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Abstract

This paper analyses trends and persistence in air pollution levels in 88 US metropolitan
areas using fractional integration methods. The results indicate that the differencing
parameter d is higher than 0 in 38 of the series, which supports the hypothesis of long-
memory behavior and implies that, although the effects of shocks are long-lived, they
eventually die out. The highest degrees of persistence are found in the Fresno, Bakersfield,
Bradenton and San Diego areas. On the whole, the gathered evidence indicates that regional
differences in pollution levels are significant, with factors such as industrialisation history
and extreme weather events playing a crucial role in their degree of persistence. This
suggests that, in order to tackle pollution more effectively, federal environmental policies,
such as the Clean Air Act, should be complemented by more targeted ones taking into
account local characteristics.
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1. Introduction
Environmental pollution is one of the most pressing challenges faced by mankind

owing to its severe consequences for human health, ecosystems and sustainable develop-
ment. It has become a major concern in the US, especially in the case of the most populated
urban areas. The Environmental Protection Agency (EPA) estimates that, in 2022, about
60% of the US population was exposed to hazardous levels of pollution in some form [1]. In
response to this threat the US government introduced the Clean Air Act which sets national
standards for air quality and has provided a framework for reducing pollutants such as
sulphur dioxide and particulate matter [2].

Understanding how pollution levels have evolved over time is crucial to evaluate
the effectiveness of environmental policies and to develop future strategies to respond to
the increasing challenges posed by climate change. For this purpose, the present study
examines pollution trends in 88 US metropolitan areas over the period 1980–2023 using
fractional integration techniques. This statistical approach is most suitable for time series
with long-memory properties and persistent dynamics that cannot be adequately modelled
using traditional methods. In particular, the main advantage of the fractional integration
approach [3] is that it allows the differencing parameter d to be any real number, including
fractional ones, and thus captures more accurately both long- and short-term correlations [4].
Moreover, it yields efficient estimates and more robust results [5,6].
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The analysis in this paper provides new, comprehensive evidence on the stochastic
properties of pollution in the 88 US metropolitan areas considered, specifically on the
possible presence of trends and on the degree of persistence of the series under investigation.
Such information is essential to design more targeted and effective policies to reduce
pollution and mitigate its adverse effects.

The layout of the paper is the following: Section 2 briefly reviews the relevant literature;
Section 3 describes the data; Section 4 outlines the econometric framework based on the
concept of fractional integration; Section 5 presents the empirical results; Section 6 offers
some concluding remarks.

2. Literature Review
There exists an extensive literature on air pollution in the US and its adverse effects

on public health, numerous papers identifying various diseases and chronic conditions
that are strongly associated with continued exposure to high levels of air pollutants. These
studies have addressed both the immediate consequences and long-term effects of exposure
to air pollutants, paying particular attention to vulnerable groups such as children, the
elderly, and low-income communities. In particular, several studies analyse the impacts
on children, highlighting effects on cognitive development and executive function [7].
Other studies focus on older adults and patients with chronic diseases, who are more
susceptible to pollution and extreme weather events [8]. There is also abundant evidence
that low-income and socially disadvantaged communities are disproportionately affected
by air pollution due to factors such as residential segregation and proximity to emission
sources [9–11]. Finally, other studies analyse the general effects of air pollution on the health
of the population as a whole, with particularly relevant implications for these vulnerable
groups [12–15], among others. In addition to health effects, the economic costs of air
pollution in the US have also been analysed in depth—these include direct and indirect
expenses related to medical care, loss of labour productivity, and the impact on sectors
such as agriculture and tourism [16–19]. This evidence shows not only the magnitude of
the environmental problem, but also its social and economic impact.

Environmental inequality in the US is another central theme in pollution studies.
Low-income communities, particularly those located in highly industrialised urban areas,
are disproportionately affected by air pollution, which contributes to greater inequality
in terms of health, access to quality services, and living conditions [11,20]. Studies on
this topic highlight the urgent need for reducing social and environmental disparities
through inclusive policies and a comprehensive approach to improving the quality of life
of all citizens.

The cumulative effects of historical factors, seasonal variations, and regulatory in-
terventions have resulted in highly complex patterns of behaviour in US pollution levels.
This country is responsible for approximately 25% of historical global CO2 emissions [21].
In fact, US greenhouse gas emissions account for 79.7% of global ones [1], which implies
that the US has a key role in mitigating the effects of climate change by implementing
effective policies to reduce pollutant emissions and improve air quality. Climate change
and pollution are problems that cannot be addressed in isolation; an integrated approach is
needed to achieve a healthier and more sustainable future.

The present study contributes to a specific branch of the literature modelling atmo-
spheric pollution series by means of fractional integration techniques. This approach,
relatively new in environmental analysis, is ideal for analysing time series, such as air pollu-
tant concentrations, with long-memory properties and persistent patterns driven by a range
of historical and seasonal factors. The usefulness of this framework for modelling pollution
series with long-term dependence has been shown in various recent studies [22–26], among
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others; the long memory detected in many pollution time series indicates that present
pollution levels have a significant influence on future ones, which makes monitoring and
early intervention to mitigate their effects extremely important.

However, other studies using this approach find that pollution may be absorbed by
natural systems and that changes in environmental policies or interventions may affect
its long-run trends. For instance, Caporale et al. [25] reported mean reversion in PM10

concentrations in eight European capitals from 2014 to 2020, which implies that the effects of
environmental shocks on those series are not permanent, but tend to be corrected over time.
Similarly, Bermejo et al. [26] concluded that mean reversion occurs in PM2.5 concentrations
in 20 global megacities between 2018 and 2020, and thus that shocks have transient effects.

