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Hybrid-Driven State Estimation with Adaptive
Cross-Coupled Priors: Enhancing Data
Representation and Model Robustness

Lizhang Wang, Zidong Wang, and Qinyuan Liu

Abstract—This paper addresses the integration of model-
driven and data-driven approaches for robust hybrid-driven
state estimation under limited data and model uncertainties.
An unsupervised hybrid estimation framework, termed Adaptive
Model-driven and Data-driven (AMD), is proposed. AMD em-
ploys an adaptive cross-coupled prior mechanism within the
Bayesian inference paradigm to integrate prior information. A
two-stage fusion strategy is introduced: an initial hard fusion
of model pseudo-measurements and data-driven priors, followed
by an adaptive soft fusion that adjusts model influence based
on reconstruction discrepancies, thereby enhancing robustness
to imperfect model priors. To capture complex nonlinear transi-
tion dynamics, a dynamic bilinear recurrent module has been
developed, tailored to the system’s underlying behavior. The
AMD framework adopts a non-identical training-testing strategy
and an unsupervised hybrid learning objective inspired by the
information bottleneck principle, enabling accurate parameter
learning without access to ground-truth states. Extensive experi-
ments on multiple nonlinear chaotic systems have demonstrated
that AMD consistently achieves competitive or superior esti-
mation accuracy compared to state-of-the-art model-based and
hybrid approaches, particularly under underdetermined estima-
tion, model mismatch, and dynamic disturbances. These results
demonstrate AMD’s capability to effectively leverage limited
information through complementary fusion, thereby enhancing
both data representation and model robustness. This adaptability
positions AMD as a powerful solution for challenging state
estimation problems.

Index Terms—hybrid-driven state estimation, cross-coupled
Bayesian inference, unsupervised learning, dynamic bilinear data
driven, adaptive weight adjustment, complementary prior fusion

I. INTRODUCTION

Accurate state estimation is regarded as fundamental to the
effective analysis, prediction, and control of complex dynamic
systems across various engineering domains [2], [25], [46],
[61]. In state estimation methods, prior knowledge derived
from models or data is combined with real-time sensor mea-
surements to reconstruct unobservable internal system states
[7], [14], [18]. Such methods have been widely applied in
fields such as signal processing and communications [55],
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[64], dynamic scene monitoring, robotics [26], [56], and
automatic control [51], [59].

Traditional state estimation approaches are based on two
primary forms of prior knowledge: model-driven system mod-
eling and data-driven evolutionary fitting. In model-driven
methods, prior dynamical knowledge is employed to construct
system models and identify model parameters, with estima-
tion accuracy and stability ensured through precise system
representation. However, these methods are typically charac-
terized by a strong dependence on model robustness. They
implicitly assume access to a complete mathematical charac-
terization of system dynamics, including accurate transition
and observation models as well as well-defined noise statis-
tics, assumptions that are rarely satisfied in practice. Limited
domain knowledge, unmodeled dynamics, or oversimplified
noise assumptions inevitably introduce modeling bias and pa-
rameter uncertainty, which in turn lead to systematic errors and
reduced estimation reliability. Moreover, in high-dimensional,
nonlinear, or chaotic systems, conventional models typically
capture only partial aspects of the underlying processes. Such
limitations can critically undermine the effectiveness of model-
driven state estimation and, under extreme conditions, may
even cause complete estimation failure, thereby restricting the
practical applicability of purely model-driven estimators.

Data-driven methods, on the other hand, are designed to
exploit historical data to infer the internal system evolution
as a data prior, thereby enabling the complex characteris-
tics of the system to be captured through large-scale, high-
quality datasets. However, historical data are often unaccom-
panied by ground-truth state annotations and are corrupted
by measurement noise. These limitations in data represen-
tation capacity prevent data-driven methods from achieving
supervised and interpretable learning of the system’s internal
dynamics. Furthermore, scenarios involving restricted data
representations (e.g. underdetermined estimation problems
where high-dimensional latent states must be inferred from
low-dimensional noisy measurements [22]) further exacerbate
estimation uncertainty and degrade learning performance.

Given the limitations of both model-driven and data-driven
approaches, hybrid-driven state estimation has been explored,
in which complementary priors are integrated to leverage the
advantages of both strategies while mitigating their respective
drawbacks. In existing hybrid-driven methods, one prior is
typically used to refine or supplement the other; for example,
data-driven techniques may be employed to capture system
dynamics that cannot be explicitly modeled, while model-
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driven methods may be used to enhance or constrain data-
driven estimation results. Although such fusion strategies have
improved estimation performance by addressing the limitations
of individual approaches, the inherent weaknesses of both
paradigms are inevitably inherited, thereby introducing new
challenges rather than fundamentally resolving the complexi-
ties of real-world estimation tasks.

Motivated by the challenges in state estimation and the
limitations of existing hybrid-driven approaches, a novel
Adaptive Model-driven and Data-driven Cross-coupled Estima-
tor (AMD) is proposed. The key contributions are summarized
as follows.

1) AMD is proposed as an adaptive cross-coupled frame-
work that integrates model priors and data priors through
a ‘conditional hard fusion + adjustment + adaptive soft
fusion’ strategy. Known model knowledge is exploited to
constrain data representation, while data fitting is simul-
taneously employed to compensate for model incomplete-
ness and uncertainty. Through the complementary fusion
of these limited information sources, estimation accuracy
is enhanced in a principled and efficient manner, with
improvements also achieved in data representation and
model robustness.

2) A dynamic bilinear-driven component is introduced to ad-
dress complex system nonlinearities. To dynamically reg-
ulate the contributions of model-driven and data-driven
components in hybrid estimation, an adaptive weight
adjustment strategy is developed. This strategy employs a
non-identical training and testing mechanism to balance
modeling constraints and estimation performance.

3) An unsupervised hybrid learning framework is formulated
from an information bottleneck perspective, inspired by
variational autoencoder (VAE) optimization. This design
ensures the interpretability and accuracy of hybrid-driven
estimation even in the absence of ground-truth state
labels.

4) Comprehensive comparative experiments are conducted
to evaluate the robustness of AMD. The results validate
its effectiveness and broad applicability across various
state estimation scenarios, including those involving lim-
ited observational data.

A. Related Work
Current mainstream state estimation methods can be broadly

categorized into three types according to the utilized prior
knowledge: model-driven, data-driven, and hybrid-driven ap-
proaches.

Traditional model-driven methods are primarily based
on comprehensive mathematical models constructed from
domain-specific expertise to characterize system dynamics.
State estimation is performed through explicitly formulated
state-space models, such as the classical Kalman Filter (KF)
[58], the unscented KF (UKF) [35], [42], [62], the sampling-
based Particle Filter (PF) [1], [54], and the Adaptive Kalman
Filter (AKF) [20], which is capable of identifying unknown
system parameters.

Emerging data-driven methods, by contrast, rely on implicit
system behaviors captured from extensive historical datasets

to replace explicit model knowledge. These methods typically
employ deep neural networks to construct both transition and
observation models implicitly [17], [30]. Examples include
kernel-based approaches for learning latent representations
of high-dimensional systems [4], and variational inference
techniques for identifying underlying system models [23].

