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Abstract—In the recent years, researchers made significant
progress in electroencephalogram (EEG) classification tasks using
deep neural networks, especially in brain-computer interface
(BCI) systems. BCI systems rely on EEG signals for effective
human-computer interaction, and deep neural networks have
shown excellent performance in processing EEG signals. How-
ever, backdoor attack have a significant impact on the security
of EEG-based BCI systems. In this paper, a novel multi-scale
Shapley adaptation pruning (MSAP) method is proposed to solve
the security problem caused by backdoor attack. In the proposed
MSAP, the multi-scale Shapley segmented mapping method is
used to accurately locate the backdoor weights. Subsequently,
the cost function is utilized to adaptively prune the backdoor
weights to ensure normal classification. Ultimately, the validity of
the experiments is verified on the BCI competition public datasets
(BCI-III-IVb, BCI-III-IVa, and BCI-IV-1a). The results show that
the proposed MSAP method outperforms other pruning methods
in defending EEG-based BCI systems against backdoor attack,
maintaining a high baseline classification accuracy while reducing
the attack success rate.
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I. INTRODUCTION

Brain-computer interface (BCI) systems establish an interac-
tion bridge between users and external devices [6], [32], [43].
In recent years, several types of BCI systems have been in-
vented, such as invasive, semi-invasive, and non-invasive [58].
Electroencephalogram (EEG), as a prevalent input method in
BCI systems [57], efficiently extracts brain electrical signals
[45], assisting researchers in comprehending the activities
within distinct brain regions [1], [17]. To facilitate system-
atic research into brain region features, various deep neural
networks (DNNs) have been developed for EEG classification
in BCI systems [23], [56], [66]. Although the utilization of
DNNs in BCI systems has favorable outcomes [29], [33], [62],
[71], the black-box characteristic of DNNs poses a significant
concern: security [65], [70].

Recent research suggests that EEG-based BCI systems are
vulnerable and susceptible to malicious manipulation by at-
tackers [60], [67]. A novel attack method known as a backdoor
attack has been applied to the classification of EEG signals,
leading to adverse effects [8], [14], [50]. The backdoor attack
involves injecting data with specific triggers into the training
set to create an infected model [31]. Furthermore, attackers
have the capability to manipulate the infected model’s behavior
on specific data using triggers [18], yet this manipulation does
not adversely affect the model’s performance on other clean
data [26]. When researchers employ BCI datasets that are
mixed with trigger samples, the network becomes infected,
yielding inaccurate classification results.

To mitigate the substantial security risks arising from back-
door attack, defense methods against such vulnerabilities have
continuously evolved [2], [59]. Existing backdoor defense
methods are predominantly categorized into two groups: one
focuses on detecting the backdoor, while the other aims
to eliminate the backdoor trigger [39]. The former mainly
involves detecting the presence of the backdoor in the model
and achieving defense by filtering the infected samples or re-
fusing to deploy the infection model [11], [27]. This detection
method can quickly identify whether a model has backdoor
and is suitable for scenarios that require backdoor models to
be filtered out promptly [36], [61]. Moreover, the detection
method is extremely valuable for situations where the model
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cannot be modified directly, such as with black-box models
[16].

The latter method usually employs pruning of relevant back-
door neurons and retraining of the infection model to prevent
backdoor behavior [63]. The pruning defense method can
directly repair the model, enhancing its security after detecting
the backdoor [24]. Besides, the backdoor effect on the model is
eliminated basically, maintaining normal performance even in
the presence of triggers [55]. Compared with detecting defense
method, pruning defense methods are becoming widespread
[19], as they not only effectively eliminate the influence of
backdoor triggers, but also improve the model’s robustness
and computing speed and reduce complexity [13]. While
substantial research has been conducted on pruning-related
backdoor defense strategies, they are more prevalent in the
field of image processing and speech [38], [47], [52], [69].
For BCI systems, systematic research on backdoor defense is
still lacking and the challenge of backdoor defense is tied to
the following two main issues:

(1) EEG Signals Issue. EEG signals are highly complex
physiological signals that contain substantial amount of spatial
and time-frequency information [37], captured through elec-
trodes placed on an EEG cap [7]. The spatial characteristics
of EEG signals arise from the fact that EEG activity varies
from different regions, and multiple electrode channels are
used to capture activity in different brain regions. Given the
inherent spatial characteristics of EEG signals [49], attackers
can exploit multiple electrode channels to hide backdoor trig-
gers within the signals captured from different brain regions,
increasing the difficulty of defense [34]. Additionally, EEG
signals exhibit rich variations in the frequency domain, with
different frequency bands associated with various cognitive
states and brain activities (e.g., alpha, beta, delta, and theta
waves). Due to the limited ability of the human eye to
distinguish frequency domain signals, attackers can insert
subtle frequency domain triggers to activate the backdoor.
These characteristics make accurate backdoor defense for EEG
signals particularly challenging.

(2) Subject Issue. EEG signals are significantly influenced
by individual differences [42]. Variations in brain structure,
thinking patterns, and levels of fatigue among subjects can lead
to significant differences in the characteristics of the collected
EEG signals, such as frequency bands and amplitudes [5],
[12]. As a result, attackers can exploit these differences to
embed backdoor triggers into the signal of specific individual,
evading detection [4]. Additionally, a subject’s emotional
and cognitive states change over time, further increasing the
variability of EEG signals. Moreover, intra-subject differences
due to variation increase the challenge of model generalization
capabilities, making it difficult for the defense system to si-
multaneously adapt to the signaling characteristics of different
subjects. The above mentioned subject characteristics suggest
that backdoor defense tasks may present poorer results when
facing new subjects, greatly affecting the defense capability.

To incorporate the above issues in the field of BCI, a
method with multi-scale Shapley adaptation pruning (MSAP)
is proposed, consisting of multi-scale segmented Shapley
mapping and adaptive backdoor weight cost pruning. Shapley

value, a mathematical method for distributing the contributions
of the various players in a cooperative game, is the critical
component of multi-scale segmented Shapley mapping [53]. In
the context of DNNs, the Shapley value accurately reflects the
significance of each neuron’s contribution to the classification
by evaluating the contribution of the neuron in all possible
permutations [21]. Therefore, the Shapley value can be used
to identify neurons that are overreacting to specific malicious
inputs (e.g., backdoor attack). In contrast to conventional
methods based on local features (e.g., weights or activation
values), the Shapley value evaluates the contribution of neu-
rons from an objective perspective and avoids the inadvertent
removal of neurons that are important to the model’s tasks
[46].

