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Abstract—In this paper, the encoding-decoding-based state
estimation problem is investigated for a class of continuous-
time nonlinear complex networks subject to communication
bandwidth constraints. Based on the sampled outputs from a
subset of network nodes, a novel dynamic event-driven encoding
mechanism is integrated into the design of state estimator, where
a time-varying auxiliary parameter is utilized to modulate the
triggering condition in a dynamical fashion, enabling the event
detector to decide whether the data packet should be released
at the periodic sampling instants. Specifically, when the dynamic
triggering condition is satisfied, the data is first encoded into a
codeword and subsequently transmitted to the estimator through
a digital communication channel. The Zeno behavior can be
naturally prevented owing to the periodic feature of the proposed
event detector. By leveraging the Lyapunov theory and the matrix
inequality techniques, sufficient conditions are established to
ensure the exponential stability of the estimation error system. In
addition, a convex optimization approach is employed to design
the estimator gain with the goal of maximizing the allowable
bound of the sampling intervals. Finally, an illustrative example
and a practical example involving a three-area power system
are provided to showcase the effectiveness of the proposed state
estimation method.

Index Terms—Complex networks, partial nodes, state estima-
tion, sampled data, dynamic event-driven mechanism, encoding-
decoding scheme.

I. INTRODUCTION

Complex networks (CNs) are large-scale systems that con-

sist of a substantial number of interconnected dynamic units,

organized through a variety of topological structures. In mathe-

matics, a network is typically characterized by a graph, where

nodes represent the individual entities or agents within the

network, and edges signify the connections or interactions

between these nodes. By exchanging local information with

neighboring nodes, these interconnected nodes are able to col-

laboratively accomplish a diverse range of tasks, such as con-

trol, optimization, and other engineering-oriented objectives.

Owing primarily to their inherent flexibility and adaptability,

CNs have become a powerful tool for modeling and analyzing
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various real-world systems which include, but are not limited

to, sensor networks, social networks, and power grids [1]–[9].

Over the past several decades, significant research attention

has been devoted to investigating CNs from a variety of

perspectives, such as stability, robustness, synchronization,

consensus, pinning control, cyber attacks, and output-feedback

control under various scheduling protocols [10]–[17].

As is well known, gaining insight into the exact states of

CNs is critically important for understanding and analyzing

their dynamic behaviors, such as synchronization, consensus,

and flocking. Undeniably, it may sometimes be feasible to

directly measure the states of a CN by resorting to certain

appropriate sensors. Frequently, however, it may be either

impossible or simply impractical to obtain measurements for

all states. Instead, in most cases, what can be available are

system outputs or measurements. As a matter of fact, it is of

paramount importance to take full advantage of the available

measurement information and accordingly design effective

state estimation algorithms to infer the unmeasurable system

states. Up to now, considerable research interest has been

focused on the state estimation problems for various types of

CNs, leading to a wealth of valuable results in the literature,

see e.g., [18]–[21] and the references therein.

It should be emphasized that, in the majority of existing

results on state estimation for CNs, there is an implicit

assumption that the measurement outputs from all the network

nodes are accessible. Even though this assumption may be

valid for low-dimensional systems or small-scale networks,

it becomes a bit too harsh and unreasonable for large-scale

CNs with a plethora of network nodes due to various factors,

such as the limited availability of measuring resources, and

the hardware constraints of physical sensors. Additionally,

malicious denial-of-service attacks or jamming attacks may

block the transmission channel, resulting in measurements

from sensors potentially failing to reach their destination

in a timely manner. In such a context, a more reasonable

assumption is that only the measurement outputs from a small

subset of network nodes are available, which underscores the

necessity of developing feasible strategies that can estimate

the states of interest based on the measurement information

from a fraction of network nodes. This concept is commonly

referred to as the partial-nodes-based (PNB) state estimation

problem, which was first proposed and addressed in [22]–[24].

Nevertheless, the corresponding problem for nonlinear CNs

has not received adequate research attention, despite its clear

practical significance, and this constitutes the first motivation
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of launching our current investigation.

The past several decades have witnessed the popularity of

networked systems due mainly to the rapid advancement of the

networked communication technology. In modern industrial

systems, the data transmissions across the sensor-to-estimator

and controller-to-actuator channels are usually facilitated by

the digital communication networks [25], [26]. Compared with

the traditional analog communication, the digital counterpart

has recently gained widespread attention from academia and

industry owing to its distinctive advantages in terms of high

reliability, enhanced maintainability, low susceptibility to in-

terference, and reduced power consumption. Nevertheless, the

finite channel capacity of a digital network would inevitably

limit the total amount of data that can be simultaneously and

reliably transmitted via such a network. To tackle the network

bandwidth constraints, the encoding-decoding technologies,

which aim to compress the data before transmission, have

emerged as both effective and appealing solutions. So far, a

large volume of research has been conducted on the encoding-

decoding-based analysis and synthesis problems, see, e.g.,

[27]–[33].

In the context of digital channels with limited bandwidth,

the traditional encoding-decoding-based control or state es-

timation methods usually rely on a periodic transmission

mechanism, where the data is only processed at the discrete

sampling instants. Notably, such a transmission mechanism

would largely simplify the design and analysis issues of

controllers or state estimators. Nevertheless, from the resource

utilization perspective, the periodic strategy might be ineffi-

cient since the data is transmitted at a fixed rate, regardless of

the difference between two successive data, thereby leading to

a waste of scarce resources. In this sense, a preferred scheme

is to transmit the data packet only when certain predefined

triggering conditions are fulfilled [34]–[41], which is known

as the event-driven transmission (EDT) strategy.

With the purpose of further lowering the data transmis-

sion frequency, a dynamic event-driven transmission (DEDT)

mechanism has recently been proposed in [42] by introducing

a time-varying adjustable parameter, which is generated via an

auxiliary system closely related to the target states or measure-

ments. Since then, a great deal of research attention has been

focused on designing novel and effective DEDT strategies, and

some elegant research results have appeared in the literature

regarding various control and state estimation tasks [43]–[48].

In the implementation of the aforementioned EDT strategies,

additional hardware should be utilized to continuously mon-

itor the system states/measurements and accordingly detect

whether the current value exceeds the predefined triggering

threshold. Clearly, the continuous monitoring would lead to

excessive energy consumption and increase the complexity

of practical implementation. On the other hand, to guarantee

the feasibility of EDT strategies, the Zeno behavior must

be eliminated by ensuring that the minimum time interval

between any two consecutive events is strictly greater than

zero.

Recently, the sampled-data-based EDT mechanisms have

been put forward to overcome the above-identified short-

comings. The underlying idea behind the sampled-data-based

EDT strategy is that the system states or measurements are

periodically sampled, and the decision of whether to transmit

the sampled data is based on a prescribed event-triggering

condition. Apparently, under the sampled-data-based EDT

strategy, the extra hardware is no longer required and the

undesired Zeno behavior can be naturally excluded since the

minimum inter-event time is always equal to or greater than

the sampling period. Therefore, the sampled-data-based EDT

strategy has gained prominence in the relevant research, which

gives rise to a number of interesting results in the litera-

ture, see, e.g., [49]–[52]. Particularly, the sampled-data-based

DEDT strategy, integrating the traditional DEDT mechanism

with the sampled-data-based technique, has shown potential

to become a major research focus [39]. Nevertheless, to the

best of our knowledge, the encoding-decoding-based state

estimation for nonlinear CNs under such a strategy is still an

open problem, not to mention the case where the measurement

outputs are only available for a fraction of network nodes. The

second motivation of this paper is to shorten such a gap.

