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ABSTRACT The increased rate of gun-related events witnessed in the context of the public safety
determines the need to have intelligent systems of real-time surveillance in Internet of things (IoT)
infrastructures. The current acoustic detection systems have a tendency to fail when trying to classify finer
details of the gunshot, operate in a restricted space, and classify acoustically similar types of gunshots.
To address this, we propose a class-aware augmentation strategy that selectively modifies specific audio
classes to enhance inter-class discriminability, followed by standardized feature extraction at 22,050 Hz.
In this paper, we have introduced lightweight Transformer-based model to detect and recognize gunshot
instances in real-time and with multiple classes via 128-band log-mel spectrograms. The system operates
across edge and fog layers, leveraging Augmented Covering Arrays (ACAs) and aMOEA/D-based optimizer
to balance latency, energy consumption, and processing load. To enhance contextual awareness and dynamic
threat prioritization, we introduce four intelligence metrics: Crime Risk Score (CRS), Crime Temporal
Pattern Index (CTPI), Emergency Response Delay Impact Score (ERDIS), and Threat-Aware Priority Index
(TAPI). AnAutoMLmethod is applied to optimize hyperparameters of models and reduce the effect of mixed
up non-gunshot acoustic phenomena. Experimental results on 13-class gunshot data showed classification
accuracy of 99.67%, representing 17.17 percentage point improvement. The macro-averaged F1-score above
0.993. Five-fold cross validation yielded average accuracy of 99.10%. With Streamlit interface the accuracy
of the system is 98.10% in real-time implementation which validates the applicability on the use of the IoT
to drive public safety.

INDEX TERMS Gunshot detection, transformer networks, edge-fog computing, real-time audio
classification, situational intelligence metrics, public safety.

I. INTRODUCTION
The rising rates and severity of gunshot violence require
urgent public safety and real-time response mechanisms to
the problem in today’s urban environments. Conventional
detection systems for gunshot detection, which are usually
based on acoustic thresholding or rule-based heuristics, have
the drawback of limited accuracy, high false alarm rates
and low adaptability in noisy or complex scenarios [1].
Such restrictions delay law enforcement response, lower
situational awareness and negatively affect the reliability of
available security infrastructures.

The associate editor coordinating the review of this manuscript and

approving it for publication was Turgay Celik .

Recent advances in Artificial Intelligence (AI) and
next-generation telecommunication technologies, such as
edge computing, have opened new possibilities for respon-
sive and distributed surveillance systems. Deep learning
techniques have demonstrated promising results in acoustic
event detection tasks [2], while modern edge-enabled com-
munication frameworks support low-latency transmission
and distributed inference. Recent studies in real-time AI-
assisted applications, such as classroom behaviour anal-
ysis for engineering education [3], further highlight the
importance of latency-aware model design and feedback
mechanisms, which are directly relevant to safety-critical
edge deployments such as gunshot detection.

Over the past five years, research on Transformer-based
audio modeling, exemplified by the Audio Spectrogram
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Transformer and subsequent variants, has advanced sound
event detection and related tasks [4], [5], [6], [7], [8].
In parallel, deployment-oriented studies report low-latency
and edge-feasible designs for voice activity detection,
lightweight sound event detection, adapter-based fine-tuning,
and streaming inference [9], [10], [11], [12], [13], [14].
Within gunshot acoustics, Transformer-based multi-class
recognition has appeared but remains comparatively lim-
ited [15]. Despite these advances, sensitivity to distribution
shift persists; consequently, explicit evaluation under out-
of-distribution (OOD) conditions is warranted, as under-
scored by recent cross-domain anomaly studies employing
Transformer variants [16], [17], [18].
The outdoor dataset introduced in [19] provides directional

and time synchronized gunshot recordings, yet covers a
limited range of weapon types. Other efforts such as [20]
have augmented datasets with synthetic audio from video
games, which helps increase the amount of data, but intro-
duces domain shifts which hurts performance in real-world
deployments.

More recently, edge-fog-based surveillance systems such
as [21] and indoor alert frameworks [22] have demonstrated
potential for localized gunshot detection. Nonetheless, these
systems often lack multi-class recognition capabilities, inte-
grated edge-fog coordination, and real-time routing strategies
optimized for public safety missions.

To address these limitations, integrated AI- telecom-
munications framework is proposed for real-time, multi-
class gunshot detection and alert dissemination. Edge-based
gunshot classification is integrated with fog computing
resources. At the fog layer, optimization strategy is employed
to minimize latency and energy consumption while ensuring
balanced processing loads. The main contributions of this
work are as follows:
• A lightweight Transformer-based architecture for accu-
rate multi-class gunshot classification using 128-band
log-mel spectrograms.

• A class-aware audio augmentation strategy that
enhances inter-class discriminability and improves
robustness in fine-grained gunshot classification tasks.

• A novel fog computing optimisation model inte-
grating Augmented Covering Arrays (ACAs) with
Multi-Objective Evolutionary Algorithm based on
Decomposition (MOEA/D) to optimise latency and
energy consumption, while balancing processing loads.

• Real-time deployment of the proposed system through a
Streamlit-based interface and anMQTT-enabled alerting
framework for fog-edge coordination.

• The design and integration of four situational intelli-
gence metrics: Crime Risk Score (CRS), Crime Tem-
poral Pattern Index (CTPI), Emergency Response Delay
Impact Score (ERDIS), and Threat-Aware Priority Index
(TAPI) to support dynamic threat scoring and intelligent
routing.

