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Zonotopic Set-Membership Fusion Estimation for
Complex Networks: A Buffer-Aided Strategy

Zhongyi Zhao, Zidong Wang, Jinling Liang, and Wenying Xu

Abstract—This paper is concerned with the zonotopic set-
membership fusion estimation (SMFE) problem for a class
of complex networks (CNs). The measurements of the CNs
are transmitted to a remote fusion center through a shared
communication network. Due to the limited network bandwidth,
the transmissions of the measurement information occur inter-
mittently, and the nodes’ transmission intervals may exceed their
sampling periods. To enhance the utilization of the measurement
information, each node of the CN is equipped with a buffer
for real-time data storage, so that the fusion center can utilize
more measurement information at time instants when the node’s
transmission interval is larger than its sampling period. The aim
of this paper is to design SMFE algorithms based on both the
parallel fusion scheme and the data compression fusion scheme,
respectively, using the data received at the fusion center. Firstly,
by iterating the state equation of the CN, a batch processing
method is proposed to process the input data of the fusion center
concurrently. Subsequently, by employing the zonotopic set-
membership estimation technique, the desired SMFE algorithms
are designed. Moreover, sufficient criteria are established to
ensure that the sizes of the output zonotopes of the SMFE
algorithms remain uniformly bounded. Finally, two numerical
examples are presented to illustrate the effectiveness of the
proposed algorithms.

Index Terms—Zonotopic set-membership estimation, fusion
estimation, complex networks, buffer-aided strategy.

I. INTRODUCTION

Complex networks (CNs) are regarded as systems com-
posed of nodes through which information is exchanged with
neighboring nodes according to certain topologies. It is widely
acknowledged that CNs can model a broad range of practical
systems, such as power grids [31], social networks [44],
and artificial neural networks [50]. Consequently, considerable
research attention has been directed towards CNs, resulting
in a wealth of significant findings, see, e.g., [4], [10], [19],
[21], [25], [37], [38]. Among these research areas, state
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estimation has attracted particular interest, owing primari-
ly to the importance of CNs’ state information in various
practical applications, such as estimator-based control and
fault detection [13], [14], [32], [39]. Up to now, numerous
research results concerning the state estimation of CNs have
been reported in the literature, see [38] for locally minimized
variance estimation, [34] for H∞ estimation, and [42] for set-
membership estimation (SME).

In recent years, the SME of CNs has attracted increasing
research interest because the SME technique requires on-
ly the bounds of noises rather than their precise statistical
characteristics. Consequently, numerous related results have
been reported in the literature, see [8], [17], [18], [43],
[53] and the references therein. For instance, in [8], the
dynamic event-triggered fault estimation issue was studied
for a class of nonlinear time-varying CNs by employing the
ellipsoidal SME technique. Through the recursive solution of
linear matrix inequalities, ellipsoidal sets restraining faults
were obtained. Unlike ellipsoids, which are often not closed
under the Minkowski sum and linear mapping operations
(two essential set operations in SME), zonotopes possess this
closure property [9], [36], [49]. Motivated by this advantage,
the zonotopic SME for CNs was investigated in [43], [53].

From the perspective of multi-sensor fusion, a CN can be
viewed as a multi-sensor system, where each node of the
CN has a measurement output corresponding to a sensor
node. To date, most of the existing results concerning the
state estimation of CNs have been obtained using the par-
allel fusion scheme. Estimators designed under the parallel
fusion scheme are often straightforward to implement and
possess optimality in certain senses [1], [2], [29], [45], [47].
Nevertheless, the adoption of the parallel fusion scheme in
estimator design may result in a heavy computational burden,
particularly for large-scale systems such as CNs. To address
this issue, the sequential fusion scheme was employed in
[52] to design an SME algorithm for CNs subject to uniform
quantization. In addition to the sequential fusion scheme,
the data compression fusion scheme has been demonstrated
as another fusion approach capable of effectively reducing
computational burden [15], [33]. Furthermore, such a scheme
can achieve the same estimation accuracy as that of the parallel
fusion scheme through appropriate design [28]. In light of
these observations, it is a natural idea to investigate the set-
membership fusion estimation (SMFE) problem of CNs under
the data compression fusion scheme.

For decades, with the rapid development of network tech-
nologies, numerous state estimation algorithms have been
designed based on the measurements received from commu-
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nication networks, see, e.g., [3], [7], [11], [20], [22], [26]. In
network-based estimation, the limited bandwidth often results
in transmission intervals of the measurement signals that
exceed the sampling periods, thereby causing a degradation
in estimation performance [30], [54]. To mitigate this issue,
the buffer-aided strategy has been demonstrated as an effective
approach [35], [40], [48]. In this strategy, the measurement
outputs of a sensor are stored in a buffer in real time, and
all the accumulated data are transmitted to the estimator
simultaneously when transmission is permitted. In this manner,
a greater amount of measurement information can be utilized
in the design of the estimator, thus allowing the estimation
performance to be enhanced through proper design, and this
motivates the application of the buffer-aided strategy to the
zonotopic SMFE.

Based on the above discussions, the buffer-aided zonotopic
SMFE for CNs is investigated in this paper. Two fundamental
challenges are identified as follows:

1) How to design zonotopic SMFE algorithms for CNs
equipped with buffers under the parallel and data com-
pression fusion schemes?

2) How to analyze the steady-state performance of the
SMFE algorithms?

Accordingly, the main contributions of this paper are summa-
rized as follows:

1) The zonotopic SMFE problem is addressed, for the first
time, for CNs operating under a buffer-aided strategy.

2) A novel batch processing method is developed to handle
the measurement data from buffers. In contrast to the re-
estimation-based method in [40], the proposed approach
allows the simultaneous use of buffered measurements,
thereby facilitating the subsequent design of the SMFE
algorithms.

3) Two centralized SMFE algorithms are constructed based
on the parallel fusion scheme and the data compression
scheme, respectively. In contrast to the matrix-inequality-
based methods in [35], [48], the proposed algorithms
achieve optimality in the sense of minimizing the F -
radii of the output zonotopes. Furthermore, the recursive
structure of the algorithms makes them suitable for online
implementation.

4) Sufficient criteria applicable to unstable CNs are derived
to ensure the uniform boundedness of the F -radii of
the output zonotopes generated by the proposed SMFE
algorithms under both fusion schemes.

The remainder of this paper is organized as follows. Sec-
tion II presents the CN model, the transmission model under
the buffer-aided strategy, and the objectives of the paper. In
Section III, a batch processing method is introduced to process
the data from the buffers of the considered CN, followed by the
design of a parallel SMFE algorithm and a data-compression
SMFE algorithm. Subsequently, an analysis is conducted to
examine the uniform boundedness of the sizes of the output
zonotopes produced by the SMFE algorithms. Section IV
provides two numerical examples to verify the effectiveness of
the proposed SMFE algorithms. Finally, Section V concludes
the paper based on the obtained findings.

Notations: N+ and N denote the set of positive in-
tegers and the set of natural numbers, respectively.
vecχ{Π(ξ)} ,

[
(Π(1))T (Π(2))T · · · (Π(χ))T

]T
and

diagχ{Π(ξ)} , diag{Π(1),Π(2), . . . ,Π(χ)} for matrices
Π(ξ) (ξ = 1, 2, . . . , χ) of proper dimensions. For a set
I ⊂ {1, 2, . . . , χ} and matrices Π(ξ) (ξ = 1, 2, . . . , χ),
vecχξ∈I {Π(ξ)} and diagχξ∈I {Π(ξ)} denote the matrix after
removing the row blocks Π(ξ) (ξ /∈ I ) from vecχ{Π(ξ)} and
the matrix after removing the diagonal blocks Π(ξ) (ξ /∈ I )
from diagχ{Π(ξ)}, respectively. For sets Z1, Z2, . . . , Zn ⊂ Rn

and a matrix Y ∈ Rm×n, Z1 ⊕ Z2 , {z1 + z2 : z1 ∈
Z1, z2 ∈ Z2}; Y⊙Z1 , {Y z1 : z1 ∈ Z1};

⊕
i∈{1,2,...,N} Zi ,

Z1 ⊕ Z2 ⊕ · · · ⊕ ZN . The operation “⊙” is granted a higher
precedence than “⊕”. For a matrix Z with total n rows,
rs{Z} , diagn{∥Zξ∥∞} with Zξ being the ξ-th row of Z. 1
is a column vector composed of ones.