In another study, Gil-Alana et al. [27] examined global and per capita Nitrogen Oxides
(NOx) and volatile organic compounds (VOC) emissions in the US from 1914 to 2014
and also the effectiveness of environmental policies; they found that by 2014 the US had
managed to reduce both VOC and NOx per capita emission levels compared to 1970. In two
additional studies, Gil-Alana et al. [28] investigated the time evolution of CO2 emissions in
the European Union, while Gil-Alana et al. [23] examined air quality in the 50 US states,
focusing on PM10 and PM2.5 pollutants, and concluded that shocks and policy actions have
long-lived effects at both the local and national levels. Finally, other research has focused
on the convergence of pollutant series in US regions [29,30]. All these studies indicate that
long memory and persistence are two important properties of pollutants in the US.

3. Data Description
The series used for the analysis provide information about air quality in 88 US

metropolitan areas by measuring the number of days between 1980 and 2023 when the
Air Quality Index (AQI) exceeded a threshold of 100. Such a value indicates poor air
quality (i.e., within the unhealthy range), and that on the day in question at least one of the
pollutants exceeded the level consistent with the set air quality standards [31].

The Air Quality Index (AQI) used in this study is defined in accordance with the
official methodology of the United States Environmental Protection Agency (EPA). Within
this framework, an AQI value of 100 corresponds to the upper limit of the Moderate
category and defines the threshold above which air quality is classified as Unhealthy for
Sensitive Groups. According to the EPA’s conversion functions, this value is associated
with concentrations of 35.4 µg/m3 for PM2.5 (24 h moving average), 154 µg/m3 for PM10

(24 h), 70 ppb for ozone (8 h average), 100 ppb for NO2 (1 h), 75 ppb for SO2 (1 h), and
9.4 ppm for CO (8 h average). The daily AQI is defined as the maximum of the sub-indices
corresponding to these pollutants; consequently, days with an AQI greater than 100 indicate
that at least one of them has exceeded the regulatory threshold defined by the EPA [31].
Note that historical AQI data are at times revised. The main reason is that changes to the
National Ambient Air Quality Standards (NAAQS) are applied retroactively to data from
previous years to provide consistent comparisons over time. This information is compiled
by the Environmental Protection Agency (EPA) and is updated regularly as air quality
standards change.

The data have been retrieved from the database of the Bureau of Transportation
Statistics, United States Department of Transportation, available at: https://www.bts.
gov/content/air-pollution-trends-selected-metropolitan-statistical-areas (accessed on 11
December 2024). The data source is: U.S. Environmental Protection Agency, Office of Air
and Radiation, Air Trends, Air Quality Index: Daily AQI, available at https://aqs.epa.gov/
aqsweb/airdata/download_files.html (accessed on 11 December 2024).

Table 1 and Figure 1 display some descriptive statistics of the series for the 88 US
metropolitan areas considered, such as the maximum and minimum value, the mean and
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the standard deviation of the number of days exceeding 100 in the AQI between1980 and
2023, that is, days with air quality considered unhealthy or worse. It can be seen that
seven of the areas considered have more than 200 days per year in this category, namely:
Bakersfield, CA; Bridgeport-Stamford-Norwalk, CT; Fresno, CA; Phoenix-Mesa-Scottsdale,
AZ; Riverside-San Bernardino-Ontario, CA; San Diego-Carlsbad, CA. In particular, the
highest value is observed in the case of Los Angeles-Long Beach-Anaheim, CA, with
a record of 287 days with an AQI > 100 in 1980, i.e., days with air quality considered
unhealthy or worse. However, this number has decreased almost every year, reaching
87 days in 2023, which results in a mean value of 157.14 days with a standard deviation
of 54.14. By contrast, McAllen-Edinburg-Mission, TX exhibits the lowest number of poor
air quality days, with an AQI higher than 100 for 9 days in 2003, and equal to 0 in 16 of
the 43 years within the sample period, with a mean value of only 2.07 days and a standard
deviation of 2.73.

Table 1. Descriptive Statistics.

District Acronym Max. Min. Mean St. Dev.

Akron, OH AKRON 65 0 22.97 19.18

Albany-Schenectady-Troy, NY ALBAN 35 0 12.19 9.98

Albuquerque, NM ALBUQ 57 1 18.31 13.04

Allentown-Bethlehem-Easton, PA ALLEN 80 1 25.50 19.04

Atlanta-Sandy Springs-Roswell, GA ATLAA 129 3 54.94 35.08

Atlantic City-Hammonton, NJ ATLIC 72 0 19.50 20.09

Austin-Round Rock, TX AUSTI 48 0 15.25 12.20

Bakersfield, CA BAKER 231 70 154.86 35.52

Baltimore-Columbia-Towson, MD BALTM 127 2 49.83 32.04

Baton Rouge, LA BATON 87 5 39.53 23.56

Birmingham-Hoover, AL BIRMG 115 3 38.44 31.36

Boston-Cambridge-Newton, MA-NH BOSTN 75 0 22.08 17.15

Bradenton-Sarasota-Venice, FL BRADE 32 0 10.08 9.49

Bridgeport-Stamford-Norwalk, CT BRIDG 223 12 35.83 33.91

Buffalo-Cheektowaga-Niagara Falls, NY BUFFL 42 0 16.03 13.30

Charleston-North Charleston, SC CHLTN 33 0 8.67 8.96

Charlotte-Concord-Gastonia, NC-SC CHRLT 119 2 46.67 33.29

Chicago-Naperville-Joliet, IL-IN-WI CHICG 107 13 45.00 24.20

Cincinnati-Middletown, OH-KY-IN CINCN 106 6 40.19 25.25

Cleveland-Elyria, OH CLEVL 75 6 35.31 21.30

Columbia, SC CLMBA 84 0 23.78 23.21

Columbus, OH COLUM 75 0 30.75 23.09

Dallas-Fort Worth-Arlington, TX DALLA 97 18 56.94 21.21

Dayton, OH DAYTN 50 0 23.08 16.24

Denver-Aurora-Lakewood, CO DENVR 144 15 47.08 24.86

Detroit-Warren-Dearborn, MI DETRT 73 9 29.03 15.52

El Paso, TX ELPAS 64 6 28.86 14.93

Fresno, CA FRESN 233 58 130.61 41.01
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Table 1. Cont.

