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Quantum-Cognitive Radar: Adaptive Detection with
Entanglement under Thermal-Loss Channels

Abstract— An adaptive Quantum-Cognitive Radar (QCR),
which incorporates a two-mode squeezed-vacuum (TMSV) trans-
mitter, a joint idler-signal receiver, and a Quantum Neural Network
(QNN) controller to optimize parameters in real time, is introduced
through this exchange of correspondence. An expression for a
Gaussian correlation detector has been found for thermal-loss
channels and compared with the quantum Chernoff bound (QCB).
Hardware-aware simulations show that QCR achieves higher de-
tection probability PD at a fixed false-alarm probability PFA

(i.e., the probability of declaring a target when it is absent) than
both coherent-state radar and nonadaptive quantum baselines. At
PFA = 0.05, QCR provides an approximately 3dB advantage
with up to 40% reduction in integration time while maintaining
robustness as background noise increases. At the operationally
stringent PFA = 10−3, QCR achieves PD = 0.47 versus 0.20

for classical radar, corresponding to a 135% relative improvement.
The receiver requires only homodyne/heterodyne sampling and
digital correlation, making it compatible with noisy intermediate-
scale quantum (NISQ) hardware. The adaptive policy optimizes
the parameter vector (M,NS , B, Tint, G) under fixed energy con-
straints, demonstrating that online adaptation preserves and ex-
tends quantum-illumination advantages in nonstationary sensing
environments.

Index Terms— Adaptive detection, cognitive radar, quantum
illumination, quantum neural network, quantum radar, thermal-
loss channels, two-mode squeezed vacuum (TMSV)

I. Introduction

QUANTUM radar exploits entangled states to enhance
target detection in low signal-to-noise ratio (SNR), ther-
mally dominated channels [1], [2], [3]. Quantum illumi-
nation (QI) using two-mode squeezed vacuum (TMSV)
sources retains detection advantages even when channel
loss destroys most entanglement [4], [5], [6]. The fun-
damental mechanism relies on nonclassical correlations
between signal and idler modes that persist through lossy
propagation, enabling enhanced discrimination between
target presence and absence hypotheses.

Prior studies have established performance bounds
and Chernoff-type exponents for realistic microwave
regimes [4], [10]. Prototype quantum two-mode squeezing
(QTMS) receivers have demonstrated the feasibility of
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correlation-based detection [7], [8]. However, these treat-
ments typically assume static operating points without
real-time feedback, leaving a critical gap in scenarios
requiring online adaptation under fixed false-alarm con-
straints. Practical radar environments exhibit nonstation-
ary clutter, drifting target reflectivity, and time-varying
interference that demand adaptive response.

Classical cognitive radar addresses nonstationarity
through feedback and learning mechanisms to manage
clutter, interference, and environmental drift [12], [13].
Recent advances include constrained bandit learning for
waveform selection and distributed optimization for spec-
tral coexistence [14]. However, these approaches rely
on classical probing and cannot leverage entanglement
advantages in high-noise sensing environments. This mo-
tivates integrating cognitive adaptation principles with
entanglement-assisted sensing to achieve robust perfor-
mance across varying operational conditions.

The key differences from all previous quantum
radar designs: All prior quantum radar designs have
operated using an open-loop approach that utilizes a pre-
determined set of parameters. This new QCR design
has utilized a unique closed-loop approach that uses a
QNN (Quantum Neural Network) controller. The QNN
controller will be continually adjusting the parameters
{M,NS , B, Tint, G} to optimize PD for each possible
PFA given an energy budget constraint which is the
most important operational metric for all practical radar
systems.

A quantum cognitive radar (QCR) architecture is
proposed in this correspondence combining TMSV (Two
Mode Squeezed Vacuum) illumination with a QNN
(Quantum Neural Network)-based adaptive controller.
The main contributions of this correspondence are:

• An entanglement-enhanced hybrid quantum-classical
architecture that enables entanglement-aided de-
tection in non-stationary low signal-to-noise ratio
(SNR) environments while allowing real-time adap-
tation of the radar parameters.

• A QNN-based control methodology that allows for
on-line optimization of the radar parameters under a
fixed false alarm budget.

• Detailed hardware-aware simulations demonstrating
approximately 3 dB improvement and 40% integra-
tion time reduction at PFA = 0.05, along with
detailed analysis of the impairment effects.

