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Abstract

Apron incidents remain a critical safety concern in aviation, yet progress in vision-based
surveillance has been limited by the lack of open-source datasets with detailed aircraft
component annotations and systematic benchmarks. This study addresses these limitations
through three contributions. First, a novel hybrid dataset was developed, integrating real
and synthetic imagery with pixel-level labels for aircraft, fuselage, wings, tail, and nose.
This publicly available resource fills a longstanding gap, reducing reliance on proprietary
datasets. Second, the dataset was used to benchmark twelve advanced object detection and
segmentation models, including You Only Look Once (YOLO) variants, two-stage detec-
tors, and Transformer-based approaches, evaluated using mean Average Precision (mAP),
Precision, Recall, and inference speed (FPS). Results revealed that YOLOvV9 delivered the
highest bounding box accuracy, whereas YOLOv8-Seg outperformed in segmentation,
surpassing some of its newer successors and showing that architectural advancements
do not always equate to superiority. Third, YOLOv8-Seg was systematically optimised
through an eight-step ablation study, integrating optimisation strategies across loss design,
computational efficiency, and data processing. The optimised model achieved an 8.04-point
improvement in mAP@0.5:0.95 compared to the baseline and demonstrated enhanced
robustness under challenging conditions. Overall, these contributions provide a reliable
foundation for future vision-based apron monitoring and collision risk prevention systems.

Keywords: aircraft component segmentation; YOLOvV8-Seg; apron safety; ablation study;
deep learning benchmarking; model optimisation; computer vision; airport operations

1. Introduction

Airport aprons are among the most critical safety zones in civil aviation, where aircraft,
ground vehicles, and personnel interact within limited spaces. Ground collisions on aprons
are common, resulting in substantial economic losses, operational delays, and reputational
damage [1-3]. According to the International Air Transport Association (IATA), without
further safety interventions, the financial impact of ground damage could rise to nearly
$10 billion annually by 2035 [4]. This alarming projection highlights the urgent need for
innovative solutions to improve operational safety on aprons. Even seemingly minor
incidents like wingtip collisions can lead to aircraft being withdrawn from service for
expensive inspections and repairs. This clearly demonstrates that apron safety is both a
persistent problem and one that should not be ignored. Traditional airport safety systems,
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including human surveillance, Surface Movement Radar (SMR), Automatic Dependent
Surveillance-Broadcast (ADS-B) and CCTV, can only partially provide apron safety [5,6].
While SMR and ADS-B are considered reliable for location data, they cannot perform
object-level classification. Closed-Circuit Television CCTV, on the other hand, provides
rich visual information but requires human attention and is susceptible to factors such as
fatigue, low visibility, or adverse weather conditions [7-11]. Alternative technologies such
as thermal infrared cameras and LiDAR systems provide additional layers of surveillance,
but their widespread use is vulnerable by their high cost, limited resolution, or signal degra-
dation from weather conditions [12-15]. These limitations reveal that no isolated system
suffices for comprehensive apron safety, necessitating integrated, intelligent approaches
that leverage emerging technologies.

In this context, Artificial Intelligence (AI) and Computer Vision (CV) are increas-
ingly recognised as enabling technologies with significant potential. In particular,
deep learning supports the automated detection, classification, and tracking of air-
craft, vehicles, and personnel in real time, thereby reducing reliance on human op-
erators and enhancing situational awareness [16,17]. While existing Al applications
in aviation have addressed challenges such as foreign object debris (FOD) detec-
tion [18-21], perimeter surveillance [22-24], turnaround monitoring [25,26], and wildlife
hazard management [27-29], a critical gap remains. Comprehensive solutions that inte-
grate component-level detection of aircraft, supported by systematic benchmarking of
state-of-the-art models and targeted optimisation, are notably limited in the current litera-
ture. Accordingly, the research presented herein seeks to establish a robust, data-driven
foundation for the development of next-generation, intelligent apron surveillance systems.

1.1. Motivation and Research Questions

This research is motivated by the persistent risks of apron incidents in civil aviation
and the lack of reliable, open datasets and systematic model evaluations. While state-
of-the-art detectors such as YOLO-based architectures, Faster R-CNN, and Transformer-
based approaches have demonstrated remarkable results on generic benchmarks, their
applicability to airport ground operations remains underexplored. Equally, object detection
model optimisation studies tailored for aviation safety are scarce. To address these gaps,
we pursue the following research questions:

1.  What are the essential characteristics of a benchmark dataset designed to effectively
train and validate deep learning models for the high-fidelity detection of individual
aircraft components in diverse apron environments?

2. How do state-of-the-art object detection and segmentation architectures compare in
terms of accuracy, computational efficiency, and practical robustness when systemati-
cally benchmarked for aircraft component identification?

3. What constitutes a systematic optimisation framework for a state-of-the-art segmen-
tation model (YOLOvVS8-Seg) to enhance its performance for the specific demands of
apron safety, and what is the quantifiable and qualitative impact of such a framework?

1.2. Key Contributions
The key contributions of this study are presented as follows:

1.  We developed and publicly released a novel hybrid dataset of 1112 images featuring
detailed, pixel-level annotations for five critical aircraft components. This resource di-
rectly addresses the critical gap of coarse-labelled and proprietary datasets in aviation
research, enabling reproducible and fine-grained analysis.

2. We conducted a systematic benchmark of twelve state-of-the-art detection and seg-
mentation models, spanning three distinct architectural paradigms. This analysis
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provides a definitive performance comparison using critical metrics (mAP, Recall,
F1-Score, FPS), establishing a clear hierarchy of model suitability for apron safety.

3. Weintroduce a systematic and reproducible optimisation framework for YOLOv8-Seg.
This framework is rigorously validated through an eight-step ablation study that
first quantifies the individual impact of each technique from data augmentation to
architectural scaling and then demonstrates the powerful cumulative effect of com-
bining the most effective strategies. The final optimised model achieves a quantifiable
(8.04 p.p.) in mAP@0.5:0.95 gain and significantly enhances robustness, bridging the
gap between benchmark accuracy and operational reliability.

1.3. Structure of the Paper

The remainder of this paper is organised as follows: Section 2 reviews related work in
aviation safety datasets and object detection algorithms. Section 3 presents the methodol-
ogy, including dataset creation, model training, and the eight-step optimisation process.
Section 4 reports the results of benchmarking and optimisation, while Section 5 discusses
their implications and comparative insights, including limitations and directions for future
research. Finally, Section 6 concludes the study.

2. Related Work

Vision-based apron safety research covers applications from remote sensing to ground-
level surveillance. In satellite and aerial imagery, detection methods have progressed
through feature fusion, multi-scale processing, and super-resolution techniques to address
small aircraft sizes and crowded scenes. However, these approaches still face challenges
with real-time performance requirements and complex background environments [30-34].
While valuable for large-area monitoring, apron-level surveillance typically demands
higher resolution, faster processing speeds, and more detailed object information than
remote sensing can provide [35,36].

From a technical perspective, two-stage detection methods like R-CNN variants offer
strong accuracy but often lack the speed needed for real-time apron operations [37-40].
Single-stage detectors such as SSD [41], RetinaNet [42], and particularly the YOLO se-
ries such as YOLOv1 [43], YOLOV5 [44], YOLOVS [45], YOLOVY [46], YOLOV10 [47],
YOLOv11 [48], YOLOV12 [49], YOLOv5-Seg [50], YOLOv8-Seg [45], YOLOv11-Seg [51],
models combine object localisation and classification with competitive processing speeds.
Meanwhile, transformer-based models including DETR and RF-DETR introduce global
contextual understanding through attention mechanisms [52,53]. A notable limitation is
that validation often relies on general-purpose datasets like COCO, with limited aviation-
specific evaluation, and many studies compare only one or two YOLO versions [21,54-56].

In apron and CCTV applications, recent research has adapted detectors for small
targets and limited computing resources. Examples include ASSD-YOLO, which enhances
YOLOv7 with attention and transformer components for improved performance on surveil-
lance footage [57], AD-YOLO combining YOLOvV7 with Swin and ECSA modules while
maintaining over 100 FPS [58], and Edge-YOLO systems that achieve over 90% mAP with
minimal cloud support for real-time apron monitoring [59]. Beyond aircraft detection,
some approaches like YOLOv3 with MOSSE tracking monitor ground service operations
with over 90% precision [25], while airport-specific YOLOvS5 adaptations target component
detection or efficient CPU deployment [54,60,61].

Data availability remains one of the most significant limitations in this field. For exam-
ple, remote sensing-based datasets such as DOTA and RSOD contain airport imagery but
typically only provide aircraft-level labels, which limits detailed component analysis and
the reproducibility of results [62,63]. In recent years, instance segmentation models such
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as Mask R-CNN have enabled component-aware analysis by detecting and delineating
individual aircraft parts. While semantic segmentation approaches like DeepLabV3 can
classify regions corresponding to aircraft components, they lack instance-level separation.
Both methods, however, often require extensive data augmentation, exhibit reduced per-
formance on small objects (e.g., nose, tail), and are sensitive to class imbalance due to
significant variations in part sizes [64—66]. Although recent models like YOLOvV5, YOLOVS,
and YOLOvV11 now support instance segmentation [51], publicly available datasets with
component-level annotations under realistic apron conditions remain scarce. Most ex-
isting datasets rely on satellite or aerial imagery, which fail to capture the challenges
of ground-level operations. As a result, developing robust, real-time detection and seg-
mentation models capable of performing reliably across varying lighting, weather, and
visibility conditions becomes significantly challenging. To highlight these gaps, Table 1
presents a summary of representative datasets used in aircraft and apron-related tasks
within civil aviation.

Table 1. Overview of existing aircraft-related datasets, illustrating the lack of publicly available,
component-level annotated data from apron environment.

Dataset/Authors Labelling Type Images/Objects Domain Openness Key Focus
HRPlanes [67] BBox ?Ifr)iéecsoogle Earth Satellite Private Aircraft detection in high-res
(YOLO/VOCQ) 18477 airplanes (Google Earth) Satellite imagery
(DOTA) [62] Oriented BBox 2896 images/188 k Aerial/ . Restrlctgd / Multl—.class .aerlal object detection
objects Remote sensing Academic including aircraft
BBox (PASCAL 976 images (446 for . . Aircraft and airport object
(RSOD) [63] VOCQ) aircraft) Remote sensing Public detection in satellite imagery
(AAD) [54] BBox 8643 images/6 classes  Apron CCTV Private Aireraft, monitoring ground Staff,
and ground support equipment.
. . General object detection and
COCO) [56] BBox + Instance 328’(.)00 images/ . QenerlF Scenes Public segmentation (Person, Car, Cat,
Segmentance 80 different categories (incl. aircraft) S .
top Sign, etc.)
10,000 Images/ . . . .
4 . . . Public/ Fine-grained aircraft model
(FGVC) [68] Bbox 102 models of Aircraft Airport/Spotting Research Only classification
Images
. Instance . . Private (Turkish Detection and segmentation of
Yilmaz and Segmentation Apron Security 1 . .
. 1000 Images/2 classes Airlines R&D aircraft parts (tail and doors) from
Karsligil [66] (Mask R-CNN) Camera Centre) CCTV
PASCAL VOC entre apron
Our Proposed BBox + Instance 1112 images/ Hybrid (Real, Public (Planned) Aircraft and Component-level
Dataset Segmentation 7420 labels, 5 classes CCTV + Synthetic) uhle itianne segmentation for apron safety

An examination of Table 1 reveals that the vast majority of existing datasets in the
literature concentrate on remote sensing or satellite-based aircraft detection. For instance,
the HRPlanes, DOTA, and RSOD datasets are oriented towards identifying only the general
locations of aircraft in high-resolution satellite images at the Bounding Box level, conversely,
they do not provide component-level detail or segmentation information. The COCO
dataset, while comprehensive and containing dozens of objects classes, defines the aircraft
category only as ‘aircraft’, with no sub-classes representing aircraft parts [56]. The FGVC-
Aircraft dataset, developed by Maji et al. [68], focused on the classification of 102 different
aircraft models, yet it did not include component-level annotations. He et al. [54] adopted an
approach closer to the apron environment, detecting sub-components such as the aircraft’s
nose, tail, engine, landing gear, and apron personnel at the BBox level with an enhanced
YOLOv5-based system; however, this dataset lacks segmentation labels. Similarly, Yilmaz
and Karsligil [66], used apron security camera images from the Turkish Airlines R&D
Centre to perform detection of only the aircraft’s door and tail sections using Mask R-CNN;
however, this dataset is not publicly available. Consequently, while the existing literature
concentrates on ‘aircraft detection” or ‘model classification’, there remains a clear lack of a
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publicly available, comprehensive data source for component-level segmentation of aircraft
parts that also reflects real apron conditions.

In summary, research gaps persist in three key areas: the absence of publicly
available datasets with component-level annotations, the lack of comprehensive multi-
architecture benchmarking under consistent evaluation protocols, and the limited presence
of systematic optimisation strategies addressing apron safety requirements, including
scenario robustness.

This study addresses these gaps by introducing a public dataset with component-level
instance segmentation, evaluating twelve detection and segmentation architectures under
uniform conditions, and presenting an eight-step optimisation framework for YOLOv8-Seg
tailored to safety-critical apron applications, thereby contributing to the development of
more reliable, real-time, and safety-aware vision systems for airport operations.

3. Methodology
3.1. Dataset Development

A new hybrid dataset was created using three different data sources to reliably detect
and segment aircraft on aprons. First, real-world photographs of commercial aircraft were
collected from publicly licensed platforms. Variety was exploited through different aircraft
types, lighting, and background conditions. Second, CCTV footage was used. Finally, syn-
thetic data was generated using Microsoft Flight Simulator (MSFS; Microsoft Corporation,
Redmond, WA, USA) to simulate real-world conditions. This combination enabled the
dataset to reflect both realistic apron conditions and rare but safety-critical scenarios.