In response to the above discussions, in this paper, we are

committed to investigating the encoding-decoding-based PNB

state estimation problem for a class of continuous-time non-

linear CNs with communication bandwidth constraints. This

appears to be a non-trivial task for the following challenges.

1) How to construct an effective state estimator to trace the

states of the target network based on the outputs only from

a proportion of nodes? 2) How to conduct the analysis on

dynamical behavior of the estimation error system when the

dynamic event-driven encoding mechanism is integrated into

the design of state estimator? 3) How to establish some easy-

to-check criteria to ensure the estimator performance? The

main contributions of this paper can be highlighted as follows.

1) The encoding-decoding-based PNB state estimation

problem is new for the continuous-time nonlinear CNs

under communication bandwidth constraints. Specifi-

cally, the encoding-decoding strategy is utilized to en-

hance the efficiency and confidentiality of the data

transmission over a digital communication channel, and

the state estimates are generated by only employing

the sampled measurement outputs from a fraction of

network nodes.

2) By incorporating the discrete-time event detectors, a

novel sampled-data-based DEDT strategy is proposed

to reduce the consumption of limited network resources.

Compared with the existing results [43], [44], [53], the

proposed DEDT strategy determines whether the current

data should be transmitted at the periodic sampling

instants, avoiding the continuous monitoring of measure-

ments and guaranteeing the natural elimination of Zeno

phenomenon.

3) Based on the Lyapunov stability theory and the matrix

inequality techniques, sufficient conditions are estab-

lished to ensure that the estimation error system is

exponentially stable. In addition, a convex optimization

approach is utilized to design the estimator gain, aim-

ing to maximize the allowable bound of the sampling

intervals.
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Notations: R
p and R

p×q stand for, respectively, the p-

dimensional Euclidean space and the set of p × q real ma-

trices. ΦT and Φ−1 represent, respectively, the transpose and

inverse of matrix Φ. λM (Π) and λm(Π) are, respectively, the

maximum and minimum eigenvalues of a symmetric matrix

Π ∈ R
p×p. For z ∈ R

p, its norm, denoted as ‖z‖, is defined

as the square root of zT z. For a matrix Ψ , its norm, denoted

as ‖Ψ‖, is defined as the square root of the largest eigenvalue

of the matrix ΨTΨ . The notation Ψ > Φ (Ψ ≥ Φ) implies that

λm(Ψ − Φ) > 0 (λm(Ψ − Φ) ≥ 0). Iqp , {p, p + 1, . . . , q},

where p and q are integers satisfying q > p ≥ 0.

II. PROBLEM FORMULATION

Consider a nonlinear CN consisting of N non-identical

nodes with the following form:

ṡp(t) = Cpsp(t) + g(sp(t)) +
∑

q∈I
N
1

wpqU(sq(t)− sp(t)),

(1)

where sp(t) ∈ R
n stands for the state vector of the p-th node;

g : Rn → R
n is a known nonlinear vector-valued function;

Cp ∈ R
n×n is a known constant matrix; W , (wpq)N×N ∈

R
N×N denotes the weighted adjacency matrix, where wpq > 0

if node p can receive information from node q, and wpq = 0
otherwise; and U is a known matrix representing the inner

coupling matrix of the network.

Without loss of generality, we assume that only the mea-

surement information of the first N0 nodes is available, that

is,

zp(t) = Epsp(t), p ∈ I
N0

1 , (2)

where zp(t) ∈ R
m denotes the measurement output of the p-th

node and Ep ∈ R
m×n is a known constant matrix.

In a networked environment, the communication channel

is inevitably constrained by the limited bandwidth resources.

To this end, we are going to put forward a novel dynamic

event-driven encoding scheme to improve the efficiency of data

transmission, which is focused on reducing the transmission

frequency via the sampled-data-based DEDT mechanism and

compressing the signal through encoding technique. More

specifically, the measurement signal is firstly sampled at a

constant period d > 0 with the sampling instants denoted by

{tr}+∞
r=0, where t0 = 0 and tr+1 = tr + d. Then, the event

generator is responsible for determining whether the current

sampled data should be transmitted or not. If the triggering

condition is satisfied, the signal is encoded into a codeword

by the encoders and the codeword is subsequently transmitted

to the decoders through a communication network. Finally, the

decoders receive the codeword and the codeword is decoded

for the purpose of the state estimation of nonlinear CNs. For

the p-th node (p ∈ I
N0

1 ), the triggered sequence is denoted by

t0 = T p
0 < T p

1 < T p
2 < · · · < T p

k < · · · , where the employed

event generator will be specified later.

Based on the EDT mechanism, we are now going to present

the event-driven encoding and decoding scheme. The event-

driven encoding algorithm for the p-th node is described as

follows:






η̇p(t) = Cpηp(t) +
∑

q∈I
N
1

wpqU(ηq(t)− ηp(t))

+ g (ηp(t)) + h (tr)Lpfp (T
p
k ) ,

t ∈ [tr, tr+1), p ∈ I
N0

1 ,

fp (T
p
k ) = Φ

(
zp(T

p
k )− Epηp(T

p
k )

h (T p
k )

)

, p ∈ I
N0

1 ,

η̇p(t) = Cpηp(t) + g (ηp(t))

+
∑

q∈I
N
1

wpqU(ηq(t)− ηp(t)), p ∈ I
N
N0+1,

ηp (t0) = 0n, p ∈ I
N
1 ,

(3)

where tr ∈ [T p
k , T

p
k+1), ηp(t) ∈ R

n is the encoder’s internal

variable, fp(t) denotes the codeword to be transmitted at time

instant t, and Lp is the estimator gain matrix. h(t) = h0e
−ρt,

where h0 > 0 is a given parameter and ρ > 0 is a design

parameter to be determined later.

In (3), Φ(·) represents a finite-level vector quantizer. Sup-

pose that x ∈ R
m is the signal to be quantized, then one

has Φ(x) , (φ(x1), φ(x2), . . . , φ(xm))T , where φ(·) is a

(2M + 1)-level uniform quantizer given by

φ(xl) =







~∆, (~− 1
2 )∆ ≤ xl < (~+ 1

2 )∆,
~ = 0, 1, 2, . . . ,M,

M∆, xl ≥ (M + 1
2 )∆,

−φ(−xl), xl < − 1
2∆,

(4)

where l = 1, 2, . . . ,m, ∆ > 0 and M ∈ N
+ denote the given

quantization parameters. Obviously, if |xl| ≤ (M + 1/2)∆,

one has |φ(xl)− xl| ≤ ∆/2.

The corresponding decoding (data recovery) algorithm for

the p-th node is given by







˙̂sp(t) = Cpŝp(t) +
∑

q∈I
N
1

wpqU(ŝq(t)− ŝp(t))

+ g (ŝp(t)) + h (tr)Lpfp (T
p
k ) ,

t ∈ [tr, tr+1), p ∈ I
N0

1 ,

˙̂sp(t) = Cpŝp(t) + g (ŝp(t))

+
∑

q∈I
N
1

wpqU(ŝq(t)− ŝp(t)), p ∈ I
N
N0+1,

ŝp (t0) = 0n, p ∈ I
N
1 ,

(5)

where ŝp(t) is the estimate of sp(t). It is not difficult to verify

that ŝp(t) = ηp(t) for all t ≥ 0.