District Acronym Max. Min. Mean St. Dev.

Grand Rapids-Wyoming, MI GRAND 50 0 17.31 13.41

Greensboro-High Point, NC GRNBO 59 0 23.81 20.89

Greenville-Anderson-Mauldin, SC GRNVL 73 0 23.56 23.32

Harrisburg-Carlisle, PA HARRB 60 1 24.19 17.47

Hartford-West Hartford-East Hartford, CT HARTW 91 2 24.42 16.45

Hilo, HI HILO 31 0 2.58 7.07

Houston-Sugarland-Baytown, TX HOUST 131 14 63.08 29.64

Indianapolis-Carmel, IN INDIA 125 4 38.75 31.32

Jacksonville, FL JAKVL 32 0 11.69 9.66

Kansas City, MO-KS KANSC 81 1 32.19 22.95

Knoxville, TN KNOXV 128 0 43.19 34.61

Las Vegas-Paradise, NV LVEGS 121 5 48.28 24.67

Little Rock-North Little Rock-Conway, AR LTTRK 46 0 16.00 14.33

Los Angeles-Long Beach-Anaheim, CA LANGL 287 87 157.14 54.14

Louisville/Jefferson County, KY-IN LOUVL 161 3 38.47 31.77

Madison, WI MADIS 48 0 9.61 9.73

McAllen-Edinburg-Mission, TX MCALL 9 0 2.08 2.73

Memphis, TN-MS-AR MEMPS 85 4 37.14 25.19

Miami-Fort Lauderdale-West Palm Beach, FL MIAMI 90 1 11.83 15.22

Milwaukee-Waukesha-West Allis, WI MILWK 51 3 20.75 13.37

Minneapolis-St. Paul-Bloomington, MN-WI MINNP 50 0 12.64 11.04

Nashville-Davidson-Murfreesboro-Franklin, TN NASHV 129 1 36.14 31.11

New Haven-Milford, CT NHAVN 48 5 23.67 11.64

New Orleans-Metairie, LA NORLS 66 0 22.22 16.53

New York-Newark-Jersey City, NY-NJ-PA NYORK 190 11 60.00 39.55

Oklahoma City, OK OKLAH 60 2 22.53 15.50

Omaha-Council Bluffs, NE-IA OMAHA 78 0 10.36 13.54

Orlando-Kissimmee-Sanford, FL ORLND 35 0 12.17 9.78

Oxnard-Thousand Oaks-Ventura, CA OXNRD 161 9 66.31 50.18

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD PHILD 147 6 54.83 33.71

Phoenix-Mesa-Scottsdale, AZ PHOEN 267 54 114.22 57.22

Pittsburgh, PA PITTS 94 9 48.75 25.93

Portland-Vancouver-Hillsboro, OR-WA PORTL 22 1 10.75 6.04

Providence-Warwick, RI-MA PROVD 63 2 22.25 14.86

Raleigh, NC RALGH 98 0 32.97 30.73

Richmond, VA RICHM 86 0 32.19 26.15

Riverside-San Bernardino-Ontario, CA RIVSD 251 141 188.06 28.83

Rochester, NY ROCHT 32 0 10.50 9.48

Sacramento-Arden-Arcade-Roseville, CA SACRM 145 14 83.39 34.44
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Table 1. Cont.

District Acronym Max. Min. Mean St. Dev.

St. Louis, MO-IL STLOU 183 9 48.94 33.23

Salt Lake City, UT SALTL 87 11 37.94 17.51

San Antonio, TX SANTO 47 6 18.19 10.18

San Diego-Carlsbad, CA SDIEG 209 16 79.39 51.05

San Francisco-Oakland-Hayward, CA SFRAN 49 5 20.31 10.32

San Jose-Sunnyvale-Santa Clara, CA SJOSE 59 4 27.53 17.47

San Juan-Carolina-Caguas, PR SJUAN 19 0 3.67 5.97

Scranton-Wilkes-Barre-Hazleton, PA SCRNT 59 0 17.47 16.28

Seattle-Tacoma-Bellevue, WA SEATL 46 2 17.28 11.23

Springfield, MA SPRING 44 0 20.06 14.02

Stockton-Lodi, CA STOCK 56 9 30.94 12.54

Syracuse, NY SYRAC 31 0 10.00 8.98

Tampa-St. Petersburg-Clearwater, FL TAMPA 52 1 19.67 15.36

Toledo, OH TOLED 48 1 18.47 12.78

Tucson, AZ TUCSN 120 1 18.39 20.42

Tulsa, OK TULSA 78 2 28.25 20.42

Virginia Beach-Norfolk-Newport News, VA-NC VIRGN 74 0 22.39 20.62

Washington-Arlington-Alexandria, DC-VA-MD-WV WASHT 111 3 50.19 33.69

Wichita, KS WICHT 37 0 11.86 10.67

Worcester, MA WORCT 39 0 15.97 12.13

Youngstown-Warren-Boardman, OH YOUNG 100 0 26.81 22.11
Note: this table reports the maximum and minimum value, the mean and the standard deviation for each
AQI series.

 

Figure 1. Descriptive statistics for the number of days with AQI values greater than 100 from 1980
to 2023.

4. Modelling Framework
Long memory is a widely observed feature in hydrological and climatological data

(including air pollution ones, as previously mentioned). In such a case the spectral density
function of a stationary process has one or more poles or singularities in the spectrum,
which in environmental series often corresponds to the zero frequency. This is normally
interpreted as implying that the series should be first-differenced [32,33]; however, the
spectrum of the first-differenced data is often close to zero at the zero frequency, which
suggests that over-differentiation has occurred. This finding motivates the fractional
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integration approach, which is suitable for series requiring a degree of differentiation
higher than 0 but lower than 1.