The rest of this correspondence is organized as fol-
lows. Section II reviews the literature related to both
quantum illumination and cognitive radar. Section III
defines the QCR system model that includes the QNN
controller architecture. Section IV develops the detection
analysis and reports on the performance results. Section V
describes the potential implementation considerations.
Section VI examines the robustness and sensitivity of the
QCR design. Finally, Section VII outlines potential future
directions.

TABLE I
Summary of Quantum Radar Approaches

Reference A/S Validation Limitation

[17] No Analytical Gaussian Analysis is Nonadaptive

[15] No Analytical Only Entanglement Analysis

[3] No Analytical Assumes Fixed Operating Point

[11] No Review No Real-Time Feedback Loop

[4] No Simulation Static Operating Parameters

[5] No Theory No Adaptive Parameter Tuning

This Work Yes A/S Not Hardware Validated Yet

II. Related Work

The Quantum Illumination (QI) paradigm has pro-
vided a framework to quantify the detection capabilities of
optical systems by exploiting the inherent entanglement
properties of light. In particular, the use of two-mode
squeezed vacuum (TMSV) states as probes preserves
detection advantages even when subjected to high levels
of channel attenuation, as demonstrated by Tan et al.
[17] and subsequently studied in detail using quantum
information processing methods [4].

Performance metrics such as the quantum Chernoff
bound enable comparison between quantum and classical
hypothesis testing strategies [10]. Theory addressing the
distributed QI network [5] and the entanglement sus-
tainability in realistic environments [15] has also been
presented. Engineering analyses have identified specific
application regimes where the quantum radar technique
offers significant practical benefits compared to its clas-
sical counterparts [3].

Prototype implementations of quantum-target-
modulation-signal (QTMS) receivers that utilize
the correlation-based detection scheme have been
experimentally demonstrated [7] as well as the design
of practical likelihood ratio (LR) detectors [8] for
implementation. Recent experimental demonstrations
have shown a quantum advantage in the context
of microwave radar configurations [9]. Cognitive
radar techniques have also enabled adaptive sensing
through various machine learning and optimization
methods. Constrained bandit learning allows adaptive
waveform selection under operational constraints [13]
while distributed online learning has addressed issues
associated with spectral coexistence in radar networks
[14]. Neural network approaches have also been used to
develop adaptive quantum estimators [16]. However, no
previous work has combined real-time adaptive control
with entanglement-assisted sensing as discussed above.

Table I outlines this gap by noting that all current
quantum radar approaches are non-adaptive while all
cognitive radar approaches are non-quantum.
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Fig. 1. QCR system block diagram. A TMSV source generates
entangled signal-idler pairs. The signal probes a thermal-loss channel

with reflectivity κ and background noise NB . The joint receiver
computes correlation statistic z and applies threshold τ for fixed-PFA

detection.

Fig. 2. QCR control architecture with feedback loop. The QNN
controller receives measurement feedback ξt and adjusts parameters

(M,NS , G, Tint, B) under energy constraint Etotal = MNShf , where
M ≈ BTint.

III. System Model

The QCR architecture comprises four main compo-
nents: a TMSV entangled-photon transmitter, a thermal-
loss bosonic channel model, a joint signal-idler correlation
receiver, and a QNN-based adaptive controller. Fig. 1
illustrates the system block diagram, Fig. 2 shows the
control architecture, and Table II defines key symbols
used throughout.

A. TMSV Transmitter

The entangled source generates two-mode squeezed
vacuum states. In the Fock basis, the TMSV state is
expressed as:

|ψ⟩SI =
√

1− λ2
∞∑

n=0

λn|n⟩S |n⟩I , (1)

where λ = tanh r, r is the squeezing parameter, and
NS = sinh2 r denotes the mean photon number per mode.

TABLE II
Symbol definitions.

Symbol Definition

M Number of temporal modes (M ≈ BTint)
NS Mean signal photons per mode (brightness)
NB Mean thermal background photons per mode
κ Target reflectivity (0 < κ < 1)
B Receiver bandwidth
Tint Integration (dwell) time
G Receiver gain/weighting factor
z Joint correlation statistic
PD , PFA Detection and false-alarm probabilities
r, λ Squeezing parameter, λ = tanh r

Q(·) Standard Gaussian tail function

The signal mode S is transmitted toward the target region
while the idler mode I is retained locally in a quantum
memory. The photon-number correlations between signal
and idler enable entanglement-assisted detection even
under severe channel loss [1].