Based on the above formulations, the state estimator for the

nonlinear CN (1) is constructed as follows:

˙̂sp(t) = Cpŝp(t) + g(ŝp(t)) +
∑

q∈I
N
1

wpqU(ŝq(t)− ŝp(t))

+ h (tr)Lpfp (T
p
k ) , t ∈ [tr, tr+1), p ∈ I

N0

1 , (6a)

˙̂sp(t) = Cpŝp(t) + g(ŝp(t)) +
∑

q∈I
N
1

wpqU(ŝq(t)− ŝp(t)),

p ∈ I
N
N0+1. (6b)
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Now, let us move on to design the event generator and

accordingly regulate the process of information transmission.

Specifically, the triggering instants for the p-th node are

iteratively determined by

T p
k+1 = min

{

tr > T p
k |σp‖yp(tr)‖2 − γp‖ζp(tr)‖2

> ϕpφp(tr)
}

, p ∈ I
N0

1 , (7)

where ϕp is a given positive constant, ζp(t) = zp(t)−Epηp(t),

yp(t) = ζp(t)− h(t)
ζp(T

p

k
)

h(Tp

k
)

, and φp(t) is an auxiliary variable

generated by

φ̇p(t) = −αpφp(t)− βp(σp‖yp(tr)‖2 − γp‖ζp(tr)‖2),
t ∈ [tr, tr+1), (8)

where φp(0) , φ0p, φ0p, αp, βp, and ϕp are given positive

constants, σp and γp are positive parameters to be designed.

Remark 1: Notably, the proposed sampled-data-based

DEDT strategy in (7) and (8) presents three significant ad-

vantages over conventional event-driven methods [23], [35],

[41]: 1) For the p-th node (p ∈ I
N0

1 ), the sampled-data-based

DEDT strategy only requires transmission of discrete-time

data packets zp(tr) at sampling instants, unlike conventional

methods that rely on the continuous measurement information

zp(t). 2) Whether or not the data need to be transmitted is only

examined at the discrete sampling times, thereby removing the

requirements of extra hardware to continuously monitor and

compute. 3) The operation of data transmission only occurs

at the sampling instants, implying that the Zeno behavior is

naturally excluded.

Let εp(t) = ŝp(t) − sp(t) be the estimation error and B =
(bpq)N×N be the Laplacian matrix of the CN (1) with bpq =
−wpq (if p 6= q) and bpp = −∑q 6=p wpq . Then, the estimation

error εp(t) satisfies the following relationships

ε̇p(t) = Cpεp(t) + ḡ(εp(t))−
∑

q∈I
N
1

bpqUεq(t)

+ h(tr)Lpfp (T
p
k ) , t ∈ [tr, tr+1), p ∈ I

N0

1 , (9a)

ε̇p(t) = Cpεp(t) + ḡ(εp(t))−
∑

q∈I
N
1

bpqUεq(t),

p ∈ I
N
N0+1, (9b)

where ḡ(εp(t)) = g(ŝp(t)) − g(sp(t)). For the nonlinear

CN (1) and the state estimator (6), let us denote ε(t) =
(εT1 (t), ε

T
2 (t), . . . , ε

T
N (t))T .

Definition 1: The encoding-decoding-based state estima-

tor (6) under the sampled-data-based DEDT mechanism (7)

and (8) is termed as an exponential state estimator for the

CN (1) if there exist two positive numbers M and N such

that

‖ε(t)‖ ≤ Me−Nt, t ≥ 0. (10)

In this paper, we are interested in dealing with the PNB

state estimation problem for nonlinear CN (1) under the

novel sampled-data-based DEDT scheme (7) and (8), whose

schematic structure is depicted in Fig. 1. More specifically,

we aim to derive certain sufficient conditions to ensure that

the encoding-decoding-based estimator (6) is an exponential

Fig. 1. Schematic of PNB state estimation problem for CNs with communi-
cation bandwidth constraints under the sampled-data-based DEDT scheme.

state estimator for the considered CN. Moreover, by solving

a convex optimization problem, the estimator gain matrix will

be designed to maximize the allowable bound of the sampling

intervals.

III. MAIN RESULTS

In this section, the encoding-decoding-based state estimator

will be designed for the nonlinear CN (1) under the par-

tial nodes’ measurement outputs and the sampled-data-based

DEDT strategy (7) and (8). To begin with, let us first introduce

the following lemma and assumptions.

Lemma 1: For the given positive scalars φ0p, βp, ϕp, and αp,

if the sampling interval satisfies d ≤ − 1
αp

ln
βpϕp

αp+βpϕp
, then

the auxiliary variable φp(t) (p ∈ I
N0

1 ) is non-negative at all

time instants under the sampled-data-based DEDT strategy (7)

and (8).

Proof: For any t ≥ 0, there exists a non-negative integer r
such that t ∈ [tr, tr+1). Based on the sampled-data-based

DEDT mechanism (7), one has

(σp‖yp(tr)‖2 − γp‖ζp(tr)‖2) ≤ ϕpφp(tr). (11)

Bearing in mind the fact that

φ̇p(t) = −αpφp(t)− βp(σp‖yp(tr)‖2 − γp‖ζp(tr)‖2),
t ∈ [tr, tr+1), (12)

we have

φ̇p(t) ≥ −αpφp(t)− βpϕpφp(tr), t ∈ [tr, tr+1). (13)

After some simple computations, it is clear to see that

φp(t) ≥
((

1 +
βpϕp

αp

)

e−αp(t−tr) − βpϕp

αp

)

φp(tr)

≥
((

1 +
βpϕp

αp

)

e−αpd − βpϕp

αp

)

φp(tr),

t ∈ [tr, tr+1). (14)

Let πp =
(

1 +
βpϕp

αp

)

e−αpd − βpϕp

αp
. Noting that d ≤

− 1
αp

ln
βpϕp

αp+βpϕp
, one has πp ≥ 0. Then, we can arrive at

φp(t) ≥ πpφp(tr) ≥ π2
pφp(tr−1)
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≥ · · · ≥ πr+1
p φp(0) ≥ 0, t ≥ 0, (15)

which completes the proof.

Remark 2: Letting fp(αp, βp, ϕp) = − 1
αp

ln
βpϕp

αp+βpϕp
, it is

not difficult to see that fp(αp, βp, ϕp) > 0 holds for arbitrary

positive numbers αp, βp, and ϕp. In other words, there must

exist some d > 0 satisfying d ≤ fp(αp, βp, ϕp) for any

given positive scalars αp, βp, and ϕp. Moreover, for the given

αp > 0 and ϕp > 0, we have limβp→0+ fp(αp, βp, ϕp) = +∞.

Therefore, when implementing the proposed sampled-data-

based DEDT strategy, a smaller positive number βp would

lead to a larger sampling period d.

Assumption 1: The nonlinear vector-valued function g(·) is

continuous and satisfies the following relationship

[g(θ1)− g(θ2)−Z1(θ1 − θ2)]
T

× [g(θ1)− g(θ2)− Z2(θ1 − θ2)] ≤ 0, (16)

for arbitrary θ1 and θ2 ∈ R
n, where Z1 and Z2 are known

constant matrices.

Assumption 2: There exists a known scalar χ > 0 such that

‖sp(0)‖ ≤ χ, p ∈ I
N
1 .