To be more precise, an I(d) or fractionally integrated process is defined as:

(1 − L)d x(t) = u(t) (1)

where L is the backshift (lag) operator (Lx(t) = x(t − 1)), d can be any real number (including
fractional ones), and u(t) is an I(0) process, which in its simplest form can be a white noise
one characterized by zero mean, constant variance and uncorrelated terms.

An appealing feature of such a model is its generality, since it encompasses trend
stationary models (if d = 0) as in DeJong et al. [34,35], nonstationary unit roots as in
Nelson and Plosser [36] (if d = 1), but also additional cases corresponding to fractional
values, namely:

(i) Anti-persistence, if d < 0;
(ii) Long-memory covariance stationarity, if 0 < d < 0.5;
(iii) Non-stationarity and mean reversion, if 0.5 ≤ d < 1;
(iv) Long memory after taking first differences, i.e., I(d) with d > 1.

In the present context, the most relevant case might be (iii), when the series is non-
stationary but the effects of shocks are transitory and disappear in the long run.

The polynomial in L in Equation (1) can be expanded as in the following expression:

(1 − L)d = ∑∞
j=1

Γ(d − 1) (−L)j

Γ(d − j + 1)Γ(j + 1)
, (2)

where Γ is the gamma function, which is defined as:

Γ(z) =
∫ ∞

0
tz−1e−td(t). (3)

Positive values of d imply ’long memory’, namely strong dependence between obser-
vations far apart in time. The higher the value of d is, the higher will be their degree of
dependence, which implies that shocks will have highly persistent effects and the spectral
density function will be unbounded at the origin.

For the analysis we use a simple version of the testing procedure developed by
Robinson [37] which is valid for testing the null hypothesis: H0: d = d0, for any real
value d0 in a fractional model such as the one given by Equation (1). In particular, we
use iterations for values of d0 from −2 to 2 with 0.01 increments, reporting the confidence
bands of d0-values for which H0 cannot be rejected at the 5% level. This method is based
on the Lagrange Multiplier principle and has a standard null and local limit distributions
independently of the values of d0, which is a very desirable feature of this test. In addition,
the same standard limit behavior holds if one includes deterministic terms such as a
constant or a linear time trend. It is also the most efficient method in the Pitman sense
against local departures. All these features make this procedure very attractive for empirical
applications involving fractional differentiation.

5. Empirical Results
Let x(t) in Equation (1) be the errors in a regression model that includes a constant and

a linear time trend, namely:

y(t) = α + β t + x(t), (1 − L)d x(t) = u(t), t = 1, 2, . . . (4)

where y(t) denotes the observed series and u(t) is a white noise process.
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Table 2 reports the estimates of d for the three cases of a regression (1) without
deterministic terms, (2) with a constant only, and (3) with a constant and a linear time trend.
We follow a “general to specific” approach, starting with (3) and then moving to (2) if the time
trend coefficient is found to be statistically insignificant, and to (1) if neither deterministic
term is significant. The values reported in bold are those corresponding to the selected
model for each series.

Table 2. Estimates of d.

Series No Deterministic Terms An Intercept An Intercept and a Linear Time Trend

AKRON 0.54 (0.39, 0.75) 0.41 (0.31, 0.54) 0.11 (−0.08, 0.36)

ALBAN 0.47 (0.31, 0.72) 0.35 (0.24, 0.51) 0.10 (−0.10, 0.37)

ALBUQ 0.22 (−0.02, 0.49) 0.18 (−0.02, 0.48) 0.17 (−0.07, 0.67)

ALLEN 0.54 (0.34, 0.83) 0.41 (0.29, 0.58) 0.19 (−0.09, 0.71)

ATLAA 0.65 (0.49, 0.89) 0.51 (0.39, 0.71) 0.32 (0.10, 0.65)

ATLIC 0.54 (0.37, 0.79) 0.40 (0.29, 0.52) 0.11 (−0.09, 0.41)

AUSTI 0.40 (0.24, 0.64) 0.30 (0.17, 0.48) 0.01 (−0.19, 0.31)

BAKER 0.81 (0.61, 1.09) 0.76 (0.55, 1.12) 0.75 (0.52, 1.12)

BALTM 0.63 (0.44, 0.91) 0.44 (0.34, 0.56) −0.08 (−0.35, 0.31)

BATON 0.70 (0.51, 1.00) 0.50 (0.37, 0.70) 0.19 (−0.04, 0.58)

BIRMG 0.74 (0.54, 1.09) 0.68 (0.48, 1.05) 0.65 (0.41, 1.05)

BOSTN 0.50 (0.31, 0.79) 0.38 (0.24, 0.58) 0.19 (−0.11, 0.88)

BRADE 0.76 (0.59, 1.07) 0.73 (0.54, 1.06) 0.72 (0.49, 1.06)

BRIDG 0.07 (−0.21, 0.43) 0.04 (−0.15, 0.30) 0.12 (−0.18, 0.42)

BUFFL 0.46 (0.27, 0.74) 0.35 (0.21, 0.53) 0.16 (−0.04, 0.46)

CHLTN 0.44 (0.24, 0.74) 0.35 (0.19, 0.62) 0.12 (−0.25, 0.78)

CHRLT 0.65 (0.49, 0.89) 0.49 (0.37, 0.69) 0.35 (0.12, 0.74)

CHICG 0.54 (0.37, 0.79) 0.34 (0.19, 0.53) 0.16 (−0.10, 0.50)

CINCN 0.40 (0.24, 0.64) 0.35 (0.22, 0.53) 0.06 (−0.18, 0.45)

CLEVL 0.81 (0.61, 1.09) 0.47 (0.36, 0.61) 0.28 (0.11, 0.51)

CLMBA 0.63 (0.44, 0.91) 0.35 (0.23, 0.52) 0.16 (−0.07, 0.50)

