively predict and analyze the failures of HPDC Al-Si alloys from multiple perspectives. It
can be further extended to the prediction of various types of alloys or multiple mechanical properties.

1. Introduction understanding the potential interrelations between elongation and

HPDC process parameters is crucial in controlling the variabilities of the

The HPDC process has been widely employed in manufacturing alloy
components with low surface roughness and high dimensional accuracy
due to its high production efficiency and exceptional capability for
forming complex geometries [1,2]. However, the process is significantly
affected by factors such as high pressure and speed mold filling and
solidification shrinkage, which often lead to internal defects including
porosity, shrinkage and inclusions, thereby compromising their ability
to meet high-performance requirements [3,4]. In the HPDC process, the
elongation of as-cast products usually tends to have large variabilities
[5-7]1, which are closely related to the solidification and defects for-
mation during the process. The obvious variation in elongation can have
a profound negative influence on the reliability of the cast component,
leading to unpredictable early failures of the materials. Hence,

elongation and stabilizing the HPDC process.

To ensure product quality, conventional quality control systems
typically rely on multidimensional detection methods encompassing
computed tomography inspection, tensile mechanical property testing,
and microstructural analysis [8,9]. Nevertheless, these approaches
present limitations such as substantial equipment investment costs,
prolonged inspection cycles, and heavy reliance on manual operations,
which collectively increase production costs and constrain optimization
efficiency in manufacturing processes. Numerous researchers [10-14]
have investigated the influence of mechanisms of HPDC solidification
processes and microstructural phase evolution on casting quality, aim-
ing to overcome these limitations while enhancing both production ef-
ficiency and product quality. However, current methodologies remain
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insufficient to comprehensively elucidate the complex effects of HPDC
process conditions on final product quality. In recent years, ML has
demonstrated significant potential in the fields of materials computation
and analysis, owing to their robust data mining and modeling capabil-
ities [15,16]. Rai et al. [17] developed a Neural Network-based Casting
Process (NN-CastPro) model, which utilized inlet melt temperature,
mold initial temperature, inlet first phase velocity and inlet second
phase velocity as input features to predict filling time, solidification time
and porosity. The results demonstrated that the NN-CastPro model
achieved accurate predictions while requiring substantially less
computational time compared to finite element analysis software. Yar-
lagadda et al. [18] integrated process simulation software with neural
networks trained using domain expertise to predict filling time based on
parameters such as melt temperature, die temperature, injection pres-
sure, and casting weight. Soundararajan et al. [19] employed neural
network models to predict the ultimate tensile strength (UTS) and yield
strength (YS) of aluminum alloy tensile bars produced by gravity cast-
ing, achieving correlation coefficients of 0.95 and 0.96, respectively.
Zheng et al. [20] adopted artificial neural network (ANN) algorithms to
analyze correlations between HPDC process parameters (e.g., mold
temperature, pouring temperature and injection velocity) and surface
defects.

This study establishes a mathematical model of the entire HPDC
process to acquire data on filling time, solidification time, total
shrinkage volume, temperature at fill time, air entrainment, oxides in-
dicators and so on. These data are integrated with experimental mea-
surements to predict the El of Al-Si alloy castings. To address challenges
associated with small sample machine learning, feature selection
methods are applied, and various algorithms including Random Forest
(RF), XGBoost, GB, Light Gradient Boosting Machine (LightGBM), Cat-
egorical Boosting (CatBoost), K-Nearest Neighbors (KNN), Support
Vector Regression (SVR), and ANN are employed to predict elongation.
Hyperparameter optimization algorithms are implemented to enhance
the prediction accuracy of these models, while SHAP analysis is utilized
to visualize the importance of different parameters on the mechanical
properties of HPDC Al-Si alloys. Finally, the predictive accuracy of the
model is validated by comparing experimental measurements with
model predictions. More importantly, the core methodology established
in this work is integrating physics-based simulations, experimental
characterization, machine learning modeling, presents a versatile
framework. While demonstrated here for elongation prediction, this

Numerical Simulation
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framework holds significant potential for application to predicting other
critical quality metrics in HPDC, such as yield strength, ultimate tensile
strength, or specific defect characteristics.