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Preliminaries and System Model

In this paper, zonotopes are employed to bound the external
noises and the system states, whose definition is provided as
follows.

Definition 1: [24] An m-order zonotope with center d ∈ Rn

and generator matrix D ∈ Rn×m, denoted as ⟨d,D⟩, is defined
as

⟨d,D⟩ , {d+Dφ : φ ∈ Rm, ∥φ∥∞ ≤ 1}.

Consider a class of CNs composed of N nodes, where the
dynamics of the i-th node are described as follows:

xi(k + 1) = Ai(k)xi(k) +

N∑
j=1

λij(k)Θ(k)xj(k) + wi(k)

(1)
yi(k) = Ci(k)xi(k) + vi(k) (2)
xi(0) ∈ ⟨0, Xi(0)⟩ (3)

where xi(k) ∈ Rn and yi(k) ∈ Rm denote the state and the
measurement output, respectively; and wi(k) and vi(k) denote
the external process and measurement noises satisfying

wi(k) ∈ ⟨0,Wi(k)⟩ (4)
vi(k) ∈ ⟨0, Vi(k)⟩ (5)

with Wi(k) and Vi(k) being positive diagonal matrices. λij(k)
describes the coupling strength from node j to node i, which
satisfies λij(k) > 0 if the information can be transmitted
from node j to node i or otherwise λij(k) = 0. Θ(k) ,
diagn{θξ(k)} ∈ Rn×n stands for the inner coupling matrix
with θξ(k) > 0 for each ξ ∈ {1, 2, . . . , n}; Ai(k) and Ci(k)
are known matrices; and Xi(0) is a known positive diagonal
matrix.

Remark 1: The parameters Xi(0), Wi(k), and Vi(k) (i =
1, 2, . . . , N) must be selected sufficiently large to guarantee
that (3)–(5) are satisfied. Otherwise, the SME performance
cannot be guaranteed. Meanwhile, these parameters should be
chosen such that the zonotopes in (3)–(5) remain as tight as
possible to improve estimation performance. To this end, they
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can be set based on prior knowledge such as physical system
constraints or measurement accuracy.

B. Transmissions Under the Buffer-Aided Strategy
For each node of the CN in (1) and (2), the measurement

output yi(k) (i ∈ {1, 2, . . . , N}) is transmitted to the remote
fusion center via a shared communication network. Due to the
limited bandwidth resources, yi(k) cannot always be allowed
to access the communication network at every time instant
k. In other words, for each node of the CN, a transmission
interval that is larger than a sampling period may occur,
during which the node is unable to transmit its measurement
information. To address this issue, a buffer-aided strategy is
employed to improve the utilization rate of the measurement
information for the CN. Under this strategy, each node of the
CN is equipped with a buffer, and the signal transmissions of
the i-th node are subject to the following constraints.

1) At time instant k, the measurement signal yi(k) is stored
in a buffer with capacity Mi. If the signals stored in the
buffer have reached the capacity Mi, then the oldest data
(i.e., yi(k−Mi)) are discarded to make room for storing
yi(k).

2) The signals stored in the buffer are required to wait for
permission to access the communication network. Once
the buffer is granted access, all signals in the buffer
are sent to the fusion center, after which the buffer is
emptied..

To model the input of the fusion center, a monotonically
increasing sequence {ηi,t}∞t=1 is introduced to represent the
transmission time instants when the buffer of the i-th node
of the CN is permitted to access the network. The following
assumption is made regarding the transmission intervals.

Assumption 1: [51] For the buffer of the i-th node, the
following constraint holds:

∆ηi,t , ηi,t − ηi,t−1 ≤ η̄i, ∀t ∈ N+

where ηi,0 = 0 and η̄i is a known positive integer.
Under Assumption 1, at time instant ηi,t, the input of the

fusion center received from the buffer corresponding to the
i-th node is described by the following set:

Yi(ηi,t) , {yi(ηi,t), . . . , yi(ηi,t − κi,t + 1)} (6)

where κi,t , min{Mi,∆ηi,t}.
Define the set of nodes of the CN whose buffers send data

to the fusion center at time instant k as

I (k) , {i ∈ {1, 2, . . . , N} : ∃t ∈ N+, s.t. ηi,t = k}.
Then, the set of all input signals of the fusion center at time
instant k is given by

Ȳ (k) ,
∪

i∈I (k)

Yi(k). (7)

Remark 2: Obviously, the buffer-aided strategy can effec-
tively improve the utilization of the measurement information.
To be more specific, for the i-th node of the CN in (1)–(3),
during the time interval from k = 0 to k = ηi,t′ (t′ ∈ N+),
the total number of signals received by the fusion center is∑t′

t=1 κi,t+1 when using the buffer-aided strategy, compared
to ηi,t′ + 1 without it.

C. Problem Statement

The objectives of this paper are threefold:
1) To propose a batch processing method for handling the

input signals received by the fusion center.
2) To design zonotopic set-membership fusion estimators

for the CN in (1) and (2) under the parallel and data
compression fusion schemes, respectively, by utilizing the
proposed batch processing method.

3) To establish sufficient criteria to ensure the uniform
boundedness of the sizes of the output zonotopes gen-
erated by the designed estimation algorithms.

III. MAIN RESULTS

A. Batch Processing of Data Received by the Fusion Center

In this subsection, a batch processing method will be
proposed to process the signals in the set Ȳ (k) at each time
instant k.

Define x(k) , vecN{xi(k)}. Then, based on (1)–(3), the
dynamics of the entire CN can be obtained as follows:

x(k + 1) = A(k)x(k) + w̄(k) (8)
yi(k) = C̄i(k)x(k) + vi(k), i = 1, 2, . . . , N (9)

x(0) ∈ ⟨0, X̃(0)⟩ (10)

where

A(k) = diagN{Ai(k)}+ Λ(k)⊗Θ(k)

w̄(k) = vecN{wi(k)}
X̃(0) = diagN{Xi(0)}
C̄i(k) = [0m×n . . . 0m×n︸ ︷︷ ︸

i−1

Ci(k) 0m×n . . . 0m×n︸ ︷︷ ︸
N−i

]

Λ(k) =

λ11(k) · · · λ1N (k)
...

. . .
...

λN1(k) · · · λNN (k)

 .

Additionally, according to (4), one can easily derive from
Definition 1 that the noise term w̄(k) in (8) satisfies

w̄(k) ∈ ⟨0, W̄ (k)⟩ (11)

where W̄ (k) = diagN{Wi(k)}.
Now, let us employ a monotonically increasing sequence
{k̄t}∞t=1 to represent the sequence of time instants when
Ȳ (k̄t) ̸= ∅. It follows from (8) that

x(k̄t+1) = A (k̄t+1, k̄t)x(k̄t) + B(k̄t+1, k̄t)w(k̄t+1, k̄t) (12)

with

A (k̄t+1, k̄t) = A(k̄t+1 − 1)A(k̄t+1 − 2) · · · A(k̄t)

B(k̄t+1, k̄t) =


A T (k̄t+1, k̄t + 1)
A T (k̄t+1, k̄t + 2)

...
A T (k̄t+1, k̄t+1 − 1)

I


T

w(k̄t+1, k̄t) =
[
w̄T (k̄t) · · · w̄T (k̄t+1 − 1)

]T
.
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Furthermore, define ∆k̄t , k̄t − k̄t−1 for t ∈ N+ with k̄0 ,
0. For each i ∈ I (k̄t+1), there exists a t′ ∈ N+ such that
ηi,t′ = k̄t+1. Let

yi(k̄t+1) ,


yi(k̄t+1)

yi(k̄t+1 − 1)
...

yi(k̄t+1 − ιi,t+1 + 1)


with ιi,t+1 = min{κi,t′ ,∆k̄t+1}. The measurement informa-
tion from the i-th buffer can be expressed as

yi(k̄t+1) = Ci(k̄t+1)x(k̄t) + Di(k̄t+1)w⃗i(k̄t+1) + v⃗i(k̄t+1)
(13)

where

Ci(k̄t+1) =


C̄i(k̄t+1)A (k̄t+1, k̄t)

C̄i(k̄t+1 − 1)A (k̄t+1 − 1, k̄t)
...