For notational convenience, let us denote

ε(t) = (εT1 (t), ε
T
2 (t), . . . , ε

T
N(t))T ,

ε̄(t) = (εT1 (t), ε
T
2 (t), . . . , ε

T
N0

(t))T ,

C = diag{C1, C2, . . . , CN},
L̄ = diag{L1, L2, . . . , LN0

},
Ē = diag{E1, E2, . . . , EN0

},

L =

[
L̄
0

]

, E =
[
Ē 0

]
.

The following theorem provides a sufficient condition to

guarantee the existence of an exponential state estimator for

the CN (1) with communication bandwidth constraints.

Theorem 1: Let the estimator gain matrix L and the scalars

αp ≥ θ1 > 0, βp > 0 and ϕp > 0 (p ∈ I
N0

1 ) be given.

Under Assumptions 1 and 2, the encoding-decoding-based

estimator (6) with the triggering mechanism (7) and (8) is

an exponential state estimator for the CN (1) if there exists

a block diagonal matrix P = diag{P1, P2, . . . , PN} > 0, a

diagonal matrix Ψ > 0, and positive scalars δ1, δ2, δ3, ̟1,

̟2, σp and γp (p ∈ I
N0

1 ) such that the following inequalities

hold

̟1 − δ2 > 0, (17)

σpβp −̟1 ≥ 0, (18)

γpβp −̟2 ≤ 0, (19)

θ1 −̟2λM (P−1)λM (ETE) > 0, (20)

Π ,

[
Π0 P +Ψ⊗ Ž2

∗ −Ψ⊗ I

]

< 0, (21)

and the sampling interval satisfies

d < min{d1, d2, d3}, (22)

with the following relationships

M = max{M1,M2}, (23)

̺ > 2ρ > 0, (24)

where Π0 = P (C − B ⊗ U − LE) + (C − B ⊗ U −
LE)TP + θ1P + δ−1

1 PLEETLTP +(δ−1
2 + δ−1

3 )PLLTP −
Ψ ⊗ Ž1, Ž1 = (ZT

1 Z2 + ZT
2 Z1)/2, Ž2 = (ZT

1 + ZT
2 )/2,

d1 =
√

θ1−θ2
2δ1µ2λM (P−1) , d2 = min

p∈I
N0
1

{

− 1
αp

ln
βpϕp

αp+βpϕp

}

,

d3 =
√
̟1−δ2
2‖L‖ , M1 =

⌈

max
p∈I

N0
1

{
‖Ep‖χ
h0∆

}⌉

, M2 =
⌈

max
p∈I

N0
1

{

‖Ep‖
h0∆

(√
ϑ

λm(P ) +
√
θ5√

λm(P )(
√
n−

√
m)

)}⌉

, m =

e−̺d, n = e−2ρd, ϑ = λM (P )Nχ2 +
∑

p∈I
N0
1

φ0p, µ =

‖C − B ⊗ U‖ + κ + ‖LĒ‖, θ2 = ̟2λM (P−1)λM (ETE),

θ3 = 2δ1d
2µ2λM (P−1), θ4 = (δ3 + 4δ1d

2‖L‖2)h20mN0∆
2

4 ,

θ5 = θ4
θ1−θ2−θ3

, κ = (‖Z1 + Z2‖ + ‖Z1 − Z2‖)/2, and ̺ is

the positive solution to the following equation

θ1 − (θ2 + θ3)e
̺d − ̺ = 0. (25)

Proof: It follows from (9) that

h(tr)fp(T
p
k ) = h(tr)fp(T

p
k )− h(tr)

ζp(T
p
k )

h(T p
k )

+ h(tr)
ζp(T

p
k )

h(T p
k )

− ζp(tr) + ζp(tr)

= h(tr)ξp(T
p
k )− Epεp(tr)− yp(tr), (26)

where ξp(t) = fp(t)− ζp(t)
h(t) .

With a slight abuse of notation, let us denote ξp(T
p
k ) by

ξp(T̄ ). Then, based on (9) and (26), the estimation error εp(t)
satisfies the following dynamics

ε̇p(t) = Cpεp(t) + ḡ(εp(t))−
∑

q∈I
N
1

bpqUεq(t)

+ h(tr)Lpξp(T̄ )− LpEpεp(tr)− Lpyp(tr),

t ∈ [tr, tr+1), p ∈ I
N0

1 , (27a)

ε̇p(t) = Cpεp(t) + ḡ(εp(t))−
∑

q∈I
N
1

bpqUεq(t),

p ∈ I
N
N0+1, (27b)

which can be rewritten in a compact form

ε̇(t) =(C −B ⊗ U)ε(t) +G(ε(t)) − LY (tr)

+ h(tr)Lξ(T̄ )− LĒε̄(tr), t ∈ [tr, tr+1), (28)

where G(ε(t)) = (ḡ(εT1 (t)), ḡ(ε
T
2 (t)), . . . , ḡ(ε

T
N (t)))T ,

Y (t) = (yT1 (t), y
T
2 (t), . . . , y

T
N0

(t))T , and ξ(t) =
(ξT1 (t), ξ

T
2 (t), . . . , ξ

T
N0

(t))T .

Letting Υp(t) = εp(t) − εp(tr) and Υ(t) =
(ΥT

1 (t),Υ
T
2 (t), . . . ,Υ

T
N0

(t))T , t ∈ [tr, tr+1), the error dynam-

ics (28) can be further rewritten by

ε̇(t) = (C −B ⊗ U)ε(t) +G(ε(t))− LY (tr)

+ h(tr)Lξ(T̄ )− LĒε̄(tr) + LĒε̄(t)− LĒε̄(t)

= (C −B ⊗ U − LE)ε(t) +G(ε(t))

+ LĒΥ(t)− LY (tr) + h(tr)Lξ(T̄ ), t ∈ [tr, tr+1).
(29)

Now, we are in a position to claim that the vector quantizer

Φ(·) will never be saturated. In fact, according to Assump-

tion 2 and (23), one has

‖Epεp(0)‖∞
h(0)

≤ ‖Epεp(0)‖
h(0)

≤ ‖Ep‖‖εp(0)‖
h(0)
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≤
(

M +
1

2

)

∆, p ∈ I
N0

1 , (30)

which implies that when r = 0, the quantizer is unsaturated.

Next, let us consider the worst situation where the event

occurs at each sampling instant tr. Suppose that when r =
1, 2, . . . , l, the quantizer is unsaturated, namely,

sup
r∈I

l
0

‖Epεp(tr)‖∞
h(tr)

≤
(

M +
1

2

)

∆, p ∈ I
N0

1 . (31)

In what follows, we shall show that when r = l + 1, the

quantizer is unsaturated.