The multi-scale segmented mapping has been proposed to
solve the inherent complexity problem of Shapley values via
mapping global information to multidimensional information.
Moreover, the backdoor weights can be obtained by dividing
the neuron regions with different scales and calculating them
with the initial network weights. Besides, an elaborate cost
function is designed to precisely converge on the position
of the backdoor weights through iterative loops [9], [51].
Ultimately, a clean neural network is obtained by setting a
threshold to evaluate the current convergence. Building upon
the above discussion, the main contributions of this paper can
be summarized as follows:

(1) This study investigates the vulnerability of EEG to
backdoor attack and provides valuable perspectives on the
effectiveness of EEG-based BCI systems in backdoor defense;

(2) A novel approach known as multi-scale Shapley seg-
mented mapping is used to optimize high complexity prob-
lems with Shapley value, and the contribution of backdoor
weights can be efficiently estimated by computing the global
information of the network through multi-scale mapping;

(3) A new cost function is designed to adaptively select
backdoor weights for pruning while adjusting the network’s
structure, effectively preventing the degradation of the classi-
fication accuracy of clean data and reducing the attack success
rate on infected data;

(4) The proposed novel MSAP method is compared and
experimented on three publicly available BCI datasets to
evaluate the effectiveness in EEG-based backdoor defense
scenarios for BCI systems.

The remaining sections of the paper are illustrated as fol-
lows. Section II introduces the description and formulation of
the challenges posed by backdoor attack in EEG classification.
Section III provides the detailed description of the multi-
scale Shapley segmented mapping and adaptive cost pruning
that comprises the MSAP. Section IV provides a visualization
of the results. Finally, section V summarizes the paper and
discusses future work.

II. PROBLEM FORMULATION

The successful execution of a backdoor attack in deep
neural networks (DNNs) for EEG classification implies that
the network has additional learning capacity to grasp the
attacker’s reverse-triggered behavior [15]. To illustrate the
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attacker’s backdoor attack process for EEG signal categoriza-
tion, DNNs in EEG are defined. Given an EEG classification
dataset E = {xi, yi}Ni=1, where xi ∈ X ⊂ Rc×t is the
i-th EEG trial with c number of channels and t sampling
time, yi ∈ Y = {1, ..., T} is the task label (such as left
hand and right foot) in MI, and N is the number of EEG
trials. The DNNs include a feature extractor F and a task
classifier C, both of which can learn and classify tasks on
EEG classification dataset thus obtaining a benign network B.
The benign network B can map EEG trials X into the space
of task labels Y , i.e., B : X → Y .

For the EEG classification dataset, the attacker’s objective
is to construct a malicious infection network I that will
misclassify the EEG data E containing triggers with malicious
label ym ∈ Y , which is intentionally specified by the attacker.
The malicious triggers, denoted as k, encompass elements
like slight time-frequency perturbations and are crucial for
the backdoor attack. Thus, the infected EEG data can be
represented as follows:

H(E, k) = E +∆(k) (1)

where the ∆(·) represents the function generating the backdoor
perturbation based on the trigger k and H(·) represents the
hybrid function that combines the perturbation generated by
the backdoor trigger with data E. The process of an attacker
exploiting the backdoor attack is illustrated in Fig. 1. The
infected EEG with backdoor triggers is trained to establish
the decision boundary for the infected network, causing the
classification of normal labels to be altered to the classification
result of malicious labels.

Normal Training Backdoor Attack

Infected Network

Decision Boundary

Normal Network

Decision Boundary

Label A

Label B

Malicious Label

Benign Network

Decision Boundary

Backdoor Trigger

Fig. 1. Effect of backdoor attack on model classification boundary.

Based on the above description of the backdoor attack [68],
the attacker’s behavior can be defined by:{

I(H(E, k)) = ym,
I(E) = B(E) = yi,

s.t. E ∈ E , |k| ≤ m (2)

where I represents the infected network, B represents the
benign network, E is the EEG classification dataset, E is the
EEG data, yi is the original classification label, ym and k are
the malicious label and trigger created by the attacker, and m
is the maximum number of links in the trigger. The complexity
of EEG signals within the time-frequency and spatial domains,
combined with the insertion of triggers k across channel
number c and sampling time t, significantly enhances the
stealthiness of backdoor attack. This paper investigates the
security problem of backdoor attack in the EEG classification
task and proposes a concrete approach to solve this problem.

III. METHODOLOGY

The overall structure of the proposed method MSAP is
shown in Fig. 2. For the infected EEG (derived from the
backdoor injection by the attacker), the training of the deep
neural networks (DNNs) results in an infected network. The
multi-scale segmented Shapley mapping takes the infected
network as input and computes the backdoor weight matrix
associated with the backdoor attack. Then, adaptive backdoor
weight cost pruning is employed to refine the pruning process
of the backdoor weight matrix, leading to the acquisition
of the optimally pruned network. The following sections
offer a comprehensive explanation of MSAP methodological
components.

A. Shapley Value in Backdoor Defense

Shapley value, a concept in cooperative game theory, is
devised to allocate contribution value to participants in a coali-
tional game, employing the concept of marginal contribution
[30]. In the computation of the Shapley value, participants
are collectively referred to as the set D = {di}fi=1, and
the coalitional game is defined by a function that maps any
subset S of participants to contribution value [3]. The value
of a participant’s contribution is computed using a score
function v(S) : P(D) → R, where P(D) represents the
power set of D (the set consisting of all subsets of D). The
marginal contribution represents the variation in the value of
a subset S resulting from the inclusion of a participant ei
(v(S ∪ {ei})− v(S)) [21].

In the realm of backdoor defense, it is imperative to
accurately estimate the distribution of backdoor neurons and
assess their contributions. Let N = {ni}qi=1 denote the set
of q neurons in the infected network, and the neuron ni is
considered as a participant to compute the value of the con-
tribution. The score function v(Sn) is computed based on the
neuron subset Sn ⊆ N , using the attack success rate (ASR),
which is a measure used to assess the effectiveness of attack
in the infected network. Subsequently, to equitably assess the
neuron’s impact on the ASR, the marginal contribution of each
neuron is computed and then averaged across all possible
combinations of neuron subsets Sn to which ni does not
belong (Sn ⊆ N \ {ni}).