COLUM 0.70 (0.51, 1.00) 0.41 (0.30, 0.55) 0.11 (−0.07, 0.38)

DALLA 0.74 (0.54, 1.09) 0.52 (0.35, 0.87) 0.41 (0.08, 0.87)

DAYTN 0.50 (0.31, 0.79) 0.38 (0.27, 0.73) 0.17 (−0.03, 0.41)

DENVR −0.09 (−0.21, 0.60) −0.06 (−0.35, 1.18) 0.12 (−0.15, 1.17)

DETRT 0.42 (0.23, 0.69) 0.29 (0.15, 0.47) 0.11 (−0.12, 0.44)

EL PAS 0.60 (0.39, 0.90) 0.41 (0.25, 0.64) 0.30 (0.09, 0.60)

FRESN 0.76 (0.51, 1.16) 0.78 (0.49, 1.21) 0.79 (0.50, 1.21)

GRAND 0.44 (0.26, 0.70) 0.31 (0.18, 0.48) −0.08 (−0.33, 0.26)

GRNBO 0.70 (0.52, 1.03) 0.58 (0.43, 0.86) 0.44 (0.20, 0.84)

GRNVL 0.52 (0.37, 0.74) 0.46 (0.33, 0.67) 0.39 (0.19, 0.69)

HARRB 0.58 (0.43, 0.81) 0.44 (0.33, 0.58) 0.13 (−0.05, 0.39)

HARTW 0.40 (0.18, 0.70) 0.26 (0.12, 0.44) 0.08 (−0.24, 1.07)

HILO 0.43 (0.14, 0.89) 0.44 (0.15, 0.89) 0.43 (0.11, 0.89)
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Table 2. Cont.

Series No Deterministic Terms An Intercept An Intercept and a Linear Time Trend

HOUST 0.82 (0.58, 1.22) 0.60 (0.43. 1.03) 0.55 (0.17, 1.03)

INDIA 0.64 (0.44, 0.97) 0.58 (0.39, 1.07) 0.58 (0.26, 1.07)

JAKVL 0.56 (0.40, 0.79) 0.46 (0.33, 0.66) 0.29 (0.06, 0.63)

KANSC 0.54 (0.32, 0.88) 0.43 (0.26, 0.77) 0.28 (−0.01, 0.79)

KNOXV 0.75 (0.57, 1.03) 0.63 (0.49, 0.89) 0.55 (0.32, 0.86)

LVEGS 0.47 (0.21, 0.83) 0.31 (0.12, 0.66) 0.29 (−0.08, 0.80)

LTTRK 0.43 (0.25, 0.70) 0.34 (0.18, 0.56) 0.16 (−0.07, 0.53)

LANGL 0.77 (0.56, 1.10) 0.52 (0.40, 0.75) 0.57 (0.33, 0.89)

LOUVL 0.33 (0.11, 0.63) 0.24 (0.08, 0.48) 0.03 (−0.32, 0.98)

MADIS 0.31 (0.01, 0.74) 0.20 (0.01, 0.50) 0.00 (0.37, 0.57)

MCALL 0.51 (0.33, 0.72) 0.51 (0.34, 0.72) 0.51 (0.35, 0.72)

MEMPS 0.60 (0.44, 0.82) 0.48 (−0.36, 0.65) 0.28 (0.08, 0.61)

MIAMI 0.10 (−0.21, 0.45) 0.07 (−0.11, 0.34) 0.01 (−0.31, 0.45)

MILWK 0.47 (0.27, 0.77) 0.28 (0.15, 0.46) −0.12 (−0.38, 0.25)

MINNP 0.52 (0.21, 1.02) 0.36 (0.14, 0.76) 0.30 (−0.11, 0.78)

NASHV 0.63 (0.48, 0.87) 0.53 (0.39, 0.76) 0.37 (0.12, 0.72)

NHAVN 0.52 (0.33, 0.80) 0.34 (0.21, 0.51) 0.03 -(0.22, 0.40)

NORLS 0.68 (0.46, 1.11) 0.49 (0.33, 0.78) 0.20 (−0.06, 0.72)

NYORK 0.66 (0.40, 1.12) 0.43 (0.28, 0.63) 0.37 (0.00, 0.74)

OKLAH 0.47 (0.25, 0.82) 0.35 (0.18, 0.63) 0.17 (−0.06, 0.58)

OMAHA 0.30 (−0.09, 0.80) 0.28 (−0.08, 0.63) 0.74 (0.00, 1.22)

ORLND 0.66 (0.50, 0.90) 0.57 (0.42, 0.81) 0.47 (0.23, 0.79)

OXND 0.82 (0.63, 1.13) 0.60 (0.50, 0.74) 0.40 (0.20, 0.70)

PHILD 0.67 (0.46, 1.07) 0.46 (0.35, 0.60) 0.02 (−0.38, 0.64)

PHOEN 0.29 (0.01, 1.00) 0.33 (0.02, 1.03) 0.20 (−0.14, 1.03)

PITTS 0.62 (0.45, 0.87) 0.54 (0.40, 0.77) 0.50 (0.33, 0.77)

PORTL −0.11 (−0.21, 0.39) −0.07 (−0.32, 0.21) −0.06 (−0.29, 0.24)

PROVD 0.67 (0.44, 1.06) 0.47 (0.33, 0.79 0.39 (0.00, 0.85)

RALGH 0.64 (0.48, 0.89) 0.57 (0.43, 0.96) 0.54 (0.28, 0.98)

RICHM 0.66 (0.50, 0.92) 0.48 (0.39, 0.64) −0.02 (−0.25, 0.34)

RIVSD 0.79 (0.58, 1.09) 0.43 (0.30, 0.60) 0.25 (0.00, 0.60)

ROCHT 0.52 (0.31, 0.84) 0.34 (0.21, 0.52) −0.21 (−0.56, 0.24)