However, creating a dataset for aircraft and aircraft components presents several
challenges. As emphasised in the literature, these challenges are largely due to licensing
restrictions, access limitations, and data privacy. Many existing datasets are private and not
accessible to the public. The dataset developed in this study was meticulously compiled
over several months of intensive effort to address the identified challenges and limitations.
The vast majority of the images were professionally collected from different airports; some
of the data was obtained from real CCTV footage, while a small portion was obtained from
MSFS-based synthetic scenarios to increase diversity. The dataset is not limited to outdoor
conditions, it also covers snow, rain, fog, day, night, and intense lighting conditions. This di-
versity makes the dataset more representative of dynamic and variable work environments
like aprons, rather than being uniform. The prepared dataset is designed to be publicly
accessible, and this approach contributes to reducing data access barriers and increasing
reproducibility in apron safety research.

All images were annotated using Roboflow platform, with instance segmentation
aircraft and four main parts, fuselage, wings, tail, and nose. These component-level
annotations were chosen because most apron incidents include discrete parts of aircraft
rather than whole fuselages. In addition, the annotation process was manually verified to
ensure accuracy and consistency across classes. The dataset comprises 1112 images with
7420 total annotations. Images resolutions (median 1200 x 822) and an average image size
of 0.97 MP. The dataset was split into training, validation, and test subsets at a ratio of
80/15/5, with class balance carefully preserved.

A summary of the dataset structure is provided in Table 2, which reports the number
of instances per class before augmentation. To our knowledge, this dataset represents a
detailed publicly available resources for apron safety research, so offering fine-grained
labels that directly support aircraft component-level analysis.
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Table 2. General Features of the Dataset.

Feature Value
Number of images 1112
Number of annotations 7420
Average annotations per image 6.7
Number of classes 5
Average image size, MP * 0.97

Min image size MP * 0.09
Max image size MP * 44.76
Median resolution (px) 1200 x 822
Annotation type Segmentation

* MP = megapixels. Resolution and size are reported as provided by sources; no pre-submission resizing was
applied.

Additional dataset statistics are provided in the Supplementary Materials, including
per-class label distribution (Table S1), the number of labels per image (Table S2), image size
categories (Table S3), and image aspect ratio distribution (Table S4).

3.2. Selection of Deep Learning Models

This study evaluates twelve representative detection and segmentation models from
three main architectural families. The first group comprises YOLO variants (v5, v8-v12)
and their segmentation versions (YOLOv5-Seg, YOLOvS8-Seg, YOLOv11-Seg), selected
for their real-time capability by unifying object localisation and classification in a single
step [43,45-47,69]. The second group includes Faster R-CNN, a two-stage detector valued
as an accuracy benchmark despite slower inference speeds [39]. The third group encom-
passes transformer-based models DETR and RE-DETR, which formulate detection as a set
prediction task and leverage attention mechanisms for global context modelling [53,70].

These families represent key evolutionary trends in object detection: two-stage
precision-oriented methods, single-stage speed-optimised YOLO architectures, and
transformer-based global reasoning approaches. Instead of reiterating architectural details,
this analysis focuses on their comparative performance in apron surveillance scenarios.
Key characteristics of each model family are summarised in Table 3, while comprehensive
implementation details (backbone, neck, and head configurations) are provided in the
Supplementary Materials (Tables S5-57) to ensure reproducibility.

Table 3. Overview of the twelve selected architectures grouped by family. The table shows model
year, architectural type, and a concise summary of their primary strengths.

Model Year Architecture Type Key Strength

YOLOvV5 2020 Single-Stage Lightweight, real-time detection
YOLOVS8 2023 Single-Stage Improved backbone, strong accuracy
YOLOv9 2024 Single-Stage Enhanced bounding-box accuracy
YOLOvV10 2024 Single-Stage Speed—accuracy trade-off
YOLOv11 2024 Single-Stage Extended segmentation capability
YOLOv12 2025 Single-Stage Latest YOLO variant, stability focus
YOLOV5-Seg 2020 Single-Stage (Seg) Pixel-level segmentation
YOLOVS8-Seg 2023 Single-Stage (Seg) Best segmentation accuracy
YOLOv11-Seg 2024 Single-Stage (Seg) Newer segmentation variant

Faster R-CNN 2015 Two-Stage High accuracy, region proposals
DETR 2020 Transformer-Based Anchor-free, attention reasoning

RF-DETR 2025 Transformer-Based Refined DETR, faster convergence
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3.3. Experimental Configuration for Model Comparison

All experiments were conducted on Google Colab Pro (Python 3.11.12, CUDA 124,
PyTorch 2.6.0+cul24), equipped with an NVIDIA A100 GPU (40 GB VRAM), 2—4 virtual
CPUs with 25 GB memory. YOLO variants (v5, v8-v12) and their segmentation counterparts
were implemented using the Ultralytics YOLO framework (Ultralytics LLC, London, UK;
v8.3.134), while transformer-based models (DETR, RF-DETR) were implemented with the
HuggingFace Transformers library (Hugging Face Inc., New York, NY, USA; v4.52.2).

While the dataset was initially divided into 80% training, 15% validation, and 5% test
subsets, the quantitative benchmarking of all twelve models was conducted on the 15%
validation subset (~167 images) rather than the small 5% test split (~56 images). This
approach reduces statistical variance and provides more stable mAP estimates. The 5% test
portion was retained exclusively for qualitative inspections and sanity checks.

To ensure a fair and transparent benchmark, the twelve models were grouped into
three architectural families: single-stage YOLO-based models, the two-stage Faster R-
CNN, and transformer-based DETR variants. To provide a methodologically fair basis for
comparison that addresses potential convergence differences between these families, each
was trained using its canonical, literature-recommended hyperparameter configuration.
However, a uniform experimental framework was maintained across all runs.

Specifically, all YOLO and YOLO-Seg variants (v5—-v12) were trained under identical
conditions: AdamW optimiser (learning rate 0.00111), (640 x 640) input resolution, batch
size of 16, and 130 epochs with early stopping. Faster R-CNN employed its standard SGD
optimiser (momentum 0.9, learning rate 0.01) with (800 x 1333) inputs. The Transformer-
based models DETR and RF-DETR used AdamW (learning rate 0.0001) with dynamic input
resizing, reflecting their native training schemes.

Across all experiments, the dataset split (80/15/5), augmentation pipeline, and hard-
ware/software environment remained identical. This balanced approach ensures that
performance differences reflect architectural design rather than training bias, making the
comparisons scientifically reproducible.

Finally, experimental reproducibility was maintained through consistent data parti-
tioning and controlled random seeds. Full hyperparameter details for each architecture are
listed in Table S8 of the Supplementary Materials, confirming that no model was trained
under advantageous conditions beyond its original design.

3.4. Performance Evaluation Metrics

We selected widely used object detection and segmentation metrics to effectively test
the performance of the models. Intersection over Union (IoU) is used to determine true
and false positives by calculating the overlap between the predicted and true bounding
boxes [71]. Precision shows the fraction of correct detections among all positive predictions,
while Recall indicates how many of the true objects were detected [71]. The trade-off
between these two metrics is illustrated by the Precision-Recall (PR) curve, which presents
the model performance at different confidence thresholds [54].

From the PR curve plot, Average Precision (AP) is calculated for each class as well as
Precision and Recall are combined into a single score [72]. For tasks with multiple classes,
Average Precision (mnAP) combines the AP values of all categories [73]. Two common
thresholds are reported: mAP@0.5, which uses a 0.5 IoU threshold, and mAP@0.5:0.95,
which averages the results between thresholds from 0.5 to 0.95 in steps of 0.05 as defined in
the COCO benchmark [72].

For segmentation quality, the Mean Intersection Over Union (mloU) is used to identify
the pixel-level overlap between predicted and true masks across classes [74]. To ensure
methodological clarity, all reported metrics are labelled as BBox for bounding-box evalu-
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ation and Mask for mask-based evaluation. Metrics labelled BBox were computed using
standard Bounding-box IoU, whereas those labelled Mask followed the COCO Mask-AP
protocol, which measures pixel-level mask IoU rather than bounding-box overlap. This
distinction enables consistent and independent assessment of detection BBox and segmen-
tation Mask performance under the same COCO-standard evaluation framework [73,75].

F1-score is defined as the harmonic mean of precision and recall, is used to provide a
single measure of trade-off between false positives and false negatives [76]. Inference speed
is evaluated using FPS metric, which reflects model performance in real-time conditions.
Collectively, these metrics provide a multidimensional framework evaluating accuracy,
segmentation quality, and operational efficiency, enabling comprehensive assessment of
model suitability for apron surveillance applications.

3.5. Methodological Validation: Statistical and Visual Analysis

This section presents a two-way validation framework designed to rigorously assess
model robustness, increase the generalisability of findings, and ensure practical applicability.
Standard assessments based on a single fixed test split can be susceptible to partitioning
bias and may not fully represent the data variance. This can potentially lead to overly
optimistic or misleading performance estimates [77].

To mitigate these risks and create a more holistic methodology, our study employed
both:

1. Statistical evaluation through k-fold cross-validation and,
2. Quantitative failure mode and qualitative visual analysis under various apron
scenarios.

3.5.1. Statistical Evaluation Using K-Fold Cross Validation

As outlined in Section 3.3, the initial benchmark of twelve models was conducted
using a 15% validation subset (167 images) to provide a stable basis for model selection,
as the 5% test set (56 images) was too small for reliable evaluation. However, single-shot
evaluations, even on a validation set, are susceptible to statistical variance and partitioning
bias. To address this and obtain an unbiased measure of model performance, a 10-fold
cross-validation (CV) procedure was performed on the three candidate models: YOLOVS,
YOLOvVS8-Seg and YOLOv11-Seg. The choice of k = 10 balances computational cost with
reliable variance estimation, as supported by the literature [77].

In this procedure, the entire dataset (1112 images) was divided into 10 equal, stratified
folds. For each iteration, one fold (10%, 111 images) was reserved as the test set, while
the remaining 90% was split into 80% for training (890 images) and 10% for validation
(~111 images) to select the best model weights (best.pt). This process was repeated 10 times,
ensuring each data point was used for testing exactly once. Performance metrics (BBox
mAP@0.5:0.95, BBox mAP@0.5, Mask mAP@0.5:0.95, Mask mAP@0.5) from each fold’s
test set were aggregated to compute the mean, standard deviation (StdDev), coefficient
of variation (CV), and 95% confidence intervals (Student-t). In addition to f-intervals,
non-parametric bootstrap confidence intervals were also estimated for mAP metrics to
further quantify performance variability.

Mathematically, these ratios can be defined as follows:

1 1
Tk io=-=—=10%
est ratio 2 0 0%
-1 1 1
Validation ratio = (k 2 ) X =1 = % X 5= 10%

Training ratio = 1 — (Test + Validation) = 80%
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At each iteration, the model was retrained and tested based on these ratios, thus,
each model was trained independently 10 times. To prevent data leakage, the training
and test sets for each fold were kept completely separate, and the training hyperparam-
eters, learning rate, and other experimental conditions were fixed to fully comply with
those defined in Section 3.3. Thus, the results of different folds were only affected by
the variability of the data subset, and the true performance stability of the model was
measured. The evaluation focused on the mAP@0.5 and mAP@0.5:0.95 metrics for BBox
and mask (segmentation) performance. These metrics were chosen because they reflect
both the overall accuracy and the consistency of the model across different IoU thresholds.
Using the metric values calculated for each fold, the following statistical measurements
were obtained: For the k = 10 folds, the score set {x1,x,...,x,} was obtained and the
following statistics were computed.

Arithmetic Mean: It is the average of k scores that represents the expected overall
performance of the model.

_ 1
x:EZx,- @)

Here:

x = arithmetic mean of all folds,

x; = result of each fold,

k = total number of folds (e.g., 10).

Standard Deviation (s): Indicates the model’s stability, or rather its variabil-
ity, in performance across different data subsets. A lower s value indicates more
consistent performance.

1 & 2
s= m;(xi_x) 2)

Here:

s: standard deviation of the sample.

95% Confidence Interval (CI): Due to the sample size of k = 10, the Student-t distri-
bution was used to estimate the range within which the true average performance of the
model would lie. This range provides a more reliable basis for comparison than a single
numerical score.

_ S
Closoy, =X+ ty/2 k1" (ﬂ) 3)

Clys, = 95% confidence interval for the mean,
ty/2 k—1 = t-distribution critical value for a 95% confidence level and k — 1 degrees of
freedom, a significance level of & = 0.05 (£p 25,9 ~ 2.262)

3.5.2. Quantitative Failure Mode and Visual Scenario-Based Analysis

This phase aimed to move beyond the statistically evaluated overall performance of
the models by analysing their consistency under real-world operational conditions and
identifying their specific failure modes. The goal was to examine how the models perform
not only in terms of numerical metrics but also when exposed to environmental variability
and visual complexity.

To achieve this, the analysis was conducted in two complementary dimensions. First,
the failure patterns of the models at the component level were quantitatively assessed
using confusion matrices, focusing on True Positive (TP), False Positive (FP), and False
Negative (FN) cases observed in the most challenging classes. This quantitative evaluation
was designed for analysing typical failure modes and to reveal class-specific weaknesses in
detection. Second, a visual analysis was conducted to assess the generalisation ability of the
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three best-performing object detection models across diverse apron scenarios. Six represen-
tative conditions including foggy weather, low light, complex background, partial occlusion,
glare, and sensor noise were selected to simulate the environmental and operational chal-
lenges encountered in real apron operations. Each scenario enabled the observation of how
models maintained stability and robustness under varying visual complexities.