Consider the following Lyapunov function candidate

V (t) = V1(t) + V2(t), (32)

where

V1(t) = εT (t)Pε(t), (33)

V2(t) =
∑

p∈I
N0
1

φp(t). (34)

Taking the time derivative of V (t) along the error system

(28) yields

V̇ (t) = V̇1(t) + V̇2(t), t ∈ [tl, tl+1), (35)

where

V̇1(t) = 2εT (t)P
[

(C −B ⊗ U − LE)ε(t) +G(ε(t))

+ LĒΥ(t)− LY (tl) + h(tl)Lξ(T̄ )
]

(36)

and

V̇2(t) =
∑

p∈I
N0
1

(

− αpφp(t)− βp(σp‖yp(tl)‖2

− γp‖ζp(tl)‖2)
)

≤− θ1V2(t)−̟1‖Y (tl)‖2 +̟2‖Eε(tl)‖2. (37)

It is clear that

2εT (t)PLĒΥ(t) ≤ δ1Υ
T (t)Υ(t)

+ δ−1
1 εT (t)PLĒĒTLTPε(t), (38)

−2εT (t)PLY (tl) ≤ δ2Y
T (tl)Y (tl)

+ δ−1
2 εT (t)PLLTPε(t), (39)

2h(tl)ε
T (t)PLξ(T̄ ) ≤ δ−1

3 εT (t)PLLTPε(t)

+ δ3h
2(tl)ξ

T (T̄ )ξ(T̄ ). (40)

In virtue of Assumption 1, one can conclude that
∑

p∈I
N
1

ψp

(

εTp (t)Ž1εp(t)− 2εTp (t)Ž2ḡ(εp(t))

+ ḡT (εp(t))ḡ(εp(t))
)

≤ 0, (41)

which implies that

εT (t)(Ψ⊗ Ž1)ε(t)−2εT (t)(Ψ ⊗ Ž2)G(ε(t))

+GT (ε(t))(Ψ ⊗ I)G(ε(t)) ≤ 0. (42)

Consequently, it can be derived from (35)-(42) that

V̇ (t) ≤ 2εT (t)P (C −B ⊗ U − LE)ε(t) + 2εT (t)PG(ε(t))

+ δ−1
1 εT (t)PLĒĒTLTPε(t) + δ1Υ

T (t)Υ(t)

+ δ−1
2 εT (t)PLLTPε(t) + δ2Y

T (tl)Y (tl)

+ δ−1
3 εT (t)PLLTPε(t) + δ3h

2(tl)ξ
T (T̄ )ξ(T̄ )

− εT (t)(Ψ ⊗ Ž1)ε(t) + 2εT (t)(Ψ ⊗ Ž2)G(ε(t))

−GT (ε(t))(Ψ ⊗ I)G(ε(t))

− θ1V2(t)−̟1‖Y (tl)‖2 +̟2‖Eε(tl)‖2

= νT (t)Πν(t) − θ1V (t) + δ1Υ
T (t)Υ(t)

+ δ3h
2(tl)ξ

T (T̄ )ξ(T̄ ) +̟2ε
T (tl)E

TEε(tl)

− (̟1 − δ2)Y
T (tl)Y (tl)

≤ − θ1V (t) +̟2λM (P−1)λM (ETE)V (tl)

+ δ1Υ
T (t)Υ(t) + δ3h

2(tl)ξ
T (T̄ )ξ(T̄ )

− (̟1 − δ2)Y
T (tl)Y (tl), (43)

where ν(t) = (εT (t), GT (ε(t)))T .

Next, we are going to give an estimate for Υ(t). Note that

Υ(tl) = 0 and

Υ̇(t) = ˙̄ε(t) = I ε̇(t)
=I
(

(C −B ⊗ U)ε(t) +G(ε(t)) − LY (tl)

+ h(tl)Lξ(T̄ )− LĒε̄(tl)
)

, t ∈ [tl, tl+1), (44)

where I =
[
Ī 0

]
with Ī = diag{I, I, . . . , I

︸ ︷︷ ︸

N0

}. Then, we can

arrive at

Υ(t) =

∫ t

tl

I
(

(C −B ⊗ U)ε(τ) +G(ε(τ)) − LY (tl)

+ h(tl)Lξ(T̄ )− LĒε̄(tl)
)

dτ (45)

and

‖Υ(t)‖ ≤
∫ t

tl

(

‖C −B ⊗ U‖‖ε(τ)‖+ h(tl)‖L‖‖ξ(T̄ )‖

+ ‖G(ε(τ))‖ + ‖L‖‖Y (tl)‖+ ‖LĒ‖‖ε̄(tl)‖
)

dτ

≤
∫ t

tl

(

(‖C −B ⊗ U‖+ κ)‖ε(τ)‖ + ‖L‖‖Y (tl)‖

+ h(tl)‖L‖‖ξ(T̄)‖ + ‖LĒ‖‖ε(tl)‖
)

dτ

≤ d
(

µ max
τ∈[tl,t)

‖ε(τ)‖

+ ‖L‖
(
‖Y (tl)‖+ h(tl)‖ξ(T̄ )‖

))

. (46)

It is not difficult to verify that

ΥT (t)Υ(t) ≤ 2d2µ2 max
τ∈[tl,t)

‖ε(τ)‖2

+ 2d2‖L‖2
(
‖Y (tl)‖+ h(tl)‖ξ(T̄ )‖

)2

≤ 2d2µ2λM (P−1) max
τ∈[tl,t)

V (τ)

+ 4d2‖L‖2
(
‖Y (tl)‖2 + h2(tl)‖ξ(T̄ )‖2

)
.
(47)

Substituting (47) into (43) leads to

V̇ (t) ≤− θ1V (t) + θ2V (tl)

+ δ3h
2(tl)ξ

T (T̄ )ξ(T̄ )− (̟1 − δ2)Y
T (tl)Y (tl)
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+ δ1

(

2d2µ2λM (P−1) max
τ∈[tl,t)

V (τ)

+ 4d2‖L‖2
(
‖Y (tl)‖2 + h2(tl)‖ξ(tl)‖2

)

)

≤ − θ1V (t) + θ2V (tl)

+ 2δ1d
2µ2λM (P−1) max

τ∈[tl,t)
V (τ)

+ (δ3 + 4δ1d
2‖L‖2)h20e−2ρtl

mN0∆
2

4
= − θ1V (t) + θ2V (tl) + θ3 max

τ∈[tl,t)
V (τ) + θ4e

−2ρtl .

(48)

Now, we assert that if θ1 > θ2 + θ3 (which is satisfied

according to (20) and (22)), then it can be obtained from (48)

that

V (t) ≤ V (tl)e
−̺(t−tl) + θ5e

−2ρtl , t ∈ [tl, tl+1). (49)

In order to prove (49), it suffices to show that for any h > 0,

the following inequality holds

V (t) < (V (tl) + h)e−̺(t−tl) + θ5e
−2ρtl , t ∈ [tl, tl+1).

(50)

Suppose that (50) is not true, then there must exist some t ∈
(tl, tl+1) such that V (t) ≥ (V (tl) + h)e−̺(t−tl) + θ5e

−2ρtl .

Denote

t∗ = inf

{

t ∈ (tl, tl+1) | V (t) = (V (tl) + h)e−̺(t−tl)

+ θ5e
−2ρtl

}

. (51)

Then, it follows from (51) that

V (t) < (V (tl) + h)e−̺(t−tl) + θ5e
−2ρtl , t ∈ [tl, t

∗), (52)

V (t∗) = (V (tl) + h)e−̺(t∗−tl) + θ5e
−2ρtl , (53)

V̇ (t∗) ≥ − ̺(V (tl) + h)e−̺(t∗−tl), (54)

which, together with (48), lead to

V̇ (t∗) ≤− θ1V (t∗) + θ2V (tl) + θ3 max
τ∈[tl,t∗)

V (τ) + θ4e
−2ρtl

<− θ1(V (tl) + h)e−̺(t∗−tl) + (θ2 + θ3)(V (tl) + h)

≤
(
(θ2 + θ3)e

̺d − θ1
)
(V (tl) + h)e−̺(t∗−tl)

=− ̺(V (tl) + h)e−̺(t∗−tl), (55)

where the last equality holds because ̺ is the positive solution

to the equation θ1−(θ2+θ3)e
̺d−̺ = 0. Clearly, this indicates

a contradiction with (54), thereby affirming the validity of (50).