B. Thermal-Loss Channel

Signal propagation through the sensing channel is
modeled by the standard beamsplitter relation:

âR =
√
κ âS +

√
1− κ âB , (2)

where âR is the return mode, âS is the transmitted signal,
âB represents a thermal bath with mean photon number
NB , and κ encodes target reflectivity. The first term mod-
els coherent reflection from the target, while the second
term represents thermal noise injection. Higher NB or
lower κ increases the difficulty of target discrimination
[10].

C. Joint Correlation Receiver

The receiver processes the return mode âR jointly with
the stored idler âI , accumulating the real part of their
correlation over M temporal modes:

z =

M∑
m=1

Re
(
âR,mâI,m

)
. (3)

For large M , the central limit theorem yields approxi-
mately Gaussian statistics z ∼ N (µi, σ

2
i ) with hypothesis-

dependent moments:

H0 (no target): µ0 ≈ 0, σ2
0 ≈MNSNB , (4)

H1 (target present): µ1 ≈MκNS , σ2
1 ≈MNS(NB + κ).

(5)
The mean separation µ1−µ0 =MκNS grows with mode
count and brightness, while variance scaling with NB

determines the noise floor.

D. QNN Controller Architecture

The adaptive controller employs a variational quantum
circuit (VQC) with nq = 4 qubits and L = 3 variational
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layers. The feedback vector ξt ∈ R12 aggregates: current
statistic zt, variance estimate σ̂2

z , empirical false-alarm
rate computed over a sliding window of W = 50 deci-
sions, current parameter values (Mt, NS,t, Bt, Tint,t, Gt),
and channel estimates (N̂B , κ̂) obtained from auxiliary
measurements.

Input encoding uses angle embedding applied to the
first four feedback components:

|ψin⟩ =
4⊗

j=1

RY

(
arctan(ξ

(j)
t )

)
|0⟩. (6)

Each variational layer applies parameterized rotations
followed by entangling gates:

Uℓ =

4∏
j=1

RZ(θ
z
ℓ,j)RY (θ

y
ℓ,j) · CNOTring, (7)

yielding 24 total trainable parameters across three layers.
Expectation values ⟨Zj⟩ for each qubit feed a classical
multilayer perceptron (MLP) with architecture [4→ 16→
8→ 5] that produces parameter updates ∆pt.

Training: The loss function combines detection per-
formance, false-alarm constraint, and energy budget:

L = −E[PD]+λFA max(0, P̂FA−P target
FA )2+λELenergy, (8)

with penalty weights λFA = 100 and λE = 50. Training
uses Adam optimization with learning rate η = 10−3 and
parameter-shift gradients over 500 epochs with batch size
32. Training data samples channel conditions from NB ∼
LogUniform(0.1, 100) and κ ∼ Uniform(0.01, 0.2).

Convergence criteria: Training terminates when, for
20 consecutive epochs: E[PD] ≥ 0.85 at PFA = 0.05,
constraint satisfaction |P̂FA − 0.05| < 0.005, relative loss
change below 10−4, and parameter stability ∥∆θ∥2 <
10−3. The trained controller achieves inference latency
below 1µs, enabling real-time adaptation.

Algorithm 1 summarizes the online adaptation proce-
dure.

IV. Detection Analysis and Results

Given the Gaussian statistics z ∼ N (µi, σ
2
i ) es-

tablished in Section III, the Neyman-Pearson detector
threshold enforcing target false-alarm probability PFA is:

τ = µ0 + σ0Q
−1(PFA), (9)

where Q(x) = 1√
2π

∫∞
x
e−t2/2dt is the standard Gaussian

tail function. Reference values: Q−1(0.05) ≈ 1.645,
Q−1(10−3) ≈ 3.090, Q−1(10−4) ≈ 3.719.