SACRM 0.63 (0.44, 0.88) 0.45 (0.31, 0.67) 0.31 (0.10, 0.62)

STLOU 0.34 (0.12, 0.65) 0.24 (0.08, 0.45) 0.01 (−0.34, 1.16)

SALTL 0.06 (−0.08, 0.39) 0.07 (−0.14, 0.38) 0.13 (−0.11, 0.60)

SANTO 0.35 (0.16, 0.61) 0.26 (0.11, 0.48) 0.14 (0.06, 0.44)

SDIEG 0.86 (0.63, 1.23) 0.67 (0.51, 1.02) 0.75 (0.56, 1.01)

SFRAN 0.46 (0.21, 0.81) 0.33 (0.15, 0.70) 0.35 (0.05, 0.79)

SJOSE 0.63 (0.45, 0.89) 0.44 (0.33, 0.59) 0.16 (−0.08, 0.47)
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Table 2. Cont.

Series No Deterministic Terms An Intercept An Intercept and a Linear Time Trend

SJUAN 0.45 (0.26, 0.74) 0.46 (0.28, 0.74) 0.39 (0.17, 0.73)

SCRNT 0.50 (0.35, 0.72) 0.38 (0.27, 0.50) −0.04 (−0.27, 0.26)

SEATL 0.24 (−0.02, 0.53) 0.20 (−0.01, 0.49) 0.27 (0.02, 0.63)

SPRING 0.81 (0.61, 1.15) 0.54 (0.43, 0.72) −0.07 (−0.27, 0.32)

STOCK 0.27 (−0.23, 0.64) 0.06 (−0.15, 0.32) −0.08 (−0.31, 0.26)

SYRAC 0.49 (0.32, 0.74) 0.35 (0.23, 0.51) −0.04 (0.27, 0.28)

TAMPA 0.73 (0.51, 1.12) 0.57 (0.41, 0.90) 0.45 (0.17, 0.89)

TOLED 0.46 (0.29, 0.90) 0.34 (0.22, 0.50) 0.14 (−0.05, 0.41)

TUCSN 0.26 (0.03, 0.57) 0.19 (0.02, 0.46) 0.94 (0.03, 1.46)

TULSA 0.54 (0.32, 0.89) 0.38 (0.22, 0.69) 0.11 (0.32, 0.77)

VIRGN 0.53 (0.39, 0.75) 0.41 (0.33, 0.53) −0.04 (−0.31, 0.32)

WASHT 0.73 (0.54, 1.03) 0.50 (0.40, 0.62) −0.12 (−0.38, 0.29)

WICHT 0.63 (−0.37, 1.06) 0.59 (0.32, 1.04) 0.58 (0.30, 1.04)

WORCT 0.52 (0.36, 0.74) 0.42 (0.30, 0.59) 0.20 (0.00, 0.50)

YOUNG 0.39 (0.23, 0.60) 0.28 (0.17, 0.41) −0.22 (−0.46, 0.11)
Note: the coefficients from the selected model are in bold. In brackets the 95% confidence bands.

It can be seen that for 75 out of the 88 series examined, the time trend coefficient is
statistically significant; in 10 cases (ALBUQ, BAKER, BIRMG, FRESN, HILO, OMAHA,
SALTL, SEASTL, TUCSN and WICHT) only the intercept (constant) is significant, while in
3 cases (BRADE, MCALL and PHOEN) neither deterministic trend is significant. Figure 2
shows the long-term decreasing trends of AQI across different cities.

 

Figure 2. Long-Term IQA Trends 1980 to 2023.
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Table 3 displays the estimated coefficients for the selected models. It can be seen that,
of the series with significant trends, all except one (SJUAN) exhibit a negative coefficient,
which implies that the AQI (and hence pollution) in those areas has been decreasing from
1980 and 2023. The highest coefficients are those corresponding to LANGL (−5.2673)
followed by SDIEG (−4.8181), OXND (−4.4790), NYORK (−3.6160) and WASHT (−2.9592).
It should also be noted that the differencing parameter, d, has values higher than 0 (sup-
porting the hypothesis of long memory) in 39 cases. The highest degrees of persistence are
found in the cases of FRESN (d = 0.78), BAKER and BRADE (0.76) and SDIEG (0.75). For
the remaining 53 series the I(0) hypothesis of short memory cannot be rejected.

Table 3. Coefficient Estimates.

Series No Deterministic Terms An Intercept An Intercept and a Linear Time Trend

AKRON 0.11 (−0.08, 0.36) 49.8737 (10.54) −1.4500 (−6.70)

ALBAN 0.10 (−0.10, 0.37) 25.6817 (9.00) −0.7424 (−5.36)

ALBUQ 0.18 (−0.02, 0.48) 19.0291 (5.24) -----

ALLEN 0.19 (−0.09, 0.71) 55.0732 (11.14) −1.5672 (−7.01)

ATLAA 0.32 (0.10, 0.65)LM 93.5685 (6.99) −2.2599 (−3.70)

ATLIC 0.11 (−0.09, 0.41) 50.5064 (11.56) −1.6467 (−8.23)

AUSTI 0.01 (−0.19, 0.31) 28.0410 (8.37) −0.6919 (−4.39)

BAKER 0.76 (0.55, 1.12)LM 131.7347 (6.17) -----

BALTM −0.08 (−0.35, 0.31) 100.8621 (26.98) −2.7626 (−15.27)

BATON 0.19 (−0.04, 0.58) 70.9378 (10.42) −1.7189 (−5.58)

BIRMG 0.68 (0.48, 1.05)LM 52.7377 (3.01) -----

BOSTN 0.19 (−0.11, 0.88) 47.8229 (9.47) −1.3513 (−5.92)

BRADE 0.76 (0.59, 1.07)LM ----- -----

BRIDG 0.12 (−0.18, 0.42) 72.0704 (5.68) −1.8432 (−3.18)