The Shapley value ϕ for the backdoor defense can be
expressed as:

ϕ(ni) =
∑

Sn⊆N\{ni}

Wn · (v(Sn ∪ {ni})− v(Sn)) (3)

where Wn = |Sn|!(|N |−|Sn|−1)!
|N |! represents the weighted av-

erage of neurons (indicating the different weights used in
computing each neuron’s marginal contribution for various
subsets Sn), reflecting the importance of each combination.
Besides, the symbols |Sn| and |N | represent the cardinality of
the sets Sn and N (denoting the number of elements within the
set). Nevertheless, the computation of the Shapley value ne-
cessitates examining all combinatorial cases of neurons in the
set N , resulting in a time complexity of O(q!). To mitigate the
extensive computation time, a multi-scale segmented Shapley
mapping method is introduced as an optimization strategy.
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Fig. 2. The structure of the proposed multi-scale Shapley adaptation pruning (MSAP), where the pale blue block represents the input and the EEG data
infection, the light yellow block represents the multi-scale segmented Shapley mapping, the pink block represents the adaptive backdoor weight cost pruning,
and the red cross signs denote the pruning operations that prune top m backdoor weights at the network and matrix levels (the gradation of colors in weight
matrix represents the magnitude of the weight value).

Remark 1: Given the complexity of the BCI system, with
intricate interactions between EEG signals and neural network
architectures, accurate pruning becomes even more important.
Notably, using the Shapley value to assess neuron contribu-
tions in backdoor defense provides an accurate evaluation of
each backdoor neuron’s impact on ASR. By considering all
possible permutations of neurons, the Shapley value effectively
identifies the backdoor neurons with the prominent malicious
effect. Therefore, backdoor defense becomes reliable by prun-
ing of key neurons based on Shapley value in the BCI system.

B. Multi-Scale Segmented Shapley Mapping

The process of multi-scale segmented Shapley mapping
is shown in Fig. 3, demonstrating the mapping segmenta-
tion rules and the computation process of Shapley value.
By progressively scaling, the original infected network I is
segmented into two distinct versions of the infected network.
The Shapley values for neuron sets are computed at both
regional and sub-regional scales of the infected network.
Finally, the impact of the backdoor attack can be estimated by
multiplying the two proportional information with the weight
of the infected network.

1) Regional Segmented Shapley Mapping: The distribution
of backdoor neurons at the regional scale is explored by re-
gional segmented Shapley mapping, revealing the relationship
between the regional scale of the infected network and the
Shapley value. To obtain the regional scale infected network,
q̂ neurons in the infected network are collected to form a
set of regional scale neurons r = {ni}q̂i=1. By repeating the
above process u times, disjoint sets of regional scale neurons
are obtained to form the regional scale infected network

Fig. 3. The rule and computational procedure for multi-scale Shapley
segmented mapping.

R = {ri}ui=1(uq̂ = q, u ≪ q). Therefore, the regional scale
Shapley value is denoted by:

ϕ(ri) =
∑

Sr⊆R\{ri}

W r · (v(Sr ∪ {ri})− v(Sr)) (4)

where W r = |Sr|!(|R|−|Sr|−1)!
|R|! represents the average weight

of the neuronal regions, indicating the significance of each
neuronal region r across various regional subsets Sr.

2) Sub-Regional Segmented Shapley Mapping: To further
explore the distribution information of backdoor neurons in the
infected network, sub-regional segmented Shapley mapping is
proposed. The objective is to deepen the scale of the regional



5

scale infected network, bringing the sub-regional scale neurons
in closer alignment with the contribution values of individual
neurons. The set of sub-regional scale neurons r̃ = {ni}q̃i=1 ⊆
r is aggregated by q̃ neurons in the infected network. By
repeating this process z times, disjoint sets of sub-regional
scale neurons are derived, forming the sub-regional scale
infected network R̃ = {r̃i}zi=1(zq̃ = q, z ≪ q).Consequently,
the sub-regional scale Shapley value can be defined by:

ϕ(r̃i) =
∑

Ss⊆R̃\{r̃i}

W s · (v(Ss ∪ {r̃i})− v(Ss)) (5)

where W s = |Ss|!(|R̃|−|Ss|−1)!

|R̃|!
denotes the average weight of

neurons at the sub-region scale, signifying the importance of
r̃ within any subset Ss of sub-region.

3) Acquisition of Backdoor Weight: Both regional and sub-
regional scale mappings explore the distribution of backdoor
neurons. However, aggregating neurons across these scales
restricts a detailed understanding of each neuron’s role. Since
network weights determine the importance of information in
neurons [54], the impact of backdoor attack can be assessed
by multiplying the infected network I’s weight matrix W
with scalar Shapley value from multi-scale segmented Shapley
mapping, as demonstrated by:

Wϕ = ϕ(r)ϕ(r̃)W (6)

In the formula, Wϕ = [ωϕ
1 , ..., ω

ϕ
j ]

T is the backdoor weight
matrix, where ωϕ

j is the backdoor weight that indicates the
magnitude of the impact of the backdoor attack on the infected
network. By pruning the top m backdoor weights in the
infected network, the weights that significantly contribute to
such attacks are effectively removed, thereby reducing the
ASR in EEG tasks.

Remark 2: It is notable that multi-scale segmented Shapley
mapping by dividing the infected network into regional scale
and sub-regional scale. By providing a finer-grained view,
the computation of Shapley value accurately identifies the
contribution of backdoor neurons to the overall ASR. Further-
more, the definition of the backdoor weight matrix effectively
quantifies the impact of each neuron on the backdoor attack,
allowing for precise pruning to reduce the contribution to the
ASR and significantly enhance defense performance.

C. Adaptive Backdoor Weight Cost Pruning

The backdoor weight matrix reveals the relationship be-
tween the weights of the infected network and the magnitude
of their contributions to the backdoor attack. Direct pruning of
associated backdoor weight information from the matrix can
help reduce the risk of backdoor attack. However, extensive
direct pruning of the backdoor weights leads to accuracy
(ACC) degradation to categorize clean data for the infected
network. To address the above issues, this paper presents
adaptive backdoor weight cost pruning, as depicted in Fig. 4,
with the primary objective of reducing the ASR in the infected
network while preserving the ACC for clean data.