Hybrid-driven methods are developed to integrate the
strengths of both model-driven and data-driven approaches. By
jointly exploiting their respective priors, these approaches en-
hance state estimation performance, combining the robustness
and interpretability of models with the flexibility and expres-
siveness of data, while offering improved generalization across
varying conditions. These hybrid strategies can be classified
into two categories based on the integration sequence:

• Model-driven enhancements of data-driven methods
(MD-DD): These strategies are designed to capitalize
on the robustness and low complexity of model-driven
techniques to refine or constrain initial data-driven es-
timations. One group of such approaches incorporates
data-driven filtering or smoothing into Bayesian (model-
driven) frameworks [13], [21], [22], [32], [53], [60].
In these approaches, a data-driven predictor (such as a
neural network) is initially employed to produce coarse
state estimates. These estimates are then refined within
a Bayesian inference framework to enforce consistency
with the established measurement model. For example,
in Danse [21], a recurrent neural network is employed to
generate prior predictions, which are subsequently refined
through Bayesian updating using known measurement
models. Another category relies on physics-informed ma-
chine learning principles [12], [29], [33], [41], [43], [47],
in which established physical models are embedded either
internally within the network architecture or enforced
through constraints in the loss functions. This integration
enhances interpretability and reduces the search space for
the data-driven methods.

• Data-driven enhancements of model-driven methods
(DD-MD): Conversely, these strategies employ either
internal or external fusion mechanisms, whereby the
generalization capabilities of data-driven techniques are
leveraged to enhance the performance of model-driven
estimation. One class of such approaches is based on
residual complementarity, in which data-driven compo-
nents are trained to learn the discrepancies between
preliminary model-driven estimates and the actual states,
thereby refining the results [8], [19], [52], [63]. For
instance, in [19], a graph neural network framework is
utilized to construct data-driven residual messages that
complement the initial model-driven outcomes. Another
approach focuses on addressing unknown parameters by
embedding data-driven components within model-driven
frameworks, where learned modules are used to estimate
uncertain parameters in physical models [3], [11], [45],
[48]–[50]. The notable KalmanNet [48], for example,
integrates the data-driven learning of the Kalman gain
within a classical Kalman filtering framework.

Table I presents a comparative summary of attributes for
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Attribute Methods

Model-driven Data-driven Hybrid-driven
AMD

MD-DD DD-MD

e.g. UKF, etc. e.g. RNNs, etc. e.g. Danse, etc. e.g. KalmanNet, etc.
Domain knowledge

Transition model � � �/ � � �
Measurement model � � � � / � �

Problems with model priors
Model uncertainties � � � � �

Model incompleteness � � � � �
Problems with data priors

Real state labels � � � � / � �
Underdetermined estimation � � � � / � �

Closed-form posterior � � � / � � / � �

TABLE I
Visual comparison of method characteristics.‘�’ = required/addressed;‘�’ = not required/unaddressed; ‘ �’ = partially required/partially addressed.

model-driven, data-driven, hybrid-driven, and AMD methods.

B. Notations

Throughout this paper, scalars and vectors are denoted by
regular and bold lowercase letters, respectively, while matrices
are represented by bold uppercase letters. The transpose of a
matrix is denoted as (·)�. The �2-norm of a vector is repre-
sented as ‖x‖22 = x�x, and similarly, a weighted Euclidean
norm is defined as ‖A‖2B = A�BA. The identity matrix
of size n × n is denoted by In. The notation N (·;μ,Σ)
represents a Gaussian distribution, where μ and Σ denote
its mean and covariance, respectively. The operator Ep(x)[·]
denotes the expectation with respect to the distribution p(x).
A sequence {x1,x1, · · · ,xt} is denoted as x1:t. The symbol
R denotes the set of real numbers.

C. Structure of the Article

The remainder of this paper is structured as follows. Sec-
tion II provides a comprehensive overview of the problem
formulation and offers a detailed description of the proposed
AMD architecture, including its methodology and associated
operations. In Section III, experimental results are presented
along with a comparative analysis of AMD’s performance
against other related methods. Finally, in Section IV, the main
findings are summarized, and potential directions for future
research are discussed.

II. PROPOSED AMD

A. Problem Formulation

In this study, we focus on state estimation within a fi-
nite discrete-time horizon to facilitate theoretical derivations,
though the framework can be readily extended to the infinite-
horizon setting. Let xt ∈ R

m denote the state vector of a
dynamical system at time step t, which evolves over time
following an underlying transition process:

xt+1 = f (x1:t) + ξt+1, t = 1, 2, . . . , T. (1)

where f (·) represents the state transition process, which is
typically complex and difficult to fully characterize through
explicit modeling, and is often treated as unknown. The
term ξt+1 denotes the system transition noise, capturing the
stochastic perturbations in the state evolution. During infer-
ence, the true system states remain inaccessible. Instead, we
rely on available linear measurements yt ∈ R

n to infer the
latent states:

yt = Htxt + vt, t = 1, 2, . . . , T. (2)

Here, Ht ∈ R
n×m represents the known measurement matrix.

The term vt ∼ N (0,Rt) denotes zero-mean Gaussian mea-
surement noise with covariance Rt. It is worth noting that
such measurements may fail to fully capture the underlying
system states, particularly under limited data representation
conditions, such as in underdetermined estimation scenarios
(i.e., n < m), where Ht is a fat matrix.

In many real-world scenarios, only partial knowledge of
the system’s transition dynamics is available. To effectively
leverage this partial model-based prior, we introduce a model-
representable latent state, denoted as zt ∈ R

r, which charac-
terizes the tractable portion of the system’s internal evolution.
In contrast to the system state xt, which is the ultimate target
of estimation, the intermediate state zt captures a projection
or a model-aligned representation of the true system state. It
reflects the component that can be described or approximated
by an available model. The known component of the dynamics
can be modeled as follows:

zt+1 = g (zt) , t = 1, 2, . . . , T.

zt = Mtxt +wt

(3)

The mapping matrix Mt ∈ R
r×m projects the full state

xt into a latent subspace that reflects the model-representable
or known component of the system dynamics. The term
wt ∼ N (0,Qt) represents the modeling noise associated with
the latent state zt, characterized by covariance Qt. It captures
the residual uncertainty introduced by projection or model
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approximation. For numerical stability and subsequent deriva-
tions, the noise covariance Qt is assumed to be a positive-
definite matrix. While related to ξt, wt is not identical; rather,
it can be interpreted as the simplified, modelable projection of
ξt onto the model-representable subspace. Unlike the full but
typically unknown dynamics of the true state xt characterized
by Eq. (1), the function g(·) represents a known (though
possibly coarse or incomplete) transition function that governs
the temporal evolution of the model-representable latent state
zt. This provides a principled way of incorporating partial
model knowledge into the Bayesian framework. This evolution
is modeled as a Markov process, implying that the future
latent state zt+1 depends solely on the current state zt and
is conditionally independent of the past states z1:t−1. When
g(·) is nonlinear, it can be locally linearized using its Jacobian
matrix, defined as Gt =

∂g
∂zt

|zt=ẑt .
The objective of state estimation is to reconstruct the

latent system state xt using historical measurements y1:t by
inferring the conditional probability distribution p (xt | y1:t).
Traditional model-driven approaches within the Bayesian in-
ference framework rely on complete and accurate transition
models. In contrast, classical data-driven methods depend
on well-annotated datasets and strong feature representation
capabilities. However, in this study, the transition model
is inherently uncertain and incomplete. Moreover, the true
states are inaccessible, rendering historical data unlabeled.
Compounding this, measurement noise and underdetermined
measurement further limit the available data representational
capacity. These constraints pose significant challenges for both
standard model-driven Bayesian estimation frameworks and
conventional data-driven inference models, as system states
must be estimated under uncertain transition models and
limited historical data.