BUFFL 0.16 (−0.04, 0.46) 32.0667 (7.12) −0.8616 (−4.22)

CHLTN 0.12 (−0.25, 0.78) 20.0627 (7.36) −0.6085 (−4.89)

CHRLT 0.35 (0.12, 0.74)LM 96.6228 (8.62) −2.6666 (−5.16)

CHICG 0.16 (−0.10, 0.50) 74.9967 (9.05) −1.5771 (−4.19)

CINCN 0.06 (−0.18, 0.45) 74.6703 (12.21) −1.8593 (−6.56)

CLEVL 0.28 (0.11, 0.51)LM 60.3097 (7.85) −1.4872 (−4.27)

CLMBA 0.16 (−0.07, 0.50) 54.9217 (7.68) −1.6603 (−5.11)

COLUM 0.11 (−0.07, 0.38) 62.3232 (10.62) −1.7136 (−6.38)

DALLA 0.41 (0.08, 0.87)LM 85.2416 (8.41) −1.3857 (−2.88)

DAYTN 0.17 (−0.03, 0.41) 42.4424 (8.03) −1.0644 (−4.44)

DENVR 0.12 (−0.15, 1.17) 63.2683 (6.15) −0.8100 (−1.72)

DETRT 0.11 (−0.12, 0.44) 46.4990 (9.15) −0.9331 (−4.01)

EL PAS 0.30 (0.09, 0.60)LM 40.8169 (5.71) −0.6851 (−2.10)

FRESN 0.78 (0.49, 1.21)LM 160.6869 (6.62) ------

GRAND −0.08 (−0.33, 0.26) 33.4215 (12.04) −0.8719 (−6.48)

GRNBO 0.44 (0.20, 0.84)LM 44.4925 (4.87) −1.2537 (−2.82)

GRNVL 0.39 (0.19, 0.69)LM 52.8785 (5.08) −1.5504 (−3.17)
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Table 3. Cont.

Series No Deterministic Terms An Intercept An Intercept and a Linear Time Trend

HARRB 0.13 (−0.05, 0.39) 47.4469 (10.21) −1.2679 (−5.98)

HARTF 0.08 (−0.24, 1.07) 47.9171 (11.62) −1.2500 (−6.58)

HILO 0.13 (−0.05, 0.39) ----- -----

HOUST 0.55 (0.17, 1.03)LM 116.3852 (8.61) −2.3171 (−3.13)

INDIA 0.58 (0.26, 1.07)LM 82.4697 (4.64) −1.9849 (−1.95)

JAKVL 0.29 (0.06, 0.63)LM 24.0426 (6.85) −0.6848 (−4.30)

KANSC 0.28 (−0.01, 0.79) 57.6581 (5.75) −1.3444 (−2.96)

KNOXV 0.55 (0.32, 0.86)LM 71.3225 (4.42) −1.9169 (−2.17)

LVEGS 0.29 (−0.08, 0.80) 83.8818 (7.77) −1.7711 (−3.62)

LTTRK 0.16 (−0.07, 0.53) 32.8537 (6.66) −0.9093 (−4.06)

LANGL 0.57 (0.33, 0.89)LM 272.4335 (15.93) −5.2673 (−5.47)

LOUVL 0.03 (−0.32, 0.98) 76.0910 (8.97) −2.0262 (−5.11)

MADIS 0.00 (0.37, 0.57)LM 17.9349 (6.28) −0.4499 (−3.34)

MCALL 0.51 (0.33, 0.72)LM ----- -----

MEMPS 0.28 (0.08, 0.61)LM 71.1849 (8.55) −1.8465 (−4.89)

MIAMI 0.01 (−0.31, 0.45) 26.6894 (6.11) −0.8006 (−3.90)

MILWK −0.12 (−0.38, 0.25) 35.9376 (13.66) −0.8279 (−6.40)

MINNP 0.30 (−0.11, 0.78) 25.7462 (4.40) −0.5759 (−2.16)

NASHV 0.37 (0.12, 0.72)LM 59.0678 (4.21) −1.5339 (−2.35)

NHAVN 0.03 -(0.22, 0.40) 39.2725 (14.54) −0.8426 (−6.68)

NORLS 0.20 (−0.06, 0.72) 41.7708 (7.49) −1.0836 (−4.30)

NYORK 0.37 (0.00, 0.74)LM 134.9215 (9.76) −3.6160 (−5.63)

OKLAH 0.17 (−0.06, 0.58) 35.9194 (5.84) −0.7466 (−2.68)

OMAHA 0.28 (−0.08, 0.63) 55.9665 (5.08) ------

ORLND 0.47 (0.23, 0.79)LM 17.276 (3.46) −0.4275 (−1.72)

OXND 0.40 (0.20, 0.77)LM 154.754 (14.40) −4.4790 (−8.83)

PHILD 0.02 (−0.38, 0.64) 109.0912 (22.71) −2.9282 (−13.01)

PHOEN 0.29 (0.01, 1.00)LM ----- ------

PITTS 0.50 (0.33, 0.77)LM 79.3010 (6.39) −1.7027 (−2.65)

PORTL −0.06 (−0.29, 0.24) 14.0159 (8.34) −0.1771 (−2.19)

PROVD 0.39 (0.00, 0.85)LM 49.4771 (9.32) −1.3184 (−5.29)

RALGH 0.54 (0.28, 0.98)LM 80.7851 (6.20) −2.3521 (−3.35)

RICHM −0.02 (−0.25, 0.34) 72.7732 (18.27) −2.1929 (−11.60)

RIVSD 0.25 (0.00, 0.60)LM 234.9260 (29.52) −2.4557 (−6.83)

ROCHT −0.21 (−0.56, 0.24) 22.8543 (17.29) −0.6776 (−10.08)

SACRM 0.31 (0.10, 0.62)LM 126.0146 (9.51) −2.4501 (−4.06)

STLOU 0.01 (−0.34, 1.16) 90.3870 (11.21) −2.2378 (−5.91)

SALTL 0.07 (−0.14, 0.38) 38.2576 (8.96) -----

SANTO 0.14 (0.06, 0.44)LM 26.4461 (8.66) −0.4526 (−2.50)
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Table 3. Cont.