Adaptive backdoor weight cost pruning proceeds by pre-
liminary pruning according to the magnitude of weights in

the backdoor weight matrix. By pruning the top m backdoor
weights in the infected network, a significant reduction in
the ASR is achieved. Subsequently, the pre-pruned network
undergoes fine-tuning to adjust the current network’s weight
distribution. Before and after fine-tuning, the parameters of the
pre-pruned and fine-tuned network are input into a specially
designed cost function. The suitability of the preliminary
backdoor weights pruning is evaluated using the output of the
cost function. Ultimately, the pruning positions and quantities
of backdoor weights are reselected in a supervised manner
based on the cost function output to achieve optimal selection.
The following paragraphs thoroughly describe the method of
adaptive backdoor weight cost pruning.

Threshold

Pruned 

Network

m2

m3

m1

m2

m3

m1 i2

i1

Reselection 

Mechanism

Infected 

Network

Pre-Pruned

Network

Fine-Tuned

Network

Cost Function

Design

ACCpp ASRpp

ACCft ASRft Loss

No

Yes

ACC ASR Loss

Fig. 4. The flowchart of adaptive backdoor weight cost pruning.

1) Backdoor Weight-Based Preliminary Pruning: In the
infected network, the distribution information of backdoor
weights impacts ASR and ACC. To minimize the adverse
impact on ACC during the direct pruning of backdoor weights,
a preliminary pruning strategy is proposed. Based on the
backdoor weight matrix from the multi-scale segmented Shap-
ley mapping, the weights are ordered by magnitude. The
preliminary pruning removes the top m backdoor weights,
followed by inputting validation data (containing both infected
and clean data) to observe the ASR and ACC of the pre-pruned
network Ip.

2) Fine-Tuning: To mitigate the adverse impact on ACC
caused by preliminary pruning, fine-tuning is implemented
on the pre-pruned network to adjust the weight space struc-
ture. The network post-fine-tuning is designated as fine-tuned
network If . Simultaneously, the top m backdoor weights re-
moved in the preliminary pruning process are frozen to ensure
that the ASR does not experience substantial improvement.
The optimization of weight spatial distribution in the fine-
tuned network is defined by:

ωt̃+1 = ωt̃ − η · ∇L(ωt̃) (7)

where ωt̃ represents the weight of the fine-tuned network at
time t̃, ωt̃+1 represents the weight of the fine-tuned network
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updated at time t̃+1, η is the learning rate and ∇L is the
gradient.

During the fine-tuning process, the ASR increases slightly
as the weights of the fine-tuned network are optimized, since
the unpruned backdoor weights in the corresponding network
are unintentionally strengthened [54]. Moreover, fine-tuning
increases the complexity of the fine-tuned network, potentially
obscuring backdoor weights and complicating their detection.
Therefore, a specially designed cost function is established,
aiming to reduce the ASR of the fine-tuned network.

3) Cost Function Design: As discussed in the previous
section, even though the top m backdoor weights pruned
preliminarily are frozen, changes in the fine-tuned network’s
weight distribution still lead to a slight increase in the ASR.
However, the objective of backdoor defense is to achieve a
pruned network with low ASR and high ACC. Therefore,
based on updated pre-pruned network and fine-tuned network
parameters (ASR, ACC, L), this paper designs a new cost
function during the fine-tuning process.

The specific cost function designed based on the fine-tuning
updated parameters is denoted by:

Jbest = argmin(L+ α∆ASR+ β∆ACC) (8)

where α and β are the hyperparameters satisfying α, β ≥ 0
and α + β = 1, which can be adjusted based on the importance
of ∆ASR, ∆ACC. By adjusting two hyperparameters, a
dynamic balance between ASR and ACC in the infected
network is achieved. L represents the loss function of the fine-
tuned network and ∆ represents the amount of changes. The
amount of changes in ASR and ACC are defined by:{

∆ASR = |ASRpp −ASRft|
∆ACC = |ACCpp −ACCft|

(9)

where ASRpp and ACCpp represent the ASR and ACC of
the pre-pruned network Ip respectively, ASRft and ACCft

represent the ASR and ACC of the fine-tuned network If
respectively.

4) Reselection Mechanism: The value of the cost func-
tion J reflects the immediate effects of selecting backdoor
weights for pruning on the pre-pruned network. To achieve
the optimal value of the cost function, backdoor weights need
to be reselected, dynamically increasing the weight number
in each epoch. The specific mathematical expression for the
reselection mechanism is defined by:

W̃ =

{
S(Ŵ,m), if J ≤ θ

S(Ŵ,m+ i), if J > θ
s.t. W̃ ⊆ Ŵ (10)

where Ŵ = {ωϕ
1 , ω

ϕ
2 , . . . , ω

ϕ
j }

Mapping←−−−− Wϕ = [ωϕ
1 , ..., ω

ϕ
j ]

T

represents the set obtained by mapping the backdoor weight
matrix Wϕ, and W̃ represents the set of backdoor weights
selected for pruning. S represents the selection function for
the backdoor weights, where m, i ∈ N are used as inputs to
select that number of backdoor weights pruned from the given
Ŵ . Based on empirical analysis, a threshold θ is established
to evaluate the cost function’s output. Once Jbest reaches the

threshold, the network is identified as the pruned network P ,
and the current ASR and ACC with clean data are recorded.

The pseudocode of the proposed multi-scale Shapley adap-
tation pruning (MSAP) is shown in Algorithm 1.

Algorithm 1: Multi-Scale Shapley Adaptation Pruning
Input:
Clean EEG data: E
Infected EEG data: H(E, k)
Infected network: I
Output:
Optimal result of clean data: ACC
Optimal result of infected data: ASR

1 Initialize the parameters of the network
2 Obtain scale infected networks R and R̃ from infected

network I;
3 Obtain the weight matrix W from infected network I;
4 Compute regional scale Shapley value ϕ(r) by (4) with R;
5 Compute sub-regional scale Shapley value ϕ(r̃) by (5) with

R̃;
6 Compute backdoor weight matrix Wϕ by (6) with W;
7 for each epoch do
8 Obtain pre-pruned network Ip with preliminary pruning;
9 Obtain fine-tuned network If with fine-tuning;

10 Compute ACCpp and ASRpp on the pre-pruned
network;

11 Compute ACCft, ASRft and L on the fine-tuned
network;

12 Compute cost function Jbest by (8), (9);
13 if Jbest < threshold then
14 Record the optimal result of ACC and ASR;
15 end
16 else
17 Reselect backdoor weights for preliminary pruning;
18 end
19 end
20 return Optimal result ACC and ASR

IV. EXPERIMENT AND RESULT ANALYSIS

In this section, to verify the effectiveness of the proposed
MSAP method, backdoor defense experiments are conducted
using the proposed methods and other state-of-the-art methods.
In particular, experiments are performed on three open-access
BCI public datasets: BCI competition III-IVb dataset (BCI-III-
IVb), BCI competition III-IVa dataset (BCI-III-IVa) and BCI
competition 1a dataset (BCI-IV-1a).