To address the aforementioned challenges, we propose
AMD, a hybrid-driven state estimation framework that inte-
grates data-driven and model-driven approaches through the
use of adaptive cross-coupled priors. Despite the inherent
uncertainties in both model priors and historical measure-
ments, AMD effectively consolidates all available information
through a complementary fusion mechanism. This enables pre-
cise state estimation from noisy and limited dynamic measure-
ments while significantly enhancing both data representation
and model robustness.

B. AMD System

The proposed AMD framework enables an adaptive cross-
coupling of data-driven and model-driven priors by leveraging
a complementary fusion mechanism, thereby integrating the
strengths of both paradigms. Specifically, within a two-stage
Bayesian inference framework, accurate state estimation is
accomplished via two sequential steps: prior predictive fusion
and posterior estimate update. In the first step, the prior dis-
tribution over the latent state xt is inferred based on historical
observations y1:t−1, denoted as p(xt | y1:t−1). In the second
step, the posterior distribution p(xt | y1:t) is computed by
incorporating the newly received observation yt via Bayes’
rule, thereby completing the state estimation process.

We begin by analyzing the prior predictive fusion step. In
traditional state estimation approaches, the prior distribution
is obtained through a known state transition model as follows:

p(xt | y1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

However, in the context of our estimation problem, the un-
derlying transition model is unknown. Consequently, the prior
distribution can be inferred via a latent state representation zt,
which is accessible through a model-representable abstraction.
This leads to the following formulation:

p(xt | y1:t−1) =

∫
zt

p(xt | y1:t−1, zt)p(zt | y1:t−1)dzt (4)

where p (xt | y1:t−1, zt) denotes the conditional prior of the
current state given the latent representation and historical
observations, and p(zt | y1:t−1) captures the distribution over
the latent variable based on historical measurements. The latter
can be recursively computed from the previous posterior and
known model priors as follows:

p(zt | y1:t−1)

=

∫
zt−1

p(zt | zt−1)p(zt−1 | y1:t−1)dzt−1

=

∫
zt−1

p(zt | zt−1)(∫
xt−1

p(zt−1 | xt−1)p(xt−1 | y1:t−1)dxt−1

)
dzt−1

=

∫
zt−1

p(zt | zt−1)N
(
zt−1;μ

z
t−1|t−1,Σ

z
t−1|t−1

)
dzt−1

= N
(
zt;μ

z
t|t−1,Σ

z
t|t−1

)
(5)

where p(xt−1 | y1:t−1) represents the posterior distribu-
tion at the previous time step, assumed to be Gaussian:
N
(
xt−1;μt−1|t−1,Σt−1|t−1

)
. Given a known mapping and

transition process between the state space and latent space,
the mean and covariance of the latent state distributions
p(zt−1 | y1:t−1) and p(zt | y1:t−1) are computed as follows:

μz
t−1|t−1 = Mt−1μt−1|t−1

Σz
t−1|t−1 = Mt−1Σt−1|t−1M

�
t−1 +Qt−1

μz
t|t−1 = g(μz

t−1|t−1)

Σz
t|t−1 = GtΣ

z
t−1|t−1G

�
t

(6)

It is important to note that the local linearization employed
in Eq. 6 is introduced solely for the tractability of covariance
propagation, in a manner analogous to the treatment in the
Extended Kalman Filter (EKF). Although this approximation
may introduce minor errors when representing the nonlinear
latent transition, the underlying transition process of the la-
tent state zt , denoted as g(·) , does not require complete
accuracy. The inherent incompleteness of the model prior is
adaptively compensated by the fusion strategy proposed in
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Fig. 1. The block diagram of AMD.

the subsequent framework. The conditional prior distribution
p (xt | y1:t−1, zt) can be reformulated as:

p (xt | y1:t−1, zt) =
p (xt, zt | y1:t−1)

p (zt | y1:t−1)

=
p (xt | y1:t−1) p (zt | xt,y1:t−1)

p (zt | y1:t−1)

=
p (xt | y1:t−1) p (zt | xt)

p (zt | y1:t−1)

= K p (xt | y1:t−1)︸ ︷︷ ︸
data prior

p (zt | xt)︸ ︷︷ ︸
model prior

(7)

where K is a normalization constant independent of xt, and
is therefore omitted in subsequent analysis as it does not
affect the optimization or modeling of the state distribution.
Assuming that the system state xt encapsulates all the infor-
mation relevant to predicting future states and measurements,
it renders past observations conditionally independent of the
latent state zt given xt. This Markov property enables us to
factorize the conditional prior using Bayes’ rule as the product
of a data-driven prior and a model-driven prior:

Data-Driven Prior : p̃ (xt | y1:t−1) = N (xt;μ
data
t ,Σdata

t

)
,

Model-Driven Prior : p (zt | xt) = N (zt;Mtxt,Qt) .
(8)

where the notation p̃(xt | y1:t−1) denotes the purely data-
driven prior distribution inferred directly from historical mea-
surements, which will be elaborated in Subsection II-C. The
tilde is used to distinguish this candidate prior from the final
fused prior p(xt | y1:t−1), obtained by integrating p̃(·) with
the model-driven prior through the fusion stage. Accordingly,
p̃(·) reflects the initial data-driven perspective, whereas p(·)
represents the hybrid prior employed in the Bayesian update.
Specifically, in Eq. (7), p(·) represents a generalized Markov
factorization, where the subsequent computation of Eq. (7) is
carried out using p̃(·). In the context of model-driven priors,
zt is derived as a prior prediction from the modeled state
transition process g based on historical model-representable
latent states zt−1.

Unlike conventional Bayesian filtering, our setting does not
allow the prior prediction of the full state to be obtained solely
from the transition function. As shown in Eq. (8), we instead
construct a data-driven prior as the baseline prediction for the

complete state, and then embed the model-representable com-
ponent zt as a constraint derived from the model prior. At each
time step t ∈ T , AMD recursively integrates available knowl-
edge through an adaptive cross-coupled process. This process
follows a “fusion–adjustment–refusion” paradigm, where the
conditional prior is adaptively constructed and fused before
proceeding to posterior estimation. This high-level framework
is illustrated in Fig. 1.

a) Conditional Hard Fusion: In this process, we as-
sume that the transition noise can be correctly modeled. The
conditional state distribution is computed based on both the
data-driven prior and model-driven prior:

p (xt | y1:t−1, zt) = N (xt;μ
hard
t ,Σhard

t

)
Khard

t = Σdata
t M�

t

(
MtΣ

data
t M�

t +Qt

)−1

μhard
t = μdata

t +Khard
t (zt −Mtμ

data
t )

Σhard
t = Σdata

t −Khard
t MtΣ

data
t

(9)

Using the Woodbury matrix identity [28], we obtain a form
similar to that of the Kalman filter, which demonstrates that
the model prior can be treated as a pseudo-observation, thereby
constraining the parameter space of the data-driven prior.
During the fusion process, the projection matrix Mt explicitly
maps the model subspace onto the full state xt, thereby
ensuring dimensional alignment and enabling a consistent
integration across dimensions.

b) Adaptive Soft Fusion: Since the modeling of the state
transition process may be incomplete or based on simplified
assumptions that overlook certain system complexities, esti-
mation errors in zt can result from such model inaccuracies
or simplifications. Furthermore, biases or misspecification in
the state transition noise Qt may introduce substantial un-
certainty into the prior fusion process. As a consequence, the
formulation in Eq. (9) cannot be directly applied in its original
form.