The resulting detection probability under hypothesis
H1 follows as:

PD = Q

(
µ0 − µ1

σ1
+
σ0
σ1
Q−1(PFA)

)
. (10)

Derivation: Under H0, the false-alarm probability is
PFA = P (z > τ |H0) = Q((τ − µ0)/σ0). Inverting
this relation yields the threshold expression (9). Under
H1, the detection probability is PD = P (z > τ |H1) =
Q((τ − µ1)/σ1). Substituting the threshold from (9) and

Algorithm 1 QNN-Based Adaptive Parameter Control
Require: Initial parameters p0 = (M,NS , B, Tint, G),

trained QNN weights θ∗, target P target
FA , energy budget

Etotal
Ensure: Optimized detection with PFA ≤ P target

FA

1: Initialize sliding window W ← ∅, t← 0
2: while radar operational do
3: Transmit TMSV signal, receive return âR
4: Compute correlation statistic zt via (3)
5: Estimate variance σ̂2

z from recent samples
6: Update empirical P̂FA over window W
7: Construct feedback: ξt ← [zt, σ̂

2
z , P̂FA,pt, N̂B , κ̂]

8: QNN forward pass:
9: Encode: |ψin⟩ ←

⊗
j RY (arctan(ξ

(j)
t ))|0⟩

10: Apply layers: |ψout⟩ ← UL · · ·U1|ψin⟩
11: Measure: q ← [⟨Z1⟩, . . . , ⟨Z4⟩]
12: MLP output: ∆pt ← MLP(q)
13: Update parameters: pt+1 ← pt + ηp∆pt

14: Enforce constraints:
15: Project to energy budget: M ·NS ≤ Etotal/(hf)
16: Clip to hardware bounds: pt+1 ← clip(pt+1)
17: Compute threshold τ via (9), make decision
18: Update window W , t← t+ 1
19: end while

Fig. 3. Zoomed ROC around PFA = 10−3 under thermal-loss
channel with NB = 1 and κ = 0.05. At PFA = 10−3: QCR achieves
PD = 0.47, nonadaptive quantum PD = 0.35, and coherent-state

radar PD = 0.20, demonstrating 135% improvement over the classical
baseline.

simplifying produces the closed-form expression (10).
With the moment model from (4)–(5), increasing M or
NS enlarges mean separation µ1 − µ0 =MκNS , thereby
improving PD at fixed PFA.

The receiver operating characteristic (ROC) curves in
Fig. 3 are generated by evaluating (10) over the range
PFA ∈ [10−4, 10−1]. All comparisons employ matched
bandwidth B and total sensing energy Etotal = MNShf
across methods to ensure fair evaluation.

Table III summarizes performance at the canonical
operating point PFA = 0.05. QCR achieves PD = 0.91
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TABLE III
Detection performance comparison at PFA = 0.05 with matched

bandwidth and energy budget.

Method PD Relative Tint

QCR (adaptive) 0.91 1.00

Nonadaptive quantum 0.85 ≈ 1.25

Coherent-state radar 0.72 ≈ 1.67

TABLE IV
Extended performance comparison at standard and stringent PFA

levels, including classical cognitive radar (CCR) with identical QNN
controller.

PFA = 0.05 PFA = 10−3

Method PD Gain PD Gain

QCR (adaptive) 0.91 — 0.47 —
CCR (same QNN, coherent) 0.82 −10% 0.28 −40%

Nonadaptive QI 0.85 −7% 0.35 −26%

Classical coherent radar 0.72 −21% 0.20 −57%

Entanglement-specific gain (QCR vs CCR): 9–19% absolute PD

compared to 0.85 for nonadaptive quantum radar and
0.72 for coherent-state classical radar. Equivalently, QCR
requires approximately 40% less integration time than
classical radar to achieve comparable detection perfor-
mance.

Table IV presents extended results isolating the en-
tanglement contribution. CCR uses the same closed-loop
optimization objective and the same QNN controller
footprint, but replaces TMSV illumination with coherent-
state probing and replaces the joint signal-idler correlator
with a return-only coherent detection statistic; feedback
features are constructed analogously from the coherent
statistic and empirical false-alarm estimates. This con-
firms that the performance gain is not merely an arti-
fact of adaptive control but arises fundamentally from
entanglement-assisted sensing. At the operationally strin-
gent PFA = 10−3, QCR achieves PD = 0.47 compared
to 0.35 for nonadaptive quantum and 0.20 for classical
radar, representing 135% improvement over the classical
baseline.

V. Implementation Considerations

The correlation receiver operates on continuous-
variable (CV) field quadratures using balanced homodyne
or heterodyne detection followed by digital correlation
processing. This architecture avoids entangling operations
at the receiver, requiring only standard CV measurement
hardware [7]. Per-sample computational complexity is
O(1) with memory requirements scaling linearly as M ≈
BTint.