The remainder of this paper is organized as fol-
lows. Section II provides background on acoustic gunshot

detection, Transformer networks, and fog-edge architectures.
Section III reviews related work in AI-driven surveil-
lance systems. Section IV details the proposed methodol-
ogy, including dataset processing and model architecture.
Section V outlines the system optimization and routing
strategy. Section VI presents the experimental setup and
communication parameters. Section VII discusses perfor-
mance results and intelligence metrics. Finally, Section VIII
concludes the paper and suggests future research directions.

II. BACKGROUND
A. ACOUSTIC GUNSHOT CLASSIFICATION
Audio-based gunshot detection has become one of the critical
points of the intelligent surveillance system. The basic
activity is the identification and categorization of the occur-
rences of discharge of gunshots by their distinctive acoustic
attributes. In the past, this field has had difficulties associated
with differences in sound signature based on weapon type,
ammunition caliber, noise in the environment, and the
position of the microphone. In contrast to general detection
of sound events, gunshot classification requires strong and
accurate discrimination in highly varied and dynamic noisy
environments that are not always predictable [23], [24]. All
these background issues have contributed to the creation of
more sophisticated AI models that can manage variability of
the real world and also be used in real time.

B. AI ARCHITECTURES FOR GUNSHOT CLASSIFICATION
Initially, the classification of the gunshot sounds was carried
out with the help of the manually constructed acoustic
features together with the traditional classifiers [25], [26].
As the computational techniques improved, convolutional
neural networks (CNNs) were used to obtain the spatial
features of spectrogram representations. These models were
shown to improve a recognition performance because it
allowed learning of frequency patterns that are local to an
occasion of gunfire.

Recurrent neural networks (RNNs), and their combinations
with CNNs e.g. CNN-RNN and CNN-GRU were later added
to be able to learn the temporal structure of acoustic signals.
The techniques facilitated modelling of short duration
gunshot events which were time-sensitive when dynamic
audio conditions were involved [27], [28].
More recently, transformer architectures have been

explored for their ability to model long-range dependencies
in spectrogram-based classification, particularly for brief yet
complex gunshot events [15], [29]. Lightweight variants,
such as the convolutional-iConformer [12] and efficient
attention mechanisms [9], [10], enable deployment on edge
devices while maintaining high accuracy in real-time sound
event detection.

Simultaneously, transfer learning methods have been
applied to improve model generalization especially where
there is a shortage of labeled data. Embeddings of environ-
mental audio (gunshot samples) have been extracted using
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models like YAMNet to utilise the representational strength
of pre-trained networks [30].

The strategies of ensemble learning have also been
explored to enhance the further enhancement of classification
robustness. Stochastic weight averaging (SWA), model merg-
ing, and feature selection refinement are parameter-based
methods (specifically, low-latency or edge-constrained) that
have been applied [31], [32]. The developments highlight
the continued advancement towards deployable gunshot
detection systems of real-world gunshot detection systems
that are highly efficient.

C. AI-TELECOMMUNICATIONS CONVERGENCE FOR
PUBLIC SAFETY
The integration of AI and telecommunications has played a
major role in the evolution of current public safety systems.
As the number of IoT devices has grown, decentralized
systems have been introduced to facilitate low-latency
inference and responsive communication at the edge and fog
levels [33]. This has been a transition towards decentralized
intelligence left to traditional centralized processing.

These developments have led to the practical application
of acoustic-based detection systems which will allow live
inference and context-aware decision-making. In recent
research, it has been highlighted that fog-based resource
management and gunshot detection, as well as routing
intelligence, have to be a part of unified frameworks [34].
The intent of such frameworks is to offer immediate threat
recognition and transmission plans in line with a public safety
scenario.

III. RELATED WORK
A. GUNSHOT AUDIO DETECTION AND CLASSIFICATION
Early works on sound recognition of gunshots mainly
utilized hand-crafted features like Mel- frequency Cepstral
Coefficients (MFCC), Linear Predictive Coding (LPC), and
wavelet transforms with classical machine learning classifier
like Support Vector Machines (SVM), K-Nearest Neighbors
(K-NN) and Gaussian Mixture models (GMM) [35], [36],
[37], [38]. Even though they provided general-purpose base-
lines, these techniques were not tuned to be domain-specific
related to firearm acoustics. Techniques proposed in [39],
[40], and [41] achieved notable accuracy but did not consider
deployment constraints such as real-time latency or edge
computing viability. Likewise, feature fusion methods [42]
improved classification of music datasets but were not that
adaptable in real-time.

Although firearm-specific detection and real-time feasi-
bility was largely untested, neural network models were
first used on large outdoor acoustic scenes [43]. Later
developments like the multi-scale spectrum-shift CNN sug-
gested in [44] enhanced time-frequency resolution, at the
cost of high computational costs which limited their use
in edge devices. False-positive mitigation measures like
the inclusion of confounding acoustic events (e.g., bursting

plastic bags) [45] allowed to improve the detection strength
but still failed to consider latency and deployment. The most
recent benchmarking activities [46], [47] have pointed to
persistent difficulties in the rare-event modelling and a belief
in architectures with restricted environments.

Practical deep learning-based systems have also been
proposed. A CNN-GRU hybrid model in [48] achieved over
80% accuracy on noisy gunshot data, while [49] introduced
trilateration mechanisms for localization. Nevertheless, real-
time implementation and energy-aware optimization were
not prioritized. Similarly, embedded implementations such
as [50] presented latency and scalability challenges that limit
deployment in edge-based public safety frameworks.