C̄i(k̄t+1 − ιi,t+1 + 1)A (k̄t+1 − ιi,t+1 + 1, k̄t)


Di(k̄t+1)

= diag{C̄i(k̄t+1)B(k̄t+1, k̄t), C̄i(k̄t+1 − 1)B(k̄t+1 − 1, k̄t),

. . . , C̄i(k̄t+1 − ιi,t+1 + 1)B(k̄t+1 − ιi,t+1 + 1, k̄t)}

w⃗i(k̄t+1) =
[
wT (k̄t+1, k̄t) · · · wT (k̄t+1 − ιi,t+1 + 1, k̄t)

]T
v⃗i(k̄t+1) =

[
vTi (k̄t+1) · · · vTi (k̄t+1 − ιi,t+1 + 1)

]T
.

Remark 3: By iterating the state equation in (8), an equiva-
lent measurement equation of the measurement data received
from the i-th buffer is obtained in (13), through which the
batch processing of yi(k̄t+1) can be performed. It should
be noted that the established batch processing method is
applicable to multi-sensor systems whose buffers may have
different transmission time instants, and thus significantly
differs from that used for single-sensor systems in [51].
Furthermore, compared with the re-estimation method in [35],
[40], [48], which requires re-estimating the system states by
using the received signals successively according to their time
indices in increasing order, the proposed batch processing
method provides greater convenience for the design of the
SMFE algorithms.

B. SNE Algorithm Under the Parallel Fusion Scheme

In this subsection, a set-membership estimator is designed
for the system in (8)–(9) under the parallel fusion scheme.

Based on (8), (12), and (13), the desired estimator is
constructed as follows:

Case 1: For k /∈ {k̄t}∞t=1, let

x̂(k) = A(k − 1)x̂(k − 1) (14)

where x̂(k) denotes the estimate of the state x(k).
Case 2: There exists a nonnegative integer t such that k =

k̄t+1. Let

x̂(k̄t+1) = A (k̄t+1, k̄t)x̂(k̄t) +
∑

i∈I (k̄t+1)

Ki(k̄t+1)

×
(

yi(k̄t+1)− Ci(k̄t+1)x̂(k̄t)
)

(15)

where Ki(k̄t+1) (i ∈ I (k̄t+1)) are the estimator parameters
to be designed.

Define the estimation error as e(k) , x(k) − x̂(k). To
give the zonotopes enclosing e(k), the following lemma is
introduced.

Lemma 1: [23] For zonotopes ⟨d1, D1⟩, ⟨d2, D2⟩ ⊂ Rn and
matrix Z ∈ Rm×n, the following properties hold:

⟨d1, D1⟩ ⊕ ⟨d2, D2⟩ =
⟨
d1 + d2,

[
D1 D2

]⟩
Z ⊙ ⟨d1, D1⟩ = ⟨Zd1, ZD1⟩.

In the following two theorems, a method will be given to
calculate the zonotopes containing e(k) (k ∈ N+).

Theorem 1: For a time instant k ∈ {k̄t+1, k̄t+2, . . . , k̄t+1−
1}, if

e(k − 1) ∈ ⟨0, E(k − 1)⟩ (16)

then

e(k) ∈ ⟨0,
[
A(k − 1)E(k − 1) W̄ (k − 1)

]
⟩

, ⟨0, E(k)⟩. (17)

Proof: It follows from (8) and (14) that, when k ∈ {k̄t+
1, k̄t + 2, . . . , k̄t+1 − 1}, the estimation error e(k) satisfies

e(k) = A(k − 1)e(k − 1) + w̄(k − 1). (18)

Based on (11), (16), and (18), it is obtained from Lemma 1
that

e(k) ∈ A(k − 1)⊙ ⟨0, E(k − 1)⟩ ⊕ ⟨0, W̄ (k − 1)⟩ = ⟨0, E(k)⟩

which ends the proof.
Theorem 2: Let the estimator parameters Ki(k̄t+1) (i ∈

I (k̄t+1)) be given. If

e(k̄t) ∈ ⟨0, E(k̄t)⟩ (19)

then

e(k̄t+1) ∈ ⟨0, E(k̄t+1)⟩ (20)

where

E(k̄t+1) ,
[
E(1)(k̄t+1) · · · E(4)(k̄t+1)

]
E(1)(k̄t+1) ,

(
A (k̄t+1, k̄t)−

∑
i∈I (k̄t+1)

Ki(k̄t+1)Ci(k̄t+1)
)

× E(k̄t)

E(2)(k̄t+1) , −
(
vecNi∈I (k̄t+1)

{(Ki(k̄t+1)Di(k̄t+1)

× W⃗i(k̄t+1))
T }

)T

E(3)(k̄t+1) , −
(
vecNi∈I (k̄t+1)

{(Ki(k̄t+1)V⃗i(k̄t+1))
T }

)T

E(4)(k̄t+1) , B(k̄t+1, k̄t)W(k̄t+1)

with

W⃗i(k̄t+1) , diag{W(k̄t+1), . . . ,W(k̄t+1 − ιi,t+1 + 1)}
W(k̄t+1) , diag{W̄ (k̄t), . . . , W̄ (k̄t+1 − 1)}
V⃗i(k̄t+1) , diag{Vi(k̄t+1), . . . , Vi(k̄t+1 − ιi,t+1 + 1)}
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Proof: According to (12) and (15), it follows that

e(k̄t+1)

=
(
A (k̄t+1, k̄t)−

∑
i∈I (k̄t+1)

Ki(k̄t+1)Ci(k̄t+1)
)
e(k̄t)

−
∑

i∈I (k̄t+1)

Ki(k̄t+1)Di(k̄t+1)w⃗i(k̄t+1)

−
∑

i∈I (k̄t+1)

Ki(k̄t+1)v⃗i(k̄t+1)

+ B(k̄t+1, k̄t)w(k̄t+1, k̄t). (21)

With (11) and the definition of w(k̄t+1, k̄t) (below (12)),
one has

w(k̄t+1, k̄t) ∈ ⟨0,W(k̄t+1)⟩ (22)

which, together with the definition of w⃗i(k̄t+1) (below (13)),
yields

w⃗i(k̄t+1) ∈ ⟨0, W⃗i(k̄t+1)⟩. (23)

Similarly, one can obtain from (5) and the definition of
v⃗i(k̄t+1) (below (13)) that

v⃗i(k̄t+1) ∈ ⟨0, V⃗i(k̄t+1)⟩. (24)

In light of (19) and (21)–(24), it can be deduced from
Lemma 1 that

e(k̄t+1) ∈
(
A (k̄t+1, k̄t)−

∑
i∈I (k̄t+1)

Ki(k̄t+1)Ci(k̄t+1)
)

⊙ ⟨0, E(k̄t)⟩⊕
i∈I (k̄t+1)

(−Ki(k̄t+1)Di(k̄t+1))⊙ ⟨0, W⃗i(k̄t+1)⟩⊕
i∈I (k̄t+1)

(−Ki(k̄t+1))⊙ ⟨0, V⃗i(k̄t+1)⟩

⊕B(k̄t+1, k̄t)⊙ ⟨0,W(k̄t+1)⟩
= ⟨0, E(k̄t+1)⟩.