3.6. Systematic Optimisation Framework for a YOLOvS-Seg

Based on prior model evaluation, YOLOvVS-Seg was selected for systematic opti-
misation due to its effective balance of segmentation and detection accuracy alongside
computational efficiency. Furthermore, the aim was to provide a more reliable basis for flow
tracking and more accurate detection. Therefore, systematic optimisation was required to
increase its efficiency in real-world apron environments. The optimisation strategy was
designed as a comprehensive ablation study that individually tested the effectiveness of
six different techniques. Each applied technique was evaluated independently on the
YOLOvV8-Seg model, targeting different aspects of the training or inference pipeline.

1.  Loss Function Modification: To reduce class imbalance between large fuselages and
smaller components (wings, tails, and noses), a custom function called v8Weighted-
SegmentationLoss was used instead of the standard Loss function. This function
combines class-weighted cross-entropy with geometric metrics such as IoU and Dice
to improve boundary accuracy on long structures such as wings. In practice, all other
hyperparameters were kept constant.

2. Inference Efficiency Optimisation: In this step, an adjustment was made to
torch.inference_mode() in the YOLOv8-Seg model. To improve computational ef-
ficiency during the distribution process, gradient calculations were disabled during
forward propagation. This eliminated some unnecessary calculations during feature
extraction and aimed to reduce memory usage and latency. This aimed to enable the
selected model to perform faster and more resource-efficient real-time inference under
apron supervision.

3. Mixed-Precision Computing: In this optimisation step, we enabled Automatic Mixed
Precision (AMP) via the torch.cuda.amp.autocast() mode. This change allowed some
tasks to run at FP16, while keeping critical operations running at FP32. This opti-
misation step aims to reduce memory usage and speed up inference. In addition, a
callback mechanism has also been added to the prediction function.

4.  Increasing Input Resolution: In this step, only the model’s input resolution was
changed, while all other hyperparameters were held constant. The input size was
increased from 640 x 640 pixels to 1024 x 1024 pixels. This adjustment was intended
to enable the model to process finer spatial details of components such as the fuselage,
wings, and tail. It was anticipated that using higher resolution would enable the con-
volution layers to capture more local texture and boundary information, particularly
for thin and long geometric structures like wings.

5. Epoch Count Adjustment: In this control experiment, only the training time parame-
ter was changed. The epoch count was increased from 130 to 170 to allow the network
to perform more iterations for weight optimisation. The aim was to ensure that the
model could learn more complex spatial patterns more reliably across different classes
and lighting conditions. To prevent potential over-learning, the early stopping and
verification-based monitoring mechanisms were retained. Thus, the training time
extension was implemented solely to enhance representation learning. To measure
the individual impact of this change, all other parameters (resolution, learning rate,
etc.) were kept the same as the baseline model.
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6. Adjusting the Learning Rate: In this step, to examine its impact on the final per-
formance of the model, the learning rate (LR) was slightly adjusted from 0.00111 to
0.001. This minor modification aimed to test the sensitivity of the model’s training dy-
namics to subtle variations in the learning rate and potentially provide a more stable
weight update trajectory. This experiment was also run in isolation, independent of
all other hyperparameters.

7. Model Scaling: The YOLOvS8-Seg model was scaled from its nano configuration to
a larger version. This step increased the model’s depth and parameter count. This
scaling allowed the model to handle more complex geometric features and generate
more detailed segmentation masks for aircraft components.

8.  Data Augmentation and Expansion: The dataset was expanded by 3.5-fold through
augmentation techniques applied exclusively to the training split, as detailed in
Table 4. This strategic expansion enhances the model’s capacity for robust feature
learning in object detection while maintaining evaluation integrity, as validation and
test sets contained no augmented samples.

Table 4. Data augmentation techniques and parameters used for YOLOv8-Seg dataset expansion.

Data Augmentations Rates
Rotation Between —15° and +15°
Saturation changes Up to 18%
Brightness adjustment Up to 22%
Exposure changes Up to 15%
Blur Up to 1.2 pixels
Adding Random Noise 2.2%
4. Results

4.1. Model Performance Comparison
4.1.1. Performance of the Evaluated Models

The benchmark experiments conducted in this study cover a total of twelve object
detection and segmentation models representing three main architectural families: YOLO,
R-CNN, and DETR-based transformer models. All models were trained and tested under
the experimental conditions described in Section 3.3. Models belonging to the YOLO family
(YOLOv5-v12) and their segmentation-capable derivatives (YOLOv5-Seg, YOLOv8-Seg,
YOLOV11-Seg) were evaluated in both bounding box (BBox) and mask tasks, while non-
YOLO architectures (Faster R-CNN, DETR, and RF-DETR) were examined in a separate
group for comparative analysis. Table 5 summarises the quantitative detection results of
the YOLO series models, reporting key performance metrics: mAP@0.5:0.95, mAP@0.5,
Precision, Recall, F1-Score, and FPS on both CCTV and MSES test streams. According to
these results, YOLOV9 achieved the highest overall accuracy with 73.4% in mAP@0.5:0.95,
while YOLOVS achieved the highest single-threshold performance mAP@0.5 with 91.3%
and the highest Recall value 87.6%. YOLOvVY also demonstrated the highest selectivity
with a Precision of 92.4%, while YOLOv11 achieved the best Precision—Recall balance with
an F1-Score of 89.6%. In real-time tests, YOLOV5 stood out as the fastest model with a
speed of over 110 FPS. These findings reveal key performance trends among YOLO models
and provide a methodological backdrop for the comparative and optimisation analyses
presented in subsequent sections.
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Table 5. Detection results of YOLO models (v5, v8-v12, including Seg variants) with mAP, Precision,
Recall, F1, FPS, and Validation Loss. Best scores are highlighted in bold.

mAP mAP . . FPS FPS Val Box ValCls Val Dfl

MODEL @0.5:0.95 @0.5 Precision Recall  Fl1Score -ry \GES  Loss Loss  Loss
YOLOV5 68.679 90.157 91.836 84.210 87.858 116.38 110.19  0.946 0635  1.149
YOLOvS 70.578 91.341 90.370 87.619 88.973 84.58 82.02  0.882 0579  1.107
YOLOvV9 73.378 90.862 92.430 85.590 88.879 47.34 4632  0.842 0553 1212
YOLOV10 69.243 89.797 89.686 84.254 86.885 74.69 7068  1.900 1263 2238
YOLOv11 69.552 90.558 91.769 87.453 89.558 66.83 6452  0.902 0605  1.113
YOLOvV12 70.314 90.407 89.594 87.574 88.574 47.12 4614 0.900 0581  1.137
é%‘;g"s'seg 60.746 87.980 90.939 83.212 86.919 108.28 10417 0.032 0.006 -
é%f)g"s'seg 69.599 90.407 90.300 87.593 88.926 69.02 6829  0.890 0589  1.118
YOLOv11- 69.694 90.154 90.902 86.533 88.664 58.64 5740  0.904 0628  1.123
Seg (BBox)

Figures 1-3 are prepared from Table 5 to summarise the benchmark results for the
YOLO variants. Figure 1 shows the mAP scores, Figure 2 presents the Precision, Recall, and
F1 results, while Figure 3 demonstrates the inference speeds across CCTV and MSFS videos.
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Figure 1. Comparison of YOLO models in terms of mAP@0.5 and mAP@0.5:0.95. Star symbols
indicate the best performance values for each metric.
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Figure 2. Comparison of Precision, Recall, and F1 Score across YOLO models.



Appl. Sci. 2025, 15, 11582 13 0f 36

130

—=eo= CCTV Video -~ MSFS Video
120 116.38
b
110 110.1.?\\ 108.28
X h)
LR )
A 104.17 5 AN
‘. \ []f \
- 100 N AN
] AR g N
r- ‘\ N !I A}
o \ ’l \‘\
2 90 oy Ik \y
H N
a ‘\q 84.58 Y W
o W
§ 80 82.02% 74.69 il 5
£ % P ¥ “
7 3 ~ d
e E sas . 6683 P \oe-02
\\\ 772 = v /] e
3 s/ 70868 sy i 68.29 sy
W ’ A H . S« 58.64
60 \& fl 64.52 M\ G’ \\\*‘
a7 3$/// Mo 4712,
&5 /’, i\\% 7 57.4
L7
" R}
46.32 46.14
40
YOLOvVS YOLOv8 YOLOvS YOLOv10 YOLOvi1 YOLOvi2 YOLOvV5-Seg YOLOv8-Seg YOLOv1i-Seg
(BBox) (BBox) (BBox)

Figure 3. FPS comparison of YOLO models on CCTV vs. MSFS video.

Table 6 details the results of non-YOLO architectures, including Faster R-CNN, DETR,
and RF-DETR. Among them, RF-DETR achieved the highest detection accuracy with an
AP@0.5 of 90.3% and AP@0.5:0.95 of 70.6%. Faster R-CNN followed with AP@0.5 of 86.2%
and AP@0.5:0.95 of 60.8%, while DETR scored 77.5% and 54.7% on the same metrics. In
terms of small object detection, Faster R-CNN reached the highest AP-small value (18.1),
while RF-DETR obtained the highest values for AP-medium and AP-large categories.

Table 6. Comparison of AP@0.5, AP@0.5:0.95, and AR@100 metrics for Faster R-CNN and DETR
family. Best results are highlighted in bold.

MODEL AP@0.5:0.95 AP@0.5 AR@100 AP-Small AP-Med ﬁf;;e
Faster

R-CNN 60.80 86.2 67.4 18.1 41.7 65.3
DETR 54.70 77.5 61.0 3.8 17.0 65.3
RE-DETR 70.60 90.3 79.7 14.8 47.8 75.6

As shown in Figure 4, RE-DETR demonstrates superior performance under stricter
IoU thresholds and achives higher Recall compared to Faster R-CNN and DETR.

* Best AP@0.5 * Best AP@0.5:0.95 * Best AR@100
AP@0.5
AP@0.5:0.95
100
N AR@100 *
90.3
86.2
w
80 77.5 227
*
70.6
67.4

= 60.8 61.0
2 60
@ 54.7
o
S
wv

a0

20

o Faster R-CNN DETR RF-DETR

Figure 4. Visual comparison of Faster R-CNN, DETR, and RF-DETR across AP@0.5, AP@0.5:0.95, and
AR@100. RF-DETR leads, particularly in stricter IoU thresholds and Recall. Best AP@0.5: blue star;
best AP@0.5:0.95: red star; best AR@100: green star.
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4.1.2. Class-Specific BBox Accuracy

Table 7 summarises the class-wise detection performance mAP@0.5 of all evaluated
YOLO models across five aircraft-specific categories. It provides individual mAP scores for
the Airplane, Nose, Fuselage, Wing, and Tail classes, along with the average mAP across
all categories. Among the standard object detection models, YOLOvVS reached the highest
average mAP score across all classes 91.3%. In terms of individual categories, YOLOvV9
achieved the highest mAP for the Airplane class 89.8%, while YOLOv8 and YOLOv11-Seg
both reached the top score 98.5% for the Nose class. YOLOVS recorded the highest mAP
96.9% for the Fuselage class. Notably, YOLOv8-Seg achieved the best result for the Tail
class 88.9%.

Table 7. Class-based detection performance (mAP@0.5) of YOLO models across five aircraft-related
categories. Best scores for each class are shown in bold.

Model Airplane Nose Fuselage Wing Tail All Class
YOLOV5 88.4 97.1 96.9 80.2 88.2 90.2
YOLOvVS 89.3 98.5 96.4 83.9 88.4 91.3
YOLOVY 89.8 98.4 95.3 82.0 88.8 90.9
YOLOvV10 87.0 97.9 949 82.6 86.7 89.8
YOLOv11 89.2 97.8 95.6 81.7 88.5 90.6
YOLOv12 89.3 97.0 95.7 81.7 88.3 90.4
YOLOV5-Seg (Bbox) 85.4 97.3 91.1 79.0 87.2 88.0
YOLOV8-Seg (BBox) 88.1 97.7 95.1 81.4 88.9 90.3
YOLOv11-Seg (BBox) 88.4 98.5 94.5 81.9 874 90.1

Figure 5 was generated based on the class-wise detection results in Table 7. Class-based
detection performance mAP@0.5 of YOLO models across five aircraft-related categories.
Best scores for each class are shown in bold.Across all evaluated models, the Nose class
consistently showed the highest mAP@0.5 scores, indicating it was the most accurately
detected aircraft component. In contrast, the Wing class received the lowest scores across
all models, suggesting it posed the greatest challenge for detection. The Aircraft and Tail
classes demonstrated moderate performance levels.

100
98.5 98.5

Nose
96.9

Fuselage

88.9

Airplane
Tail

mAP@0.5 Score (%)
8

4 ™
© ©

Models

Figure 5. Class-Specific comparison of YOLO models based on mAP@0.5. Nose was the most accurate
class, while Wing was the most challenging.
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4.1.3. Mask Performance of Segmentation Models

The segmentation performance of YOLOv5-Seg, YOLOvVS-Seg, and YOLOv11-Seg was
evaluated using mask-based metrics, including mAP@0.5:0.95, mAP@0.5, precision, recall,
F1 score, and Validation Segmentation Loss. Results are summarised in Table 8, with visual
comparisons provided in Figures 6 and 7.

Table 8. Segmentation performance of YOLO models (v5-Seg, v8-Seg, v11-Seg). Best results are

highlighted in bold.
FPS FPS Val
Model mAP@0.5:0.95 mAP@0.5 Precision Recall CCTV MSFES F1Score  Seg
Loss
YOLOV5-Seg (Mask) 48.299 79.363 84.946 78.632 108.28 104.17 81.66 0.029
YOLOVS8-Seg (Mask) 53.953 83.435 85.034 82.810 69.02 68.29 83.90 1.523
YOLOvV11-Seg (Mask) 53.395 82.902 85.741 81.991 58.64 57.40 83.82 1.563
—-e- mMAP@0.5:0.95
%0 -e- MAP@0.5
83.44 82.90
A N o ciccicmuiitill
70
&
60
_5‘3 E e e 53.40
e
4Q56v5seg YOLOvE-seg YOLOvil-seq

Figure 6. Comparison of segmentation accuracy across YOLO-seg models in terms of mAP@0.5 and
mAP@0.5:0.95. The star symbol indicates the best score for each metric.
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Figure 7. Precision, recall, and F1 score comparison of YOLO-segmentation models, highlighting
YOLOvV8-Seg’s overall balance.
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Table 8 summarises the segmentation performance of the YOLO-Seg models. YOLOv8-
Seg achieved the highest scores in mAP@0.5 with 83.44%, mAP@0.5:0.95 53.95%, Recall
82.81%, and Fl-score 83.91%. YOLOv11-Seg attained the top Precision at (85.74%). In
terms of FPS, YOLOv5-Seg recorded the fastest inference speeds 108.28 FPS on CCTV and
104.17 FPS on MSEFS videos. In addition, the lowest validation segmentation loss (0.0296)
was achieved by YOLOv5-Seg.