Recent Transformer-based models have been explored for
modeling long-range temporal dependencies and global spec-
tral patterns in gunshot acoustics [29]. Audio-Transformer
backbones and hybrids have advanced event modeling and
localization [4], [5], [6], [7], [8], while edge-oriented and
streaming variants address real-time constraints on resource-
constrained hardware [9], [10], [11], [12], [13], [14], [51].
For gunshot acoustics specifically, multi-class Transformer
classification has been reported [15]; however, systematic
evaluation under distribution shift remains limited. Cross-
domain acoustic-anomaly studies indicate persistent sen-
sitivity to domain mismatch and motivate explicit OOD
evaluation [16], [17], [18]. Complementary directions include
contrastive learning under limited data [52] and the use of
pretrained audio embeddings such as PANNs [53], which can
aid generalization but typically require adaptation for latency-
sensitive, real-world deployments.

In parallel, the development of real-world gunshot datasets
has been recognized as critical for model benchmarking
and deployment. In [54], a multi-orientation dataset that
was captured in outdoor settings was presented, allow-
ing the performance of classification and direction-of-
arrival (DoA) estimation, but did not provide contextual
metadata like shooter posture. These contributions mirror
the general demand of a wide range of, annotated, and
deployment-commendable datasets to aid the development of
clever, real-time gunshot identification mechanisms.

B. EDGE-FOG GUNSHOT DETECTION SYSTEMS
There is an increasing trend with the integration of edge,
and fog technologies to use guns detection systems in
real time and distributed. In [55], sensor based distributed
architecture facilitated communication between sensors in
both directions and had local storage capacities but it did
not include onboard classification and latency sensitive task
optimization. A neural network model as described in [56]
was able to recognize battle field gunshots with 99 percent
accuracy but the model did not look at the IoT-based
implementation.

In [57], the authors suggested LAMOMRank, a latency-
sensitivemulti-objective scheduling algorithm to fog comput-
ing, which reduced response latency and task delivery time
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without affecting multi-objective performance. Nevertheless,
the research did not focus on dynamic service provisioning
or adaptive scheduling when there are unpredictable tasks
arrival that are critical to real-time event-driven applications
like gunshot detection.

Most recent attempts have been made to investigate the
use of fog-based optimization and acoustic preprocessing in
safety applications. In [58], the Pareto optimization of the fog
routing problem was realised by a two-step particle swarm
optimization (PSO) and analytical hierarchy process (AHP)
method, but no real-time responsiveness was considered.
Similarly, [59] also used Extreme Learning Machines (ELM)
to apply wavelet filtering to wind-resilient acoustic detection,
but real-time inference and integration with the IoT were not
addressed.

Although recent studies highlight the current surge in the
application of gunshot detection intelligence on distributed
computing layers, fundamental gaps are still present to
the development of coherent, low-latency systems that
integrate real-time multi-classification, resource-efficient fog
implementation, and context-based threat prioritization.

C. NON-ACOUSTIC AND MULTI-MODAL GUNSHOT
DETECTION SYSTEMS
Although the gunshot detection system has been based
on acoustic sensing, non-acoustic and multi-modes are
complementary which provide better situational awareness
especially in harsh environmental or infrastructural situa-
tions. By use of ground vibrations, seismic sensing, like in
use in business systems like ShotSpotter [19], is used, but
is normally limited to a range of 0.51,km. Nevertheless,
such systems frequently have false positive rates (FPR) of
1525 percent in the urban setting because of construction and
vehicle interference [60], [61].

Thermal and IR sensors can monitor short-range instances
of 50200m muzzle flashes, and operate in short ranges up
to 50200m. FPRs can be minimized to less than 5 percent
with the help of AI-based filtering [62] though these kinds of
systems require extensive computational resources, making
them impossible to implement in the edge. With CCTV
infrastructure, visual detection enables tracking of the firearm
trajectory [63], which is effective in the classification of
100500,m range and a FPR less than 5% at a combination
with object detection models. These systems however are
limited in terms of scalability because of power and
bandwidth requirements.

Other perspectives can be found with optical/video sys-
tems, which have a range of 50-150 m and false alarm
rates of 25-30% [64], [65], but have a short range and a
high false alarm. Multi-modal approaches have come into
the picture as a viable solution to the drawbacks of the
single-modality systems [66]. It has been found that hybrid
acoustic-seismic approaches [67] are more robust, with FPRs
decreasing to around 10 per cent in noisey environments [60].
Acceleration-based systems that use wearables (e.g., tri-axial

sensors on the wrist) [68] offer local-detection capabilities
and have the potential to interface with IoT-based edge
platforms [62]. These technologies, detection ranges, FPRs
and edge suitability have been summarized and compared in
Table 1 based on the literature.

This development highlights the possibility to augment
the aesthetics of more advanced and user-friendly fog-edge
architectures using non-acoustic sensors, which will have a
more resilient nature and reduce false alarms in real time
gunshots detection and threat prioritisation systems.

D. PROBLEM DEFINITION
The proper reaction to gunshot-related events is becoming
more and more reliant on acoustic surveillance devices
capable of not only detecting the gunshots in real-time but
classifying the types of weapons and determining the threat
level. Although the existing literature has achieved some
improvements in binary gunshot detection (e.g., gunshot vs.
non-gunshot), the literature is relatively thin in providing the
fine-grained multi-class classification that is necessary in law
enforcement activities and situational awareness.

The use of traditional CNN models can be ineffective in
terms of capturing long-range time-based trends and may
not be efficient when deployed in resource-constrained edge
devices. Besides, they have little integration with fog and IoT
architecture, which also adds to high latency and limits their
use to real-time distributed systems.

To overcome these issues, this paper suggests Transformer-
based system that:
• Supports using spectrogram-based embeddings to fine-
tune the classification of types of gunshots.

• Real time inference on edge devices using a low-weight
Transformer model.

• Complementary to the fog computing to provide
real-time and low-latency alert distribution.

• Uses multi-objective optimization under the ACA with
situational intelligence measures of adaptive threat
prioritization.