The proof is now complete.
In the following theorem, the estimator parameters

Ki(k̄t+1) (i ∈ I (k̄t+1)) are designed by minimizing the F -
radius of the zonotope in (20) (defined as the Frobenius norm
of E(k̄t+1) [6]).

Theorem 3: Let

K(k̄t+1) ,
(
vecNi∈I (k̄t+1)

{KT
i (k̄t+1)}

)T

.

Let K(k̄t+1) be designed as

K(k̄t+1) = A (k̄t+1, k̄t)E(k̄t)E
T (k̄t)CT (k̄t+1)Γ

−1(k̄t+1)
(25)

where

C(k̄t+1) = vecNi∈I (k̄t+1)
{Ci(k̄t+1)}

Γ(k̄t+1) = C(k̄t+1)E(k̄t)E
T (k̄t)CT (k̄t+1) + Φ(k̄t+1)

with

Φ(k̄t+1) = diagNi∈I (k̄t+1)
{Φi(k̄t+1)}

Φi(k̄t+1) = Di(k̄t+1)W⃗i(k̄t+1)W⃗
T

i (k̄t+1)D
T
i (k̄t+1)

+ V⃗i(k̄t+1)V⃗
T
i (k̄t+1).

Then, the F -radius of the zonotope ⟨0, E(k̄t+1)⟩ in (20) is
minimized.

Proof: According to the expression of E(k̄t+1) in (20),
the square of the F -radius of the zonotope ⟨0, E(k̄t+1)⟩ can
be calculated as follows:

Tr{E(k̄t+1)E
T (k̄t+1)}

= Tr
{(

A (k̄t+1, k̄t)−
∑

i∈I (k̄t+1)

Ki(k̄t+1)Ci(k̄t+1)
)
E(k̄t)

× ET (k̄t)
(
A (k̄t+1, k̄t)−

∑
i∈I (k̄t+1)

Ki(k̄t+1)Ci(k̄t+1)
)T

+
∑

i∈I (k̄t+1)

Ki(k̄t+1)Di(k̄t+1)W⃗i(k̄t+1)

× W⃗
T

i (k̄t+1)D
T
i (k̄t+1)K

T
i (k̄t+1)

+
∑

i∈I (k̄t+1)

Ki(k̄t+1)V⃗i(k̄t+1)V⃗
T
i (k̄t+1)K

T
i (k̄t+1)

+ B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t)

}
. (26)

With the definition of K(k̄t+1), (26) can be further ex-
pressed as

Tr{E(k̄t+1)E
T (k̄t+1)}

= Tr
{(

A (k̄t+1, k̄t)−K(k̄t+1)C(k̄t+1)
)
E(k̄t)

× ET (k̄t)
(
A (k̄t+1, k̄t)−K(k̄t+1)C(k̄t+1)

)T

+K(k̄t+1)Φ(k̄t+1)KT (k̄t+1)

+ B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t)

}
= Tr

{(
KT (k̄t+1)− Γ−1(k̄t+1)C(k̄t+1)E(k̄t)

× ET (k̄t)A
T (k̄t+1, k̄t)

)T

Γ(k̄t+1)

×
(
KT (k̄t+1)− Γ−1(k̄t+1)C(k̄t+1)E(k̄t)

× ET (k̄t)A
T (k̄t+1, k̄t)

)
+ A (k̄t+1, k̄t)E(k̄t)E

T (k̄t)A
T (k̄t+1, k̄t)

−A (k̄t+1, k̄t)E(k̄t)E
T (k̄t)CT (k̄t+1)

× Γ−1(k̄t+1)C(k̄t+1)E(k̄t)E
T (k̄t)A

T (k̄t+1, k̄t)

+ B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t)

}
. (27)

From (27), it can be observed that, when K(k̄t+1) is
designed according to (25), the F -radius of the zonotope
⟨0, E(k̄t+1)⟩ in (20) is minimized, thereby completing the
proof.

As a summary of the above results, the following algorithm
(Algorithm 1) is provided.

Remark 4: The computational complexity of Algorithm 1
mainly comes from the calculation of K(k̄t+1) in (25). The
number of floating-point operations (FLOPs) required for com-
puting K(k̄t+1) is O(n2N2ℵ(k̄t) + (

∑
i∈I (k̄t+1)

mιi,t+1)
3).

Here, ℵ(k̄t) denotes the number of columns of E(k̄t), which
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Algorithm 1: SME algorithm under the parallel fusion
scheme
Input: Matrix X̃(0) in (10).
Output: x̂(k), E(k).

1 Initialization: Give the maximum simulation time kmax.
Set k = 0, x̂(0) = 0, E(0) = X̃(0).

2 for k = 1, 2, . . . , kmax do
3 if I (k) = ∅ then
4 Compute x̂(k) by (14);
5 Compute E(k) in (17);
6 else
7 Compute Ki(k) by (25);
8 Compute x̂(k) by (15);
9 Compute E(k) in (20);

is determined as follows: 1) ℵ(0) = nN ; and 2) compared with
E(k − 1), the increment in the number of columns of E(k)
is nN when k /∈ {k̄t}∞t=1, and

∑
i∈I (k̄t+1)

∆k̄t+1ιi,t+1nN +∑
i∈I (k̄t+1)

ιi,t+1m+∆k̄t+1nN when k ∈ {k̄t}∞t=1.

C. Estimator Design Under Data Compression Fusion Scheme

In this subsection, an estimator is designed for the CN
in (8)–(10) under the data compression fusion scheme. To
this end, the method for compressing signals yi(k̄t+1) (i ∈
I (k̄t+1)) is first provided. Define

y⃗(k̄t+1) , vecNi∈I (k̄t+1)
{yi(k̄t+1)}.

According to (13), y⃗(k̄t+1) can be expressed as

y⃗(k̄t+1) = C(k̄t+1)x(k̄t) +D(k̄t+1)
←−w (k̄t+1) +

←−v (k̄t+1)
(28)

where

D(k̄t+1) = diagNi∈I (k̄t+1)
{Di(k̄t+1)}

←−w (k̄t+1) = vecNi∈I (k̄t+1)
{w⃗i(k̄t+1)}

←−v (k̄t+1) = vecNi∈I (k̄t+1)
{v⃗i(k̄t+1)}.

Using the full rank decomposition technique, it follows that

C(k̄t+1) = G(k̄t+1)H(k̄t+1) (29)

where G(k̄t+1) is a full-column-rank matrix and H(k) is a
full-row-rank matrix.

On the basis of (28) and (29), the weighted least square
(WLS) estimation ofH(k̄t+1)x(k̄t) can be obtained as follows:

ý(k̄t+1) = argmin
ý∗
∥⃗y(k̄t+1)− G(k̄t+1)ý∗∥2P (k̄t+1)

.

Here, ý(k̄t+1) is the desired WLS estimate of H(k̄t+1)x(k̄t),
and P (k̄t+1) is a positive definite matrix to be designed. From
[55], ý(k̄t+1) can be obtained as follows:

ý(k̄t+1) =
(
GT (k̄t+1)P (k̄t+1)G(k̄t+1)

)−1

× GT (k̄t+1)P (k̄t+1)⃗y(k̄t+1). (30)

Then, by inserting (28) into (30), one derives that

ý(k̄t+1) = H(k̄t+1)x(k̄t) + ε(k̄t+1) (31)

where

ε(k̄t+1) =
(
GT (k̄t+1)P (k̄t+1)G(k̄t+1)

)−1 GT (k̄t+1)P (k̄t+1)

× (D(k̄t+1)
←−w (k̄t+1) +

←−v (k̄t+1)).

In the following proposition, a zonotope enclosing ε(k̄t+1)
is derived, and the positive definite matrix P (k̄t+1) is designed
such that the F -radius of the resulting zonotope is minimized.