2. Modeling and experiment
2.1. Data acquisition from experiments and modelling

To predict the elongation of the HPDC components, a series of factors
are considered, as shown in Fig. 1. Both the experimental process pa-
rameters (piston velocities (V1, V2, V3), intensification pressure (IP),
pouring temperature, die temperature) and the solidification charac-
teristics that are difficult to obtain directly from experiments such as
filling time, solidification time, total shrinkage volume, temperature at
fill time, air entrainment, oxides indicator, are determined by the FEM
model, and are utilized as supplementary input features, while elonga-
tion measured from tensile tests served as the target output. Pre-
processing of the collected experimental and simulated data was
performed, followed by regression prediction analysis using machine
learning methods. The key experimental process parameters used in this
research are obtained from the HPDC machine’s control panel, as is
indicated in Fig. 2.

The numerical simulation of a cold chamber HPDC machine was
implemented based on the Finite Element Method (FEM) using the
ProCAST software platform, primarily involving three critical steps:
finite element mesh generation, discretized computation and post pro-
cessing. The three-dimensional geometric model of the HPDC process,
constructed using CAD software, adopted a semi-symmetric structure to
significantly improve simulation efficiency while ensuring computa-
tional accuracy. The machine configuration and the corresponding FEM
model are shown in Fig. 3. Key parameters of the model and validation
methodologies are referenced from the authors’ prior research [21-24],
as shown in Table 1.

According to the machine configuration in Fig. 3(a), to start the
experiment, a typical HPDC process is carried out, which include: 1)
Pouring of the A356 melt (added 0.5 % Mn) into the shot sleeve, 2)
Moving of the piston towards the biscuit to inject the melt into the die
region as well as the instant cooling and solidification of the melt, 3)
Continual movement of the piston towards the biscuit under the inten-
sification pressure to ensure adequate feeding of the melt to avoid
excessive porosities in the as-cast components. The experimental

A VI, m/s
i V2, m/s
V3, m/s
1P, bar
Pouring temperature, °C

\ Die temperature, °C
Filling time, ms > Features

Solidification time, s

Total shrinkage volume,
mmn’®

Temperature at fill time, °C

Air entrainment, g

Oxides indicator, cm?*s

-

Elongation, % Label

Fig. 1. Data acquisition from experiments and numerical simulations.
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PROFILE INPUT, PLUNGER

Fig. 2. Control panel of the HPDC machine indicating process parameters such
as velocity and pressure.

procedures after the HPDC process involved aging the tensile specimens
at room temperature for 24 h after demolding, followed by internal
porosity characterization using an X-ray computed tomography system.
A casting containing eight round tensile specimens was prepared in each
high-pressure die casting, as shown in Fig. 3 (b). The gauge diameter and
gauge length of the tensile specimens were prepared as 6.35 mm and 55
mm, respectively. Quasi-static tensile testing of the specimens was
conducted on a universal testing machine at a loading rate of 1 mm/min
until fracture. For each tensile sample position, 4 tests were conducted
for repeatability of the elongation. For analyzing pore morphology and
distribution characteristics, standard metallographic preparation pro-
cedures were employed, with multiscale characterization performed
using optical microscopy (OM).

Based on the above experiments and FEM modelling, all 12 features
and corresponding label mentioned in Fig. 1 can be obtained and sum-
marized in Table 2. Fig. 4 presents a comprehensive feature analysis
matrix, which includes scatter plots, individual feature distributions,
and a correlation heatmap. The scatter plots highlight the pairwise re-
lationships among process parameters. Due to the practical constraints
in the industrial experiments, features such as V1, V2, and V3 exhibit a
skewed distribution. The scatter plots of these features indicate a strong
linear relationship. The correlation heatmap reveals several important
patterns. V1 and V2 show a strong positive correlation, indicating
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potential redundancy. Both V1 and V2 also exhibit strong negative
correlations with total shrinkage volume and pouring temperature and
filling time are positively correlated. While multicollinearity exists be-
tween a few features, it can be addressed through appropriate feature
selection strategies to ensure model stability and interpretability.