All these modules address a certain limitation found in
the literature. The combination of the two offers a deploy-
able, low-latency, and intelligence-based gunshot detection
solution to real-world IoT-based public safety. The detailed
methodology formulations and implementation plans of each
component are givenin IV-B, IV-C, and V, in which the
limitations identified are converted to deployable, system-
level solutions. This paper explores the extent to which
this type of lightweight Transformer-based architecture can
achieve high detection rates with operation under very
strict latency and computational requirements on edge-fog
systems.

IV. PROPOSED METHODOLOGY
The system architecture, Transformer-based classifica-
tion model, communication integration, and optimiza-
tion strategies developed to resolve the main issues
in Section III-D. To address the shortcomings of the

624 VOLUME 14, 2026



A. Al-Ahbabi, H. Al-Raweshidy: AI-Telecommunications Synergy in Public Safety Systems

TABLE 1. Comparison of sensor-based gunshot detection technologies.

FIGURE 1. System architecture of the proposed gunshot detection and alerting framework.

gunshot-type classification, model efficacy, and real-
time deployment, we will suggest an interwoven AI-
telecommunications framework that will be utilized to detect
the gunshots with high accuracy and low latency in the
IoT-based public safety settings.

This proposed pipeline has four main steps, namely (1)
audio preprocessing and spectrogram, (2) Transformer-based
classification, (3) ensemble optimization and merging, and
(4) real-time alerting through edge/fog deployment. Figure 1
presents an overview. Each of the stages is detailed in the
following subsections.

A summary of the used notations is presented in Table 2

A. DATASET DESCRIPTION
The proposed gunshot classification system is trained and
tested on two complementary datasets, which vary in source,
acoustic environment, gunshot types, as well as microphone
configurations, allowing to generalize to a wide variety of
situations.

Dataset 1 contains 851 gunshot audio recordings com-
prising nine gunshot classes: AK-12, AK-47, IMI Desert
Eagle, M16, M249, M4, MG-42, MP5, and Zastava M92.

Originally introduced by Tuncer et al. [25], the recordings
were extracted from publicly available YouTube videos,
sampled at 44.1 kHz, and segmented into 2-second clips using
WavePad Audio Editor. There were eight classes initially,
but one extra class, which was M4, is available separately
because the initial publication only reported eight classes.
The distribution of classes is not balanced in nature.

The U.S. Air Force Research Laboratory and CADAS
published dataset 2, which was gathered by these two
organisations [19]. The data set is as a result of 9mm,
AR15, 38cal, and 12gauge shots in different orientations and
changing environments in which multichannel microphone
arrays were used to record the shots. There are no less than
a gunshot in every 2-second clip; bad-quality parts were
eliminated.Metadata is offered like the ID of themicrophone,
location, and context of firing.

Together, these collections of data present an expansive
and auditory standard with 13 categories of firearm dis-
charge within two realms, which includes the categories
of Internet-derived recordings (Dataset 1) and regulatory
edge-gathered field recordings (Dataset 2). The composition
of the merged dataset, the sample numbers within each
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TABLE 2. Summary of notation.

class and the original sources of the data are summarized
in Table 3. This consolidated corpus for training and testing
rigorous classifiers for spectrograms of gunshots. Class
imbalance is handled during preprocessing which is detailed
in Section IV-B.

In addition to these datasets, the UrbanSound8K cor-
pus [72] is used exclusively as an external source of
non-gunshot audio for confounder stress-testing and out-
lier exposure (OE). Specifically, the gun_shot class is
excluded, and samples are drawn from the remaining urban
sound classes: air_conditioner, car_horn, children_playing,
dog_bark, drilling, engine_idling, jackhammer, siren, and
street_music. These clips are partitioned into an OE-training

TABLE 3. Final class inventory after merging the two gunshot datasets
(counts denote 2-second clips).

subset and a strictly disjoint out-of-distribution (OOD)
evaluation subset with no file or path overlap with the in-
distribution folds. UrbanSound8K audio is never used as
positive gunshot training data.

Table 4 provides an overview of the UrbanSound8K non-
gunshot confounder classes employed in this study. For
each class, it lists the total number of clips available, the
subset converted to spectrograms, fold coverage, counts
of foreground and background salience, and typical clip
duration. The exclusion of the gun_shot class ensures
that UrbanSound8K confounders serve solely for robustness
testing rather than positive training.

For outlier exposure and OOD evaluation, these non-gun
confounders are partitioned into an OE-training subset and
a strictly disjoint OOD evaluation subset with zero file or
path overlap with in-distribution folds. All audio is processed
using the same pipeline as the in-distribution data to
extract log-mel spectrograms, truncated or padded to a fixed
length.

Although the curated dataset covers thirteen dis-
tinct firearm classes, these categories correspond to the
most frequently encountered weapon types reported in
law-enforcement incident databases and open-source reposi-
tories. There aremultiple instanceswithin each class recorded
at different distances and under different acoustic conditions
and, as a result, a large amount of class variability.

B. PREPROCESSING AND FEATURE ENCODING
To solve the acoustic confusion between spectrally similar
classes of gunshots, a class-specific preprocessing pipeline
was used with the data. Specifically, in classes that were
highly susceptible to misclassification (e.g. M4 and M16),
time-domain (targeted) augmentations were used to improve
spectral separability without loss of core identity features.
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TABLE 4. UrbanSound8K non-gunshot confounder classes and usage statistics.

The augmentation step used on each waveform x(t) of each
of a confusion-prone classes is given as follows:

x̂(t) = Ufo
(
Sα

(
Nσ

(
Dfd (x(t))

)))
, (1)

where Dfd denotes downsampling to a lower frequency fd ,
Nσ represents additive Gaussian noise with variance σ , Sα

applies time-stretching with a factor α ∈ [0.90, 0.95], and
Ufo restores the original sampling rate fo. Such transformation
alters the log-mel distribution of the target class, which
increases its trainability.