Letting h → 0+, it can be verified that (49) is true.

According to (49), one has

V (tl+1) ≤ V (tl)m+ θ5n
l

≤ V (tl−1)m
2 + θ5mnl−1 + θ5n

l

≤ V (tl−2)m
3 + θ5m

2nl−2 + θ5mnl−1 + θ5n
l

≤ · · ·

≤ V (0)ml+1 + θ5

l∑

p=0

mpnl−p. (56)

Then, we can verify that

‖zp(tl+1)− Epηp(tl+1)‖∞
h(tl+1)

≤ 1

h(tl+1)
‖Ep‖‖εp(tl+1)‖

≤ ‖Ep‖
h0

(√

V (0)

λm(P )

m
l+1

2

n
l+1

2

+

√
θ5

√

λm(P )

l∑

p=0

m
p

2 n
l−p

2

n
l+1

2

)

≤ ‖Ep‖
h0

(√

V (0)

λm(P )
+

√
θ5

√

λm(P )(
√
n−√

m)

)

≤
(

M +
1

2

)

∆, (57)

where the penultimate inequality is obtained by n > m. This

means that when r = l + 1, the quantizer is unsaturated.

For any t ≥ 0, there exists a non-negative integer r such

that t ∈ [tr, tr+1). Then, it follows readily from (49) and (56)

that

V (t)

h2(tr)
≤
V (0)mr + θ5

∑r
p=0 m

pnr−p

h20n
r

≤ V (0)

h20
+

θ5n

h20(n−m)
, (58)

which implies that

V (t) ≤
(

V (0) +
θ5n

n−m

)

e−2ρtr

≤
(

V (0) +
θ5n

n−m

)

e2ρde−2ρt, (59)

namely,

‖ε(t)‖ ≤
√

1

λm(P )

(

V (0) +
θ5n

n−m

)

eρde−ρt, t ≥ 0. (60)

Obviously, according to Definition 1, the encoding-

decoding-based state estimator (6) under the sampled-data-

based DEDT mechanism (7) and (8) is an exponential state

estimator for the CN (1), which completes the proof.

So far, we have analyzed the convergence property of the

estimation error system under the given estimator gain. Now,

the focus will be shifted towards the design issue of the

estimator.

Theorem 2: Let the positive scalars αp ≥ θ1, βp, and

ϕp (p ∈ I
N0

1 ) be given. Under Assumptions 1 and 2, the

encoding-decoding-based estimator (6) with the triggering

mechanism (7) and (8) is an exponential state estimator for

the nonlinear CN (1) if there exists a block diagonal matrix

P = diag{P1, P2, . . . , PN} > 0, a diagonal matrix Ψ > 0,

matrices Xp (p ∈ I
N0

1 ), and positive scalars δ1, δ2, δ3 and ̟2

such that the following inequalities hold

θ1P −̟2λM (ETE)I >0, (61)

Π̄ ,

[
Π̄0 Π̄1

∗ Π̄2

]

<0, (62)
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and the sampling interval satisfies

d < min{d̄1, d2}, (63)

with the following relationships

̟1 ≥ δ2 + 4d2‖P−1X‖2, σp ≥ ̟1

βp
,

γp ≤ ̟2

βp
, M = max{M1, M̄2}, ¯̺> 2ρ > 0,

where Π̄0 = P (C − B ⊗ U) − XE + (C −
B ⊗ U)TP − ETXT + θ1P − Ψ ⊗ Ž1, Π̄1 =
[
P +Ψ⊗ Ž2 XE X X

]
, Π̄2 = diag{−Ψ ⊗

I,−δ1I,−δ2I,−δ3I}, d̄1 =
√

θ1−θ2
2δ1µ̄2λM (P−1) , M̄2 =

⌈

max
p∈I

N0
1

{

‖Ep‖
h0∆

(√
ϑ

λm(P ) +

√
θ̄5√

λm(P )(
√
n−

√
m̄)

)}⌉

, θ̄3 =

2δ1d
2µ̄2λM (P−1), θ̄4 = (δ3 + 4δ1d

2‖P−1X‖2)h20 mN0∆
2

4 ,

θ̄5 = θ̄4
θ1−θ2−θ̄3

, m̄ = e− ¯̺d, µ̄ = ‖C−B⊗U‖+κ+‖P−1XĒ‖,

and X =
[
X̄T 0

]T
with X̄ = diag{X1, X2, . . . , XN0

}, ¯̺ is

the positive solution to the following equation

θ1 − (θ2 + θ̄3)e
¯̺d − ¯̺ = 0,

and the remaining parameters are defined as before. Accord-

ingly, the estimator gain Lp can be designed as follows:

Lp = P−1
p Xp. (64)

Proof: The proof is omitted here for brevity, as it can be

directly obtained from Theorem 1.

Remark 3: As pointed out in Remark 2, for the given

positive constants αp and ϕp, we can pick a smaller positive

scalar βp such that d2 in (63) becomes sufficiently large.

Consequently, the restriction with respect to the sampling

interval can be relaxed as d < d̄1.

Remark 4: The design issue of the estimator has been ad-

dressed in Theorem 2, where the estimator gain is determined

by solving a set of matrix inequalities. It is clear that, under

the given estimator gain and a smaller positive scalar βp,

the maximal-allowable bound of the sampling interval can be

explicitly estimated by solving the algebraic inequality (63).

Notably, a larger sampling interval is beneficial for reducing

both computational resource consumption and communication

frequency. Therefore, it makes sense to design the estimator

gain by resorting to the convex optimization approach, thereby

maximizing the allowable bound of the sampling interval.

Theorem 3: Let the positive scalars p, αp ≥ θ1 > θ̄2, δ1,

βp, and ϕp (p ∈ I
N0

1 ) be given. Under Assumptions 1 and 2,

the encoding-decoding-based estimator (6) with the triggering

mechanism (7) and (8) is an exponential state estimator for

the nonlinear CN (1) if an optimal problem with the following

linear objective function

min
P>0,Ψ>0,X,

δ2>0,δ3>0,µ2>0,̟2>0

z > 0 (65)

and linear matrix inequality (LMI) constraints

LMIs (62) (65a)

P − pI > 0 (65b)

̟2λM (ETE)− θ̄2P < 0 (65c)
[
−p2µ2I XĒ

∗ −µ2I

]

< 0 (65d)

[
P (µ1 + µ2)I
∗ zI

]

> 0 (65e)

has a set of solutions P > 0, Ψ > 0, X , δ2 > 0, δ3 > 0,

µ2 > 0, and ̟2 > 0. Meanwhile, the sampling period satisfies

d < min







√

θ1 − θ̄2
2δ1z

, d2






(66)

where µ1 = ‖C −B⊗U‖+ κ, and the remaining parameters

are defined as before. Accordingly, the estimator gain Lp can

be designed as follows:

Lp = P−1
p Xp. (67)

Proof: Applying the Schur complement lemma to (65e)

yields

P − z−1(µ1 + µ2)
2I > 0, (68)

namely,

zP − (µ1 + µ2)
2I > 0, (69)

which implies that

z > (µ1 + µ2)
2λM (P−1). (70)

Similarly, using the Schur complement lemma again, we can

verify that (65d) holds if and only if the following inequality

holds

−p2µ2I + µ−1
2 XĒĒTXT < 0. (71)

Noting that P − pI > 0, it can be obtained from (71) that

−PP + µ−2
2 XĒĒTXT < 0. (72)

Utilizing the Schur complement lemma again, we have
[
−µ2

2I ĒTXT

∗ −PP

]

< 0 (73)

or

−µ2
2I + ĒTXTP−1P−1XĒ < 0, (74)

which means that ‖P−1XĒ‖ < µ2. Recalling (65c) and (70),

one has
√

θ1 − θ̄2
2δ1z

<

√

θ1 − θ2
2δ1λM (P−1)µ̄2

. (75)

Clearly, the inequality (70) is valid. We can conclude that all

the conditions stated in Theorem 2 are satisfied. The proof is

now complete.