Table 1
The key parameters of process and boundary conditions of FEM model.
Key parameters Value Key parameters Value
Alloy type A356 Initial average die surface 150 °C
temperature
Liquidus 614 °C Die blowing end time 55s
temperature
Solidus temperature 553 °C Ambient Air heat transfer 20 W/
coefficient m?2K
Pouring 680 °C Ambient temperature 25°C
temperature
Part ejection time 20s Die spray cooling heat transfer 500 W/
coefficient m?K
Shot sleeve 180 °C Spray temperature 20 °C
temperature
Shot sleeve length 480 mm  Die air-blow cooling heat transfer ~ 300 W/
coefficient m%K
Die and sleeve H13 Air-blow temperature 20 °C
material steel
Table 2
Summary of feature and label values.
Feature and label Values
Min Max Mean
V1, m/s 0.2 0.4 0.323
V2, m/s 0.3 0.6 0.485
V3, m/s 2.2 4.2 3.371
1P, bar 100 320 264.377
Pouring temperature, °C 670.1 679.7 674.584
Die temperature, °C 123.2 166.6 144.028
Filling time, ms 8 23 15.553
Solidification time, s 0.93 1.04 0.989
Total shrinkage volume, mm?> 0.051 2.774 0.243
Temperature at fill time, °C 593.1 624 611.704
Air entrainment, g 0.002 0.009 0.004
Oxides indicator, cm?-s 2.61 3.46 3.025
Elongation, % 2.08 15.8 11.7

used in experiments

The Frech DAK450-54 cold chamber HPDC machine
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Fig. 3. (a) Configuration and FEM model of the cold chamber HPDC machine used in this research and (b) geometry of the tensile samples (dimensions in mm)

prepared by HPDC.
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Fig. 4. A comprehensive feature analysis matrix: scatter plots, feature distributions and a correlation heatmap.

2.2. Machine learning algorithm

RF, XGBoost, LightGBM, GB, CatBoost [25,26], KNN [27], SVR [28],
and ANN [29,30] are commonly used to predict the mechanical prop-
erties of alloys. These approaches facilitate the exploration of the in-
fluence of input features on alloy performance and can even be
combined with optimization algorithms to design novel materials with
enhanced properties.

RF, XGBoost, LightGBM, GB, and CatBoost are all improved variants
of tree-based algorithms. For regression tasks, RF operates by averaging
predictions from multiple decision trees (CART trees). Its ensemble
prediction formula is expressed as:

Z he(x)

where h(x) denotes the prediction of the t-th tree, and T represents the
total number of trees.

The XGBoost algorithm iteratively optimizes its objective function,
which combines a loss function and regularization terms, through an
additive modeling framework. The total loss consists of prediction error
and regularization components, formulated as:

@

N

y=

=N Len Y HA)) + Y Q) @
i=1 k=1
T:
Qfi) =yT. +1 /ZAZw,? 3
j=1
« Zieljgi
=" Zieljhi +4 @
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where ") is the total loss at the t-th iteration, L(y;¥;) is the loss

function for the i-th sample, ﬁ(tfl) denotes the cumulative prediction
from the first t-1 iterations, f;(x;) represents the output of the t-th tree for
the i-th sample, Q(f;) is the regularization term for the k-th tree. y is the
minimum gain threshold for leaf node splitting, T; is the number of leaf
nodes in the k-th tree, A is the L2 regularization coefficient for leaf
weights oj, 0; denotes the weight of the j-th leaf node, I; represents the
set of samples assigned to the j-th leaf node.

The KNN algorithm predicts outcomes based on local similarity. It
employs Euclidean distance (Eq. (5)) or Manhattan distance (Eq. (6)) to
measure spatial proximity between samples. Weighted KNN formulas
(Egs. (7) and (8)) are applied for prediction.

dx) = 1/3 (ki — %im)’

5)
m=1
p
d(xi, %) =Y [Xim — Xim| (6)
m=1
k
Y sy
g Zlf Y %)
Zz;l‘si
1
"= Lol ®

where 8; denotes the weight of the i-th neighbor, and p represents the
power function exponent for distance weighting.

The SVR algorithm addresses the primal optimization problem by
maximizing the classification margin while minimizing misclassification
penalties. For nonlinear classification, the primal problem is trans-
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formed into a dual problem using kernel functions K(xi,xj) to implicitly
map data into a higher-dimensional space:

min

(u.d,gl /2”0”2 + ngl s.t. yi(ngi +d) Z 1- 51‘, é:i Z 0 (9)
1
; a— %;jaiajy,yj K(x;,x;) st 0<a<C, Z ayi=0 (10)

« i=1
where 6 is the hyperplane normal vector, d is the bias term, &i are slack
variables, C is the penalty parameter, and ai are Lagrange multipliers.
ANN algorithm computes outputs through forward propagation (Eq.
(11)), where each layer’s activation is derived from a linear trans-
formation (weight matrix W and bias b) followed by a nonlinear acti-
vation function. The cross-entropy loss function is employed to quantify
the discrepancy between the predicted probability distribution and the
true distribution. Gradients of the loss with respect to the weights are
computed via the chain rule, and the weights are iteratively updated in
the direction opposite to these gradients to progressively reduce the loss.