Each processed waveform xi(t) was converted into a
log-mel spectrogram Si ∈ RBM×T , where BM =

128 represents the number of mel frequency bands and
T = 128 corresponds to the number of temporal frames.
The spectrogram transformation involved Short-Time Fourier
Transform (STFT), mel filterbank projection, and logarithmic
compression [73]:

Si(m, t) = log

(
K∑
k=1

|Xt (k)|2 · Hm(k)

)
, m ∈ {1, . . . ,BM },

(2)

where Xt (k) ∈ C is the STFT coefficient at frame t and
frequency bin k , and Hm(k) ∈ R is the mel filter response
for band m.
To ensure consistency in input dimensions, spectrograms

were either zero-padded or truncated to contain exactly
T = 128 frames. Global mean and standard deviation
normalization was then applied over the whole data set.
Lightweight augmentations during training time were also
used to achieve better generalization.

C. TRANSFORMER-BASED CLASSIFICATION MODEL
The normalized log-mel spectrogram Si ∈ RBM×T is
processed by a Transformer-based architecture optimized for
time-frequency classification [74]. The model maps each
input to a class probability vector:

pi = f (Si; θ ), (3)

where θ represents all the trainable parameters, which include
weights of projections, attention matrices and classifier
layers. To interface with the Transformer encoder the input

is transposed and projected into a latent space of dimension
d = 256 using a learnable matrix [75]:

Pi = S⊤i Wproj ∈ RT×d , (4)

the resulting sequence of 128 latent vectors (one per time
step) is processed through stacked Transformer encoder
blocks, each comprising multi-head self-attention, feed-
forward layers, and layer normalization [75]:

Ŝi = LN (MultiHeadAttn(Pi)+ FFN(·)) , (5)

a global average pooling layer converts the temporal sequence
to a fixed-size vector for final classification [76]:

ŷi = Softmax
(
Wout · AvgPool(Ŝi)

)
, (6)

where ŷi ∈ {1, . . . ,C} denotes the predicted gunshot
class. The complete pipeline, including data preprocessing,
augmentation, model training, and deployment, is outlined in
Algorithm 1.

The model is based on 4 Transformer encoder layers
with 8 heads and feed-forward width of 1024. Dropout
(rate=0.206) is used after using both attention and feed-
forward layers. Hyperparameters such as attention size,
dropout, feed-forwardwidth and learning rate were optimized
using Optuna based AutoML tuning.

The combined tuning strategy, which was chosen to
guarantee the fair and reproducible optimization process, was
hybrid tuning strategy. The preliminary manual parameter
exploration was used to set the parameter ranges of attention
size, dropout rate, and learning rate to reasonable values.
These constraints were further narrowed down with Optuna
Tree-structured Parzen Estimator (TPE) sampler to accom-
plish multi-objective optimization to achieve validation loss
and accuracy. This two-phase method established that the
AutoML refinement converged faster and obtained a little
greater validation accuracy than hand parameter tuning and
minimized the search effort and subjective bias during
parameter selection.

The overall architecture is shown in Figure 2. Predicted
outputs class probabilities, severity scores, and timestamps
serve as inputs to the situational intelligence modules and
downstream routing logic.
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FIGURE 2. Overview of the proposed Transformer-based model for real-time gunshot classification.

To support threat-aware decision-making, each predicted
class ŷi is mapped to a severity score ci ∈ [0, 1] using a
predefined lookup table:

ci = SeverityLookup(ŷi), (7)

this mapping assigns risk values based on ballistic and
forensic characteristics (Table 5). The resulting ci informs
the computation of CRS, CTPI, and ERDIS metrics, as well
as the scalar fitness and TAPI-based routing strategies (see
Sections V-B and V-C).

V. SYSTEM OPTIMIZATION AND ROUTING
Section formalises the core situational intelligence mech-
anisms that govern system-level optimisation and commu-
nication behaviour in our gunshot detection framework.
Modelling latency, energy, risk, and workload fairness as
explicit objectives and integrating them into a multi-objective
optimisation and routing pipeline enables intelligent, real-
time prioritisation of alerts under fog-edge constraints.

A. MULTI-OBJECTIVE OPTIMIZATION
The fog-based routing process ismodelled as amulti-objective
optimisation problem over three conflicting objectives:
latency minimisation, energy efficiency, and load balancing.
Let N be the number of messages generated at edge nodes
(en ∈ {1, . . . ,N }) and M the number of fog nodes (f ∈
{1, . . . ,M}). The binary routing variable is defined as xen,f ∈
{0, 1}, where xen,f = 1 indicates that the message from edge
node en is assigned to fog node f . The routing decisionmatrix
is denoted byX = [xen,f ] ∈ {0, 1}N×M , constrained such that
each message is assigned to exactly one fog node [77]:

M∑
f=1

xen,f = 1, ∀en ∈ {1, . . . ,N }, (8)

the routing logic presented here builds upon the threat-sensitive
scalar fitness formulation and Augmented Covering Arrays
(ACA)-based weight adaptation discussed in Section V-C.
The objective vector is then expressed as [78]:

φ(X) = (φ1(X), φ2(X), φ3(X)) , (9)

where φ1, φ2, and φ3 represent latency, energy, and load
imbalance objectives, respectively.
(i) Latency Minimization: The first objective quantifies the

total end-to-end delay incurred when offloading messages
from edge nodes to fog nodes. This includes transmission
latency and fog-layer verification delay:

φ1(X) =
N∑

en=1

M∑
f=1

xen,f ·
(
Den
Benf
+ T fverify

)
, (10)

where Den is the message size from edge node en, Benf is
the communication bandwidth between edge node en and fog
node f , and T fverify denotes the verification delay at fog node
f .
(ii) Energy Consumption: This objective models the total

energy consumption across edge and fog nodes, incorporating
signal attenuation effects:

φ2(X) =
N∑

en=1

M∑
f=1

xen,f ·
(

1
AFen

· ϵtxenDen + ϵ
proc
f T fverify

)
,

(11)

where AFen ∈ (0, 1] is the attenuation factor which is the
signal loss corresponding to edge node en. A lower AFen
means greater transmission power/energy because of greater
acoustic attenuation. ϵtxen is the energy per bit for transmission
and ϵ

proc
f is the processing energy per unit time at fog node f .