A. Dataset Description

1) Description of BCI-III-IVb dataset: The BCI-III-IVb
dataset is composed of MI (motor imagery) signals collected
from healthy subject seated comfortably with their arms on
the armrests. The subject performed an MI task lasting 3.5
seconds, succeeded by a relaxation period ranging from 1.75
to 2.25 seconds. All 210 samples are recorded utilizing 118
electrode channels at a sampling frequency of 100 Hz. For the
subject, two classes consist of 210 samples: class 1 for the
left hand and class 2 for the right foot. Prior to analysis, the
raw MI data undergo preprocessing, where signal sequences
are filtered to accurately reflect the characteristics of the MI
tasks.
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2) Description of BCI-III-IVa dataset: The BCI-III-IVa
dataset consists of MI signals recorded from five healthy
subjects seated comfortably with their arms on the armrests.
Each subject performed a 3.5-second MI task, followed by a
relaxation period of 1.75 to 2.25 seconds. Three MI tasks are
used: left hand (L), right hand (R), and right foot (F). Two
types of visual stimuli are presented: fixed letters behind a
cross and randomly moving objects, which could induce eye
movements. The dataset includes EEG signals from 118 chan-
nels and 280 trial markers for each subject. Before analysis,
the raw MI data undergoes preprocessing, including filtering of
the signal sequences to accurately capture the characteristics
of the MI tasks.

3) Description of BCI-IV-1a dataset: The BCI-IV-1a
dataset consists of EEG recordings from healthy subjects per-
forming MI tasks without feedback. The subjects are initially
presented with a 4-second fixation on a computer screen,
which serves as a cue for the motor imagery task. A total
of 200 trials are recorded using 59 electrodes at a sampling
rate of 100 Hz. Seven participants independently perform the
task, generating two types of EEG data: one for left-handed
imagery and another for right-handed imagery. The raw MI
signals undergo preprocessing, including downsampling and
filtering, to produce sequences that accurately capture the
essential features of the MI signals.

B. Experiment Settings

The proposed method, multi-scale Shapley adaptation prun-
ing (MSAP), is compared with 8 backdoor defense methods:
Fine-Tuning (FT) [22], Fine-Pruning (FP) [35], stochastic
activation pruning (SAP) [10], adversarial neuron pruning
(ANP) [55], gradient-based model pruning (GBMP) [13], re-
gional Shapley pruning (RSP), multi-scale Shapley segmented
pruning (MSSP), and multi-scale Shapley segmented pruning
based on fine-tuning (MSSP-FT). The RSP, MSSP and MSSP-
FT are used as ablation studies containing regional Shapley
information, multi-scale segmented Shapley mappings and
fine-tuning on its basis. Besides, all backdoor defense methods
are executed on 4 advanced CNN architectures: EEGNet [25],
EEGInception [64], DeepConvNet [44], and ShallowConvNet.
The comparison methods are introduced in detail as follows:

1) FT: a direct backdoor defense approach employs data
fine-tuning to bolster the model’s resistance against backdoor
attack;

2) FP: an effective method streamlines parameters and
reduces backdoor attack risks, enhancing model efficiency and
security;

3) SAP: a stochastic pruning technique, inspired by fine-
pruning, further enhances the streamlining efficiency of deep
neural networks;

4) ANP: a method utilizes a hierarchical attention mecha-
nism to dynamically prioritize important features, improving
both accuracy and computational efficiency;

5) GBMP: a method uses gradient-based pruning strategy,
leveraging the gradient of the forgetfulness loss to identify and
remove backdoor elements;

6) RSP: A pruning method is processed using only re-
gional scale information to compute the approximate backdoor
weight distribution;

7) MSSP: a direct pruning approach targets the top m
backdoor weights, computed by the multi-scale segmented
Shapley mapping;

8) MSSP-FT: an optimal pruning strategy employs multi-
scale Shapley segmented pruning, coupled with fine-tuning,
to enhance classification outcomes.

The fulfill CNN architectures mentioned above are intro-
duced in detail as follows:

1) EEGNet: a carefully designed CNN architecture, integrat-
ing deep and separable convolutions, is specialized for EEG-
based BCI and performs well in EEG classification;

2) EEGInception: a multi-branch CNN architecture, en-
hanced with an inception module, is employed for effective
EEG classification;

3) DeepConvNet: a deep CNN architecture, influenced by
computer vision techniques, is characterized by its extensive
use of filters and small kernel sizes;

4) ShallowConvNet: a shallow CNN architecture, motivated
by the filter bank common spatial patterns, employs larger
kernel sizes compared to DeepConvNet.

To verify the effectiveness of the proposed multi-scale
Shapley adaptation pruning (MSAP) method, experiments are
conducted on all the methods mentioned above under CNN
architecture. In the experiments, the initial learning rate is
fixed at 0.001 and optimized by grid search, with the batch size
and the random seed set to 36 and 24, respectively. The number
of neurons u, z of regional and sub-regional scale infected
networks is set to 4, 16, respectively. The hyperparameters α,
β in the cost function are set to 0.6 and 0.4, respectively, and
the threshold θ for judging the cost function is set to 0.2. The
adaptive moment estimation is chosen as the optimizer and
the learning rate is decayed every 25 epochs by the multi-step
scheduler. All methods are implemented in Python utilizing
the PyTorch framework, and the hardware parameters of the
training platform are 32 Intel(R) Xeon(R) Gold 5218 CPUs,
8 GeForce RTX 2080Ti 11GB GPUs, and 180GB RAM.