20 = Wihalh) 4 b0, a0 = 5(z0) an
s NN 100t (1 v .
Ln= n;balogwr(l yo)log(1—y:)] 12)
0,
O] n_ =2 nn
wi — wt NS 13)

where z? is the linear output of the I-th layer, W and b(l) are the weight
matrix and bias vector of the I-th layer, a® is the activation value, and ¢
is the activation function.

For optimization algorithms, Bayesian Optimization (BO) is groun-
ded in Bayesian theorem and employs probabilistic models to model and
infer the objective function. Its primary steps include constructing a
probabilistic model, calculating the acquisition function, selecting the
next sampling point, and iterating the optimization process. This
framework enables BO to effectively balance exploration and exploita-
tion, achieving optimal solutions with fewer function evaluations.

The CPO algorithm, proposed by Abdel-Basset et al. [31] in 2024,
simulates four defense behaviors of crested porcupines, where the first
and second defense strategies represent the exploratory behavior of
CPO, while the third and fourth strategies correspond to its exploitative
behavior. The algorithm introduces a cyclic population reduction tech-
nique, which enhances convergence speed and population diversity.
Compared to other optimizers, CPO exhibits superior performance
across most benchmark test functions.

Given the superior convergence speed and diversity preservation
performance demonstrated by CPO on benchmark test functions, as well
as its potential for handling complex nonlinear optimization problems,
this study selected CPO as the primary hyperparameter optimization
algorithm and conducted comparative verification with the widely used
BO. The key algorithm parameters were set as population size = 30,
maximum number of iterations = 200. The optimization process
terminated upon reaching the maximum iteration count. The objective
function for CPO and BO was the minimization of the root mean squared
error (RMSE) estimated via 3-fold cross-validation on the training set.

To evaluate the accuracy of regression model training, three
commonly used evaluation metrics are employed: RMSE, mean absolute
error (MAE), and coefficient of determination (R?). The corresponding
calculations are shown as:

T
RMSE = Ezizl(pi—pi)z a4
I~
MAE:EZI_ZI B: —pil (15)
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RZ=1-— M (16)

S (pi—p)?
where n, p; and p; denote the number of data, real and predicted per-
formance values, respectively. Furthermore, p is the average of the real
performance values.

By quantifying each feature’s marginal contribution to prediction
outcomes, SHAP analysis [32] interprets feature-specific influences on
final model predictions. The computation of SHAP values evaluates all
possible feature subsets, which fundamental equation is shown as:

_ ISI'(INT — 1S] = 1)!

i
SCN\{i} IN!

m(sU{i}) —v(S)) azn

where ¢; denotes the SHAP value for feature, S represents a feature
subset, N is the complete feature set, v(S) is the model output with
feature subset S, and v(S U{i}) is the output when feature i is added to S.
The computational procedure involves: (1) enumerating all possible
feature subsets, (2) calculating each feature’s marginal contribution
across these subsets, and (3) averaging contributions to determine
feature importance. SHAP analysis was characterized by its consistency,
fairness, local-global interpretability, and model compatibility.

2.3. Construction procedure for ML model

This study was conducted using an initial dataset comprising 313
samples, which included twelve input features and one target output
variable. An ensemble feature importance evaluation approach was
implemented by integrating RF, Mutual Information (MI), and Lasso.
This integration leverages the strengths of each method: RF captures
nonlinear interactions between parameters; MI compensates for the
potential insensitivity of tree-based models to weaker nonlinear re-
lationships; and Lasso enforces sparsity through L1 regularization, pre-
venting interference from multicollinearity. The normalized importance
scores from each method were aggregated using weights of RF: MI:
Lasso = 0.35:0.35:0.3 to generate a consolidated feature relevance
ranking. To determine the optimal feature subset size, the top k features
(k =1, 2, ..., 12) from this ranking list were used. The performance of
models trained on these subsets was evaluated using 5-fold cross-
validation on the training set. As illustrated in Fig. 5 (b), using the
XGBoost model as an example, model performance reached its optimal
state when k = 5. Further increasing the number of features leads to
performance degradation due to overfitting. And decreasing the number
of features results in a sharp decrease in model performance, which is
attributable to underfitting.