Proposition 1: The signal ε(k̄t+1) satisfies

ε(k̄t+1) ∈ ⟨0, ε̂(k̄t+1)⟩ (32)

where

ε̂(k̄t+1) =
(
GT (k̄t+1)P (k̄t+1)G(k̄t+1)

)−1 GT (k̄t+1)P (k̄t+1)

×
[
D(k̄t+1)

←−
W(k̄t+1)

←−
V (k̄t+1)

]
with

←−
W(k̄t+1) = diagNi∈I (k̄t+1)

{W⃗i(k̄t+1)} and
←−
V (k̄t+1) =

diagNi∈I (k̄t+1)
{V⃗i(k̄t+1)}. Moreover, if the matrix P (k̄t+1) is

chosen as

P (k̄t+1) =
(
D(k̄t+1)

←−
W(k̄t+1)

←−
WT (k̄t+1)DT (k̄t+1)

+
←−
V (k̄t+1)

←−
V T (k̄t+1)

)−1

(33)

then the F -radius of the zonotope in (32) is minimized.
Proof: According to (23), (24), and the definitions of

←−w (k̄t+1) and ←−v (k̄t+1), it can be easily deduced from Def-
inition 1 that

←−w (k̄t+1) ∈ ⟨0,
←−
W(k̄t+1)⟩

←−v (k̄t+1) ∈ ⟨0,
←−
V (k̄t+1)⟩

which further infer

ε(k̄t+1)

∈
(
GT (k̄t+1)P (k̄t+1)G(k̄t+1)

)−1 GT (k̄t+1)P (k̄t+1)

⊙ (D(k̄t+1)⊙ ⟨0,
←−
W(k̄t+1)⟩ ⊕ ⟨0,

←−
V (k̄t+1)⟩)

= ⟨0, ε̂(k̄t+1)⟩.

With (32), it is known from the matrix Schwarz inequality
(see Lemma 1.1 of [5]) that, when P (k̄t+1) is given by (33),
the F -radius of the zonotope in (32) is minimized. The proof
is now complete.

After obtaining the compressed signal ý(k̄t+1), a set-
membership estimator is subsequently designed for the system
in (8) and (9) as follows.

Case 1: For k /∈ {k̄t}∞t=1, let

x̌(k) = A(k − 1)x̌(k − 1) (34)

where x̌(k) denotes the estimate of state x(k).
Case 2: There exists a nonnegative integer t such that k =

k̄t+1. Let

x̌(k̄t+1) = A (k̄t+1, k̄t)x̌(k̄t) + L(k̄t+1)

×
(

ý(k̄t+1)−H(k̄t+1)x̌(k̄t)
)

(35)

where L(k̄t+1) is the estimator parameter to be designed.
Defining the estimation error as ě(k) , x(k) − x̌(k), it is

derived from (8), (12), (31), (34), and (35) that

ě(k) = A(k − 1)ě(k − 1) + w̄(k − 1), for k /∈ {k̄t}∞t=1
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ě(k̄t+1) =
(
A (k̄t+1, k̄t)− L(k̄t+1)H(k̄t+1)

)
ě(k̄t)

− L(k̄t+1)ε(k̄t+1) + B(k̄t+1, k̄t)w(k̄t+1, k̄t).

Similar to Theorems 1–3, the following results can be
obtained for the estimator in (34) and (35).

Theorem 4: For a time instant k ∈ {k̄t+1, k̄t+2, . . . , k̄t+1−
1}, if ě(k − 1) ∈ ⟨0, Ě(k − 1)⟩, then

ě(k) ∈ ⟨0,
[
A(k − 1)Ě(k − 1) W̄ (k − 1)

]
⟩ , ⟨0, Ě(k)⟩.

(36)

Theorem 5: Let the estimator parameter L(k̄t+1) be given.
If ě(k̄t) ∈ ⟨0, Ě(k̄t)⟩, then one has

ě(k̄t+1) ∈ ⟨0, Ě(k̄t+1)⟩ (37)

where

Ě(k̄t+1) ,
[
Ě(1)(k̄t+1) Ě(2)(k̄t+1) Ě(3)(k̄t+1)

]
Ě(1)(k̄t+1) ,

(
A (k̄t+1, k̄t)− L(k̄t+1)H(k̄t+1)

)
Ě(k̄t)

Ě(2)(k̄t+1) , −L(k̄t+1)ε̂(k̄t+1)

Ě(3)(k̄t+1) , B(k̄t+1, k̄t)W(k̄t+1).

Moreover, if the estimator parameter L(k̄t+1) is designed as

L(k̄t+1) = A (k̄t+1, k̄t)Ě(k̄t)Ě
T (k̄t)HT (k̄t+1)Γ̌

−1(k̄t+1)
(38)

with

Γ̌(k̄t+1) = H(k̄t+1)Ě(k̄t)Ě
T (k̄t)HT (k̄t+1)

+ ε̂(k̄t+1)ε̂
T (k̄t+1)

then the F -radius of the zonotope in (37) is minimized.
Based on the above results, the following algorithm is given.

Algorithm 2: SME algorithm under the data compression
fusion scheme
Input: Matrix X̃(0) in (10).
Output: x̌(k), Ě(k).

1 Initialization: Give the maximum simulation time kmax.
Set k = 0, x̌(0) = 0, Ě(0) = X̃(0).

2 for k = 1, 2, . . . , kmax do
3 if I (k) = ∅ then
4 Compute x̌(k) by (34);
5 Compute Ě(k) by (36);
6 else
7 Compute L(k) by (38);
8 Compute P (k̄t+1) by (33);
9 Compute ý(k̄t+1) by (30);

10 Compute x̌(k) by (35);
11 Compute Ě(k) in (37);

Remark 5: The analysis of the computational complexity
of Algorithm 2 is similar to that of Algorithm 1. Denote
℘ = rank(H(k̄t+1)). Since the number of FLOPs required
for computing Γ̌−1(k̄t+1) in Algorithm 2 is O(℘3), which is
often lower than that for computing Γ−1(k̄t+1) in Algorithm 1,

therefore, the overall complexity of Algorithm 2 is generally
lower. The choice between the SME algorithms under the
parallel and the data compression fusion schemes is an impor-
tant issue in practical applications. Algorithm 2 is preferable
when lower computational complexity is desired, whereas
Algorithm 1 is more suitable when ease of implementation
is the primary consideration and computational cost is not a
limiting factor.

D. Uniform Boundedness Analysis

In this subsection, the uniform boundedness of the F -radius
of the calculated zonotopes by Algorithms 1–2 is analyzed. To
this end, the following assumption is made.

Assumption 2: There exist positive scalars α, ᾱ, β, β̄, γ̄,
and v such that the following matrix inequalities hold for all
k ∈ {0} ∪ N:

αI < A(k)AT (k) < ᾱI

βI ≤ W̄ (k)W̄T (k) ≤ β̄I

C̄T
i (k)C̄i(k) < γ̄I, ∀i ∈ {1, 2, . . . , N}

V⃗i(k)V⃗
T
i (k) > vI.

With Assumption 2, Proposition 2 is given and used in the
boundedness analysis.

Proposition 2: Under Assumption 2, there exist positive
scalars a, ā, b, b̄, and c̄ such that the following matrix
inequalities hold for all t ∈ {0} ∪ N+:

aI < A (k̄t+1, k̄t)A
T (k̄t+1, k̄t) < āI

bI < B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t) < b̄I

CT (k̄t+1)C(k̄t+1) < c̄I.

Proof: Let η⃗ , maxi∈{1,2,...,N} η̄i. Then, it can be
obtained that

∆k̄t ≤ η⃗, ∀t ∈ N+. (39)

According to (39), the definition of A (k̄t+1, k̄t), and As-
sumption 2, one has

A (k̄t+1, k̄t)A
T (k̄t+1, k̄t)

= A(k̄t+1 − 1) · · · A(k̄t)AT (k̄t) · · · AT (k̄t+1 − 1)

< ᾱ∆k̄t+1I ≤ (max{1, ᾱ})η⃗I , āI (40)

and

A (k̄t+1, k̄t)A
T (k̄t+1, k̄t) > α∆k̄t+1I ≥ (min{1, α})η⃗I , aI.