To address the above issue, the integration of model-driven
and data-driven priors should be performed through a soft
fusion strategy, whereby each source of prior knowledge con-
tributes adaptively according to its assessed reliability. In this
process, Qt is not explicitly estimated; instead, an exponential
penalty is applied to govern the weighted fusion. The adaptive
adjustment of the penalty (weighting) parameter αt provides
flexible control over the respective contributions of the model-
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driven and data-driven priors. Specifically, independent infor-
mation extracted from noise measurements is used to evaluate
the performance discrepancy between the hard fusion prior and
the data-driven prior, thereby enabling the adaptive inference
of an appropriate weighting parameter. Further details of this
procedure are provided in Subsection II-D.

In the Bayesian framework, the soft fusion process expo-
nentially weights the model prior:

p (xt | y1:t−1, zt)

≈ Kp̃ (xt | y1:t−1) exp
(
−αt

2
‖Mtxt − zt‖22

) (10)

To incorporate model-based priors under model uncertain-
ties, the original likelihood is reformulated as an exponentially
weighted penalty term, serving as a “pseudo-likelihood” that
encodes the preference for imposing prior constraints on the
data. The adoption of an exponential form not only naturally
preserves the Gaussian property of the fused prior but also
ensures theoretical consistency of the update when treated as a
pseudo-likelihood. In addition, this design provides enhanced
interpretability as well as computational stability and scala-
bility in high-dimensional settings. Furthermore, by applying
the technique of completing the square [5], a closed-form
representation of the fused prior distribution can be derived.

p (xt | y1:t−1, zt) = N (xt;μ
soft
t ,Σsoft

t

)
μsoft
t = Σsoft

t

((
Σdata

t

)−1
μdata

t + αtM
�
t zt

)
Σsoft

t =
((

Σdata
t

)−1
+ αtMtM

�
t

)−1

(11)

The above process adaptively weights the regularization of
the model prior’s constraint by adjusting the re-fusion strategy,
thus mitigating the impact of estimation errors in zt and model
biases in Qt. Specifically, a scaled identity matrix term αtIr
is introduced to serve a role analogous to Qt, providing a
controlled form of regularization. This adaptive adjustment
reduces the uncertainty that would otherwise arise during prior
fusion due to model misalignment or approximation errors.
Accordingly, the covariance term Qt−1 in Eq. (6) should be
replaced by the adaptive regularization term αt−1Ir, reflecting
the calibrated treatment of model uncertainty at the preceding
time step.

It is important to note that the order of the fusion process
is not interchangeable. Conditional hard fusion must be per-
formed first to establish a principled Bayesian baseline, which
is then refined through adaptive soft fusion. The adaptive
weighting depends on the discrepancy between the data-driven
prior distribution and the hard-fused distribution. Reversing
this order would eliminate this reference, rendering the adap-
tive procedure ill-posed and potentially unstable.

c) Posterior Estimate Update: In this stage, the sys-
tem updates the posterior distribution of the current state
p (xt | y1:t) by incorporating the fused prior p(xt | y1:t−1, zt),
obtained from the integration of data-driven and model-driven
priors, and the real-time observation yt, and available domain
knowledge. The fusion prior is first computed according to
Eq. (4) as follows:

p(xt | y1:t−1)

=

∫
zt

N (xt;μ
soft
t ,Σsoft

t

)N (zt;μz
t|t−1,Σ

z
t|t−1

)
dzt

= N
(
xt;μt|t−1,Σt|t−1

)
where

μt|t−1 = Σsoft
t

((
Σdata

t

)−1
μdata
t + αtM

�
t μ

z
t|t−1

)
Σt|t−1 = Σsoft

t +Σsoft
t M�

t Σ
z
t|t−1MtΣ

soft�
t

(12)

Finally, the posterior distribution of the current state,
p (xt | y1:t), is updated by integrating the prior distribution
with the real-time observation. This update is expressed as:

p (xt | y1:t) = N
(
xt;μt|t,Σt|t

)
Kt = Σt|t−1H

�
t

(
HtΣt|t−1H

�
t +Rt

)−1

μt|t = μt|t−1 +Kt(yt −Htμt|t−1)

Σt|t = Σt|t−1 −KtHtΣt|t−1

(13)

where μt|t and Σt|t represent the posterior mean and co-
variance matrix, respectively, which reflect the updated state
estimation.

C. Dynamic Bilinear Data-driven Modeling

Fig. 2. Dynamic bilinear data-driven block diagram.

Inspired by the Bayesian inference framework, AMD aims
to leverage the generalization capability of data-driven meth-
ods to capture complex transition dynamics within the dy-
namic state-space system. To achieve this, AMD models the
data-driven prior p̃ (xt | y1:t−1) as a fully informed Gaussian
distribution based on historical observations, as previously
defined in Eq. (8). For the neural network architecture, we
take into account the temporal characteristics of data and
employ recurrent neural networks (RNNs) [40] and their
variants to address nonlinear dynamical challenges in the state-
space representation. Specifically, in this study, to balance the
complexity of data-driven modeling with the requirements of
stability and efficiency, we adopt the Gated Recurrent Unit
(GRU) architecture [15] as the core component of the data-
driven module. This choice ensures high scalability and robust
resistance to overfitting.

It should be pointed out that conventional RNN-based
approaches primarily capture system nonlinearity through non-
linear activation functions [31]. The direct combination of
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nonlinear activations with linear transformations often fails to
efficiently approximate highly nonlinear state-space models,
such as the Lorenz dynamic system. More specifically, physi-
cal dynamical systems commonly exhibit bilinear nonlinearity,
which characterizes the multiplicative interaction between
two physical variables [16], [34], [39]. This characteristic is
structurally similar to polynomial decomposition and aligns
with the classical model-driven approach of approximating
nonlinearities via Taylor series expansion. However, conven-
tional activation function-based methods tend to introduce
overly complex approximations [57], making it difficult to
provide physically interpretable dynamic representations for
such systems.

To address these challenges, AMD integrates a bilinear
neural network architecture, in which two parallel linear
layers learn distinct components of the variables, followed
by element-wise multiplication to capture their multiplicative
interactions, and a final linear mapping to produce the bilin-
ear representation. This bilinear architecture enhances inter-
pretability and computational efficiency in dynamic operators,
allowing it to effectively capture complex dynamics using only
dominant linear activation functions. The framework of the
dynamic bilinear data-driven module is illustrated in Fig. 2
and Eq. (14), the DBDD module utilizes a GRU to predict
the current hidden state ht based on historical measurement
data, effectively capturing the intrinsic dynamic transition
process of the system. Building upon ht, a bilinear neural
network is employed to integrate fully connected layers with
state-product operators, explicitly constructing a second-order
polynomial representation. This representation enables the
system to approximate complex intrinsic nonlinear transition
dynamics more effectively.

ht = GRU(yt,ht−1), ϕt = FC1 (FC2(ht)� FC3(ht),ht)

μdata
t = FCμ(ϕt), Σdata

t = FCΣ(ϕt)
(14)

where FC(·) denotes a fully connected neural network layer,
the operator � denotes the element-wise multiplication be-
tween vectors, and ϕ denotes the intermediate hidden state.