Simulation parameters: All reported results use car-
rier frequency f = 10GHz (X-band), bandwidth B =
1GHz, squeezing corresponding to NS = 0.1 photons
per mode, background noise NB = 1, target reflectivity
κ = 0.05, and nominal mode count M = 3.6 × 104. The

TABLE V
Sensitivity analysis across operating regimes at fixed PFA. Advantage

ratings: ++ (strong), + (moderate), ≈ 0 (marginal).

Operating Regime Channel Conditions QCR Advantage

Low clutter Low NB , mid-high κ Strong (++)
Moderate clutter Mid NB , mid κ Strong (++)
High clutter High NB , mid κ Moderate (+)
Weak targets Mid NB , low κ Marginal (≈ 0)
Very high background Very high NB Negligible
Low SNR (−5 to −10 dB) Varies Strong (++)

QNN controller uses 4 qubits, 3 variational layers, and
500 training epochs with Adam optimization.

Impairment analysis: Practical applications are af-
fected by storage loss of the idler and phase noise. If
the detection probability is reduced from PD = 0.91 to
PD = 0.86 using an idler storage efficiency of ηI = 0.95
and a phase noise standard deviation of σϕ = 0.05 rad;
there is still a large quantum advantage over coherent
detectors.

The effective mean under H1 is thus:

µeff
1 =MκNS

√
ηI e

−σ2
ϕ/2. (11)

If the storage efficiency of the idler is greater than
or equal to 0.85, then a positive quantum advantage will
be realized. In this case, the QNN controller adjusts the
number of modes available in the system by varying the
number of modes, Mcomp ≈ M/(ηI · e−σ2

ϕ), which can
occur gradually due to the impairment drifting slowly.

Calibration needs consist of two parts: (i) A low-speed
loop for gain/phase calibration and local oscillator (LO)
alignment, and (ii) A high-speed loop that maintains phase
coherence during the integration interval. The adaptive
controller performs gain and integration time control on
sub-millisecond timescales, whereas longer timescales are
used for controlling the band-width and brightness due to
hardware settling constraints.

VI. Robustness and Sensitivity Analysis

Table V summarizes QCR performance across diverse
operating regimes relative to nonadaptive quantum and
classical baselines. Performance advantage diminishes as
background noise NB increases or target reflectivity κ
decreases, consistent with quantum Chernoff bound pre-
dictions for thermal-loss discrimination [10].

At low SNR conditions (−10 dB), QCR achieves
PD = 0.42 versus 0.22 for classical radar, demonstrating
91% relative improvement in this challenging detection
regime. The adaptive controller optimally allocates re-
sources within the energy budget to maximize perfor-
mance under severe noise conditions.

Alternative channel models: We additionally evalu-
ated the proposed detector and adaptation loop under (i)
phase-diffusion, (ii) non-Gaussian background perturba-
tions, and (iii) Swerling I/III target fluctuations. Across
these variants, QCR consistently preserved a clear quan-
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tum advantage (typically within 2.5–3 dB under matched-
energy comparisons) provided the idler-path correlation
remains above the thermal-noise floor. Detailed parameter
sweeps are available upon request.

Ablation studies confirm that disabling adaptation
collapses performance toward the nonadaptive quantum
baseline, verifying that observed gains arise from online
parameter optimization rather than source modifications
alone.

Code Availability

The full implementation code for the QNN ansatz and
all simulations is publicly available at: GitHub repository.

VII. Conclusion

This correspondence demonstrates that entanglement-
assisted sensing gains are preserved and extended through
lightweight online adaptation. The proposed QCR archi-
tecture maintains higher detection probability than both
nonadaptive quantum and classical baselines at matched
energy and bandwidth constraints. The approximately
3 dB advantage and 40% integration time reduction at
PFA = 0.05 represent practically significant improve-
ments for radar system design.

Key results include: (i) at stringent PFA = 10−3, QCR
achieves PD = 0.47 compared to 0.20 for classical radar,
representing 135% relative improvement, (ii) direct com-
parison with classical cognitive radar using identical QNN
confirms entanglement-specific advantage independent of
adaptive control benefits, (iii) robustness to phase noise
and idler storage loss is quantified with a hardware-aware
impairment model.

The study is hardware-aware but simulation-based.
Future work includes experimental validation with mea-
sured idler-storage loss, end-to-end phase-noise character-
ization, and prototype demonstration using available CV
quantum hardware.
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