4.1.4. Class-Specific Segmentation Mask Accuracy

The class-spesific mask segmentation performances of the YOLO variants are sum-
marised in Table 9 and visualised in Figure 7. Considering the average values for all
components, YOLOv8-Seg reached the highest accuracy with 83.4%. YOLOv11-Seg per-
formed closely with 82.8%, while YOLOv5-5Seg stayed behind the other models with 78.4%.

Table 9. Class-specific mask segmentation performance (mAP@0.5) of YOLOv5-Seg, YOLOv8-Seg,
and YOLOvV11-Seg models on five main aircraft classes. Best results are highlighted in bold.

Model Airplane Nose Fuselage Wing Tail All-Class
YOLOvV5-Seg (Mask) 46.5 98.1 91.6 71.5 84.6 78.4
YOLOvVS8-Seg (Mask) 61.2 97.9 95.2 75.6 87.1 83.4
YOLOvV11-Seg (Mask)  59.8 98.5 95.0 74.9 86.0 82.8

Comparing the aircraft and all other components, the YOLOv8-Seg model achieved
the highest results except for the Nose class. The newer model, YOLOv11-Seg, achieved
98.5% accuracy only in the Nose class, exceeding the (97.9%) accuracy of YOLOv8-Seg. The
performance trend illustrated in Figure 8 indicates that the Nose class achieved the highest
segmentation accuracy across all models, followed by the Fuselage and Tail classes. In
contrast, the composite Airplane class consistently proved to be the most challenging to
segment. Based on the quantitative results from Tables 5, 8 and 9 and Figure 8, YOLOvVS-Seg
demonstrated the best overall performance among the segmentation models.
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Figure 8. Class-based mask segmentation performance comparison of YOLOv5-Seg, YOLOVS-Seg,
and YOLOv11-Seg models. The line graph visualises mAP@0.5 scores for each aircraft class, with
asterisk markers indicating the highest-performing model per class.

4.1.5. Failure Mode Analysis: FP/FN Comparison on Wing and Tail Classes

In previous sections, the quantitatively identified the ‘Wing” and ‘Tail’ classes as
the most challenging components due to the complexity of the apron environment
(see Figure 5). An analysis was conducted to quantitatively deepen this finding and un-
cover the main failure modes specific to these classes. In this section, the False Positive (FP)
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and False Negative (FN) counts for these classes for the three main models were compared
using raw count data obtained from unnormalised confusion matrices. The findings, along
with the Precision and Recall values, were calculated based on these raw counts.

The quantitative findings presented in Table 10 indicate that the error trends of the
models differed significantly across classes. This difference was particularly evident in
the Wing and Tail classes. The Wing class was the only class consistently dominated by
False Negatives (FN) across all models. FN values ranging from 52 to 73 indicate that the
detection rate of wing components remained relatively low, with recall values ranging from
72.1% to 78.5%. In contrast, the error distribution in the Tail class varied depending on the
model architecture. While FN > FP was observed in the YOLOv8 model, a trend towards
FP > FN was observed in the YOLOv8-Seg and YOLOv9 models. This change suggests an
increase in the number of FP in the Tail class and a partial decrease in precision values. In
general, the models exhibited a tendency towards under detection FN in the Wing class
and a tendency towards FP in the Tail class.

Table 10. Class-wise FP and FN comparison for Wing and Tail components across three YOLO
models, with corresponding Precision and Recall metrics. Best results are highlighted in bold.

Model Class TP FP FN Precision (%) Recall (%)
YOLOvVS Tail 292 47 58 86.1 83.5

Wing 190 36 52 84.1 78.5
YOLOVS-Seg Tail 285 54 35 84.1 89.1

Wing 189 37 73 83.6 72.1
YOLOVY Tail 266 73 32 78.5 89.3

Wing 189 37 66 83.6 74.1

4.1.6. Statistical Robustness Analysis via Repeated 10-Fold Cross-Validation

Initial benchmarking provided a comparative performance overview based on a fixed
validation split. However, a more rigorous validation protocol was implemented to ensure
that the observed performance differences were statistically significant and not an artifact
of a particular data partition. This is particularly critical for datasets of limited size, where
performance metrics can exhibit high variance across different data splits.

Therefore, a 10-fold cross-validation experiment was conducted to evaluate the statisti-
cal robustness and stability of the highest-performing models: YOLOvS8, YOLOvVS8-Seg, and
the newly proposed YOLOv11-Seg. The dataset was divided into 10 mutually exclusive
folds. In each of the 10 iterations, one fold was reserved as the test set (10%). Of the
remaining nine layers (90%), one layer served as the validation set (10%), while the other
eight layers (80%) served as the training set.

This process was repeated 10 times, ensuring that each layer was used exactly once
for testing. The mean (u), standard deviation (o), and 95% confidence intervals (CI) of
mAP@0.5:0.95 and mAP@0.5, key performance metrics for both the BBox and segmentation
mask tasks, were calculated across all 10 layers. This approach provides a robust estimate
of the models’ generalisation performance and quantifies the uncertainty associated with
point estimates.

The quantitative findings of the 10-fold CV protocol are summarised in Table 11. This
table lists the mean (i), standard deviation (o), 95% confidence interval and Bootstraps,
and values of the three best-performing models (YOLOvS, YOLOv8-Seg, YOLOv11-Seg)
on the key metrics, mAP@0.5:0.95 and mAP@0.5.
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Table 11. Mean Performance Metrics of YOLO Models on Bounding Box and Mask Tasks Across
10-Fold Cross-Validation. Best results are highlighted in bold.

Model Task Metric Mean (1) + Std. Dev. (6)  95% CI (t-dist) 95% CI (Bootstrap)
YOLOVS BBox mAP@0.5:0.95 66.5 + 1.4% [65.6, 67.6] [65.7, 67.4]
BBox mAP@0.5 88.3 £ 1.38% [87.3,89.3] [87.5, 89.1]
YOLOVS8-Seg BBox mAP@0.5:0.95 66.8 £ 1.7% [65.6, 68.0] [65.8, 67.7]
BBox mAP@0.5 88.6 £ 1.5% [87.5, 89.7] [87.7,89.4]
Mask mAP@0.5:0.95 50.6 + 1.9% [49.3, 52.0] [49.5,51.7]
Mask mAP@0.5 81.5 £+ 2.6% [79.6, 83.3] [79.9, 82.9]
YOLOv11-Seg BBox mAP@0.5:0.95 66.5 £ 1.7% [65.3, 67.6] [65.5, 67.4]
BBox mAP@0.5 88.4 £ 1.6% [87.2,89.6] [87.5,89.4]
Mask mAP@0.5:0.95 50.5 + 1.8% [49.2,51.7] [49.4, 51.5]
Mask mAP@0.5 814 £2.1% [79.9, 82.9] [80.2, 82.7]

The presented data demonstrates high stability of the results across 10 folds. All
models showed low standard deviations, o < 1.7% for the BBox mAP@0.5:0.95 metric
and o < 1.6 for the BBox mAP@0.5 metric. While the standard deviation for the mask
performance (o ~ 1.9% and 2.6) was slightly higher, overall stability was maintained. The
95% confidence intervals estimated using f-based analytical method and the non-parametric
bootstrap approach were highly consistent across all metrics, confirming the statistical
reliability of the reported mean values. When the average performance values are examined,
it is seen that the YOLOV8-Seg model achieves the highest average score in all four tested
metric categories (BBox mAP@0.5:88.6%, Mask mAP@0.5:81.5%). For a clearer comparison
and visualisation of these statistical findings, mean performance values and 95% confidence
intervals are presented in two separate figures.

Figure 9 compares the performance of all three models on BBox tasks. It visually
confirms that the average performance of all three models is very close to each other on the
mAP@0.5 range 88.3-88.6% and mAP@0.5:0.95 range 66.5-66.8% metrics. As the error bars
indicate, the differences between the models” BBox performances are statistically narrow.
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Figure 9. Bounding-box detection results of YOLOvS8, YOLOv8-Seg, and YOLOv11-Seg models across
10-fold cross-validation, showing mean mAP@0.5:0.95 and mAP@0.5 scores with standard deviations.

Figure 10 focuses on the performance of two models with segmentation capabilities
on mask segmentation tasks. YOLOv8-Seg mAP@0.5 with81.5% achieved a slightly higher
average mAP@0.5 score than YOLOv11-Seg mAP@0.5 with 81.4%. The mAP@0.5:0.95 per-
formance of both models is also similarly close 50.6% and 50.5%, respectively. The variation
in mask results of +1.8-2.6% is acceptable for the reliability of 10-fold validation tests.
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Figure 10. Mask segmentation results of YOLOV8-Seg and YOLOv11-Seg across 10-fold cross-
validation, showing mean mAP@0.5:0.95 and mAP@0.5 scores with standard deviations.

Finally, the 95% confidence intervals obtained in the Bootstrap analysis almost overlap
with the t-based intervals, supporting the statistical stability of the measurement.

4.1.7. Qualitative Performance Evaluation in Challenging Apron Scenarios

To complement the quantitative measurements, the results of the best-performing
models are presented with numerical data. YOLOv9 and YOLOVS achieved the highest suc-
cess in detection tasks, while YOLOvV8-Seg achieved the best results in segmentation tasks.
Therefore, these three models were selected for comparative testing in challenging apron
scenarios. The aim was to observe the models’ behaviour in real airport conditions, where
visibility, geometry, and background complexity create uncertainties. The visual results
provide additional insight into the numerical comparisons by revealing false negatives,
false positives, boundary inconsistencies, and segmentation redundancies.

Scenario 1: Detection Under Foggy Apron Conditions

The first scenario in Figure 11 was obtained at an airport in dense fog, with low
visibility and poor visibility between the aircraft and its surroundings.

According to visual results, YOLOv9 showed the best performance locating all ma- jor
aircraft parts with high accuracy. YOLOVS also produced generally stable results; however,
the accuracy in wing detection was slightly lower. In addition, YOLOvVS8-Seg successfully
distinguished the aircraft’s fuselage class and correctly masked the other classes. Overall,
the results confirm that all three models were able to operate effectively despite the severe
degradation in visual clarity.

Scenario 2: Detection Under Clear Visibility Conditions

Under clear weather conditions, all three models achieved high detection accuracy
for large structures such as fuselage and tail. However, YOLOV9 failed to detect the wing
in one case, resulting in a false negative. YOLOv8 maintained reliable detection across
all classes, while YOLOvV8-Seg provided the most visually understandable output with
bounding boxes and masks. Overall, these results confirm that all three models perform
strongly when visibility is optimal. In such conditions, only isolated errors were observed,
mainly in the wing class. Under clear visibility conditions, the qualitative comparison in
Figure 12 demonstrates how YOLOvV9, YOLOvVS, and YOLOvS-Seg differ in wing detection
accuracy and mask interpretability.
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Figure 11. Model predictions under foggy apron conditions, showing robustness to low-visibility
environments and comparative detection confidence among models. (a) Sample image; (b) YOLOV9
predictions with the highest confidence for all aircraft components; (¢) YOLOvVS predictions with
slightly reduced accuracy for wing detection; (d) YOLOv8-Seg predictions successfully segmenting
the fuselage and other parts.

Sample YOLOvI

YOLOv8

(d)

Figure 12. Performance comparison of YOLOv9, YOLOvS, and YOLOVS8-Seg under clear visibility
conditions, highlighting differences in wing detection and boundary precision: (a) Sample image;
(b) YOLOVY results showing a false negative for the wing class; (c) YOLOvS predictions with
consistent detection across all components; (d) YOLOv8-Seg output combining bounding boxes and
segmentation masks for improved interpretability.
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Scenario 3: Detection Under Complex Background and Geometric Challenges

In dense apron scenarios, all models demonstrated robust detection of primary aircraft
components (fuselage, nose, tail) but faced challenges with fine geometrical details like
ailerons and wingtips. YOLOv8-Seg delivered the most comprehensive segmentation by
uniquely identifying complex structures such as the left wing and its aileron, though with
some redundant detections. In contrast, YOLOV9 produced the cleanest outputs with
minimal background noise. The results confirm that fine structural segmentation remains
a challenge in complex environments, despite high performance on major components.
Representative qualitative results under this scenario are illustrated in Figure 13.

qirplane 0.94

- wing 0.78 4%
airplane 0,97+ L

girplane 0.92

] # wing 0.40
airplane 0.91% &l 1= S

(©) (d)
Figure 13. Testing YOLOv9, YOLOvVS8, and YOLOV8-Seg in a complex apron scene with background
clutter and challenging geometry: (a) Sample image; (b) YOLOV9 results showing accurate fuselage
and nose detection but partial detection for the wing; (c) YOLOVS predictions with occasional false
positives from the background; (d) YOLOv8-Seg separating the fuselage correctly but generating
both full and partial redundant wing detections.

Overall, these three qualitative scenarios demonstrate the complementary strengths
of YOLOVY (high detection success in low visibility conditions), YOLOvVS (balanced per-
formance across scenarios), and YOLOvVS8-Seg (enhanced interpretability through masks).
Consequently, these scenarios provide a more general basis for the use of CV systems in
operational apron environments for safety.