The refined dataset was standardized and partitioned into training
and testing sets at a 0.8:0.2 ratio. Base models including RF, LightGBM,
XGBoost, CatBoost, KNN, and ANN and so on, were evaluated based on
R?, RMSE, and MAE metrics. The top two performing models were
selected for hyperparameter optimization using the BO and CPO algo-
rithms to enhance their generalization capabilities. Feature importance
analysis was employed to visualize the impact of different features on
the elongation of HPDC Al-Si alloys. Finally, the accuracy of the pre-
diction results of the ML model is verified using experimental data. The
flowchart of experimental procedure is shown in Fig. 5(a).

Model training, hyperparameter optimization and evaluation were
performed on a computational workstation equipped with an Intel Xeon
Gold 6234 CPU and an NVIDIA RTX 5080 GPU. All machine learning
models were implemented using Python 3.9.7. The BO was performed
using the ‘BayesSearchCV’ function from the scikit-optimize library and
the CPO was implemented based on the description in references. The
SHAP analysis was conducted using the ‘shap’ library. The ANN model
was accelerated using the GPU for training. Tree-based models and other
algorithms were primarily executed on the CPU. Hyperparameter opti-
mization of the XGBoost model using CPO took approximately 45 min to
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Fig. 5. (a) Flowchart of the ML model construction procedure, (b) the R2 of model with different numbers of optimized features.

evaluate 100 iterations. The final training time for the optimized CPO-
XGBoost model was under 4 s.

3. Results and discussion
3.1. Solidification and defects formation

Before constructing the machine learning model for elongation pre-
diction, the datasets needed to be clearly validated, especially regarding
the features that are obtained via the finite element modelling. Hence in
this section, a series of validations are performed regarding the solidi-
fication and defects formation in the HPDC process. Regarding the
thermal profile of the die in the HPDC process, the actual temperature
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Temperature / °C

50
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1

!

distribution during the experiment was measured and visualized via
infrared camera, as is indicated in Fig. 6 (a) while the corresponding
simulated temperature distribution is shown Fig. 6 (b). The thermal field
from experiment and modelling are quite similar in both distribution
and magnitude, as shown in Fig. 6 (c). This provides proof for the reli-
ability of the model.

Based on thermal modelling, the defect formation, such as total
shrinkage porosities, air entrainment and oxides in the HPDC compo-
nents are further modeled based on POROS model and GAS model in
ProCAST [33], with the run parameter JUNCTION = 15. To further
validate this case, the actual cast components are obtained. The corre-
sponding positions, as indicated by the red dot dash line in Fig. 7 (a),
were cut, polished, etched and observed using OM. It can be clearly seen
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Fig. 6. The thermal profiles for the die piece: (a) measurement, (b) modelling and (c) verification of the accuracy.
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(b)

Fig. 7. Comparison of shrinkage porosities for the as-cast HPDC components between (a) modelling and (b) OM images at specific locations indicated by the red dot

dash lines on modelling results.

that for the locations where the modelling indicated a larger value in the
total shrinkage porosity legend, obvious porosity can be found in actual
OM results, as shown in Fig. 7 (b). Hence, the POROS 1 model is valid for
defect prediction. Fig. 8 shows some modelling results of distribution of
defects such as temperature at fill time, oxides indicator and air
entrainment. It could be seen that for each HPDC component, the dis-
tribution of defects varies from each other, which is a key result of
elongation variability.

(@) (b)

Temp at fill time / °C
650.0 6.00
645.3 5.60
640.7 5.20
636.0 4.80
631.3 4.40
626.7 4.00
622.0 3.60
617.3 3.20
612.7 2.80
608.0 2.40
603.3 2.00
598.7 1.60
594.0 1.20
589.3 0.80
584.7 0.40
580.0 0.00