(41)

With (40), (41), and the definition of B(k̄t+1, k̄t), it can be
seen that

B(k̄t+1, k̄t)B
T (k̄t+1, k̄t)

=

∆k̄t+1−1∑
s=1

A (k̄t+1, k̄t + s)A T (k̄t+1, k̄t + s) + I

= [(∆k̄t+1 − 1)ā+ 1]I ≤ [(η⃗ − 1)ā+ 1]I (42)

and

B(k̄t+1, k̄t)B
T (k̄t+1, k̄t) ≥ I. (43)
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From Assumption 2, one has

βI < W(k̄t+1)WT (k̄t+1) < β̄I

which, together with (42) and (43), gives

βI < B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t)

< β̄[(η⃗ − 1)ā+ 1]I.

Therefore, b and b̄ can be taken as β and β̄[(η⃗ − 1)ā + 1],
respectively.

In accordance with the definition of C(k̄t+1), it follows that

CT (k̄t+1)C(k̄t+1)

=
∑

i∈I (k̄t+1)

C T
i (k̄t+1)Ci(k̄t+1)

=
∑

i∈I (k̄t+1)

ιi,t+1∑
s=1

A T (k̄t+1 + 1− s, k̄t)C̄
T
i (k̄t+1 + 1− s)

× C̄i(k̄t+1 + 1− s)A (k̄t+1 + 1− s, k̄t)

< Nāγ̄ιi,t+1I ≤ Nāγ̄η⃗I , c̄I.

The proof is now complete.
In addition to Proposition 2, the following lemma is also

useful in the boundedness analysis.
Lemma 2: [16] For square matrices Υ1, Υ3 and matrices

Υ2, Υ4 of proper dimensions, assume that Υ1, Υ3, and Υ1 +
Υ2Υ3Υ4 are invertible. Then, the following equality holds:

(Υ1 +Υ2Υ3Υ4)
−1 = Υ−1

1 −Υ−1
1 Υ2(Υ

−1
3

+Υ4Υ
−1
1 Υ2)

−1Υ4Υ
−1
1 .

Based on Proposition 2 and Lemma 2, a key inequality used
in the boundedness analysis is given as follows.

Lemma 3: Consider matrix E(k) output by Algorithm 1. Let
Ẽ(k) , E(k)ET (k). Then, the following matrix inequality
holds when t ∈ N+:

Ẽ−1(k̄t+1)

≥ σ̄−1A −T (k̄t+1, k̄t)Ẽ
−1(k̄t)A

−1(k̄t+1, k̄t)

+ σ̄−1A −T (k̄t+1, k̄t)CT (k̄t+1)Φ
−1(k̄t+1)C(k̄t+1)

×A −1(k̄t+1, k̄t) (44)

where σ̄ , 1 + σ−1 and σ , ab̄−1(b−1 + v−1c̄)−1.
Proof: From the proof of Theorem 3, it can be seen that

matrix E(k̄t+1) output by Algorithm 1 satisfies

Ẽ(k̄t+1)

= A (k̄t+1, k̄t)Ẽ(k̄t)A
T (k̄t+1, k̄t)

−A (k̄t+1, k̄t)Ẽ(k̄t)CT (k̄t+1)

× Γ−1(k̄t+1)C(k̄t+1)Ẽ(k̄t)A
T (k̄t+1, k̄t)

+ B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t). (45)

Applying Lemma 2 to (45) gives

Ẽ(k̄t+1)

=
(
A −T (k̄t+1, k̄t)Ẽ

−1(k̄t)A
−1(k̄t+1, k̄t) + A −T (k̄t+1, k̄t)

× CT (k̄t+1)Φ
−1(k̄t+1)C(k̄t+1)A

−1(k̄t+1, k̄t)
)−1

+ B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t). (46)

From (46) and Proposition 2, it is easy to see that

Ẽ(k̄t+1) ≥ B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t)

≥ bI, ∀t ∈ N+ (47)

which also guarantees the invertibility of Ẽ(k̄t+1). With (47)
and Proposition 2, it can be deduced that

A −T (k̄t+1, k̄t)Ẽ
−1(k̄t)A

−1(k̄t+1, k̄t)

+ A −T (k̄t+1, k̄t)CT (k̄t+1)Φ
−1(k̄t+1)C(k̄t+1)A

−1(k̄t+1, k̄t)

< a−1b−1I + v−1a−1c̄I (48)

where the following relationships

Φi(k̄t+1) = Di(k̄t+1)W⃗i(k̄t+1)W⃗
T

i (k̄t+1)D
T
i (k̄t+1)

+ V⃗i(k̄t+1)V⃗
T
i (k̄t+1) > vI

Φ(k̄t+1) = diagNi∈I (k̄t+1)
{Φi(k̄t+1)} > vI

are used. In view of (48), it can be derived that(
A −T (k̄t+1, k̄t)Ẽ

−1(k̄t)A
−1(k̄t+1, k̄t) + A −T (k̄t+1, k̄t)

× CT (k̄t+1)Φ
−1(k̄t+1)C(k̄t+1)A

−1(k̄t+1, k̄t)
)−1

> a(b−1 + v−1c̄)−1I

= σb̄I

> σB(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t). (49)

According to (46) and (49), it follows that

Ẽ(k̄t+1)

≤ σ̄
(
A −T (k̄t+1, k̄t)Ẽ

−1(k̄t)A
−1(k̄t+1, k̄t) + A −T (k̄t+1, k̄t)

× CT (k̄t+1)Φ
−1(k̄t+1)C(k̄t+1)A

−1(k̄t+1, k̄t)
)−1

which further gives (44). The proof is complete.
In the following theorem, the uniform upper bound of the

F -radius of the zonotope output by Algorithm 1 is given based
on Lemma 3.

Theorem 6: Assume that there exist a positive scalar ē and
a positive integer z such that the following matrix inequalities
hold:

t+1∑
ℓ=t+1−z

σ̄−(t+2−ℓ)A −T (k̄t+1, k̄t) · · ·A −T (k̄ℓ, k̄ℓ−1)CT (k̄ℓ)

× Φ−1(k̄ℓ)C(k̄ℓ)A −1(k̄ℓ, k̄ℓ−1) · · ·A −1(k̄t+1, k̄t)

> ē−1I, when t ≥ z − 1 (50)

Ẽ(k̄t) < ēI, when t ∈ {0, 1, . . . , z − 1}. (51)

Then, Ẽ(k̄t) is upper bounded by ēI for all t ∈ N, that is,

Ẽ(k̄t) < ēI. (52)

In addition, for any time instant k ∈ N, one has

Ẽ(k) < e⃗I (53)

where e⃗ , ē(max{1, ᾱ})η⃗ + β̄(1 + ᾱ + · · · + ᾱη⃗−1), and η⃗
has been defined in the proof of Proposition 2. Furthermore,
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the F -radius of the zonotope output by Algorithm 1 is upper
bounded by

√
e⃗nN , that is,

∥E(k)∥F ≤
√
e⃗nN, ∀k ∈ N. (54)

Proof: By iterating the matrix inequality in (44) for z
times, we obtain that

Ẽ−1(k̄t+1)

≥ σ̄−(z+1)A −T (k̄t+1, k̄t) · · ·A −T (k̄t−z+1, k̄t−z)Ẽ
−1(k̄t−z)

×A −1(k̄t−z+1, k̄t−z) · · ·A −1(k̄t+1, k̄t)

+

t+1∑
ℓ=t+1−z

σ̄−(t+2−ℓ)A −T (k̄t+1, k̄t) · · ·A −T (k̄ℓ, k̄ℓ−1)

× CT (k̄ℓ)Φ−1(k̄ℓ)C(k̄ℓ)A −1(k̄ℓ, k̄ℓ−1) · · ·A −1(k̄t+1, k̄t)

>

t+1∑
ℓ=t+1−z

σ̄−(t+2−ℓ)A −T (k̄t+1, k̄t) · · ·A −T (k̄ℓ, k̄ℓ−1)

× CT (k̄ℓ)Φ−1(k̄ℓ)C(k̄ℓ)A −1(k̄ℓ, k̄ℓ−1) · · ·A −1(k̄t+1, k̄t)

which, together with (50), implies that (52) holds for t ∈
{z, z + 1, . . .}. Furthermore, in view of (51), it follows that
(52) holds for all t ∈ N.