4.2. Ablation Study on YOLOv-8-Seg
4.2.1. Bounding-Box Detection Performance After Optimisation

The ablation study was conducted to systematically evaluate the effect of incremental
optimisation strategies applied to the YOLOvS8-Seg baseline model. Eight optimisation
steps were individually tested, each targeting a specific component of the pipeline such as
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loss function replacement, inference efficiency adjustments, hyperparameter refinements.
Finally, the most effective steps were combined in a single model, which was then trained
to evaluate the overall improvement.

Table 12 shows the individual Bounding Box results of eight different optimisation
steps applied to the YOLOvS8-Seg model. All optimisation steps, excluding the loss func-
tion adjustment, were selected based on their individually validated performance gains
and subsequently integrated to retrain the YOLOV8-Seg base model. According to the
results, the optimised model achieved a 6.17 p.p. increase in the mAP@0.5:0.95 metric. In
addition, other best values were obtained for mAP@0.5, Precision, F1 Score, Val Box Loss,
and Val Cls Loss.

Table 12. Bounding Box performance comparison of YOLOv8-Seg base model, individual optimisa-
tion steps, and combined model. Best results are highlighted in bold.

Val

o mAP mAP . . Val Val
Optimisation Steps @0.5:0.95 @0.5 Precision  Recall F1 Score E;):S Cls Loss Dfl Loss
Base YOLOVS-Seg (BBox) 69.599 90.40 90.30 87.59 88.92 0.89 0.589 1.12
Loss Function 70.22 90.07 91.51 86.64 89.01 0.89 0.596 1.10
Inference Opt. 70.33 90.08 90.68 87.25 88.93 0.89 0.590 1.11
AMP 70.90 90.88 91.72 87.65 89.63 0.92 0.591 1.12
Resolution (1024 X 1024) 69.21 90.75 91.41 87.02 89.17 0.95 0.643 1.18
Epochs (130—170) 69.86 90.09 91.25 85.79 88.43 0.90 0.609 1.14
L. Rate (0.00111—0.001) 69.87 90.49 90.16 87.61 88.86 0.90 0.587 1.12
Model Scl. (N—L) 74.37 91.75 89.84 87.96 88.89 0.80 0.517 1.16
Data Augmentation (3.5X) 71.61 90.63 92.74 85.09 88.74 0.88 0.614 1.19
Optimised Model 75.77 92.28 93.156 87.24 90.06 0.79 0.51 1.41

4.2.2. Segmentation Performance After Optimisation

Table 13 shows the results of the mask optimisation steps of the YOLOv8-Seg model.
The model’s mask performance followed a similar trend to the BBox results in Table 12.
Single-step improvements progressed increasingly, while all steps exluded Loss Func.
Replacement step were merged in the combined configuration. This combined model
achieved the highest mAP@0.5 88.17% and mAP@0.5:0.95 with 61.99% values. It also
achieved the highest results in Precision, Recall, and F1 Score metrics.

Table 13. Segmentation Mask performance comparison of YOLOv8-Seg base model, individual
optimisation steps, and combined model. Best results are highlighted in bold.

Optimisation Steps mAP@0.5:0.95 mAP@0.5 Precision Recall F1 Score Val Loss
Base YOLOVS8-Seg (Mask) 53.953 83.43 85.03 82.81 83.91 1.52
Loss Function 53.86 83.18 86.59 81.13 83.77 1.48
Inference Opt. 53.76 83.65 86.05 82.53 84.25 1.54
AMP 54.49 83.88 86.94 82.87 84.86 1.50
Resolution (1024 x 1024) 55.68 84.24 85.81 83.14 84.46 1.18
Epochs (130—170) 55.06 83.47 83.82 82.32 83.07 1.52
L. Rate (0.00111—0.001) 54.12 84.72 88.13 81.16 84.52 1.52
Model Scl. (N—L) 57.51 85.89 87.69 83.91 85.76 1.61
Data Augmentation (3.5 X) 56.39 85.43 89.13 80.58 84.64 2.07
Optimised Model 61.986 88.17 89.32 83.29 86.18 2.15

In addition, the optimisation steps applied individually for the YOLOv8-Seg model
and the results of the final combined model for mAP@0.5:0.95 and mAP@0.5. Specifically,
the combined model achieves an 8.04 p.p. improvement compared to the baseline model.
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4.2.3. Class-Specific Segmentation Mask Accuracy After Optimisation

Table 14 details the mask performance of the optimisation steps applied to the base
YOLOV8-Seg model for the aircraft components and overall performance. The combined
optimisation strategy reached the highest mean accuracy 88.2% across all classes. A signifi-
cant improvement was observed for the challenging Airplane class, where performance
increased from 61.2% to 72.7%. A notable gain was also recorded for the Wing class, which
improved from 75.6% to 85.5%. For the already high-performing Nose class, accuracy saw
a marginal further increase to 98.4%.

Table 14. Performance comparison of YOLOVS-Seg base model, individual optimisation steps, and
the combined model with class-based segmentation mask. Best results are highlighted in bold.

Optimisation Steps Airplane Nose Fuselage Wing Tail All-Class
Base YOLOVS-Seg (Mask) 61.2 97.9 95.2 75.6 87.1 83.4
Loss Function 59.5 98.2 94.8 76.2 87.0 83.2
Inference Opt. 62.2 98.0 95.4 74.9 87.7 83.7
AMP 58.3 98.0 96.3 79.7 87.2 83.9
Resolution (1024 X 1024) 60.3 97.5 95.3 75.5 88.6 83.4
Epochs (130—170) 62.2 98.8 94.8 75.3 86.4 83.5
L. Rate (0.00111—0.001) 65.6 98.2 94.3 78.0 86.2 84.5
Model Scl. (N—L) 67.2 96.8 94.6 80.7 89.9 85.9
Data Augmentation (3.5X%) 70.8 99.1 95.7 75 86.3 85.4
Optimised Model 72.7 98.4 95.5 85.5 88.7 88.2

4.2.4. Comparative Summary of Baseline and Optimised YOLOv8-Seg Models

To illustrate the collective impact of the optimisation, Tables 15 and 16 present a
direct numerical comparison between the baseline and optimised versions of the YOLOvS-
Seg model. The previous subsections detailed the individual effects of each factor in the
eight-step optimisation process, inference optimisation, AMP, resolution increase, epoch
extension, learning rate adjustment, model scale, and data augmentation. This section
presents the final performance values achieved by combining all of these steps and training
the model in one go (with the loss function held constant). The results show that collective
optimisation significantly improves the overall performance of the model. The optimised
model achieved a +6.17 ppm increase in the mAP@0.5:0.95 BBox metric and a +8.04 ppm
increase in the mAP@0.5:0.95 Mask metric compared to the baseline version. Moreover,
meaningful increases were observed in both evaluation types BBox and Mask at mAP@0.5.

Table 15. Baseline vs. optimised YOLOv8-Seg model comparison for bounding-box and mask
tasks, showing performance improvements (A, p.p.) across major metrics including mAP@0.5:0.95,
mAP@0.5, and Validation Loss.

Baseline Optimised Baseline Optimised

Metric (BBox) (BBox) A (p-p) (Mask) (Mask) A (p-p)
mAP @0.5:0.95  69.60 75.77 1617 53.95 61.99 18.04
mAP @0.5 90.41 92.28 +1.87 83.44 88.18 1474
Precision 90.30 93.16 12.86 85.03 89.33 +4.30
Recall 87.59 87.24 035 82.81 83.29 10.48
F1 Score 88.93 90.06 +1.13 83.91 86.18 1227

Val. Loss 0.89 0.79 -0.10 1.52 2.15 +0.63




Appl. Sci. 2025, 15, 11582

24 of 36

Table 16. Comparison of class-wise mask segmentation results between baseline and optimised
YOLOvV8-Segmodels, showing mAP improvements (A, p.p.) across individual aircraft components.

Class (Mask) Baseline mAP (%) Optimised mAP (%) A (p.p.)
Airplane 61.2 72.7 +11.5
Nose 97.9 98.4 +0.5
Fuselage 95.2 95.5 +0.3
Wing 75.6 85.5 +9.9
Tail 87.1 88.7 +1.6
All-Class Mean 83.4 88.2 +4.8

Class-based analyses revealed gains of +11.5 p.p. for Airplane and +9.9 p.p. for
Wing, particularly due to their high structural complexity, strongly representing the overall
improvement trend of the model. Overall, the combined optimisation steps increased the
model’s segmentation accuracy and overall detection stability, demonstrating a synergistic
effect between complementary hyperparameter settings.

4.2.5. Qualitative Comparison: Baseline vs. Optimised Model

This subsection presents a qualitative comparison between the baseline YOLOvS8-Seg
model and the final optimised model across different real-world apron scenarios (See
Figures 14-16). While the quantitative results in the ablation study have already shown
the performance improvements of the optimised model, visual inspection will reveal
improvements in the optimised model in boundary sensitivity, reduction in redundant
detections, and robustness under harsh conditions.

Scenario 4: Detection Reliability Under Optimal Conditions

Under ideal visibility conditions as shown in Figure 14, both the baseline and opti-
mised YOLOv8-Seg models successfully segmented the aircraft and its main components.
The optimised model, however, demonstrated superior mask quality by generating more
stable component boundaries and significantly higher detection confidence. This improve-
ment is quantified by the increased confidence scores for key components, such as the Wing
rising from (55%) to (94%) and the Nose from (81%) to (95%).

——

airplane 0.96

wing 0,94

@) (b)

Figure 14. Performance comparison of baseline YOLOv8-Seg and the Optimised model under clear
apron conditions. (a) YOLOv8-Seg baseline results; (b) Optimised model results.
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Optimised Model

(b)
Figure 15. Qualitative comparison of the baseline YOLOv8-Seg and the optimised model under heavy

weather conditions: (a) YOLOv8-Seg baseline results showing redundant detection; (b) Optimised
model results with improved detection consistency.

airplane 0.95
\f{ 1

airplane 0.95
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Figure 16. Comparison of baseline YOLOv8-Seg and optimised model under nighttime glare, show-
ing: (a) YOLOV8-Seg baseline results showing redundant detections and lower confidence levels;
(b) Optimised model results with no redundant detections and higher confidence for wing, fuselage,
nose and tail.

Scenario 5: Robustness Under Low-Visibility and Sensor Noise

Scenario 5 evaluated model performance under heavy rain and sensor noise as shown
in Figure 15. The baseline YOLOV8-Seg model successfully detected the aircraft and its
components but exhibited instability, producing redundant detections in the tail region
with confidence scores of (81%) and (50%) and a low confidence score (78%) for the wing.
In contrast, the optimised model eliminated redundancy and generated a single, coherent
detection for the tail with a higher confidence of (92%). It also consistently increased
confidence scores across all other main components, demonstrating enhanced robustness
and detection stability in challenging weather conditions.

Scenario 6: Stability Under Low-Light, Glare, and HDR Conditions

Under low-light conditions with intense runway lighting in Figure 16, the baseline
YOLOvVS8-Seg model produced multiple redundant masks, particularly over the wing
regions. The optimised model rectified this issue, correctly segmenting the left and right
wings as distinct components. Furthermore, it achieved a substantial increase in detection
confidence for main parts, with the fuselage score rising from (44%) to (96%) and the tail



Appl. Sci. 2025, 15, 11582

26 of 36

from (73%) to (83%), demonstrating significantly improved reliability in a high-contrast
nighttime environment.

Overall, the qualitative results indicate that the model optimisation steps reduced
redundant detections and improved segmentation consistency across all components and
scenarios, particularly under visually challenging conditions.

5. Discussion

Before interpreting the benchmark results, it is critical to underscore the methodologi-
cal basis of the findings. As detailed in Section 3.3 and comprehensively presented in Table
S8 of the Supplementary Materials, each architectural family (YOLO, DETR, and R-CNN)
was trained with its own accepted standard hyperparameter configuration. Exogenous
variables such as dataset partitioning and hardware/software infrastructure were kept
consistent and identical across all models. This balanced approach ensures that reported
performance differences directly reflect differences in architectural design, rather than a
biased training protocol that favours a particular model (See Supplementary Tables S5-57).
Therefore, the discussion that follows is built upon a fair comparison conducted with
scientific rigor.

In this section, the experimental results are related to the study objectives and dis-
cussed from an apron safety perspective. A comparison of twelve object detection models
and a systematic optimisation of YOLOvV8-Seg are discussed, and the significance of the
findings and potential applications are evaluated.

5.1. Model Benchmarking, Error Characterisation, and Statistical Reliability
5.1.1. Model Performance and Architectural Comparison

Benchmark results show that YOLOvV9 and YOLOVS had the strongest bounding-box
performance among the twelve tested models (Table 5). In segmentation tasks, YOLOvS-
Seg consistently outperformed YOLOv11-Seg and YOLOvV5-Seg, achieving the best overall
results (Tables 8 and 9). In particular, YOLOv9 demonstrated robustness across different
IoU thresholds, achieving the highest mAP@0.5:0.95 with 73.4%. In contrast, YOLOvS8
achieved the highest mAP@0.5 with 91.3%, representing its capacity to make broadly
accurate detections.

An important observation is that newer YOLO variants (v10-v12) did not surpass
the performance of YOLOvV8 and YOLOVY, despite architectural updates. This indicates
that incremental innovations in backbone or head design do not always translate to better
generalisation in domain-specific tasks such as apron surveillance. YOLOv8's balance of
C2f modules and efficient detection head [47], and YOLOv9’s GELAN backbone combined
with Programmable Gradient Information (PGI) [48], appear to offer the optimal trade-
off between precision and recall in this setting. In contrast, YOLOv10-12 may introduce
complexity that does not necessarily benefit datasets characterised by scale variation,
adverse weather, and background clutter, underscoring that “newer” does not equate to
“better” without context-driven validation.