Remark 5: Theorem 3 has provided a novel convex op-

timization approach to design the desired estimator gains

with the purpose of maximizing the allowable bound of the

sampling period. It is important to note that several inequalities

have been introduced in Theorem 3, and this might give rise

to a certain level of conservativeness in our theoretical results.

When determining the estimator gains, one can first solve
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the optimal problem (65) and then design the estimator gain

matrices Lp by using (67). Subsequently, one can obtain the

allowable bound of the sampling period d through (63). In

light of Theorems 1 and 3, we propose the Algorithm 1 to

compute the estimator gains Lp and the allowable bound of

the sampling period d.

Algorithm 1 Computational algorithm for Lp and d

Step 1: Given the positive constants θ1, p, αp ≥ θ1 > θ̄2,

δ1, βp, and ϕp.

Step 2: Search for feasible solution to the optimal prob-

lem (65).

Step 3: Determine estimator gain matrices Lp via (67).

Step 4: Calculate the allowable bound of the sampling

period d according to (22).

In what follows, we are going to consider the sampled-

data-based EDT strategy in the design of encoding-decoding-

based estimator, which is a special case of the proposed

sampled-data-based DEDT mechanism (7) with ϕp = 0.

Specifically, the triggering instants are determined by the

following condition:

T p
k+1 = min

{

tr > T p
k |σp‖yp(tr)‖2 − γp‖ζp(tr)‖2 ≥ 0

}

,

p ∈ I
N0

1 , (76)

where T p
0 = t0, σp > 0 is a given constant, and γp > 0 is a

design parameter to be determined.

The following theorem presents the design scheme of the

estimator parameters under the sampled-data-based EDT strat-

egy (76).

Theorem 4: Let the positive scalars θ1 and σp (p ∈ I
N0

1 ) be

given. Under Assumptions 1 and 2, the encoding-decoding-

based estimator (6) with the triggering mechanism (76) is an

exponential state estimator for the nonlinear CN (1) if there

exists a block diagonal matrix P = diag{P1, P2, . . . , PN} >
0, a diagonal matrix Ψ > 0, matrices Xp (p ∈ I

N0

1 ), and

positive scalars δ1, δ2 and δ3 such that the inequalities in (62)

hold, and the sampling interval satisfies

d <

√

θ1
2δ1µ̄2λM (P−1)

(77)

with the following relationships

γp <
σ̃(θ1 − 2δ1d

2µ̄2λM (P−1))

δ2 + d2‖P−1X‖2 , (78)

M = max{M1, M̃2}, ˜̺> 2ρ > 0, (79)

where ϑ̃ = λM (P )Nχ2, m̃ = e− ˜̺d, θ̃5 = θ̄4
θ1−θ̃2−θ̄3

, M̃2 =
⌈

max
p∈I

N0
1

{

‖Ep‖
h0

(√
ϑ̃

λm(P ) +

√
θ̃5√

λm(P )(
√
n−

√
m̃)

)}⌉

, θ̃2 =

(δ2 + d2‖L‖2) γ̃
σ̃
λM (ETE)λM (P−1), σ̃ = min

p∈I
N0
1

{σp},

γ̃ = max
p∈I

N0
1

{γp}, ˜̺ is the positive solution to the following

equation

θ1 − (θ̃2 + θ̄3)e
˜̺d − ˜̺ = 0, (80)

and the remaining parameters are defined as before. Accord-

ingly, the estimator gain Lp can be designed as follows:

Lp = P−1
p Xp. (81)

Proof: The proof is omitted here for brevity, as it follows

immediately from the conclusions of Theorems 1 and 2.

Remark 6: So far, we have tackled the encoding-decoding-

based state estimation problem for continuous-time nonlinear

complex networks subject to communication bandwidth con-

straints, where the proposed method relies on sampled outputs

from a subset of network nodes. A DEDT strategy has been

utilized that integrates sampled-data mechanisms to determine

whether data should be transmitted at periodic sampling in-

stants, thereby reducing resource consumption and avoiding

Zeno behavior. Sufficient conditions have been established to

ensure the exponential stability of the estimation error dynam-

ics, and a convex optimization technique has been developed

to design the estimator gain in order to maximize the allow-

able sampling interval, thereby enhancing communication and

computational efficiency. In the next section, we will employ

a numerical example to demonstrate the effectiveness of the

proposed method in reducing network communication burdens

and maintaining estimation error convergence, even for an

unstable complex network with limited measurements.

Remark 7: The key novelties of this article compared with

existing literature are summarized as follows. 1) Unlike most

existing studies that typically require full output measurements

from all nodes, this paper focuses on state estimation using

outputs from only a fraction of nodes. This is more realis-

tic for large-scale networks where the data collection from

all the nodes is impractical. 2) An encoding-decoding-based

approach is developed to enhance transmission efficiency

and data confidentiality under bandwidth limitations. 3) A

sampled-data-based DEDT mechanism is employed to oper-

ate at periodic sampling intervals, combining sampled-data

strategies with event-driven techniques, thereby eliminating the

need for continuous monitoring of measurements, reducing

data transmission frequency, and naturally preventing Zeno

behavior. 4) Through a convex optimization approach, the

paper explicitly designs the estimator gain to maximize the

allowable sampling interval, significantly improving resource

management compared to traditional methods.

IV. SIMULATION RESULTS

In this section, an illustrative example and a practical

example are presented to demonstrate the effectiveness of the

obtained theoretical results.

Example 1: Consider a nonlinear CN (1) with six non-

identical nodes and assume that the measurement outputs of

the first four nodes are accessible, namely, N0 = 4. The

relevant parameters are given as follows:

C1 = C2 =

[
0.25 −0.5
0.5 −0.05

]

, C3 = C4 =

[
0.3 −0.5
0.5 −0.25

]

,

C5 = C6 =

[
0.25 −0.5
0.5 −0.4

]

, U = 0.2I, Ep =
[
0.1 0.1

]
,
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B =











1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
−1 0 0 0 0 1











,

g(s) = 0.1

[
−0.8s1 + 0.2(|s1 + 8| − |s1 − 8|) + 0.4s2

0.8s2 + tanh(−0.6s2)

]

with s =
[
s1 s2

]T
.

It is straightforward to confirm that the nonlinear function

g satisfies Assumption 1 with the following parameters:

Z1 = 0.1

[
−0.8 0.4
0 0.8

]

and Z2 = 0.1

[
−0.4 0.4
0 0.2

]

.