C. Attack Scenarios

1) Narrow Period Pulse (NPP): As the security of BCI is
frequently neglected, backdoor attack has a great impact on
BCI systems. NPP is the first backdoor attack method applied
to BCI systems with significant results. Furthermore, the NPP
simulates the scenario of an attacker influencing the use of
real-world BCI systems by users. Therefore, the proposed
MSAP method performs backdoor defense experiments on
BCI system after NPP based attack [41]. The NPP is defined
by:

Nd(i) =


0, nTfs ≤ i < (nT + ϕ)fs

a, (nT + ϕ)fs ≤ i < (nT + dT + ϕ)fs

0, (nT + dT + ϕ)fs ≤ i < (n+ 1)Tfs

(11)

where T is the period, d is the duty cycle (ratio of pulse
duration to period), a is the amplitude, and fs is the sampling
rate. To simulate a real-world BCI system, the NPP purposely
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TABLE I
ACCURACY (ACC) AND ATTACK SUCCESS RATE (ASR) AFTER BACKDOOR ATTACK ACROSS 5 CNN ARCHITECTURES

Datasets Metrics Method Baseline FT FP SAP ANP GBMP RSP MSSP MSSP-FT MSAP

BCI-III-IVb

ACC↑

EEGNet 89.54% 84.21% 55.78% 46.15% 72.05% 79.96% 69.29% 69.37% 82.78% 86.27%
EEGInception 87.78% 61.04% 46.26% 48.41% 63.13% 64.91% 68.75% 41.29% 86.21% 81.29%

DeepConvNet 84.23% 73.68% 48.41% 52.12% 64.03% 61.40% 69.07% 60.28% 74.28% 82.75%
ShallowConvNet 85.27% 53.67% 52.62% 50.51% 68.42% 69.29% 60.52% 58.47% 70.54% 68.47%

ASR↓

EEGNet 91.72% 63.15% 49.47% 75.78% 39.63% 38.11% 18.91% 11.06% 34.54% 6.89%
EEGInception 93.38% 52.62% 49.58% 57.88% 40.15% 38.88% 21.28% 9.45% 36.56% 8.56%
DeepConvNet 94.85% 75.78% 57.88% 54.23% 36.77% 36.81% 24.01% 7.41% 34.13% 6.31%

ShallowConvNet 95.03% 46.46% 48.41% 47.41% 40.62% 29.55% 22.88% 10.56% 24.59% 5.26%

BCI-III-IVa

ACC↑

EEGNet 88.04% 69.29% 58.77% 54.38% 69.18% 72.36% 64.91% 62.28% 84.55% 89.33%
EEGInception 83.33% 66.67% 46.92% 52.63% 71.05% 64.91% 63.04% 63.37% 77.57% 79.96%
DeepConvNet 86.01% 67.54% 52.63% 45.04% 67.10% 69.29% 60.85% 57.89% 76.10% 81.46%

ShallowConvNet 82.01% 61.40% 55.70% 66.67% 67.54% 73.46% 54.38% 56.14% 71.14% 80.88%

ASR↓

EEGNet 92.46% 68.42% 74.01% 69.07% 33.06% 33.11% 27.10% 19.05% 36.05% 7.94%
EEGInception 93.75% 56.57% 67.54% 62.05% 34.47% 39.25% 24.25% 14.23% 37.10% 6.74%
DeepConvNet 95.03% 70.18% 63.20% 59.21% 29.65% 41.54% 21.61% 20.24% 36.66% 7.78%

ShallowConvNet 97.24% 54.38% 65.35% 50.88% 37.52% 41.85% 28.66% 17.70% 39.12% 6.25%

BCI-IV-1a

ACC↑

EEGNet 92.22% 69.02% 59.65% 71.60% 77.39% 73.24% 65.78% 62.71% 75.10% 84.26%
EEGInception 82.21% 57.12% 54.39% 53.94% 63.97% 67.97% 66.22% 50.87% 70.17% 79.78%
DeepConvNet 85.40% 65.89% 47.14% 62.50% 68.19% 64.91% 70.18% 65.78% 77.85% 80.70%

ShallowConvNet 87.48% 59.42% 49.12% 67.98% 63.15% 70.72% 59.21% 68.42% 66.22% 78.56%

ASR↓

EEGNet 95.77% 53.50% 57.89% 73.46% 41.24% 36.43% 26.98% 9.87% 37.75% 6.33%
EEGInception 95.58% 67.76% 40.35% 51.53% 36.64% 32.49% 23.27% 17.54% 34.81% 8.61%
DeepConvNet 98.34% 62.82% 42.10% 65.02% 44.31% 44.48% 22.68% 19.62% 37.70% 8.27%

ShallowConvNet 96.50% 47.80% 52.19% 53.50% 32.12% 31.87% 25.13% 10.71% 38.93% 7.06%

adds a random phase ϕ ∈ [0, T ], since an attacker can’t get the
precise timing of an EEG trial. NPP serves as the malicious
backdoor trigger, which is mixed with clean EEG data through
the hybrid function to form infected data. Then, the infected
data are injected into the overall dataset, which is inadvertently
trained by the user to form an infected network that can specify
a classification target for the infected data.

2) BadNets: The BadNets method is an important approach
for studying the vulnerabilities of deep learning models in
computer vision tasks [20]. It highlights the risks posed by
backdoor attack, where a model’s performance can be subtly
compromised by maliciously modifying the training data. The
main idea behind BadNets is to introduce a small, seemingly
harmless trigger into a fraction of the training dataset. This
trigger, which could be a small patch, color pattern, or noise,
is designed to be invisible or imperceptible in normal data.
The attack mechanism of BadNets is defined as follows:

T (x) = x+ δ · I(Ttrigger(x)) (12)

where I(Ttrigger(x)) is an indicator function that returns 1
when the trigger is present in x and 0 otherwise, and δ is
the perturbation added to x when the trigger is detected.
The key to the BadNets is that the attacker manipulates the
model’s output using the trigger, while the clean samples in
the training data remain unaffected. Therefore, BadNets can
induce targeted misclassification in specific conditions, while
maintaining high efficiency and accuracy in other scenarios.

3) Spatialspectral-Backdoor: The spatialspectral-Backdoor
is a spectral active backdoor attack designed to improve the
success rate of backdoor attack in the frequency domains [28],
as expressed below:

K(i) =


α|X̃|, if i = p

α|X̃|∗, if i = T − p s.t. θ = θ′

0, otherwise
(13)

where K(·) represents the designed amplitude frequency back-
door trigger, α denotes the ratio of the amplitude at the
designated position, p is the position where the backdoor
trigger is inserted, θ and θ′ refer to the phase angles be-
fore and after the amplitude modification respectively, and
T = t(j)(j=1,...,v) indicates the sampling points. In order to
maintain conjugate symmetry in the frequency domain, the
amplitude at the conjugate symmetry point T−p should be the
complex conjugate of the amplitude at the p point, expressed
as |X̃|∗. As a result, Spatialspectral-Backdoor is very stealthy
in the time domain and poses challenges for detection in real-
world application scenarios.