To facilitate practical implementation, we model the co-
variance matrix in a constrained diagonal form, ensuring both
numerical stability and ease of computation:

Σdata
t = FCΣ(ϕt) = diag

(
σ2

0 exp (β tanhϕt)
)

(15)

where σ0 denotes the initial covariance estimate, and β ∈ R>0

is a scaling coefficient. The operator diag (·) transforms a
vector into a diagonal matrix of the corresponding size, while
tanh (·) represents the hyperbolic tangent function. Through
this formulation, the neural network constrains the covariance
values within the range σ2

0e
−β to σ2

0e
β , thereby preventing

numerical issues such as divergence caused by excessively
large variances or gradient vanishing due to overly small vari-
ances, ultimately stabilizing the learning process. Moreover,
the bounded interval admits a clear physical interpretation. The
exponential-tanh structure ensures that the data-driven module
converges in a stable and physically meaningful manner, even

when the response is negligible during the initial training phase
or when state estimates are not yet available.

Now, to prevent the DBDD module from overfitting to noisy
measurements and to account for the inherent uncertainty in
the measurement process, we introduce observation perturba-
tions [36] during training, as illustrated in Fig. 1. Specifically,
Gaussian noise v ∼ qv is added to the original measurements
to generate perturbed observations. This strategy improves
model robustness and enhances generalization, enabling the
model to better capture measurement uncertainty and to learn
more representative prior distributions, thereby strengthening
the data representation capability under limited measurements.
This mechanism is introduced only during training. During
inference, this perturbation is disabled, and the model directly
processes the true observations to ensure consistency with the
actual measurement data.

D. Adaptive Weight Adjustment Strategy

Fig. 3. Adaptive Weight Adjustment strategy block diagram.

This subsection introduces an adaptive method for comput-
ing appropriate weighting parameters αt to balance the con-
tributions of data-driven and model-driven components in the
hybrid framework. Since the true system states are generally
unobservable during the estimation process, the system cannot
be explicitly corrected through direct supervision based on
state discrepancies. Instead, it can only infer internal states
indirectly from noisy measurements. Furthermore, incomplete
or inaccurate model-driven representations pose significant
challenges for adaptive weighting, as an incomplete state
cannot be fully assessed through measurements alone.

To address the above identified challenges, we replace
model prior with initial fusion prior and evaluate it using
independent information provided by yt. Specifically, the
weighting parameter is iteratively updated by comparing the
reconstruction errors of the model prior and data prior against
the measurements:

Lossmodel = ‖Htμ
hard
t − yt‖22, Lossdata = ‖Htμ

data
t − yt‖22

where Lossmodel and Lossdata represent the reconstruction
errors of model prior and data prior, respectively.

It should be noted that a larger error indicates a poorer
ability to explain the measurement, which indirectly reflects
a greater deviation from the true state. Therefore, based
on the relative performance of the priors in reconstructing
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measurements, αt is adaptively updated. However, since the
objectives and underlying rationale for weighting adjustments
differ between the training and testing phases, distinct yet
complementary update strategies are employed, as illustrated
in Fig. 3.

• Training Phase: During training, the estimator aims to
encourage the data-driven module to internalize as much
model knowledge as possible. When Lossmodel is large,
it indicates that model-driven prior performs poorly in
reconstruction. However, rather than reducing trust in the
model prior, we further increase its weight to encourage
learning in areas where the current representation is
insufficient.

• Testing Phase: The objective in testing is to estimate
the system’s true state as accurately as possible, with-
out necessarily adhering to the system behavior. When
Lossmodel is large, it implies that model-driven prior has
poor representation capability. Consequently, the model-
driven weight should be reduced to mitigate the impact of
erroneous model priors and improve estimation accuracy.

This complementary design ensures that AMD acquires
strong physical inductive biases during training, while preserv-
ing robustness and flexibility during testing. To implement this
adaptive strategy, we employ a logistic function-based update
mechanism:

Training : αt = αt−1 exp

(
γ · φ

(
Lossmodel + ε

Lossdata + ε

))

Testing : αt = αt−1 exp

(
γ · φ

(
Lossdata + ε

Lossmodel + ε

))
φ(r) =

2

1 + e−(r−1)/δ
− 1

(16)

where ε is a small positive constant to prevent division by zero,
ensuring numerical stability. The logistic function φ(·) struc-
ture smooths the variations in α, preventing abrupt changes
and guaranteeing saturation under extreme error rates, which
preserves flexibility. The parameter γ controls the scaling rate,
while δ determines the sensitivity of φ to error differences. By
tuning these two parameters, the sensitivity of α updates can
be flexibly adapted to different scenarios, thereby enhancing
both stability and adaptability.

Next, to prevent excessively large or small weight param-
eters from causing numerical instability in the prior fusion
process, we apply a clamping operation to constrain αt within
a predefined range [αmin, αmax]. To maintain consistency in the
fusion strategy, when αt reaches its minimum or maximum
threshold, the adaptive soft fusion transitions to either no
fusion (using only the data prior) or conditional hard fusion.
This aligns with the intended role of the weighting parameter
αt.

E. Unsupervised Hybrid Learning Framework

In this subsection, we introduce how AMD adaptively
performs hybrid-driven learning and training in the absence
of ground-truth state annotations. As an unsupervised state
estimation task, our approach is inspired by the optimization

principles of the Variational Autoencoder (VAE) [23], which
seeks to maximize the likelihood of the measurement distri-
bution p(yt | y1:t−1). This is equivalent to minimizing the
negative log marginal likelihood, i.e., − log p(yt | y1:t−1),
which can be reformulated as:

− log p(yt | y1:t−1)

= − log

∫∫
p(yt,xt, zt | y1:t−1)dztdxt

= − log

∫∫
p(yt | xt)p(zt | xt)p(xt | y1:t−1)dztdxt

= − log

∫∫
p(xt | y1:t)p(zt | y1:t)

× p(yt | xt)p(zt | xt)p(xt | y1:t−1)

p(xt | y1:t)p(zt | y1:t)
dztdxt

≤ Ep(xt|y1:t)p(zt|y1:t) [− log p(yt | xt)− log p(zt | xt)

+ log
p(xt | y1:t)

p(xt | y1:t−1)
+ log p(zt | y1:t)

]
= Ep(xt|y1:t)p(zt|y1:t) [− log p(yt | xt)− log p(zt | xt)

+ log
p(xt | y1:t)

p(xt | y1:t−1)
+ log

p(zt | y1:t)

p(zt | y1:t−1)

+ log p(zt | y1:t−1)] (17)

where the third line above is derived under the conditional
independence assumption of observations. From the third to
the fourth line, we apply Jensen’s inequality [44] to transform
the intractable integral into an upper-bound expectation de-
composition. The final term of last line, log p(zt | y1:t−1),
is a model-derived prior based solely on historical states in
Eq. (5). This term does not influence the location of optima or
the gradient trajectory and can thus be regarded as a constant
with respect to learnable parameters. Therefore, it is omitted
in the following analysis.

• Ep(xt|y1:t) [− log p(yt | xt)] corresponds to the negative
log-likelihood of current measurement yt, serving as the
reconstruction loss. This term guides the data-driven com-
ponent to indirectly learn the system’s internal dynamic
state evolution from independent measurements.

• Ep(xt|y1:t)p(zt|y1:t) [− log p(zt | xt)] represents the recon-
struction loss for the model-representable latent state zt,
which penalizes deviations between the learned latent
dynamics and known model-based transition knowledge.
It encourages the data-driven process to conform to
established model priors.