Another important point is the trade-off between speed and accuracy. While YOLOv9
achieved the highest mAP@0.5:0.95 of 73.4%, its inference speed was lower than that of
YOLOv8 and YOLOVS5. As presented in Table 5 and Figure 3, YOLOV5 achieved high speed,
exceeding 110 FPS, while maintaining acceptable accuracy. In contrast, YOLOvY reached
just 47.34 FPS, which is less than half the speed of YOLOVS5. This difference may explain
the widespread adoption of YOLOVS in prior studies [54,60,61]. While YOLOV5 is not the
most accurate model, its efficiency makes it attractive for applications where resources
are limited, and latency is critical. These findings show that when selecting a model for
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apron surveillance, consideration should be given not only to accuracy but also to real-time
speed requirements.

Class-based results indicate important differences among aircraft components. In both
segmentation Mask and BBox tests, the Nose and Fuselage classes were detected with
the highest accuracy rates (Figures 5-8). This is likely due to their distinct shapes and
boundaries, which are more easily distinguished by the models. In contrast, the Wing
and Tail classes were detected with lower accuracy, presenting challenges due to their
long structures and partially overlapping geometries. This significant finding demon-
strates that the models are robust in more structurally distinct regions but limited in more
complex components.

Finally, the YOLO models demonstrated a clear advantage when compared to models
like Faster R-CNN, DETR, and RF-DETR. While RF-DETR achieved the best accuracy
among non-YOLO models, it did so at the expense of slower inference and higher com-
putational cost (Supplementary Materials Table S8). Overall comparisons suggest that
single-stage YOLO architectures are a more suitable option for applications requiring both
high precision and real-time speed, such as apron surveillance.

5.1.2. Class-Wise Error Trends and Confusion Matrix Insights

As shown in the Results section, all object detection models struggled significantly
with the Wing and Tail classes, which proved to be the most difficult components to detect
(see Figures 5 and 8). Confusion matrix analysis showed a significant difference in error
trends in these two classes. The Wing class exhibited an almost systematic dominance of
FN across the models, with FN values ranging from 52 to 73, and recall values ranging
from 72.1% to 78.5% (See Table 10) This suggests that detection stability decreases for
components with extended and partially overlapping geometries.

In contrast, the error profile in the Tail class varied depending on the architecture.
While the YOLOv8 model exhibited a trend of FN > FP, this balance shifted towards FP > FN
in the YOLOV8-Seg and YOLOV9 models. This change shows that segmentation-based
architectures improve recall performance while leading to a small decrease in precision
values. In general, the high FP ratio in the Wing class indicates that the models under-detect
geometrically complex components, while the increased FP in the Tail class indicates that
architectural differences directly affect the error distribution.

5.1.3. Statistical Robustness via 10-Fold Cross-Validation

The benchmarking and error analysis findings presented in the previous sections
demonstrated the performance of the models on a fixed validation set. To assess the statisti-
cal significance of the performance differences, 10-fold CV was applied to YOLOvVS, which
performed well in the BBox task, YOLOv8-Seg, which performed best in the segmentation
task, and YOLOv11-Seg, which has a more advanced architecture. The results revealed that
all models exhibited high stability across layers. Standard deviations remained within the
range of o < 1.7% in the bounding-box task and o < 2.6% in the mask task. The almost
complete overlap of the 95% confidence intervals obtained using the t-distribution and
bootstrap methods demonstrates the statistical reliability of the mean values.

These low variance values confirm not only the model’s stability but also the bal-
anced and representative nature of the dataset. An examination of the average perfor-
mances reveals that the YOLOv8-Seg model achieves the highest average performance
in both BBox mAP@0.5 with 88.6% and mask mAP@0.5 with 81.5% tasks. Specifically,
for the mAP@0.5:0.95 metric, YOLOvVS8-Seg 66.8% outperformed the newer and more
complex YOLOv11-Seg model 66.5%. This result demonstrates that lighter and more
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optimised architectures can provide more efficient generalisation compared to overly
complex architectures.

Overall, the 10-fold validation findings suggest that performance differences are due
not to data fragmentation, but to architectural efficiency and structural balance factors.
These results confirm that the benchmarking and optimisation strategies are based on a
statistically sound basis, and that YOLOv8-Seg is the most reliable reference model in terms
of accuracy-generalisation.

5.1.4. Qualitative Scenario-Based Discussion Under Apron Conditions

Scenario 1: Low-Visibility: In fog and low-visibility conditions, YOLOvV9 successfully
detected all aircraft components with high confidence. This suggests that its GELAN
backbone is effective in preserving feature integrity under low-contrast settings. This
observation is supported by recent work by Zhang et al. [78], who introduced an enhanced
YOLOV9s framework tailored for haze-degraded environments, demonstrating substantial
improvements in detection accuracy using contrastive learning and attention mechanisms.
Importantly, YOLOv8-Seg demonstrates more robust performance compared to its baseline
model. The accurate separation of small components, such as the horizontal stabiliser,
indicates that multi-task learning allows the network to focus on finer details.

Scenario 2: Clear-Weather: In ideal weather conditions, YOLOv9 missed the aircraft’s
right wing entirely, creating a safety-critical false negative. However, YOLOvS successfully
detected all aircraft components. As shown in Table 7, YOLOvS8 had already achieved
superior performance to YOLOvVY in the Wing class, and this scenario further validates that
result. YOLOVS-Seg, on the other hand, provides a more visually understandable and accu-
rate interpretation of aircraft components by drawing segmentation masks more clearly.

Scenario 3: Complex Background: In this scenario, where the apron environment
contained complex geometry and intense background noise, several weaknesses were
revealed for all models. The most noticeable error was the frequent misclassification of
the winglet as a Tail likely due to the models” excessive reliance on vertical shape features.
YOLOvVS8 and YOLOvV8-Seg also exhibited instability in complex structures, producing
redundant or partial boxes in the wing region. However, YOLOV9, despite making errors,
was better at distinguishing background clutter, more clearly separating the aircraft from
its surroundings.

Overall, the benchmarking and scenario-based evaluations highlight three main find-
ings. YOLOVS, YOLOVY, and YOLOV8-Seg achieved the best balance between accuracy,
recall, and speed, showing that maturity and adaptability can outweigh novelty, as newer
variants (YOLOv10-12) did not outperform them. Moreover, practical deployment requires
considering both accuracy and inference speed, explaining why YOLOV5 remains relevant
in latency-sensitive applications. Scenario analyses further revealed that YOLOV9 excelled
in low-visibility but made class-specific errors, while YOLOv8 showed more consistent
balance across conditions. YOLOv8-Seg combined this stability with precise segmentation
masks, reliably detecting both large and small components. These findings justify its selec-
tion for optimisation, as it offers the strongest foundation for improving both quantitative
metrics and qualitative robustness.

5.2. Interpretation of Optimisation Efficacy
5.2.1. Implications of the Quantitative Findings

In this study, eight separate optimisation steps were systematically tested on the
YOLOVS-Seg model. Each step was individually evaluated to target a specific component
of the model (e.g., computational efficiency, data diversity, resolution and learning dy-
namics). However, based on the findings, the Loss Function change was not included in
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the final optimisation combination, the final optimised model was obtained by applying
the remaining seven steps together. This allowed for both numerical quantification of the
independent effect of each step and validation of the combined contribution of these seven
optimisation steps in a separate experiment.

The findings indicate that while each step contributes to performance at different
scales, applying all steps together creates a synergistic effect, leading to higher accuracy
gains. In particular, the Model Scaling (N to L) and Data Augmentation (3.5X) steps
produced the strongest individual improvements. The scaling step produced the largest
quantitative gain, with the BBox mAP@0.5:0.95 increasing from 69.6% to 74.4% (+4.8 p.p.).
Although the numerical contribution of data augmentation was smaller, it effectively
enhanced generalisation stability, particularly for small objects and boundary regions.

Three separate optimisation steps for the training parameters: increasing the resolution
to 1024 x 1024, increasing the epoch counts to 170, and recalibrating the learning rate, all
had complementary effects on the model’s learning behaviour. The resolution increase
had a positive, albeit limited, impact on BBox performance, particularly by improving the
recognition of small and fine structured components. Increasing the number of epochs
strengthened the model’s long-term learning stability. The most significant improvement
was achieved by adjusting the Learning Rate among Hyperparameter settings, in addition
to improving overall accuracy in the Mask task, this step increased the reliability of edge
detection by increasing mAP@0.5 from 75.6% to 78.0% (+2.4 p.p.) in the Wing class. Thus,
adjusting the learning stabilised the model’s convergence, reduced its tendency to overfit,
and rate enabled it to produce more consistent masks in challenging classes.

Applying all optimisation steps together produced significant performance gains
for the model in both the BBox and Mask tasks. BBox mAP@0.5:0.95 increased from
69.6% to 75.77% (+6.17 p.p.), and mAP@0.5 increased from 90.41% to 92.28% (+1.87 p.p.),
demonstrating that the optimisation improved localisation fidelity in high-IoU regions. The
gains were even more striking in the Mask task: mAP@0.5:0.95 increased from 53.95% to
61.99% (+8.04 p.p.), and mAP@0.5 increased from 83.44% to 88.18% (+4.74 p.p.). This result
demonstrates that the model improved both overall mask accuracy and discrimination
ability in complex boundary regions. Overall, these increases confirm that the performance
gains are not random but rather the result of an integrated effect that strengthens the
structural efficiency of the model.

When examined by class, the largest improvements were observed in the Airplane
(+11.5 p.p.) and Wing (+9.9 p.p.) classes for the Mask mAP@0.5 metric. This result
demonstrates that the optimisation reduces errors in geometrically complex, partially
overlapping components.

Consequently, the final configuration, obtained by testing eight optimisation steps
individually and applying seven of them together, produced a synergistic gain greater than
the combined effect of the individual steps. These improvements were observed sustainably
at both mAP@0.5 and mAP@0.5:0.95 levels, indicating that the achieved performance is not
random but rather based on the model’s architectural efficiency and statistical soundness.
Therefore, the optimised YOLOvS8-Seg model stands out as the most stable structure,
achieving a high balance of accuracy and computational efficiency in both detection and
segmentation tasks.

5.2.2. Qualitative Validation Under Realistic Apron Scenarios

Scenario 4: Detection Reliability under Optimal Conditions. Under daytime apron
conditions, both the baseline and optimised YOLOvV8-Seg detected all aircraft classes
correctly. However, the optimised model produced higher confidence scores and more
precise boundaries, confirming the effectiveness of the applied optimisation strategies.
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Scenario 5: Robustness under Low Visibility and Sensor Noise. Heavy rain and sen-
sor noise caused significant instability in the baseline YOLOv8-Seg, including redundant
detections in the tail region that compromise multi-object tracking. The optimised model
eliminated these issues, producing more consistent and reliable outputs across all compo-
nents. This demonstrates the value of the data augmentation strategies introduced in the
ablation study (see Table 4) for preparing models to handle adverse weather conditions.

Scenario 6: Stability under Low-Light, Glare, and HDR Conditions. Under strong
runway lighting and high-contrast changes, the baseline model generated redundant
detections, especially on the wings, which disrupted temporal stability. In contrast, the
optimised model eliminated these redundancies, more clearly distinguishing the left and
right wings and improving confidence in fuselage and tail detection. These results show
that the optimisations strengthened the model’s structural integrity under difficult lighting.

Overall, the ablation study confirmed that dataset expansion and model scaling
yielded the largest accuracy gains, while efficiency-focused strategies improved stabil-
ity and reduced error rates. Crucially, combining these optimisations produced a more
generalisable model than applying them individually. The qualitative scenario analyses re-
inforced these outcomes, demonstrating that the optimised YOLOv8-Seg not only enhanced
computational accuracy but also eliminated redundant detections, thereby improving con-
fidence and robustness under diverse apron conditions. Together, these results suggest that
the optimised model provides a strong basis for further research and potential applications
in apron safety.

5.3. Practical Implications for Apron Safety

Building on the robust performance of the optimised YOLOv8-Seg model demon-
strated in our results, this section explores its practical implications for enhancing apron
safety. One of the most common problems encountered at airports is aircraft incidents,
such as wingtip collisions and ground handling vehicle accidents, which cost the industry
billions of dollars annually according to ICAO and IATA reports. The optimised YOLOvS-
Seg model reliably detects aircraft components under various and challenging conditions,
and, combined with multiple objects tracking algorithms, significantly contributes to the
monitoring and prevention of these risks.

The operational efficiency and stability of the model developed in our study make
it suitable for real-time integration into apron surveillance systems. Many airports have
infrastructures operating with CCTV cameras, ADS-B sensors, and ground-based radars.
The proposed system can be integrated into this existing surveillance system, providing an
additional layer of safety without requiring expensive infrastructure upgrades.

Furthermore, this study aligns with international initiatives on “smart airports” and
the digitalisation of ground operations [35]. As aviation agencies such as ICAO and EASA
strive to develop practical safety management systems, deep learning-based tools like
object detection models can contribute to this goal. In particular, accurate detection and
tracking of aircraft components can enhance both safety and ground-handling efficiency,
including maintenance planning.

Beyond its immediate detection capability, the optimised YOLOv8-Seg framework
could serve as an initial step toward a technically robust foundation for future multi-object
tracking (MOT) pipelines. The segmentation outputs have the potential to support tracking
algorithms in establishing object association, motion analysis, and early collision-risk
evaluation. This methodological connection provides early insight into how detection and
tracking may be integrated for proactive apron-safety systems in future research.

In summary, this study proposes a systematic and data-driven framework for eval-
uating and optimising segmentation models under realistic apron conditions. Although
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further validation is required before operational deployment, the optimised YOLOv8-Seg
model shows clear potential for integration into future vision-based security systems in
airport environments.