D. Experiment Result Analysis

The results of 5-fold cross-validation for backdoor defense
experiments on three BCI open datasets, comparing the pro-
posed MSAP method with other methods, are presented in
Table I. Besides, Table I also includes the ACC on clean data
and ASR (lower is better) for all the methods tested. The best
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TABLE II
PERFORMANCE OF MSAP FOR DIFFERENT NUMBERS OF INFECTED DATA ON EEGNET AND SHALLOWCONVNET ARCHITECTURES

Attack Scenarios Method Infection Rate Metrics
ACC↑(Before) ACC↑(After) ASR↓(Before) ASR↓(After)

Narrow Period Pulse

EEGNet

5% 89.58% 82.06% 79.99% 10.00%
10% 89.58% 87.58% 74.48% 6.89%
15% 89.58% 77.93% 92.24% 19.65%
20% 89.58% 78.62% 97.93% 18.96%

ShallowConvNet

5% 86.89% 66.72% 73.35% 6.84%
10% 86.89% 66.60% 83.44% 5.26%
15% 86.89% 68.92% 91.03% 13.15%
20% 86.89% 72.22% 98.62% 7.24%

BadNets

EEGNet

5% 89.58% 82.72% 72.59% 9.46%
10% 89.58% 85.18% 83.45% 4.92%
15% 89.58% 75.55% 91.54% 12.60%
20% 89.58% 73.70% 96.14% 29.49%

ShallowConvNet

5% 86.89% 77.19% 76.75% 6.10%
10% 86.89% 78.94% 84.42% 9.34%
15% 86.89% 75.65% 96.50% 15.78%
20% 86.89% 71.82% 98.71% 21.51%

Spatialspectral-Backdoor

EEGNet

5% 89.58% 82.23% 85.96% 10.30%
10% 89.58% 80.04% 89.69% 11.40%
15% 89.58% 79.49% 93.19% 19.30%
20% 89.58% 78.39% 99.26% 25.67%

ShallowConvNet

5% 86.89% 84.42% 84.92% 9.74%
10% 86.89% 80.04% 88.97% 12.06%
15% 86.89% 77.30% 95.77% 17.65%
20% 86.89% 72.49% 99.44% 21.60%

Fig. 5. Average ACC and ASR for backdoor defense using 5-fold cross-
validation on three BCI public datasets.

results in each backdoor defense task are highlighted in bold,
and the second best are underlined. For clear visualization,
the histograms of ACC and ASR in Table I are shown in
Fig. 5. Based on the experimental data in Table I and the
comparative histograms in Fig. 5, several key observations can
be summarized:

1) Comparison Study: To validate the effectiveness of
MSAP in the field of BCI, the proposed method is compared
with five pruning methods (FT, FP, SAP, ANP, and GBMP)
on three open-source datasets. As shown in Table I and Fig.
5, MSAP consistently outperforms the other methods in both
classification ACC and ASR, and the following observations
can be obtained:

(1) Compared to traditional pruning-based backdoor defense
methods (FT, FP, and SAP), MSAP consistently achieves
higher classification ACC and significantly lower ASR across
all three datasets. For example, on BCI-III-IVb with EEGNet,
MSAP maintains 86.27% ACC (↓3.27% from baseline) and re-
duces ASR to 6.89% (↓84.83%), while FT, FP, and SAP yield
unstable ACCs (84.21%, 55.78%, 46.15%) and high ASRs
(63.15%, 49.47%, 75.78%). Similar results are observed across
other datasets and models, confirming that MSAP achieves
a better trade-off between defense effectiveness and model
performance by leveraging Shapley value-based pruning.

(2) Compared with the recent pruning-based backdoor de-
fense methods (ANP and GBMP), MSAP also yields superior
results. From Table I and Fig. 5, ANP and GBMP exhibit
average ACCs around 60%–70% and ASRs around 30%–40%
across datasets and models. In contrast, MSAP achieves av-
erage ACCs above 80% and keeps ASRs consistently below
10%. This demonstrates the importance of applying Shapley
value for precise attribution and pruning, which leads to more
effective and targeted backdoor defense than heuristic-based
approaches like ANP and GBMP.

2) Ablation Study: To verify the effectiveness of multi-scale
Shapley segmented mapping and adaptive backdoor weight
cost pruning, MSAP and three ablation methods are compared.
As shown in Table I and Fig. 5, the methods for ablation
experiments have good results, and the following observations
can be obtained:

(1) Effectiveness of multi-scale Shapley segmented map-
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Fig. 6. Performance of MSAP on EEGNet and ShallowConvNet architectures for different infection rates in three attack scenarios.

ping: The RSP and MSSP are ablation methods based on
multi-scale Shapley segmentation mapping. According to Fig.
5, it can be found that MSSP has an enhancement in both ACC
and ASR, indicating that the multi-scale information plays an
important role in pruning. Compared with RSP and MSSP, the
proposed MSAP method further improves, with ACC and ASR
reaching optimal values. This demonstrates the effectiveness
of Shapley pruning based on multi-scale information.

(2) Effectiveness of adaptive backdoor weight cost prun-
ing: MSSP-FT is an ablation experiment based on adaptive
backdoor weight cost pruning. Based on Fig. 5, MSSP-FT
is found to have improved ACC compared to MSSP under
the effect of fine-tuning. In addition, the proposed MSAP is
optimized based on the converged ASR of the cost function
based on the high ACC of MSAP-FT. This result demonstrates
the effectiveness of adaptive pruning based on cost function.

E. Analysis of Number of Infected Data

In backdoor defense, the quantity of infected data plays
a crucial role in determining the choice of defense strategy.
When the proportion of infected data is low, a fine-grained
defense strategy is required. The defense becomes challenging
with the large volume of infected data, and a substantial
amount of clean data is needed to counter the infection
effectively. Therefore, the quantity of infected data directly
influences the difficulty of designing and implementing an
effective defense strategy. Based on the above description, the
generalization and effectiveness of the methods are evaluated

by varying the infection rates across three attack scenarios
(NPP, BadNets, Spatialspectral-Backdoor). Based on Table II
and Fig. 6, it can be summarized:

1) Regarding ACC: The ACC of EEGNet and ShallowCon-
vNet after MSAP is shown in Table II. For the three BCI
datasets, as the amount of infected data increases, there is
a slight fluctuating decrease in ACC. However, the decrease
is minimal, indicating that MSAP effectively preserves the
model’s performance and demonstrates excellent generaliza-
tion.