• Ep(xt|y1:t) log
p(xt|y1:t)

p(xt|y1:t−1)
can be rewritten as a Kullback-

Leibler (KL) divergence term between the posterior and
the prior of the state xt, which constrains the learned
posterior to remain close to the one-step predictive prior,
thereby mitigating covariance inflation and stabilizing the
estimation process.

• Ep(zt|y1:t) log
p(zt|y1:t)

p(zt|y1:t−1)
similarly quantifies the discrep-

ancy between the current inferred latent state and its
model-based prediction from the previous timestep. This
term adjusts for inconsistencies between model-driven
and data-driven priors at the latent representation level.

Further interpreting the perspective of the Information Bot-
tleneck principle [27], we formulate the hybrid-driven loss
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function as:

L = Ly + λzLz + βxKLx + βzKLz (18)

where λz governs the strength of the model-based physical
constraint on the latent state zt. When the physical model is
poorly specified but measurement information is reliable, λz

is reduced to avoid overfitting to potentially inaccurate model
knowledge. Conversely, in the presence of a well-defined
model prior, a larger λz enforces a stronger bottleneck, guiding
the learning process toward compact and structured latent
representations, thereby improving convergence and stability.
The weights βx and βz control the contributions of the KL
divergence terms for the estimated states and latent states,
respectively. These can be scheduled to increase linearly over
training, following a β-VAE-inspired annealing strategy.

The first two terms in (18) aim to jointly minimize both
measurement error and model residual, striking a dynamic
balance between data-driven and model-driven trustworthiness.
The latter two terms thus form a dual information bottleneck,
designed not only to stabilize the state estimation process but
also to suppress variance inflation in the latent state space,
helping preserve long-term dynamics and structural memory.

The explicit formulations of each loss component are as
follows:

Ly = Ep(xt|y1:t) [− log p(yt | xt)]

= −1

2

[
‖yt −Htμt|t‖2R−1

t
+ tr(R−1

t HtΣt|tH�
t )

+n log 2π + log detRt]

Lz = Ep(xt|y1:t)p(zt|y1:t) [− log p(zt | xt)]

= −1

2

[
tr(α−1

t Σz
t|t) + tr(α−1

t MtΣ
z
t|tM

�
t )

+r log 2π + log rαt]

KLx = Ep(xt|y1:t) log
p(xt | y1:t)

p(xt | y1:t−1)

=
1

2

[
‖μt|t − μt|t−1‖2Σ−1

t|t−1

− log
detΣt|t−1

detΣt|t

−m+ tr(Σ−1
t|t−1Σt|t)

]
KLz = Ep(zt|y1:t) log

p(zt | y1:t)

p(xt | y1:t−1)

=
1

2

[
‖μz

t|t − μz
t|t−1‖2Σz

t|t−1
−1 − log

detΣz
t|t−1

detΣz
t|t

−r + tr(Σz
t|t−1

−1Σz
t|t)
]

(19)

where m, n and r denote the dimensions of the state, measure-
ment, and state model-representable latent state, respectively.
The term tr (·) represents the trace of a matrix.

F. Discussion

A central challenge in traditional state estimation methods
lies in the limitations imposed by limited data on data-
driven approaches and the interference caused by model un-
certainties in model-driven techniques. Conventional hybrid-
driven methods fail to fundamentally address these issues. The
proposed AMD framework tackles these challenges through a

‘conditional hard fusion + adjustment + adaptive soft fusion’
adaptive cross-coupled fusion strategy, enabling a complemen-
tary integration of data priors and model priors.

AMD leverages known domain model priors to constrain
data representations while simultaneously exploiting the gen-
eralization capabilities of data-driven methods to compensate
for model uncertainties. This adaptive and complementary
interaction allows the framework to overcome the inherent
limitations of each paradigm. Moreover, AMD introduces
an adaptive weight adjustment mechanism that dynamically
balances model constraints and estimation performance across
the training and testing phases, further enhancing data repre-
sentation capability and model robustness.

To further address the nonlinear complexities inherent in
real-world systems, AMD incorporates a dynamic bilinear-
driven module, which enhances both the expressiveness and
robustness of the data-driven representation. Additionally, to
handle scenarios where ground-truth states are inaccessible,
AMD employs an unsupervised hybrid learning strategy that
ensures both learning efficiency and model interpretability.

Overall, AMD achieves a cross-coupled fusion of model-
driven and data-driven paradigms by adaptively leveraging
their respective strengths in an unsupervised manner. Through
the integration of multiple strategies, AMD effectively ad-
dresses the complex challenges faced by conventional hybrid
estimation methods, while robustly and efficiently enhancing
both data representation capability and model robustness. The
training procedure is detailed in Algorithm 1.

Algorithm 1: Training the Adaptive Model-driven and
Data-driven Cross-coupled Estimator (AMD)

while not converged do
for all trajectories y1:T do

Sample Gaussian noise v ∼ qv to generate
observation perturbations;

for t = 1 : T do
// Compute Data Prior
Compute μdata

t and Σdata
t by Eq. (14) ;

// Compute Model Prior
Compute zt by Eq. (3) ;
// Conditional Hard Fusion
Compute μhard

t and Σhard
t by Eq. (9) ;

// Adaptive Weight Adjustment
Compute αt by Eq. (16) ;
// Adaptive Soft Fusion
Compute μsoft

t and Σsoft
t by Eq. (11) ;

// Posterior Estimate Update
Compute μt|t and Σt|t by Eq. (13) ;

end
end
Update trainable parameters θ by Eq. (18) ;

end

Remark 1. In comparison with existing literature, this paper
exhibits the following distinctive novelties.

1) Development of an Adaptive Cross-Coupled Hybrid
Framework: A novel hybrid-driven state estimation
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framework, termed AMD, has been proposed, which
adaptively integrates model-based and data-driven pri-
ors through a two-stage process: an initial hard fusion
followed by a data-aware soft fusion. This structure ad-
dresses the limitations of fixed-weight or heuristic fusion
seen in existing hybrid estimators such as KalmanNet and
DANSE.

2) Formulation of an Unsupervised Variational Learning
Objective: Unlike most data-driven and hybrid methods
that rely on supervised learning or access to ground-
truth states, AMD adopts an unsupervised training ap-
proach inspired by the information bottleneck principle.
This enables effective parameter learning under unknown
states and noisy observations, broadening applicability in
practical scenarios.

3) Design of a Dynamic Bilinear Recurrent Module: To
capture complex nonlinear transition dynamics more ef-
fectively than standard RNNs or GRUs, a dynamic bilin-
ear recurrent structure has been designed. This compo-
nent improves modeling fidelity by incorporating bilinear
interactions reflective of system physics, enhancing the
data-driven prior construction.

4) Implementation of an Adaptive Weight Update Mecha-
nism: A distinct training-testing weight adaptation mecha-
nism has been introduced, allowing AMD to dynamically
adjust the contribution of model and data priors based on
observed reconstruction errors. This improves robustness
under model uncertainty and measurement noise, under
which traditional fusion strategies often fail.

5) Principled Bayesian Fusion with Model Uncertainty
Handling: A reformulation of model priors as pseudo-
likelihoods using exponential penalties has been pro-
posed, allowing AMD to perform soft prior fusion with-
out requiring direct estimation of transition noise co-
variance. This principled Bayesian integration enhances
flexibility and theoretical interpretability.