5.4. Limitations and Future Work Directions

This study demonstrates that the optimised YOLOv8-Seg model provides robust and
consistent results for apron safety. However, several limitations and open questions must
be addressed to bridge the gap between this research and full operational implementation.
First, real-world airport environments introduce additional complexities, such as unpre-
dictable lighting, extensive occlusions from ground vehicles, camera vibrations, and sensor
degradation from adverse weather conditions [36]. These factors may negatively impact
the model’s generalisation ability and will require large-scale field testing and adaptive
calibration strategies. Second, while data augmentation steps improve performance, fur-
ther gains require access to larger, rigorously labelled datasets covering a wider variety of
operational conditions.

Collaborations between airports and research institutions can help address this need
and ensure validation in diverse geographic and operational environments. Third, despite
the eight optimisation steps, the computational resources required for high-resolution
segmentation may limit real-time performance, especially on resource constrained hard-
ware common in airport systems. Therefore, techniques such as hardware-aware pruning,
low-bit quantization, and information distillation should be explored in the future to create
lighter and more efficient models. Finally, the integration of this framework with MOT
algorithms is an important future direction. Such a combined system would not only detect
aircraft and components but also track their movements over time, enabling collision risk
analysis and early anomaly detection. In summary, the optimised YOLOv8-Seg framework
developed using the systematic methodology proposed in this study provides a solid
methodological foundation for future research in the field of apron safety. However, transi-
tioning to practical implementation requires addressing identified technical and operational
challenges through collaborative real-world validations and incremental improvements.

6. Conclusions

This study presented a new hybrid dataset with detailed annotations for aircraft and
their key components, compared twelve object detection and segmentation models, and de-
veloped the optimised YOLOvV8-Seg through an eight-step ablation study. The results show
that while the YOLOv9 model achieved the highest BBox accuracy, the optimised YOLOvS-
Seg model delivered the best segmentation performance, demonstrating a substantial im-
provement over the baseline, with an (+8.04 p.p) increase in mAP@0.5:0.95 and (+4.74 p.p.)
in mAP@0.5 for the masking task. The largest class-level improvements were observed in
the Airplane (+11.5 p.p.) and Wing (+9.9 p.p.) categories for the Mask mAP@0.5 metric,
highlighting the model’s enhanced capacity to outline complex structural boundaries.

Qualitative tests conducted under challenging conditions such as fog, night, clear
weather, and complex backgrounds confirmed the robustness of the optimised YOLOVS-
Seg model, demonstrating improved reliability and edge accuracy compared to the base
model. Overall, the study makes three main contributions: a publicly available dataset,
a comprehensive multi-model comparison, and an optimised segmentation framework
specifically designed for apron safety. Together, these developments provide a robust
foundation and a promising step toward operational deployment, offering valuable insights
for the design of vision-based surveillance systems aimed at improving both safety and
efficiency in airport operations.
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Abbreviations

The following abbreviations are used in this manuscript:

ADS-B Automatic Dependent Surveillance-Broadcast

Al Artificial Intelligence
AMP Automatic Mixed Precision
AP Average Precision

CCTV Closed-Circuit Television

COCO Common Objects in Context

cv Computer Vision

DETR DEtection TRansformer

DOTA Dataset for Object deTection in Aerial Images

FOD Foreign Object Debris

FP Floating-Point (as in FP16/FP32)
FPS Frames Per Second

GPU Graphics Processing Unit

IATA International Air Transport Association
10U Intersection over Union

LIDAR Light Detection and Ranging

mAP mean Average Precision

mloU mean Intersection over Union

MSEFS Microsoft Flight Simulator

MOT Multi Object Tracking

PGI Programmable Gradient Information

PR Precision—-Recall
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R-CNN Region-based Convolutional Neural Network
RE-DETR  Real-time DEtection TRansformer

RSOD Remote Sensing Object Detection
SMR Surface Movement Radar
SSD Single Shot Detector

YOLO You Only Look Once

References

1.

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

International Air Transport Association (IATA). 2023 Industry Statistics Fact Sheet; International Air Transport Association (IATA):
Montreal, QC, Canada, 2023. Available online: https://www.iata.org/en/iata-repository/publications/economic-reports/
industry-statistics-fact-sheet-december-2023/ (accessed on 1 October 2025).

International Civil Aviation Organization. First ICAO Global Air Cargo Summit. Available online: https://www.icao.int/
Meetings/IACS/Pages/default.aspx (accessed on 11 May 2025).

O’Kelly, M.E. Transportation Security at Hubs: Addressing Key Challenges across Modes of Transport. J. Transp. Secur. 2025, 18, 4.
[CrossRef]

Flight Safety Foundation (FSF). 2022 Safety Report; Flight Safety Foundation (FSF): Alexandria, VA, USA, 2023; p. 11.
Abdulaziz, A.; Yaro, A.; Ahmad, A.A.; Namadi, S. Surveillance Radar System Limitations and the Advent of the Automatic
Dependent Surveillance Broadcast System for Aircraft Monitoring. ATBU . Sci. Technol. Educ. (JOSTE) 2019, 7, 15. Available
online: http://www.atbuftejoste.com.ng/index.php/joste/article /view /683 (accessed on 7 April 2019).

Thai, P; Alam, S.; Lilith, N.; Nguyen, B.T. A Computer Vision Framework Using Convolutional Neural Networks for Airport-
Airside Surveillance. Transp. Res. Part. C Emerg. Technol. 2022, 137, 103590. [CrossRef]

Chen, X.; Gao, Z.; Chali, Y. The Development of Air Traffic Control Surveillance Radars in China. In Proceedings of the 2017 IEEE
Radar Conference, RadarConf 2017, Seattle, WA, USA, 8-12 May 2017; pp. 1776-1784. [CrossRef]

Galati, G.; Leonardi, M.; Cavallin, A.; Pavan, G. Airport Surveillance Processing Chain for High Resolution Radar. IEEE Trans.
Aerosp. Electron. Syst. 2010, 46, 1522-1533. [CrossRef]

Lukin, K.; Mogila, A.; Vyplavin, P.; Galati, G.; Pavan, G. Novel Concepts for Surface Movement Radar Design. Int. ]. Microw.
Wirel. Technol. 2009, 1, 163-169. [CrossRef]

Skybrary Surface Movement Radar (SMR). Available online: https://skybrary.aero/articles/surface-movement-radar (accessed
on 15 April 2024).

Ding, M.; Ding, Y.-Y.; Wu, X.-Z.; Wang, X.-H.; Xu, Y.-B. Action Recognition of Individuals on an Airport Apron Based on Tracking
Bounding Boxes of the Thermal Infrared Target. Infrared Phys. Technol. 2021, 117, 103859. [CrossRef]

Lee, S. M-ABCNet: Multi-Modal Aircraft Motion Behavior Classification Network at Airport Ramps. IEEE Access 2024, 12,
133982-133993. [CrossRef]

gtumper, M,; Kraus, J. Thermal Imaging in Aviation. MAD-Mag. Aviat. Dev. 2015, 3, 13. [CrossRef]

Rivera Veldzquez, ].M.; Khoudour, L.; Saint Pierre, G.; Duthon, P; Liandrat, S.; Bernardin, F. Analysis of Thermal Imaging
Performance Under Extreme Foggy Conditions: Applications to Autonomous Driving. J. Imaging 2022, 8, 306. [CrossRef]
Brassel, H.; Zouhar, A.; Fricke, H. 3D Modeling of the Airport Environment for Fast and Accurate LIDAR Semantic Segmentation
of Apron Operations. In Proceedings of the 2020 AIAA /IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio,
TX, USA, 11-15 October 2020. [CrossRef]

Atlioglu, M.C.; Gokhan, K.O.C. An Al Powered Computer Vision Application for Airport CCTV Users. . Data Sci. 2021, 4, 21-26.
Munyer, T.; Brinkman, D.; Huang, C.; Zhong, X. Integrative Use of Computer Vision and Unmanned Aircraft Technologies in
Public Inspection: Foreign Object Debris Image Collection. In Proceedings of the 22nd Annual International Conference on
Digital Government Research, Omaha, NE, USA, 9-11 June 2021; pp. 437—443. [CrossRef]

ICAO. International Civil Aviation Organization FOD Management Programme. Available online: https://www2023.icao.int/
ESAF/Documents/meetings /2024 / Aerodrome%?20Certification%20Worksljop%20Luanda%20Angola%2013-17%20May %2020
24 /Presentations/FOD%20Management%20Programme.pdf (accessed on 19 June 2024).

Shan, J.; Miccinesi, L.; Beni, A.; Pagnini, L.; Cioncolini, A.; Pieraccini, M. A Review of Foreign Object Debris Detection on Airport
Runways: Sensors and Algorithms. Remote Sens. 2025, 17, 225. [CrossRef]

Mo, Y.; Wang, L.; Hong, W.; Chu, C.; Li, P,; Xia, H. Small-Scale Foreign Object Debris Detection Using Deep Learning and Dual
Light Modes. Appl. Sci. 2024, 14, 2162. [CrossRef]

Kucuk, N.S.; Aygun, H.; Dursun, O.O.; Toraman, S. Detection and Classification of Foreign Object Debris (FOD) with Comparative
Deep Learning Algorithms in Airport Runways. Signal Image Video Process 2025, 19, 316. [CrossRef]


https://www.iata.org/en/iata-repository/publications/economic-reports/industry-statistics-fact-sheet-december-2023/
https://www.iata.org/en/iata-repository/publications/economic-reports/industry-statistics-fact-sheet-december-2023/
https://www.icao.int/Meetings/IACS/Pages/default.aspx
https://www.icao.int/Meetings/IACS/Pages/default.aspx
https://doi.org/10.1007/s12198-025-00294-y
http://www.atbuftejoste.com.ng/index.php/joste/article/view/683
https://doi.org/10.1016/j.trc.2022.103590
https://doi.org/10.1109/RADAR.2017.7944495
https://doi.org/10.1109/TAES.2010.5545207
https://doi.org/10.1017/S1759078709000233
https://skybrary.aero/articles/surface-movement-radar
https://doi.org/10.1016/j.infrared.2021.103859
https://doi.org/10.1109/ACCESS.2024.3462096
https://doi.org/10.14311/MAD.2015.16.03
https://doi.org/10.3390/jimaging8110306
https://doi.org/10.1109/DASC50938.2020.9256495
https://doi.org/10.1145/3463677.3463743
https://www2023.icao.int/ESAF/Documents/meetings/2024/Aerodrome%20Certification%20Worksljop%20Luanda%20Angola%2013-17%20May%202024/Presentations/FOD%20Management%20Programme.pdf
https://www2023.icao.int/ESAF/Documents/meetings/2024/Aerodrome%20Certification%20Worksljop%20Luanda%20Angola%2013-17%20May%202024/Presentations/FOD%20Management%20Programme.pdf
https://www2023.icao.int/ESAF/Documents/meetings/2024/Aerodrome%20Certification%20Worksljop%20Luanda%20Angola%2013-17%20May%202024/Presentations/FOD%20Management%20Programme.pdf
https://doi.org/10.3390/rs17020225
https://doi.org/10.3390/app14052162
https://doi.org/10.1007/s11760-025-03901-6

Appl. Sci. 2025, 15, 11582 34 of 36

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Friederich, N.; Specker, A.; Beyerer, J. Security Fence Inspection at Airports Using Object Detection. In Proceedings of the 2024
IEEE Winter Conference on Applications of Computer Vision Workshops, WACVW 2024, Waikoloa, HI, USA, 1-6 January 2024;
pp. 310-319. [CrossRef]

Bahrudeen, A.A.A.; Bajpai, A. Attire-Based Anomaly Detection in Restricted Areas Using YOLOvVS for Enhanced CCTV Security.
arXiv 2024, arXiv:2404.00645. [CrossRef]

Kheta, K.; Delgove, C.; Liu, R.; Aderogba, A.; Pokam, M.-O. Vision-Based Conflict Detection Within Crowds Based on High-
Resolution Human Pose Estimation for Smart and Safe Airport. arXiv 2022, arXiv:2207.00477.

Yildiz, S.; Aydemir, O.; Memis, A.; Varly, S. A Turnaround Control System to Automatically Detect and Monitor the Time Stamps
of Ground Service Actions in Airports: A Deep Learning and Computer Vision Based Approach. Eng. Appl. Artif. Intell. 2022, 114,
105032. [CrossRef]

Muecklich, N.; Sikora, I.; Paraskevas, A.; Padhra, A. The Role of Human Factors in Aviation Ground Operation-Related
Accidents/Incidents: A Human Error Analysis Approach. Transp. Eng. 2023, 13, 100184. [CrossRef]

Said Hamed Alzadjail, N.; Balasubaramainan, S.; Savarimuthu, C.; Rances, E.O. A Deep Learning Framework for Real-Time Bird
Detection and Its Implications for Reducing Bird Strike Incidents. Sensors 2024, 24, 5455. [CrossRef]

Mendonca, FA.C.; Keller, J. Enhancing the Aeronautical Decision-Making Knowledge and Skills of General Aviation Pilots to
Mitigate the Risk of Bird Strikes: A Quasi-Experimental Study. Coll. Aviat. Rev. Int. 2022, 40, 7. [CrossRef]

Dat, N.N.; Richardson, T.; Watson, M.; Meier, K.; Kline, J.; Reid, S. WildLive: Near Real-Time Visual Wildlife Tracking Onboard
UAVs. arXiv 2025, arXiv:2504.10165.