It remains to prove (53). For any k /∈ {k̄t}∞t=0, let
k∗ , max{k′ : k′ ∈ {k̄t}∞t=0, k

′ < k}. Recalling Ẽ(k) =
E(k)ET (k), one can obtain from (17) that

Ẽ(k) = A(k − 1)E(k − 1)ET (k − 1)AT (k − 1)

+ W̄ (k − 1)W̄T (k − 1).

By iterating the above equality for k − k∗ − 1 times, one has

Ẽ(k)

= A(k − 1) · · · A(k∗)Ẽ(k∗)AT (k∗) · · · AT (k − 1)

+ W̄ (k − 1)W̄T (k − 1)

+
k−k∗∑
ϑ=2

A(k − 1) · · · A(k − ϑ+ 1)W̄ (k − ϑ)W̄T (k − ϑ)

×AT (k − ϑ+ 1) · · · AT (k − 1). (55)

Applying (52) and Assumption 2 to (55), one can readily
obtain

Ẽ(k) < ēᾱk−k∗
I + β̄(1 + ᾱ+ · · ·+ ᾱk−k∗−1)I

≤ ē(max{1, ᾱ})η⃗I + β̄(1 + ᾱ+ · · ·+ ᾱη⃗−1)I

= e⃗I.

When k ∈ {k̄t}∞t=0, due to ē < e⃗, it can be seen from (52)
that (53) still holds, which means that (53) is satisfied for any
time instant k ∈ N. Finally, it follows from (53) that

∥E(k)∥F =

√
Tr{Ẽ(k)} <

√
Tr{e⃗I} =

√
e⃗nN,

which ends the proof.
In the following, we proceed to analyze the uniform bound-

edness of the F -radius of the zonotope output by Algorithm 2.
Theorem 7: Assume that there exist a positive scalar ē and

a positive integer z such that matrix inequalities (50) and (51)
hold for all t ∈ N. Then, the F -radius of the zonotope output
by Algorithm 2 is upper bounded by

√
e⃗nN , that is,

∥Ě(k)∥F ≤
√
e⃗nN, ∀k ∈ N. (56)

Proof: From the initialization of Algorithms 1 and 2, it
can be seen that Ẽ(0) = Ě(0)ĚT (0). Assume that Ẽ(k) =
Ě(k)ĚT (k) holds. In the following, we will show that Ẽ(k+
1) = Ě(k + 1)ĚT (k + 1) also holds. When k + 1 /∈ {k̄t}∞t=1,
one can derive from (17) and (36) that Ẽ(k + 1) = Ě(k +
1)ĚT (k + 1). Otherwise, there exists an integer t ∈ N such
that k + 1 = k̄t+1. In this case, similar to (45), one can see
that the matrix Ě(k̄t+1) output by Algorithm 2 satisfies

Ě(k̄t+1)Ě
T (k̄t+1)

= A (k̄t+1, k̄t)Ě(k̄t)Ě
T (k̄t)A

T (k̄t+1, k̄t)

+ B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t)

−A (k̄t+1, k̄t)Ě(k̄t)Ě
T (k̄t)HT (k̄t+1)Γ̌

−1(k̄t+1)

×H(k̄t+1)Ě(k̄t)Ě
T (k̄t)A

T (k̄t+1, k̄t). (57)

Then, applying Lemma 2 to (57) yields

Ě(k̄t+1)Ě
T (k̄t+1)

=
(
A −T (k̄t+1, k̄t)(Ě(k̄t)Ě

T (k̄t))
−1A −1(k̄t+1, k̄t)

+ A −T (k̄t+1, k̄t)HT (k̄t+1)(ε̂(k̄t+1)ε̂
T (k̄t+1))

−1

×H(k̄t+1)A
−1(k̄t+1, k̄t)

)−1

+ B(k̄t+1, k̄t)W(k̄t+1)WT (k̄t+1)B
T (k̄t+1, k̄t). (58)

Substituting the expression of ε̂(k̄t+1) (below (32)) to (58)
and observing (33) and (46), it can be found that

Ẽ(k̄t+1) = Ě(k̄t+1)Ě
T (k̄t+1).

Therefore, Ẽ(k) = Ě(k)ĚT (k) holds for all k ∈ N, which
gives Tr{Ẽ(k)} = Tr{Ě(k)ĚT (k)}. In other words, the
zonotopes output by Algorithms 1 and 2 have the same
F -radius. Keeping this fact in mind, it can be seen from
Theorem 6 that the result of this theorem is also true.

Remark 6: Under a commonly utilized assumption in the
steady-state performance analysis for time-varying systems
(i.e., Assumption 2), two sufficient criteria are established to
ensure the steady-state performance of the proposed SMFE
algorithms, where Theorem 6 guarantees the performance
of the parallel fusion estimation algorithm, and Theorem 7
ascertains the performance of the data compression fusion
estimation algorithm. Although the obtained uniform upper
bounds in Theorems 6 and 7 may be relatively large, their
existence prevents divergence in both the parallel fusion esti-
mation algorithm and the data compression fusion estimation
algorithm. Note that both the estimator under the parallel
fusion scheme in (14)–(15) and the estimator under the data
compression fusion scheme in (34)–(35) are essentially one-
step predictors. Therefore, the existed uniform boundedness
analysis methods for Kalman-type estimators in [27] cannot
be directly used. To obtain the desired criteria, a fundamental
difficulty is to derive the relationship between Ẽ−1(k̄t+1) and
Ẽ−1(k̄t). Such a challenge is solved in Lemma 3. Details can
be seen in the proof of this lemma.

Remark 7: In this paper, the buffer-aided strategy is adopted
with the aim of improving estimation performance. From
κi,t′ , min{Mi,∆ηi,t′} and ιi,t+1 = min{κi,t′ ,∆k̄t+1}, it
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can be verified that ιi,t+1 is nondecreasing with respect to the
buffer capacity Mi. Furthermore, according to (46) and

CT (k̄t+1)Φ
−1(k̄t+1)C(k̄t+1)

=
∑

i∈I (k̄t+1)

ιi,t+1∑
s=1

A T (k̄t+1 + 1− s, k̄t)C̄
T
i (k̄t+1 + 1− s)

× Φ−1
i (k̄t+1 + 1− s, k̄t)C̄i(k̄t+1 + 1− s)

×A (k̄t+1 + 1− s, k̄t)

it follows that Tr{Ẽ(k̄t+1)} does not increase with increasing
Mi. Moreover, it can be shown that, within a certain range, a
larger Mi facilitates the satisfaction of the inequality in (50).

Remark 8: Up to now, the zonotopic SMFE issue for CNs
has been addressed using a buffer-aided strategy. Compared
with the existing literature, the following key differences
distinguish the present work.

1) A novel batch processing approach has been proposed to
process and utilize the data from the buffers of the consid-
ered CN. Unlike conventional re-estimation methods that
require multiple iterations, the proposed batch processing
method allows buffered data to be employed collectively
in a unified framework. This significantly simplifies the
design procedure of the estimation algorithms and facil-
itates a more efficient use of measurement information.

2) Two centralized SMFE algorithms have been designed,
which are respectively based on the parallel fusion
scheme and the data compression scheme. Both algo-
rithms have been structured in a recursive manner, en-
abling their straightforward application in real-time or
online estimation scenarios. Moreover, the data compres-
sion fusion scheme offers computational efficiency while
maintaining the estimation performance comparable to
the parallel fusion scheme.