Oxides indicator / cm?-s

3.2. ML model selection and feature analysis

Table 3 summarizes the performance of various ML models in pre-
dicting the elongation of HPDC Al-Si alloys. By comparing three key
metrics including R2, RMSE, and MAE, the differences in prediction
accuracy and stability among the models were systematically analyzed.
The results indicate that the XGBoost delivered the best overall perfor-
mance, achieving an exceptional R? value of 0.8719 alongside the lowest
RMSE (0.3800) and MAE (0.2571), underscoring its capability to cap-
ture complex nonlinear relationships inherent in the HPDC process pa-
rameters. Gradient Boosting and RF also demonstrated strong predictive
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Fig. 8. Modelling results of (a) temperature at fill time, (b) oxides indicator and (c) air entrainment.
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Table 3

The prediction results of El for HPDC aluminum-silicon alloy.
Model Test set

R%/1 RMSE/% MAE/%

Linear 0.3663 0.8452 0.6224
RF 0.7819 0.4959 0.3088
ANN 0.5581 0.7058 0.5557
RidgeCV 0.3601 0.8493 0.6234
SGD 0.3647 0.8463 0.6215
KNN 0.1231 0.9943 0.7633
SVR 0.0735 1.0220 0.6977
Decision Tree 0.2653 0.9101 0.4858
CatBoost 0.6658 0.6139 0.4690
XGBoost 0.8719 0.3800 0.2571
Gradient Boost 0.8307 0.4368 0.2600
LightGBM 0.4455 0.7906 0.5371

capabilities, with R? values of 0.8307 and 0.7819, respectively.
Conversely, simpler linear models such as Linear, RidgeCV, and SGD
exhibited limited performance (R2 < 0.37), due to their inability to
model the nonlinear dependencies between process variables and me-
chanical properties. Notably, KNN and SVR underperformed signifi-
cantly, with R? values of 0.1231 and 0.0735, respectively, suggesting
challenges in generalizing to the dataset.

As shown in Fig. 9, the Taylor diagram further highlights the
dominance of tree-based models in predicting elongation after opti-
mizing input parameters. The correlation coefficient is represented by
the angle, with the top position corresponding to 1.0 and decreasing
clockwise. The standard deviation is indicated by radial distance, while
the RMSE is denoted by a blue dashed line. Compared to other models,
the XGBoost and GB models are positioned closer to the black reference
point in the diagram, exhibiting higher correlation coefficients, standard
deviations closer to the true values, and lower RMSE values. The
XGBoost model achieves the highest correlation coefficient, whereas the
GB model demonstrates a higher standard deviation than XGBoost,
indicating that the GB model exhibits superior adaptability to data
fluctuations. Consequently, both XGBoost and GB models were selected
for subsequent hyperparameter optimization to enhance their general-
ization capabilities.

The importance of hyperparameter optimization in machine learning
cannot be ignored, as it directly impacts model performance, general-
ization capability, and training efficiency. Systematic hyperparameter
optimization to identify optimal hyperparameter configurations serves
as an effective approach to significantly enhance model performance. In
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Fig. 9. The Taylor diagram of the predicted results of different ML models.
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this study, the employed optimization algorithms evaluated base models
on the training set using 3-fold cross-validation, with cross-validation
average scores guiding the hyperparameter optimization process to
ensure stable and reliable performance assessment. The test set was
exclusively reserved for final model evaluation and remained entirely
independent of model selection or parameter tuning. To guarantee
reproducibility, a random seed was fixed at 42 throughout all experi-
ments. Hyperparameter optimization for both CPO and BO was per-
formed with the objectives of minimizing RMSE, MAE and maximizing
R2. Table 4 presents the hyperparameter search ranges and optimal
values for XGBoost and GB models obtained through CPO and BO
optimization.

Fig. 10 shows the comparison of the predictive performance of
elongation by four different models. A red dashed line indicates the ideal
fit and gray points represent sample data. All four models demonstrate
high predictive accuracy, with R? values exceeding 0.86, indicating
strong alignment between predictions and experimental results. Among
them, the CPO-XGBoost model achieves the best performance, with Rz,
RMSE, and MAE values of 0.882, 0.559 %, and 0.383 %, respectively,
slightly outperforming the other three models. Additionally, XGBoost-
based models generally surpass GB in elongation prediction tasks, and
the CPO optimization method further enhances model performance.
CPO required approximately 45 % fewer average iterations than BO
when achieving similar performance. Furthermore, the model optimized
by CPO attained a higher R? and a lower RMSE on the test set compared
to the model optimized by BO. However, since the CPO algorithm per-
forms 3-fold cross-validation for each evaluation, its execution time was
4.22 times longer than that of the BO algorithm.