Choosing θ1 = 0.1, θ̄2 = 0.025, δ1 = 0.008, and p = 0.01,

we can solve the minimization problem (65) using YALMIP

and acquire a set of feasible solutions. The corresponding

estimator gains are obtained as follows:

L1 =

[
3.9257
2.4109

]

, L2 =

[
3.8429
2.3330

]

,

L3 =

[
3.9703
2.6493

]

, L4 =

[
3.9233
2.8493

]

,

and the sampling period is d = 0.1081.

According to Theorem 3, it can be concluded that the

encoding-decoding-based estimator (6) is an exponential state

estimator for the nonlinear CN (1). The simulation results

further confirm the correctness of the theoretical findings.

Specifically, Fig. 2 illustrates the state evolutions of six nodes

with the initial states sp(0) =
[
−p 7− p

]T
, p ∈ I

6
1. Letting

d = 0.1, ∆ = 0.1, αp = 0.1, φ0p = 10, γp = 0.05,

σp = 26, βp = 0.2 (p ∈ I
4
1), χ = 6.1, h0 = 2. After some

calculations, one can get ¯̺ = 0.113, M1 = 5, M̄2 = 36524.

In such case, we select M = 36524 and ρ = 0.05. Then, the

evolution of the estimation error is shown in Fig. 3, which

is exactly consistent with the theoretical results. It should be

pointed out that the considered CN with the given parameters

is unstable. Nevertheless, the estimation errors still converge

to zero. Figs. 4 and 5 display, respectively, the triggering time

sequences of the first four nodes and the trajectories of the

transmitted codewords.

In addition, we perform a comparative simulation to high-

light the superiority of the proposed sampled-data-based

DEDT strategy. Fig. 6 depicts the triggering time sequences

for the first four nodes under the sampled-data-based EDT

strategy (76). A comparison of triggered numbers between the

sampled-data-based DEDT strategy and sampled-data-based

EDT are listed in Table I. It is evident from Figs. 4 and 6 and

Table I that the proposed sampled-data-based DEDT strategy

is more effective than the static one in reducing the network

communication burden.

Example 2 (A practical example): Consider a three-area

power system [40], [54], which can be described by CN (1)

0 50 100 150
-1000

0

1000
node 1

0 50 100 150
-1000

0

1000
node 2

0 50 100 150
-500

0

500
node 3

0 50 100 150
-500

0

500
node 4

0 50 100 150
-500

0

500
node 5

0 50 100 150
-1000

0

1000
node 6

Fig. 2. State evolution of each node in the nonlinear CN.
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-2
0
2
4
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4
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-2
0
2
4
6

node 6

Fig. 3. State estimation error of each node.

0 50 100 150

node  4 

node  3 

node  2 

node  1 

Fig. 4. Triggering time sequences of the first four nodes under the sampled-
data-based DEDT strategy.
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TABLE I
TRIGGERED NUMBERS FOR FIRST FOUR NODES UNDER SAMPLED-DATA-BASED EDT STRATEGY VERSUS SAMPLED-DATA-BASED DEDT STRATEGY.

Time intervals
node 1 node 2 node 3 node 4

S-EDT S-DEDT S-EDT S-DEDT S-EDT S-DEDT S-EDT S-DEDT

[0, 30) 20 8 17 13 17 10 22 9

[30, 60) 22 0 19 14 21 9 22 0

[60, 90) 24 6 21 9 22 6 22 0

[90, 120) 22 4 21 10 19 8 20 4

[0, 120) 88 18 78 46 79 33 86 13

S-EDT and S-DEDT represent, respectively, sampled-data-based EDT strategy and sampled-data-based
DEDT strategy.

0 50 100 150
-0.6

-0.4

-0.2

0

0.2

0.4

Fig. 5. Trajectories of the transmitted codewords.

0 50 100 150

node  4 

node  3 

node  2 

node  1 

Fig. 6. Triggering time sequences of the first four nodes under the sampled-
data-based EDT strategy.

with the following parameters:

Cp =








− Dp

2Hp

1
2Hp

0 − 1
2Hp

0 − 1
Tchp

1
Tchp

0

− 1
RpTgp

0 − 1
Tgp

0

0 0 0 0







,

U =







0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0






, wpq = 2πTpq,

where the practical meanings of the relevant parameters are

detailed in [54]. Here, both the load generation balance point

and the load deviation are assumed to be zero.

The relevant parameters for the simulation are listed as

follows: D1 = D2 = 1.5, H1 = H2 = 5, Tch1 = Tch2 = 0.3,

R1 = R2 = 0.1, Tg1
= Tg2

= 1, D3 = 1.8, H3 = 6,

Tch3 = 0.2, R3 = 0.3, Tg3
= 1.2, T12 = T13 = T21 =

T23 = T31 = T32 = 0.25. Suppose that the outputs of first

two nodes can be available with E1 = E2 =
[
0.1 2 0 0

]
.

Given θ1 = 0.11, θ̄2 = 0.01, δ1 = 24.08, and p = 0.39, we

can solve the minimization problem (65) using YALMIP and

acquire a set of feasible solutions. According to Theorem 3,

the encoding-decoding-based estimator (6) with the triggering

mechanism (7) and (8) is an exponential state estimator for

the CN (1), and estimator gain matrices can be computed as

L1 =







−0.0120
0.1389
0.1362
0.1181






, L2 =







−0.0141
0.1686
0.1641
0.1404






,

and the sampling period is d = 0.0201.

Let us pick d = 0.02, ∆ = 0.2, αp = 0.11, φ0p = 10, γp =
2, σp = 31, βp = 1 (p ∈ I

2
1), h0 = 10. Then, the simulation

figures with the above parameters are shown in Figs. 7–9,

which considerably coincide with the theoretical results. Fig. 7

depicts the fact that the corresponding estimation error system

is exponentially stable. Fig. 8 illustrates the triggering time

sequences of the first two nodes, while Fig. 9 displays the

trajectories of the transmitted codewords.

V. CONCLUSIONS

In this paper, the PNB state estimation issue has been

investigated for a class of continuous-time nonlinear CNs

subject to the communication bandwidth constraints. To cater

for the engineering reality, only the measurement outputs from

a fraction of network nodes have been utilized to conduct the

state estimation task. For efficient resource management, a

novel sampled-data-based DEDT mechanism combined with

the encoding-decoding technique has been employed in the

process of data transmission. Specifically, the sampled-data-

based DEDT mechanism has been introduced to regulate the
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Fig. 7. State estimation error of CN.
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Fig. 8. Triggering time sequences of the first two nodes under the sampled-
data-based EDT strategy.

0 10 20 30 40 50 60 70 80 90 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 9. Trajectories of the transmitted codewords.

transmission of measurement signals by determining when

to transmit them. Under the encoding-decoding scheme, the

measurement signals have been encoded as codewords and

sent to the estimator via a digital communication channel.

Some sufficient criteria have been established to ensure that

the estimation error system is exponentially stable. Moreover,

a new convex optimization approach has been employed to

design the estimator gain by maximizing the allowable bound

of the sampling intervals. Finally, a demonstrative example

and a real-world case involving a three-area power grid have

been provided to illustrate the effectiveness and correctness

of the obtained main results. One potential direction for

future research is to extend the current results to settings

with more intricate communication constraints, such as limited

transmission range and restricted bandwidth [55], [56].
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