3) Sufficient criteria, which are applicable to CNs exhibiting
instability, have been rigorously established to guarantee
the uniform boundedness of the estimation error zono-
topes and the steady-state performance of the proposed
SMFE algorithms. This ensures the robustness and relia-
bility of the algorithms even under challenging operating
conditions.

IV. ILLUSTRATIVE EXAMPLES

In this section, two examples of CNs are employed to show
the utility of the proposed zonotopic SMFE algorithms.

Example 1. Consider a CN composed of 8 nodes with the
dynamics of the i-th node being given as follows:

xi(k + 1) =

1.02 + 0.1 cos(k) 0 0
0 0.5 0.2

0.3 cos(k) 0 0.1

xi(k) + wi(k)

+

N∑
j=1

λij(k)diag{0.1, 0.2, 0.3}xj(k)

yi(k) =

[
1 0 0
0 1 0

]
xi(k) + vi(k)

where

Λ(k) =




0 0.1 0.1 0 0 0 0 0
0 0 0.1 0.1 0 0 0 0
0 0 0 0.1 0.1 0 0 0
0 0 0 0 0.1 0.1 0 0
0 0 0 0 0 0.1 0.1 0
0 0 0 0 0 0 0.1 0.1
0.1 0 0 0 0 0 0 0.1
0.1 0.1 0 0 0 0 0 0

 , if mod(k, 2) = 0


0 0 0.1 0 0 0 0 0
0 0 0 0.1 0 0 0 0
0 0 0 0 0.1 0 0 0
0 0 0 0 0 0.1 0 0
0 0 0 0 0 0 0.1 0
0 0 0 0 0 0 0 0.1
0.1 0 0 0 0 0 0 0
0 0.1 0 0 0 0 0 0

 , otherwise

all components of the noises wi(k) and vi(k) (i = 1, 2, . . . , 5)
are all drawn from a uniform distribution on [−0.2, 0.2]; the
initial state x(0) is set to be x(0) = 0.1vec24{1}. Correspond-
ingly, for i = 1, 2, . . . , 8, parameters Wi(k), Vi(k), and Xi(k)
are selected as 0.2I3, 0.2I2, and 0.2I3, respectively.

For the considered CN, the parameters of the equipped
buffers are given as follows:[

M1 M2 · · · M8

]
=

[
2 2 3 3 4 4 4 4

][
η̄1 η̄2 · · · η̄8

]
=

[
3 3 3 4 4 5 5 5

]
.

The transmission moments and transmission intervals of the
buffers are depicted in Figs. 1 and 2, respectively.
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Fig. 1: Transmission time instants of the buffers.
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Fig. 2: Transmission intervals of the buffers.

Firstly, we examine effectiveness of the proposed parallel
fusion estimation algorithm (i.e., Algorithm 1). Fig. 3 depicts
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the estimation performance of partial state variables, where
x(·)(k) and x̂(·)(k) denote certain components of x(k) and
x̂(k), respectively, and the bounds are calculated by x̂(k) ±
rs{E(k)}1. From this figure, we can see that Algorithm 1
performs well. Moreover, to show the role of the buffer-aided
strategy, Fig. 4 gives the information about the F -radius of
zonotope ⟨0, E(k)⟩ output by Algorithm 1 with and without
the buffer-aided strategy, respectively. The corresponding av-
erage F -radii (defined as (1/100)

∑100
k=1 ∥E(k)∥F ) are 1.4532

and 1.4687, respectively. It is clear that the usage of the
buffer-aided strategy can effectively improve the estimation
performance.
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Fig. 3: Partial state variables of x(k), their estimates output by
Algorithm 1, and the corresponding upper/lower bounds.
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Fig. 4: ∥E(k)∥F with and without the buffer-aided strategy.

In the following, let us check the performance of the
designed data compression fusion estimator. The estimation
performance with Algorithm 2 is provided in Fig. 5, where
x̌(·)(k) represents certain component of x̌(k). It can be ob-
served that the estimation performance of Algorithm 2 is as
good as that of Algorithm 1.

To further validate the effectiveness of the proposed SMFE
method, it is compared with the ellipsoidal SME method in
[12], [41], [46]. Fig. 6 presents the 2-norm of the estimation
error over time, indicating that the proposed method achieves
superior performance.
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Fig. 5: Partial state variables of x(k), their estimates output by
Algorithm 2, and the corresponding upper/lower bounds.
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Fig. 6: 2-norm of estimation error under Algorithm 2 and the
ellipsoidal SME method in [12], [41], [46].

Example 2. In this example, the feasibility of the results
regarding the uniform boundedness analysis will be confirmed.

Consider the following CN with N = 3:

xi(k + 1) = diag{1.02, 0.5}xi(k) + wi(k)

+
N∑
j=1

λij(k)diag{0.1, 0.2}xj(k)

y1(k) = (0.9 + 0.1 sin(0.1k))
[
1 0

]
x1(k) + v1(k)

y2(k) = (0.9 + 0.1 cos(0.2k))
[
1 0

]
x2(k) + v2(k)

y3(k) = (0.9 + 0.1 sin(0.3k))
[
0 1

]
x3(k) + v3(k)

xi(0) =
[
0.1 0.1

]T
where

Λ(k) =

 0 0.1 0.1
0 0 0.2
0.2 0 0


and, for i = 1, 2, 3, wi(k) =

[
0.1 cos(k) 0.1 cos(k)

]T
and

vi(k) = 0.1 sin(k).
In this example, parameters Wi(k), Vi(k), and Xi(k) (i =

1, 2, 3) are selected as 0.1I2, 0.1, and 0.1I2, respectively.
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Moreover, for convenience, the buffers’ parameters are set as
Mi = 2, ηi,1 = 1, and ∆ηi,t = 3 for i = 1, 2, 3.

With the above parameters and α = 0.2195, ᾱ = 1.0828,
β = 0.01, β̄ = 0.01, γ̄ = 0.996, and v = 0.01, we can
confirm that Assumption 2 holds. Then, according to the proof
of Proposition 2, we have η⃗ = 3, a = 0.0105, ā = 1.27,
b = 0.01, b̄ = 0.0354, c̄ = 11.38, and σ̄ = 4.142 × 103.
Furthermore, we can see that, with ē = 1.4964 × 1021 and
z = 2, condition (50) is satisfied, and e⃗ can be calculated as
1.9484 × 1021. With the calculated e⃗, the information about
∥E(k)∥F , ∥Ě(k)∥F , as well as their uniform upper bounds in
(54) and (56) is presented in Fig. 7, which shows the validity of
Theorems 6 and 7. Moreover, the state estimation performance
of Algorithms 1 and 2 are illustrated in Figs. 8 and 9. It
can be seen that both the proposed parallel fusion estimation
algorithm and the data compression estimation algorithm can
achieve an ideal estimation performance.
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Fig. 7: ∥E(k)∥F , ∥Ě(k)∥F , and their uniform upper bounds.
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Fig. 8: Partial state variables of x(k), their estimates output by
Algorithm 1, and the upper/lower bounds.

V. CONCLUSION
In this paper, the buffer-aided zonotopic SMFE problem

for CNs has been investigated. Each node of the CN has
been equipped with a buffer for real-time data storage, en-
abling the fusion center to utilize additional measurement
information when the node’s transmission interval exceeds
its sampling period. A batch processing method has been
proposed to efficiently process the data received at the fusion
center. By employing the zonotopic SME technique, two
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Fig. 9: Partial state variables of x(k), their estimates output by
Algorithm 2, and the upper/lower bounds.

SMFE algorithms have been developed, which are based on
the parallel fusion scheme and the data compression fusion
scheme, respectively. Furthermore, sufficient conditions have
been established to ensure the uniform boundedness of the
F -radii of the zonotopes generated by the SMFE algorithms.
Future research will focus on extending the proposed SMFE
algorithms to CNs with unknown or time-varying topologies,
as well as incorporating communication imperfections such as
random packet dropouts and delays.
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