III. EXPERIMENTS AND RESULTS

This section presents an extensive set of numerical exper-
iments conducted to comprehensively evaluate the proposed
AMD framework. To rigorously assess its capability in ad-
dressing complex dynamics under limited prior knowledge, we
adopt chaotic dynamical systems as challenging benchmark
nonlinear systems. The performance of AMD is evaluated
under various experimental conditions and compared against
several established state estimation approaches, including:

• Model-based EKF and UKF
• Unsupervised hybrid-driven KalmanNet and Danse.
Model-driven approaches generally require full knowledge

of the underlying state-space transition and measurement mod-
els. EKF [6], [24] approximates nonlinear dynamics via first-
order Taylor expansion, while UKF [35] employs an unscented
transformation to construct sigma points for nonlinear moment
estimation. Both approaches are highly dependent on accurate
noise parameter estimation and represent the most widely used
extensions of the Kalman filter for nonlinear state estimation.
These methods serve as strong baselines for evaluating AMD.

For fair comparison, we adopt unsupervised versions of
hybrid methods, excluding purely data-driven models which
are less applicable when partial physical knowledge is avail-
able. KalmanNet assumes access to a linearized model sim-
ilar to EKF but does not require prior knowledge of noise
characteristics. Danse assumes linear measurement systems
with Gaussian noise without requiring knowledge of transition
models.

Inspired by experimental setups in [22], [48], we use syn-
thetic datasets generated by numerically integrating classical
chaotic systems. This design ensures access to ground-truth
state-space models, enabling controlled comparison with tra-
ditional model-based methods and robustness evaluation under
model perturbations. Moreover, access to true states facilitates
quantifiable benchmarking of estimation accuracy.

Experiments are conducted on representative nonlinear
chaotic systems, including the Lorenz attractor [37], Chen
attractor [10], and Rössler attractor [9]. To enhance realism, we
introduce moderate process noise into the dynamical systems,
rendering them uncertain while preserving their stochastic
statistical properties.

Training is performed on an unlabeled dataset Dtrain :={
y
(i)

1:T
(i)
train

}Ntrain

i=1

, while evaluation is carried out on a labeled

test set Dtest :=
{
x
(i)

1:T
(i)
test

,y
(i)

1:T
(i)
test

}Ntest

i=1
.

To assess the accuracy, robustness, and generalization capa-
bilities of each method, we report performance using Mean
Squared Error (MSE) in decibel (dB) scale and Negative
Log-Likelihood (NLL), along with their respective standard
deviations. The evaluation metrics are defined as follows:

MSE =
1

Ntest

Ntest∑
i=1

10 log10
∑T (i)

t=0
‖x(i)

t − μt‖22

NLL =
1

Ntest

Ntest∑
i=1

1

T
(i)
test

T
(i)
test∑

j=1

− log p(x
(i)
j | y(i)

1:j)

(20)

In the results tables, the best values for each metric are
highlighted in bold, and the second-best results are italicized.

A. Experimental Setting

The AMD framework is trained using mini-batch gradient
descent with the Adam optimizer. A learning rate scheduler
and early stopping strategy are employed to prevent overfit-
ting and enhance generalization performance. For the DBDD
component, AMD adopts a two-layer GRU model with 40
hidden units per layer. The final fully connected layer (FC)
is implemented as a single layer with 24 hidden units. The
covariance scaling factor β is set to 3. Through experimental
evaluation, we inject perturbations during training with a
magnitude equivalent to 10% of the observation noise am-
plitude, in order to simulate perturbed measurement noise.
This perturbation level effectively enhances robustness while
ensuring stable training outcomes.

In the experiments, we set αmin = 10−6 and αmax =
106 as empirical bounds. This range is sufficiently broad to
cover most estimation scenarios while preventing the fusion
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TABLE II
Lorenz attractor with fully measurements.

MSE (dB) NLL (×103) Time (×10−1 s)

EKF 3.042 ± 0.352 8.987 ± 8.792 1.257
UKF 3.041 ± 0.352 8.452 ± 8.815 2.759
Danse 3.105 ± 0.357 0.070 ± 0.009 0.005
KalmanNet 21.212 ± 1.206 0.137 ± 0.032 0.869
AMD no 3.061 ± 0.351 0.564 ± 0.056 0.007
AMD 3.052 ± 0.347 0.814 ± 0.078 0.019

mechanism from diverging or collapsing, thereby suppressing
numerical instabilities. In practice, these thresholds can be
adjusted according to the specific task, the reliability of the
model priors, and the quality of the available data.

Unless otherwise specified, AMD employs an incomplete
transition process model, with a known component ratio of
r/m = 2/3. The process mapping matrix is fixed as

Mt = M =

[
0 1 0
0 0 1

]
.

For baseline comparisons, we adopt the official implemen-
tations of KalmanNet [49] and DANSE [21] as provided in
the literature.

B. Lorenz Attractor

In this experiment, we evaluate the performance of the
proposed AMD framework on a nonlinear chaotic dynamical
system, namely, the Lorenz attractor, to demonstrate its com-
petitiveness across multiple dimensions. The Lorenz attractor
[37] is a classical benchmark known for its strong chaos and
high nonlinearity, posing significant challenges for conven-
tional state estimation methods. The discrete-time formulation
of the Lorenz system is given by:

xt = florenz(xt−1) +wt ∈ R
3 (21)

where the nonlinear transition function is defined as:

florenz(xt) = exp

⎛
⎝
⎡
⎣ −10 10 0

28 −1 −xt,1

0 xt,1 −8/3

⎤
⎦Δt

⎞
⎠xt (22)

with a time step of Δt = 0.02 seconds. The process noise
wt ∼ N (0,Q) and the measurement noise vt ∼ N (0,R)
are modeled as independent Gaussian white noise processes,
where Q = q2Im and R = r2In.

a) Fully Measurements: We first evaluate the AMD
framework under a fully measurement setting to highlight
its superiority in capturing latent system dynamics, as well
as its ability to integrate model- and data-driven estimation
approaches. In this configuration, the measurement-to-state
dimension ratio is n/m = 3/3, indicating that the measure-
ments provide a complete representation of the state. The
measurement matrix is defined as:

Ht = H =

⎡
⎣ 1 0 1

0 1 1
0 0 1

⎤
⎦ (23)

The process and measurement noise covariances are set
to q2 = 0.01 and r2 = 0.1, respectively. Performance
comparisons are summarized in Table II. To further investigate

TABLE III
Lorenz attractor with underdetermined measurements.

MSE (dB) NLL (×103) Time (×10−1 s)

EKF 9.484 ± 3.939 10.306 ± 15.363 1.250
UKF 3.168 ± 0.388 9.577 ± 15.272 2.626
Danse 22.977 ± 0.295 96.414 ± 86.820 0.005
KalmanNet 21.858 ± 0.767 0.155 ± 0.024 0.866
AMD full 8.141 ± 3.821 1.560 ± 1.505 0.019
AMD 12.320 ± 3.750 3.010 ± 2.763 0.018

the estimation capability of the data-driven component alone,
we introduce a variant of AMD with no knowledge of the
state transition model (i.e., the transition function is entirely
unknown). Results show that even under this unsupervised
setting, AMD demonstrates competitive real-time estimation
performance, outperforming other hybrid methods. This sug-
gests that the proposed DBDD module effectively captures
nonlinear transition behavior.