Series No Deterministic Terms An Intercept An Intercept and a Linear Time Trend

SDIEG 0.75 (0.56, 1.01)LM 204.1215 (13.13) −4.8181 (−3.83)

SFRAN 0.35 (0.05, 0.79)LM 34.2575 (6.54) −0.6787 (−2.50)

SJOSE 0.16 (−0.08, 0.47) 53.9906 (12.99) −1.4218 (−2.50)

SJUAN 0.39 (0.17, 0.73)LM −15.2980 (−2.48) 0.3159 (2.13)

SCRNT −0.04 (−0.27, 0.26) 41.6362 (15.58) −1.3098 (−10.27)

SEATL 0.20 (−0.01, 0.49) 19.3022 (4.80) -----

SPRING −0.07 (−0.27, 0.32) 42.3304 (23.44) −1.2020 (−13.79)

STOCK −0.08 (−0.31, 0.26) 42.1167 (14.05) −0.6023 (−4.15)

SYRAC −0.04 (0.27, 0.28)LM 21.6794 (11.62) −0.6323 (−7.10)

TAMPA 0.45 (0.17, 0.89)LM 38.1600 (5.58) −1.0287 (−2.68)

TOLED 0.14 (−0.05, 0.41) 33.9437 (8.29) −0.8298 (−4.45)

TUCSN 0.19 (0.02, 0.46)LM 114.5991 (7.82) -----

TULSA 0.11 (0.32, 0.77)LM 54.3395 (9.01) −1.3930 (−5.04)

VIRGN −0.04 (−0.31, 0.32) 54.2184 (17.93) −1.7240 (−11.94)

WASHT −0.12 (−0.38, 0.29) 104.7855 (30.88) −2.9592 (−17.75)

WICHT 0.59 (0.32, 1.04)LM 12.4444 (1.88) -----

WORCT 0.20 (0.00, 0.50)LM 31.4616 (8.14) −0.8505 (−4.87)

YOUNG −0.22 (−0.46, 0.11) 58.1530 (23.08) −1.7083 (−13.28)
Note: in brackets the 95% confidence bands.

To summarize, a statistically significant time trend is found in 75 out of the 87 series
analyzed. In most cases, the estimated trend is negative, which indicates a general im-
provement in air quality during the period under investigation, possibly as a result of the
implementation of environmental policies such as the Clean Air Act. The most signifi-
cant improvements appear to have occurred in cities such as Los Angeles, San Diego and
Oxnard-Thousand Oaks-Ventura on the Western coast and in New York and Washington
on the Eastern coast, where pollution levels decreased sharply.

The differencing parameter d is estimated to be greater than 0 in 38 series, which
indicates mean reversion in those cases. This implies that, although the effects of shocks to
pollution levels are persistent, they eventually die out. The highest values of d are found for
Fresno, Bakersfield, Bradenton and San Diego, which appear to be characterized by higher
persistence in pollution levels. These differences between metropolitan areas highlight the
need for targeted interventions taking into account regional characteristics.

In a number of cases a significant reduction is observed in the number of days with
AQI values above 100, especially in cities such as Akron, where this dropped from 55
in 1980 to 9 in 2023, and Albany, where it decreased from 32 to 7 over the same period.
However, in other areas such as Fresno and Bakersfield, high levels of pollution have
persisted, which confirms the need for policies tailored to the economic, geographic and
social characteristics of each region. It is also noteworthy that for 13 of the series analyzed
the time trend coefficient is statistically insignificant and stationarity is found. Furthermore,
the d values for these series support the short memory hypothesis, which points to a lower
degree of persistence relative to cities with higher values of d.

Finally, it should be mentioned that the reported results are robust to the use of
alternative fractionally integration methods. Specifically, other likelihood approaches such
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as the one proposed by Sowell [38] and various semiparametric methods, including the
log-periodogram regression estimate developed by Geweke and Porter-Hudak [39] and
modified later by Robinson [40] and Velasco [41], produced similar evidence concerning
the long memory and mean reversion properties of the series of interest. Other methods,
such as those based on local Whittle estimates [42,43], were instead sensitive to choice of
the bandwidth parameters. All these results are not reported to save space.

6. Conclusions
This study provides comprehensive evidence on trends and persistence in air quality

in 88 US metropolitan areas for the period 1980–2023, thereby contributing to our under-
standing of the dynamics of environmental pollution and to policy design. The adopted
empirical framework is based on the concept of fractional integration and is ideally suited
to detecting long memory, which is found in 65% of the time series examined. This implies
that in most cases shocks to pollution levels have long-lasting effects and thus require long-
term, sustainable policy actions, and is consistent with the evidence from previous studies
that have identified similar persistence patterns in European and Asian countries [5,25],
among others.

On the whole, our findings confirm that regional disparities in pollution levels are
significant and that factors such as industrialisation history and extreme weather events
strongly influence their degree of persistence. The implication is that, although federal
legislation such as the Clean Air Act might be effective to some extent, there is also a need
for customised strategies taking into account local socioeconomic characteristics (such
as community participation) with the aim of improving air quality. Such an approach
can result in more effective and equitable policies addressing the challenges arising from
environmental pollution.

Future work could also investigate two additional relevant issues, namely the possible
presence of structural breaks and nonlinearities in pollution indices. For the former, the
Bai and Perron [44] tests could be carried out or those specifically designed for the case
of fractional integration by Gil-Alana [45] and Hassler and Meller [46]. The latter could
instead be captured using methods based on Chebyshev’s polynomials, Fourier transform
functions or neural networks [47].
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