To assess the novelty and effectiveness of the CPO-XGBoost model,
some research was conducted and compared in Table 5, those on the
prediction of the El of Al-based alloy. The CPO-XGBoost model has su-
perior performance in predicting the El rate of HPDC Al-Si alloy.

Table 4
The optimization of hyperparameters for XGBoost and GB models by CPO and
BO algorithm.

Moldel Hyperparameter Hyperparameters Optimized
optimization algorithm and range hyperparameters
XGBoost BO n_estimators [200, 971
1200]
max_depth [1,10] 6
learning_rate [0.001, 0.02
0.1]
subsample [0.1, 1.0] 0.854
colsample_bytree 1.0
[0.1, 1.0]
CPO n_estimators [200, 1141
1200]
max_depth [1,10] 6
learning_rate [0.001, 0.018
0.1]
subsample [0.1, 1.0] 0.822
colsample_bytree 0.863
[0.1, 1.0]
GB BO n_estimators [200, 937
1200]
max_depth [1,10] 7
learning_rate [0.001, 0.008
0.1]
subsample [0.1, 1.0] 0.643
max_features [0.1, 0.806
1.0]
CPO n_estimators [200, 1067
1200]
max_depth [1,10] 8
learning_rate [0.001, 0.011
0.1]
subsample [0.1, 1.0] 0.709

max_features [0.1,
1.0]
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Fig. 10. The prediction performance of the models after hyperparameter optimization.

Table 5

The comparison with previous studies related to El prediction in Al-Si alloys.
Alloy Model R? of El Ref.
Thixoformed Al-Si-Cu alloy RF 0.87 [34]
Heat treatment-free Al-Si-Mg alloy AdaBoost 0.84 [35]
HPDC Al7Si0.2 Mg alloy 3D CNN 0.786 [36]
HPDC Al-Si alloy CPO-XGBoost 0.882 This work

However, due to the small number of samples in the model, there is still
a lot of room for optimization.

The residuals represent the discrepancies between actual values and
the regression line. The goodness of fit of the model is quantified by the
sum of squared errors. By analyzing the distribution and trends of
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residuals, the predictive model’s alignment with experimental data can
be evaluated. As shown in Fig. 11, the residuals exhibit a random, un-
structured pattern following a normal distribution, with a mean of
—0.1135 and a standard deviation of 0.5477. These statistical charac-
teristics indicate that the CPO-XGBoost model achieves a robust fit to the
data (see Fig. 12).

Based on 5-fold cross-validation, the average absolute SHAP value of
each fold model on the validation set was calculated. Fig. 12 (a) presents
the box plot of the SHAP values for the features. Total shrinkage volume
emerges as the most critical parameter influencing elongation, with a
SHAP value of 0.475, significantly surpassing other features. Elongation
reflects the material plastic deformation capability during tensile
loading. Shrinkage cavities as internal defects, act as stress concentra-
tion points, promoting crack initiation and propagation under load,

El Residual Distribution
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Fig. 11. (a) Residual plot and (b) residual distribution of the elongation of HPDC Al-Si alloy.
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Fig. 12. (a) The box plot of the SHAP values for the features and (b) waterfall
plot for an individual sample.

thereby drastically reducing elongation. Consequently, larger shrinkage
volumes correlate with lower elongation, aligning with the SHAP
analysis.

Fig. 12 (b) illustrates the directional influence and magnitude of the
features on the prediction of model for a single sample. In this case, the
relatively low total shrinkage volume exerts a positive contribution to
the elongation prediction. Likewise, lower values of IP and temperature
at fill time also provide a little positive contribution to the elongation
prediction. In contrast, elevated die temperature and pouring tempera-
ture contribute negatively, with SHAP values of —0.006 and —0.003,
respectively.

Total shrinkage volume is identified as the most critical factor in
reducing elongation [37-39], as it arises from the cooling and solidifi-
cation process. However, because shrinkage volume cannot be directly
controlled, it is essential to optimize other process parameters to mini-
mize this defect. Moderately reducing the piston velocity helps suppress
cavitation and improve feeding during solidification [40], increasing the
IP enhances die filling and feeding efficiency, compensating for volu-
metric contraction during solidification [41]. Temperature variations
can lead to antagonistic effects [42,43]. As the temperature increases,
the viscosity of the molten metal decreases, thereby improving fluidity
and reducing solidification shrinkage and porosity. However, exces-
sively high pouring temperatures may lead to undesirable grain growth,
which can degrade the mechanical strength of the casting. These insights
suggest that process optimization should prioritize simulation driven
and inspection-based strategies to minimize shrinkage defects, followed

Table 6
The test values and predicted values under different process parameters.