When partial knowledge of the transition process is avail-
able, a significant improvement in AMD’s performance is
observed, approaching that of fully model-driven methods.
This demonstrates that available model priors are effectively
leveraged by AMD and validates the advantage of the proposed
adaptive cross-coupled fusion strategy.

Fig. 4. Visualization of Lorenz attractor with underdetermined measurements.

b) Underdetermined Measurements: To further evaluate
the robustness of AMD under data scarcity and its ability to
complement limited model priors, we conduct experiments in
a underdetermined measurement setting, following the setup
described in [21]. The measurement matrix is given by:

Ht = H =

[
1 0 1
0 1 1

]
(24)

In this setting, measurements do not provide a full repre-
sentation of the system state as multiple latent states can
produce identical observations. This inherent ambiguity poses
significant challenges for both data-driven and traditional
model-based estimators. The process and observation noise
covariances are set to Q = 0.01I3 and R = 0.01I2,
respectively.

As shown in Table III, underdetermined measurements
substantially degrade the performance of existing hybrid es-
timation methods. In contrast, AMD maintains competitive
estimation accuracy by effectively leveraging its adaptive
cross-coupled fusion strategy, even when both data-driven and
model-driven components operate under limited information.
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TABLE IV
Lorenz Attractor with mismatched transition dynamics.

MSE (dB) NLL (×103) Time (×10−1 s)

EKF 3.469 ± 0.463 4.457 ± 6.740 1.075
UKF 3.442 ± 0.462 4.414 ± 6.917 2.095
Danse 3.546 ± 0.449 0.040 ± 0.004 0.005
KalmanNet 22.478 ± 0.492 0.178 ± 0.020 0.690
AMD 3.415 ± 0.466 0.085 ± 0.010 0.017

TABLE V
Lorenz Attractor with erroneous transition dynamics.

MSE (dB) NLL (×103) Time (×10−1 s)

EKF 4.831 ± 0.353 0.198 ± 0.019 1.239
UKF 4.638 ± 0.369 0.126 ± 0.011 2.739
Danse 4.539 ± 0.373 0.018 ± 0.011 0.007
KalmanNet 19.038 ± 1.609 0.085 ± 0.026 0.845
AMD 4.668 ± 0.634 0.182 ± 0.029 0.012

We also include a fully model-informed variant of AMD,
where the transition dynamics are entirely known. Under this
configuration, AMD achieves even better estimation accuracy
than the model-based EKF. This indicates that, even when
the model is fully specified, AMD does not degenerate into
a purely model-driven method. Instead, the data-driven prior
remains effective in capturing residual dynamics induced by
noise, model simplifications, or subtle nonlinearities, thereby
providing flexible distributional corrections. In this process,
AMD not only integrates prior model knowledge but also
enhances it through adaptive data-driven mechanisms. Fig. 4
provides a visual comparison of the posterior state estimates
from different methods, illustrating AMD’s superior perfor-
mance in reconstructing system trajectories under constrained
measurement conditions.

c) Mismatched Transition Dynamics: To assess the ro-
bustness of AMD under model uncertainty, we further evaluate
its performance in the presence of mismatched transition dy-
namics. In this experiment, instead of providing the true non-
linear transition function, we approximate the system evolution
using a second-order Taylor expansion, which serves as a
coarse approximation of the true dynamics. The measurement
model follows the full observation setup defined in Eq. (23).
The process and measurement noise covariances are set to
q2 = 0.1 and r2 = 0.1, respectively.

As shown in Table IV, the performance of model-driven
methods deteriorates significantly due to the mismatch in
the transition function. In contrast, AMD remains robust
under such structural model mismatch, effectively leveraging
data-driven priors to compensate for the uncertainty in the
model and thereby enhancing the model robustness. Even with
only approximate or incomplete transition information, AMD
consistently outperforms traditional model-driven estimators,
demonstrating its strong adaptability in uncertain environ-
ments.

d) Erroneous Transition Dynamics: Beyond partial or
mismatched knowledge, model uncertainty may also manifest
as errors in the known prior dynamics. In this experiment,
we simulate such errors by introducing a slight rotational
perturbation to the transition matrix, rotating it by θ = 1◦. This

TABLE VI
Chen and Rössler Attractor with subsampled measurements.

System Method MSE (dB) NLL (×102) Time (×10−1 s)

Chen
Attractor

EKF 0.574 ± 1.752 1.481 ± 0.272 1.255
UKF -1.115 ± 0.730 0.383 ± 0.076 2.665
Danse 24.430 ± 0.487 31472.000 ± 12099.058 0.004
AMD full 0.456 ± 2.166 3.055 ± 1.322 0.010
AMD 2.519 ± 3.999 4.086 ± 3.429 0.010

Rössler
Attractor

EKF -16.811 ± 0.309 9.962 ± 0.001 2.489
UKF -16.981 ± 0.315 9.960 ± 0.001 0.380
Danse -2.674 ± 4.161 10.737 ± 9.367 0.005
AMD full -12.356 ± 1.575 0.057 ± 0.045 0.008
AMD -12.988 ± 0.480 -0.007 ± 0.004 0.008

small perturbation introduces a model bias of approximately
0.55% [48]. The measurement model again follows the full
observation configuration in Eq. (23). The noise covariances
are set to Q = 0.1I3 for the process noise and R = 0.01I3
for the observation noise.

As shown in Table V, such model inaccuracies lead to
degradation in the performance of model-driven estimators.
In contrast, AMD is able to partially compensate for the
erroneous model through data-driven learning, outperforming
the model-based EKF. However, its performance is slightly
inferior to the hybrid DANSE method. This is attributed to
the fact that DANSE operates independently of an explicit
transition model, while the hybrid-driven AMD incorporates
(potentially inaccurate) model information, which cannot be
fully disregarded during inference.

C. Another Two More Chaotic Dynamical Systems

As a final experiment, we evaluate the generalization ability
of AMD on two additional chaotic dynamical systems: the
Chen attractor [10] and the Rössler attractor [9]. The mea-
surement matrix follows the underdetermined configuration
defined in Eq. (24). The process and observation noise co-
variances are set to q2 = 0.01 and r2 = 0.1, respectively.

The results, summarized in Table VI, demonstrate that
AMD consistently achieves competitive estimation perfor-
mance across different chaotic systems, effectively enhancing
both data representation and model robustness. This high-
lights the framework’s adaptability and robustness in handling
complex, nonlinear dynamical processes beyond the Lorenz
system.

IV. CONCLUSION

A novel state estimation framework, AMD, has been
proposed in this paper. This framework adopts a hybrid-
driven architecture that has adaptively cross-coupled prior
information and has effectively addressed challenges posed
by limited data and model uncertainty. By complementar-
ily integrating the strengths of both model-driven and data-
driven approaches while mitigating their respective limitations,
AMD has enhanced data representation and model robustness,
thereby improving estimation accuracy across a wide range
of conditions. Extensive evaluations have been carried out
on three representative nonlinear chaotic dynamical systems
under diverse state estimation scenarios. The results have
demonstrated that AMD has consistently delivered competitive
performance, highlighting its effectiveness and adaptability
in complex and challenging environments. Future work will
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focus on extending the AMD framework to estimation tasks
involving non-sensor modalities or partially known observa-
tion models [38]. In addition, the robustness of AMD under
mismatched training and testing conditions will be explored,
along with its applicability to real-world industrial control
scenarios.
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