(iii) Load Imbalance Minimization: To ensure fair work-
load distribution and mitigate congestion the load imbalance
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Algorithm 1 Transformer-Based Pipeline for Gunshot Audio
Classification and Acoustic Event Detection
1: Input: Raw gunshot audio files (.wav), metadata files
2: Output: Transformer model and deployment interface
3: Step 1: Preprocessing and Augmentation
4: for each audio file xraw ∈ raw_audio_folder do
5: if file is from a confusion-prone class then
6: Apply class-specific augmentation as defined in

Eq. (1)
7: Save augmented variants to augmented_folder
8: else
9: Save original file to non_augmented_folder
10: end if
11: end for
12: Step 2: Log-Mel Spectrogram Extraction
13: Merge augmented and non-augmented audio into dataset

AD
14: for each waveform xi(t) ∈ AD do
15: Resample to 22,050 Hz
16: Compute log-mel spectrogram: Si = LogMel(xi(t))
17: Save Si as.npy file
18: Create metadata entry with label and spectrogram path
19: end for
20: Consolidate metadata into a full metadata table
21: Step 3: Metadata Cleaning and Balancing
22: Normalize class labels
23: Shuffle metadata randomly
24: Apply stratified balancing: max 350 samples per class
25: Save balanced metadata
26: Step 4: Data Preparation
27: Load features X and labels y using metadata references
28: Step 5: Hyperparameter Optimization
29: Run AutoML to optimize Transformer hyperparameters
30: best_params← run_optuna(X, y, n_trials = 50)
31: Step 6: Final Model Training
32: Instantiate final Transformer:
33: fθ ← Transformer(best_params)
34: Transformer encoder applied to Si to obtain Ŝi as in

Eq. (5)
35: Final prediction computed (ŷi) as in Eq. (6)
36: Train on full dataset: fθ .train(X, y)
37: Step 6: Cross-Validation for Stability
38: for each fold in 5-fold cross-validation do
39: Train model on training split
40: Evaluate on validation split
41: Log fold-wise accuracy and confusion matrix
42: end for
43: Step 7: Deployment and Inference
44: Deploy trained model using Streamlit UI
45: Integrate real-time alerts via MQTT

is captured using normalized metric [79]:

φ3(X) =
maxf (Lf )−minf (Lf )

L̄
, (12)

where the load at fog node f is computed as:

Lf =
N∑

en=1

xen,f ·
(
κDen + ζT fverify

)
, (13)

where κ and ζ are tunable coefficients which scale the
contribution of transmission volume and processing time
respectively. The average load at all fog nodes is expressed
as L̄ = 1

M

∑M
f=1 Lf . Minimizing φ3(X) reduces queue build-

up, thermal stress and scheduling delays in the event of
concurrent gunshot.

B. CORE THREAT INTELLIGENCE METRICS (CRS, CTPI,
ERDIS)
These three fundamental measures convert the raw forecasts
to a reality-time contextual awareness.
(i) CRS:The Crime Risk Score reflects the level of threat of

each detection taking into account classifier confidence and
the local context and class severity. It is computed as:

CRSi = η1 · pi + η2 · γli + η3 · ci, (14)

pi is the model predicted confidence level of the model for
gunshot type i, γli is the historical frequency of gunfire at
location li, and ci is the severity score for class i, as is
shown in Table 5. The parameters η1, η2, and η3 control the
impact of the model confidence, spatial risk and class severity
respectively in the overall risk score.
(ii) CTPI measures the recurrence of gunshot events over

time to facilitate time sensitive decision-making. To highlight
the recent nature of some illustrations, CTPI is calculated by
an exponential decay model that gives more weight for more
recent detections:

CTPIdecay(t) =
1
Z

W∑
τ=0

e−ρτ
· δ(t − τ ), (15)

where t is the index of current time, τ ∈ [0,W ] is a constant
the lookbackwindow and ρ > 0 is a constant the decay factor.
The term δ(t− τ ) represents the number of detections at time
t − τ and the normalization constant Z =

∑W
τ=0 e

−ρτ makes
sure that CTPI stays in the range [0, 1].

Higher CTPI values indicate concentrated gunfire activity
in the immediate past, supporting dynamic prioritization of
alerts, patrol routing, and resource allocation in public safety
operations.
(iii) ERDIS: To quantify operational risk from delayed

firearm response, the Exponentially Rising Delay Impact
Score (ERDIS) is defined as:

ERDISi = λ · AFi · CRSi ·
(
1− e−µ·1ti

)
, (16)

where 1ti is the response delay, µ controls the urgency
growth rate, and λ is a scaling constant. AFi ∈ (0, 1] denotes
the attenuation factor of gunshot signal i, capturing prop-
agation loss due to frequency, distance, and environmental
absorption. Lower AFi reflects stronger signal degradation,
amplifying risk by reducing situational confidence.
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This exponential model describes the increase of threat
urgency over time, and in poor acoustic conditions in
particular. Higher ERDIS values indicate a higher operational
cost, and are used to trigger escalation, reordering of alert
queues and fog cloud reordering decisions.