Journal of Materials Research and Technology 39 (2025) 2621-2632

by control adjustments of temperature and pressure parameters within
optimal ranges.

3.3. Validation of ML model

An extra comprehensive evaluation of the model’s generalization
performance was performed through ten sets of experimental and nu-
merical simulations with different process parameter combinations.
Table 6 shows the test values and predicted values under different
process parameters. These datasets, containing the same feature col-
umns as those used during training, were imported into the model. The
predicted elongation values were then compared with experimental
measurements, and a comparative scatter plot was generated, with error
bars representing a relative error range of 5 % for the experimental data.
As shown in Fig. 13, while slight deviations exist between predicted and
measured elongation values, most predictions fall within the experi-
mental error margins. When accounting for the error range compre-
hensively, these results confirm the high reliability of the prediction of
CPO-XGBoost model.

3.4. Future work

While the proposed model demonstrates high predictive accuracy for
elongation within the process parameter range, several limitations
warrant consideration and suggest avenues for future research. Firstly,
the current model is trained on 313 samples generated from a specific

15
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W Measured values
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Elongation/%

11
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Fig. 13. The comparison between the measured and the predicted values
of elongation.

Sample Features Predicted values Test values
Total shrinkage volume Die temperature P Pouring temperature Temperature at fill time
1 0.23531 150.0 320 672.6 623.3 12.4412 13.0
2 0.22256 140.6 170 677.1 619.3 11.7467 12.0
3 0.24125 166.6 170 671.7 621.5 12.2301 11.7
4 0.28417 144.2 180 670.3 623.6 11.1863 10.8
5 0.28548 165.8 230 674.8 598.7 10.1262 10.4
6 0.23356 129.5 320 676.2 618.8 12.2684 12.4
7 0.23531 150.0 320 672.6 623.3 12.4412 12.7
8 0.24351 149.3 200 677.3 604.6 11.0884 11.2
9 0.23811 127.6 180 675.0 598.2 13.1075 12.5
10 0.18245 155.7 230 672.8 620.8 13.6437 13.9
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Al-Si alloy, die geometry, and process parameter ranges. Although
sufficient for establishing a robust model within these bounds,
expanding the dataset to encompass broader operational windows and
material variations would enhance model robustness. Secondly,
exploring faster surrogate models for these physics-based simulations or
investigating the feasibility of models relying on measurable process
parameters could improve practical deployment efficiency. Future work
will focus on: (1) Expanding the dataset to include more diverse alloys
and process conditions; (2) Extending the ML framework to predict other
mechanical properties or defect metrics; (3) Investigating transfer
learning techniques to adapt the model to new die geometries or alloys
with reduced data requirements; (4) Exploring real-time deployment
strategies considering computational trade-offs.

4. Conclusion

1) This study further addressed the limitations of traditional quality
assessment methods in HPDC Al-Si alloys by establishing a hybrid
framework that integrates numerical simulations with experimental
datasets. Solidification and defect formation are studied and vali-
dated to obtain reliable datasets are obtained from FEM modelling
and HPDC experiments. Datasets were preprocessed through stan-
dardization and feature selection, resulting in the screening of five
important features. Twelve ML models were evaluated, among which
the XGBoost and GB models had excellent prediction performance.
Hyperparameter optimization was performed on the XGBoost and GB
models using BO and CPO, respectively. The CPO-XGBoost model
achieved a superior R? of 0.882. The SHAP analysis revealed the key
influencing factors, and its stability analysis under different data
divisions further confirmed the reliability of the conclusion that the
total shrinkage volume is the dominant factor limiting the elonga-
tion. Additionally, the die temperature and pouring temperature
exhibited negative correlations.

The performance of the CPO-XGBoost model was tested using ten
independent experimental datasets, with the predicted values falling
within the 5 % error margin of measured elongation values. Future
work can continuously supplement experimental data while further
modifying model parameters to improve the prediction accuracy of
elongation. Furthermore, the model should be considered for appli-
cation in predicting other key mechanical properties and defect
formation metric, and it should be expanded for use in the produc-
tion of various types and complex processes of alloys.
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