2) Regarding ASR: The ASR after pruning is significantly
reduced for all infection percentages across the three attack
scenarios. The average ASR for the three attack scenarios
on EEGNet drops from 88.02% to 14.88% across all infec-
tion data. Similarly, the average ASR for ShallowConvNet
decreases from 89.32% to 12.18%, marking a substantial im-
provement. This highlights the generalization and effectiveness
of the MSAP method on both EEGNet and ShallowConvNet.

Remark 3: To ensure fair and consistent comparisons, we
use the same clean pre-trained model across all infection rates
and attack types. This controls variables by removing differ-
ences caused by random initialization or training randomness.
As a result, ACC (Before) stays the same, and any changes
in ACC (After) or ASR are only due to the backdoor attacks
and defenses, not the starting model.

F. Impact of Key Parameters
In backdoor defense, the selection of key parameters plays

a crucial role in determining the effectiveness of the defense.
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(A) Feature distribution of ACC

(B) Feature distribution of ASR

Fig. 7. Feature distribution of ACC and ASR is extracted by different backdoor defense methods.

The key parameters reflect the backdoor defense methods’
stability, adaptability, and strength. Based on the above discus-
sion, key parameters in MSAP are needed for detailed analysis.
By observing changes in these parameters, the effectiveness
and stability of MSAP can be directly verified. Therefore, the
number of scales and the threshold value are chosen to evaluate
the performance of MSAP.

1) Impact of Number of Scales: The number of scales
is crucial in the multi-scale segmented Shapley mapping.
Reducing the number of scales significantly shortens the
time required to compute the Shapley values. However, using
a smaller number of scales leads to some precision loss,

resulting in an imprecise distribution of backdoor weights.
Based on this, experiments are conducted to examine the
impact of the number of segments at both the regional and
sub-regional scales.

TABLE III
THE EFFECT OF THE NUMBER OF SCALES ON BACKDOOR DEFENSE

Regional Segments 2 3 4 5
Subregional Segments 4 9 16 25

ACC↑(metric) 61.69% 77.19% 86.27% 87.84%
ASR↓(metric) 31.26% 19.30% 6.89% 7.19%

Based on Table III, the progressively increasing number
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of scales results in higher defense accuracy, highlighting the
importance of accurate information. As both regional and sub-
regional segments increase, there are noticeable improvements
in both ACC and ASR. Ultimately, the metrics stabilize with 4
regional segments and 16 sub-regional segments. While further
increasing the number of scales continues to improve the
metrics, the effect becomes minimal and requires significant
computational time. Therefore, the experiments are conducted
with two scale settings: 4 for the region scale and 16 for the
sub-regional scale.

2) Impact of Threshold: The threshold is a key parameter
in adaptive backdoor weight cost pruning, as it influences
the convergence of the network after pruning. By gradually
decreasing the threshold, the criteria for network convergence
become stricter. Therefore, changes in network metrics before
and after pruning, as well as the magnitude of the loss function,
reflect the effectiveness of the pruned network. Based on this,
experiments are conducted to observe the impact of threshold
magnitude on the metrics.

TABLE IV
THE EFFECT OF THRESHOLD MAGNITUDE ON BACKDOOR DEFENSE

Threshold 0.1 0.2 0.3 0.4 0.5
ACC↑(metric) 87.50% 86.27% 71.69% 63.23% 57.35%
ASR↓(metric) 6.43% 6.89% 16.61% 11.68% 10.55%

Table IV visually illustrates the impact of threshold changes
on defense effectiveness. As the threshold becomes progres-
sively stricter (decreasing values), both ACC and ASR stabi-
lize and improve. However, the enhancement becomes limited
at a threshold of 0.1, with no significant increase in the metrics
beyond this point. This indicates that the network convergence
is stabilized and can only fluctuate slightly. Therefore, the
threshold value for the MSAP-related experiments is set at
0.2.

G. Feature Distribution Visualization

To demonstrate the effectiveness of the proposed method,
Fig. 7 presents the distribution of data features for all methods
under comparison, visualized using the t-SNE method [40]. In
this figure, part (A) presents the data features about ACC after
backdoor defense, while part (B) presents the data features
of ASR. From the 12 subplots in Fig. 7, the following
observations can be obtained:

1) As shown in Fig. 7(A)(f), the pruned network obtained
by MSAP has clearer classification boundary between dif-
ferent classes compared to other backdoor defense methods
(Fig. 7(A)(a)-(e)). Class1 and Class2 are almost categorized
on either side of the boundary. This indicates that adaptive
backdoor weight cost pruning is satisfactory and helpful clean
data classification.

2) As shown in Fig. 7(B)(d)-(f), the proposed MSAP
achieves the most obvious backdoor label (Class2 to Class1)
misclassification boundary, most of which are in Class2, and
it is not classified as Class1 as intended by the attacker.
Compared to Fig. 7(B)(a)-(c), these results demonstrate the
effectiveness of using multi-scale segmented Shapley mapping
to compute backdoor weights for pruning.

Therefore, as depicted in Fig 7, MSAP outperforms other
methods in achieving optimal results, and adaptive pruning
based on multi-scale segmented Shapley mapping facilitates
learning backdoor features for pruning.

V. CONCLUSION

Recent research highlights security issues in BCI systems
for EEG classification, especially the threat of backdoor attack
on motor imagery (MI) signal classification, which can seri-
ously compromise system safety. To tackle this problem, this
paper introduces a new perspective on the security challenges
in MI signal classification and proposes a practical solution:
multi-scale Shapley adaptation pruning (MSAP). This method
is designed to reduce the vulnerability of BCI systems to back-
door attack. MSAP has been tested on three open BCI datasets
across four models, with its performance evaluated using five
cross-validation methods. The results, shown through clear
and simple histograms, demonstrate that MSAP effectively
strengthens EEG-based BCI systems against backdoor attack.

Despite the advantages of multi-scale Shapley adaptation
pruning (MSAP), numerous challenges require in-depth in-
vestigation. EEG data, rich in spatial information, remains
vulnerable to backdoor attack that manipulate electrode do-
main information and alter topological arrangement rules,
complicating defense strategies. Future research should focus
on enhancing topological results in EEG electrode space, as
most EEG classification networks currently do not perform
spatial feature extraction from EEG. This improvement is
vital for highlighting security concerns in EEG. Additionally,
exploring the interaction between EEG backdoor attack and
spatial domain information is crucial for developing stealthy
attack methods.
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