Zeng, B.; Ming, D.; Ji, E; Yu, J.; Xu, L. Top-Down Aircraft Detection in Large-Scale Scenes Based on Multi-Source Data and
FEF-R-CNN. Int. |. Remote Sens. 2022, 43, 1108-1130. [CrossRef]

Zhou, L.; Yan, H; Shan, Y.; Zheng, C.; Liu, Y. Aircraft Detection for Remote Sensing Images Based on Deep Convolutional Neural
Networks. J. Electr. Comput. Eng. 2021, 2021, 4685644. [CrossRef]

Tahir, A.; Adil, M.; Ali, A. Rapid Detection of Aircrafts in Satellite Imagery Based on Deep Neural Networks. arXiv 2021,
arXiv:2104.11677. [CrossRef]

Yang, Y.; Xie, G.; Qu, Y. Real-Time Detection of Aircraft Objects in Remote Sensing Images Based on Improved YOLOv4. In
Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
Chonggqing, China, 12-14 March 2021; pp. 1156-1164. [CrossRef]

Wang, Y.Y.; Wu, H.; Shuai, L.; Peng, C.; Yang, Z. Detection of Plane in Remote Sensing Images Using Super-Resolution. PLoS ONE
2022, 17, €0265503. [CrossRef]

Flight Safety Foundation Ground Accident Prevention (GAP). Available online: https://flightsafety.org/toolkits-resources/past-
safety-initiatives/ground-accident-prevention-gap/ (accessed on 1 October 2025).

Van Phat, T.; Alam, S.; Lilith, N.; Tran, PN.; Binh, N.T. Deep4Air: A Novel Deep Learning Framework for Airport Airside
Surveillance. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2021,
Shenzhen, China, 5-9 July 2021. [CrossRef]

Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23-28 June 2014; pp. 580-587. [CrossRef]

Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
7-13 December 2015; pp. 1440-1448. [CrossRef]

Ren, S.; He, K,; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137-1149. [CrossRef] [PubMed]

He, K.; Gkioxari, G.; Dollar, P; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22-29 October 2017; pp. 2961-2969. [CrossRef]

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of
the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11-14 October 2016; pp. 21-37. [CrossRef]
Lin, T.Y.; Goyal, P; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.
2018, 42, 318-327. [CrossRef] [PubMed]

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016;
pp. 779-788. [CrossRef]

Jocher, G. YOLOV5 by Ultralytics. 2020. Available online: http://github.com /ultralytics/yolov5 (accessed on 29 May 2025).
[CrossRef]

Ultralytics YOLOv8 Models. Available online: https://docs.ultralytics.com/models/yolov8/ (accessed on 23 December 2024).


https://doi.org/10.1109/WACVW60836.2024.00039
https://doi.org/10.48550/arXiv.2404.00645
https://doi.org/10.1016/j.engappai.2022.105032
https://doi.org/10.1016/j.treng.2023.100184
https://doi.org/10.3390/s24175455
https://doi.org/10.22488/okstate.22.100219
https://doi.org/10.1080/01431161.2022.2034194
https://doi.org/10.1155/2021/4685644
https://doi.org/10.48550/arXiv.2104.11677
https://doi.org/10.1109/IAEAC50856.2021.9390673
https://doi.org/10.1371/journal.pone.0265503
https://flightsafety.org/toolkits-resources/past-safety-initiatives/ground-accident-prevention-gap/
https://flightsafety.org/toolkits-resources/past-safety-initiatives/ground-accident-prevention-gap/
https://doi.org/10.1109/ICMEW53276.2021.9456005
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TPAMI.2018.2858826
https://www.ncbi.nlm.nih.gov/pubmed/30040631
https://doi.org/10.1109/CVPR.2016.91
http://github.com/ultralytics/yolov5
https://doi.org/10.5281/zenodo.3908559
https://docs.ultralytics.com/models/yolov8/

Appl. Sci. 2025, 15, 11582 35 of 36

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOvV9: Learning What You Want to Learn Using Programmable Gradient Information. In
Proceedings of the 18th European Conference on Computer Vision. (ECCV), Milan, Italy, 29 September—4 October 2024; pp. 1-18.
[CrossRef]

Wang, A.; Chen, H; Liu, L.; Chen, K,; Lin, Z. YOLOvV10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458.
Available online: https://arxiv.org/abs/2405.14458 (accessed on 12 February 2025).

Ultralytics Ultralytics YOLO11. Available online: https://docs.ultralytics.com/models/yolo11/ (accessed on 12 February 2025).
Tian, Y.; Ye, Q.; Doermann, D. YOLOv12: Attention-Centric Real-Time Object Detectors. arXiv 2025, arXiv:2502.12524.
Ultralytics_Team. Introducing Instance Segmentation in Ultralytics YOLOvV5 v7.0. Available online: https://www.ultralytics.
com/blog/introducing-instance-segmentation-in-yolov5-v7-0 (accessed on 19 April 2023).

Ultralytics Instance Segmentation—Ultralytics YOLO Docs. Available online: https://docs.ultralytics.com/tasks/segment/
(accessed on 23 April 2024).

Zhu, X,; Su, W,; Lu, L.; Li, B.; Wang, X.; Dai, ]. Deformable DETR: Deformable Transformers for End-To-End Object Detection. In
Proceedings of the ICLR 2021—9th International Conference on Learning Representations, Virtual, 3-7 May 2021.

Robicheaux, P.; Gallagher, J.; Nelson, J.; Robinson, I. RE-DETR: A SOTA Real-Time Object Detection Model. Available online:
https:/ /blog.roboflow.com/rf-detr/ (accessed on 31 May 2025).

He, Z.; He, Y,; Lv, Y. DT-YOLO: An Improved Object Detection Algorithm for Key Components of Aircraft and Staff in Airport
Scenes Based on YOLOV5. Sensors 2025, 25, 1705. [CrossRef]

Huang, B.; Ding, Y.; Liu, G.; Tian, G.; Wang, S. ASD-YOLO: An Aircraft Surface Defects Detection Method Using Deformable
Convolution and Attention Mechanism. Measurement 2024, 238, 115300. [CrossRef]

Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P. Microsoft COCO: Common Objects in Context. In Computer Vision-ECCV
2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6-12 September 2014; LNCS; Springer: Cham, Switzerland,
2014; Volume 8693, pp. 740-755. [CrossRef]

Zhou, W.; Cai, C.; Zheng, L.; Li, C.; Zeng, D. ASSD-YOLO: A Small Object Detection Method Based on Improved YOLOV7 for
Airport Surface Surveillance. Multimed. Tools Appl. 2023, 83, 55527-55548. [CrossRef]

Zhou, W.; Cai, C.; Li, C.; Xu, H.; Shi, H. AD-YOLO: A Real-Time YOLO Network with Swin Transformer and Attention Mechanism
for Airport Scene Detection. IEEE Trans. Instrum. Meas. 2024, 73, 5036112. [CrossRef]

Lyu, Z.; Luo, J. A Surveillance Video Real-Time Object Detection System Based on Edge-Cloud Cooperation in Airport Apron.
Appl. Sci. 2022, 12,128. [CrossRef]

Zhou, R;; Li, M.; Meng, S.; Qiu, S.; Zhang, Q. Aircraft Objection Detection Method of Airport Surface Based on Improved YOLOVS.
J. Electr. Syst. 2024, 20, 16-25. [CrossRef]

Xu, Y.; Liu, Y.; Shi, K,; Wang, X.; Li, Y.; Chen, J. An Airport Apron Ground Service Surveillance Algorithm Based on Improved
YOLO Network. Electron. Res. Arch. 2024, 32, 3569-3587. [CrossRef]

CAPTAIN-WHU DOTA: Dataset for Object DeTection in Aerial Images. Available online: https:/ /captain-whu.github.io/DOTA/
index.html (accessed on 10 September 2024).

RSIA-LIESMARS-WHU Remote Sensing Object Detection Dataset (RSOD-Dataset). Available online: https://github.com/RSIA-
LIESMARS-WHU/RSOD-Dataset- (accessed on 20 February 2024).

Utomo, S.; Sulistyaningrum, D.R.; Setiyono, B.; Nasution, A.H.I. Image Augmentation For Aircraft Parts Detection Using Mask
R-CNN. In Proceedings of the 2024 International Conference on Smart Computing, IoT and Machine Learning, SIML 2024,
Surakarta, Indonesia, 6-7 June 2024; pp. 186-192. [CrossRef]

Thomas, J.; Kuang, B.; Wang, Y.; Barnes, S.; Jenkins, K. Advanced Semantic Segmentation of Aircraft Main Components Based on
Transfer Learning and Data-Driven Approach. Vis. Comput. 2025, 41, 4703-4722. [CrossRef]

Yilmaz, B.; Karsligil, M.E. Detection of Airplane and Airplane Parts from Security Camera Images with Deep Learning. In
Proceedings of the 2020 28th Signal Processing and Communications Applications Conference, SIU 2020, Gaziantep, Turkey, 5-7
October 2020; pp. 21-24. [CrossRef]

Bakirman, T.; Sertel, E. A Benchmark Dataset for Deep Learning-Based Airplane Detection: HRPlanes. Int. J. Eng. Geosci. 2023, 8,
212-223. [CrossRef]

Maji, S.; Rahtu, E.; Kannala, ].; Blaschko, M.; Vedaldi, A. Fine-Grained Visual Classification of Aircraft. arXiv 2013, arXiv:1306.5151.
[CrossRef]

Ultralytics YOLO12: Attention-Centric Object Detection. Available online: https://docs.ultralytics.com/models/yolo12/
(accessed on 20 May 2025).

Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In
Proceedings of the 16th European Conference, Glasgow, UK, 23-28 August 2020. [CrossRef]

Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; Da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit. Electronics 2021, 10, 279. [CrossRef]


https://doi.org/10.1007/978-3-031-72751-1_1
https://arxiv.org/abs/2405.14458
https://docs.ultralytics.com/models/yolo11/
https://www.ultralytics.com/blog/introducing-instance-segmentation-in-yolov5-v7-0
https://www.ultralytics.com/blog/introducing-instance-segmentation-in-yolov5-v7-0
https://docs.ultralytics.com/tasks/segment/
https://blog.roboflow.com/rf-detr/
https://doi.org/10.3390/s25061705
https://doi.org/10.1016/j.measurement.2024.115300
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/s11042-023-17628-4
https://doi.org/10.1109/TIM.2024.3472805
https://doi.org/10.3390/app121910128
https://doi.org/10.52783/jes.1087
https://doi.org/10.3934/era.2024164
https://captain-whu.github.io/DOTA/index.html
https://captain-whu.github.io/DOTA/index.html
https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
https://doi.org/10.1109/SIML61815.2024.10578281
https://doi.org/10.1007/s00371-024-03686-8
https://doi.org/10.1109/SIU49456.2020.9302118
https://doi.org/10.26833/ijeg.1107890
https://doi.org/10.48550/arXiv.1306.5151
https://docs.ultralytics.com/models/yolo12/
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.3390/electronics10030279

Appl. Sci. 2025, 15, 11582 36 of 36

72.

73.

74.

75.

76.

77.

78.

Padilla, R.; Netto, S.L.; Da Silva, E.A.B. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the
International Conference on Systems, Signals, and Image Processing, Niteroi, Brazil, 1-3 July 2020; pp. 237-242. [CrossRef]
Ultralytics YOLO Performance Metrics—COCO Metrics Evaluation. Available online: https://docs.ultralytics.com/guides/yolo-
performance-metrics /#coco-metrics-evaluation (accessed on 23 May 2024).

Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2015, 39, 640-651. [CrossRef]

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P. COCO: Common Objects in Context. Available online: https://cocodataset.
org/#home (accessed on 16 January 2022).

Everingham, M.; Van Gool, L.; Williams, C.K.I,; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. ].
Comput. Vis. 2010, 88, 303-338. [CrossRef]

Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), Montreal, QC, Canada, 20-25 August 1995; pp. 1137-1143.
Zhang, Y.; Zhou, B.; Zhao, X.; Song, X. Enhanced Object Detection in Low-Visibility Haze Conditions with YOLOv9s. PLoS ONE
2025, 20, €0317852. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://docs.ultralytics.com/guides/yolo-performance-metrics/#coco-metrics-evaluation
https://docs.ultralytics.com/guides/yolo-performance-metrics/#coco-metrics-evaluation
https://doi.org/10.1109/TPAMI.2016.2572683
https://cocodataset.org/#home
https://cocodataset.org/#home
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1371/journal.pone.0317852

	Introduction 
	Motivation and Research Questions 
	Key Contributions 
	Structure of the Paper 

	Related Work 
	Methodology 
	Dataset Development 
	Selection of Deep Learning Models 
	Experimental Configuration for Model Comparison 
	Performance Evaluation Metrics 
	Methodological Validation: Statistical and Visual Analysis 
	Statistical Evaluation Using K-Fold Cross Validation 
	Quantitative Failure Mode and Visual Scenario-Based Analysis 

	Systematic Optimisation Framework for a YOLOv8-Seg 

	Results 
	Model Performance Comparison 
	Performance of the Evaluated Models 
	Class-Specific BBox Accuracy 
	Mask Performance of Segmentation Models 
	Class-Specific Segmentation Mask Accuracy 
	Failure Mode Analysis: FP/FN Comparison on Wing and Tail Classes 
	Statistical Robustness Analysis via Repeated 10-Fold Cross-Validation 
	Qualitative Performance Evaluation in Challenging Apron Scenarios 

	Ablation Study on YOLOv-8-Seg 
	Bounding-Box Detection Performance After Optimisation 
	Segmentation Performance After Optimisation 
	Class-Specific Segmentation Mask Accuracy After Optimisation 
	Comparative Summary of Baseline and Optimised YOLOv8-Seg Models 
	Qualitative Comparison: Baseline vs. Optimised Model 


	Discussion 
	Model Benchmarking, Error Characterisation, and Statistical Reliability 
	Model Performance and Architectural Comparison 
	Class-Wise Error Trends and Confusion Matrix Insights 
	Statistical Robustness via 10-Fold Cross-Validation 
	Qualitative Scenario-Based Discussion Under Apron Conditions 

	Interpretation of Optimisation Efficacy 
	Implications of the Quantitative Findings 
	Qualitative Validation Under Realistic Apron Scenarios 

	Practical Implications for Apron Safety 
	Limitations and Future Work Directions 

	Conclusions 
	References