C. SCALAR FITNESS WITH THREAT-AWARE AND ACA
ADJUSTMENT
Each gunshot class was assigned a severity score ci ∈
[0, 1], reflecting its public-safety risk. These scores informed
scalar fitness adaptation and routing thresholds. Following
forensic ballistics methodology [80], the score was based
on five normalized indicators: (i) kinetic energy (KE),
derived from cartridge mass and muzzle velocity; (ii) cyclic
firing rate (RPM); (iii) lethality proxy that saturates at
rifle class energy levels; (iv) magazine capacity; and (v)
operational deployment context (i.e. prevalence, portability
and likelihood of civilian misuse). Table 5 describes the
normalized attributes and calculated scores.

1) NORMALIZATION WITH OPERATIONAL CAPS
Operationally reasonable thresholds were used to scale each
indicator to the scale of [0,1]. Extreme historical values
were also disqualified to make it applicable in public-safety
situations. Specifically:

KEnorm = min
(
1,

KEi
Edash

)
, (17a)

RPMnorm = min
(
1,

RPMi

Rdash

)
, (17b)

Magnorm = min
(
1,

Magi
Mdash

)
, (17c)

where Edash ≈ 2000 J, Rdash = 1200 rpm, and Mdash =

30 rounds. Lethality score (Lethnorm) saturates for rifle class
KE, e.g. 0.9 for rifles, 0.6 for handguns, in accordance with
wound ballistics data [80]. The context factor reflects field
deployability, favoring common, portable rifles (e.g., AK-47:
1.0) over less portable systems (e.g., MG-42: 0.9) or civilian
handguns (0.6-0.7).

2) SEVERITY SCORE COMPUTATION
Each class’s severity score was computed as an equal-weight
average of the five normalized indicators:

ci=
1
5

(
KEnorm+RPMnorm+Lethnorm+Magnorm+Context

)
,

(18)

ensuring balanced influence. Operational caps limit score
inflation from outliers such as high-RPM weapons.

3) ILLUSTRATIVE EXAMPLE
For the AK-47 (7.62×39mm, 710 m/s, 8 g, 2016 J, 600 rpm,
30-round mag), normalized indicators yield KEnorm = 1.0,
RPMnorm = 0.5, Lethnorm = 0.9, Magnorm = 1.0, Context =
1.0, resulting in ci = 1.0. TheMG-42 (7.92×57mm, 755m/s,

11.5 g, 3278 J, 1200 rpm capped at 600 rpm) scored slightly
lower (ci ≈ 0.97) due to lower deployability in civilian
environments.
Reproducibility: Raw inputs (e.g., velocity, mass, KE,

RPM, magazine size) used for ci computation are included in
Table 5, sourced from [80] and verified using contemporary
ballistics databases.

Inmulti-objective optimization scenarios such asweighted-
sum decomposition in MOEA/D, the scalar fitness function
consolidates latency, energy, and task imbalance into a single
objective:

ffit(x) = α1 · φ1(x)+ α2 · φ2(x)+ α3 · φ3(x), (19)

where αi ∈ [0, 1] are static weight coefficients constrained
by

∑
αi = 1. This formulation enables scalarization of

the multi-objective problem for use in decomposition-based
optimization methods such as MOEA/D.

To incorporate threat sensitivity, we apply ACA
to dynamically modulate the weights based on ci.
ACA defines discrete design space of candidate vectors
A ⊂ R3, each satisfying the unit simplex constraint:
A =

{(
a1
v−1 ,

a2
v−1 ,

a3
v−1

) ∣∣∣ a1 + a2 + a3 = v−1, ai ∈ Z≥0
}

,

where v ∈ Z>1 defines the ACA resolution, yielding
αi ∈ {0, 0.1, . . . , 1.0}. Two anchor vectors α⃗low, α⃗high

∈

A are selected to represent the minimum and maximum
severity conditions. The severity-aware interpolation for the
latency and energy weights is defined as α

(t)
j (ci) = αlow

j +(
α
high
j − αlow

j

)
· ci, j ∈ {1, 2} and the third weight,

α
(t)
3 , is computed to preserve the simplex while enforcing

minimum exploration:α(t)
3 = max

(
δα, 1− α

(t)
1 − α

(t)
2

)
,

where δα ∈ [0, 0.1] prevents the imbalance objective from
vanishing during high-severity events.

Dynamic adjustment allows for smooth transitions across
subregions of the ACA grid that are denoted as Aci ⊂

A, where prioritization changes between latency, energy,
and balance objectives in response to changing threat
circumstances. ACA can provide systematic coverage of
the input, unlike random perturbation techniques, and can
converge and be diverse. It offers a principled foundation of
controlled adaptation in multi-objective decision systems as
defined in [81]. The ACA-enhanced scalar fitness function
becomes:

f ACAfit (x) = α
(t)
1 · φ1(x)+ α

(t)
2 · φ2(x)+ α

(t)
3 · φ3(x), (20)

where the weights α
(t)
i are contextually adapted per gunshot

severity, ensuring responsive optimization behaviour. The
weight tuning and fitness evaluation based on the ACA in the
fog assignment process is presented in Algorithm 2 and its
results directly feed the routing logic as indicated below.

D. PRIORITY-AWARE ROUTING VIA TAPI
To support situationally aware communication within the
MQTT-based fog network, a dynamic routing policy is
governed by the Threat-Aware Priority Index (TAPI). This
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TABLE 5. Computed severity scores ci from normalized attributes. Includes raw inputs and justification per gun class.

Algorithm 2 ACA-Guided Multi-Objective Routing via
Dynamic Scalarization

1: Input: Initial routing matrix X(0)
∈ RN×M ; ACA weight

grid A ⊂ RD; severity scores {ci}
2: Output: Optimized routing matrix X̂
3: Definitions: Objective mapping φ : RN×M

→ RD

(Eq. 9)
4: Initialize iteration index t ← 0
5: repeat
6: Compute adaptive weights: α(t)

= ACA(ci, t)
(Eq. (20))

7: Compute scalar fitness: f (t)fit = α(t)
· φ(X(t))

8: Solve MOEA/D subproblem:
9: X(t+1)

← MOEA/D−Solve(φ, α(t))
10: t ← t + 1
11: until convergence criterion met
12: return X̂ = X(t)

index combines three fundamental intelligence metrics, CRS,
CTPI and ERDIS to rank gunshot incidents. The composite
score of every message m is calculated as:

TAPI(m) = ωCRS · CRS(m)+ ωCTPI · CTPI(m)

+ ωERDIS · ERDIS(m), (21)

where the weights ωi ∈ [0, 1] satisfied the simplex constraint∑
ωi = 1. As described in Section V-C, ACA was applied

to dynamically adjust these weights based on contextual
ci. The same adaptive interpolation approach was reused
to modulate the routing weights for CRS and CTPI as
ω
(t)
j = ωlow

j +

(
ω
high
j − ωlow

j

)
· ci, where j ∈ {CRS,CTPI},

while the ERDIS weight was computed as ω
(t)
ERDIS =

max
(
δω, 1− ω

(t)
CRS − ω

(t)
CTPI

)
. This guaranteed that simplex

constraint was maintained and that delay impact measure
(ERDIS) was not fully suppressed during high severity
routing conditions.The context-sensitive TAPI score is:

TAPIACA(m, t) = ω
(t)
CRS · CRS(m)+ ω

(t)
CTPI · CTPI(m)

+ ω
(t)
ERDIS · ERDIS(m), (22)

which optimally coordinates routing choices with changing
threat situation with the same ACA A ⊂ RD grid identified
above. Based on the computed TAPIACA(m, t), the MQTT
broker executes a rule-based routing strategy:

Routing(m)

=


HP+Cloud, if TAPIACA(m, t) > 0.8
Fog, if 0.5 > TAPIACA(m, t) ≤ 0.8
Queue/Suppress, if TAPIACA(m, t) ≤ 0.5,

(23)

where HP+Cloud refers to concurrent default to high-priority
node of the fog and cloud servers. Fog is used to show
that local edge processing is available to run with a lower
latency andQueue/Suppress is used tomanage the congestion
by buffering or filtering low priority alerts. This routing
policy takes advantage of the ACA-enhanced intelligence
to guarantee that threat-critical messages get more rapid
and trustworthy information transport via the fog-cloud
infrastructure.

VI. EXPERIMENTAL SETUP
A. IMPLEMENTATION ENVIRONMENT
The workstation (Windows 11, Intel® CoreTM i9-285H,
16-core, 2.9 GHz, 32 GB RAM, NVIDIA GeForce
RTX 5080 Laptop GPU, 16 GB VRAM) was used to
conduct the experiments using the Jupyter Lab to orchestrate
the experiment. It was configured using Python 3.10,
PyTorch 2.9.0 and CUDA 12.8, and librosa to do audio
preprocessing, and Streamlit and Mosquitto (v2.0.22) to
support edge-fog communication using active real node
edge-fogs on an active network. Threat prioritization, the
ACA-MOEA/D scalar fitness, and the metric logging were
done with the help of the Mog nodes, whereas the edge
classification and the metric visualization was based on the
Streamlit.

VOLUME 14, 2026 631



A. Al-Ahbabi, H. Al-Raweshidy: AI-Telecommunications Synergy in Public Safety Systems

TABLE 6. Parameter settings for intelligence metrics and scalar fitness.

B. THREAT-AWARE FOG COMMUNICATION
The layer is an MQTT (Mosquitto v2.0.22) to guarantee
ultra-reliable and low-latency communication (URLLC) with
32 kB alert packets with the predicted gun class, confidence,
timestamp, and GPS metadata. These alerts are identically
identified at the edge and sent via 5G connections that must
be delivered in accordance with multi-access edge computing
(MEC) specifications to ensure a limited latency and
reliability. The lightweight publish-subscribe architecture
enables the streaming of events between fog nodes and
dispatch centers and suits the 3GPP specifications of URLLC
service categories as mission critical IoT.

The scalability of fog is provided by microservice oriented
design and RESTful interoperability which facilitates hori-
zontal replication between the clusters and interoperability
with the NG911 and CAP gateways using standardized
format of JSON/XML. Individual alerts contain TAPI, which
directs routing between the fog and cloud layers balanced
between latency and energy through the optimized intelli-
gence metrics of CRS, CTPI and ERDIS. The parameters in
Table 6 that have been tuned by Optuna include the weighting
of the latency, energy, and load fairness and adaptive ACA-
MOEA/D control dynamically adjusts theweights to different
threat levels. The goodness of the chosen configuration is
verified in sensitivity analysis and resulting comparative
optimization Sec. VII-C.

FIGURE 3. Validation performance: (a) ROC curves; (b) Class-wise
heatmap of precision, recall, and F1-score.

VII. RESULTS AND DISCUSSION
The section contains a detailed assessment of the suggested
gunshot classification framework based on Transformers
on the 13-class spectrogram dataset defined in Section IV.
A five-fold stratified cross-validation (CV) was done on
in-distribution (ID) dataset, and further robustness tests
were done in OOD stress conditions. The evaluation
metrics are accuracy, precision, recall, F1-score, expected
calibration error (ECE), as well as the quality of OOD
detection (AUROC, AUPRin, and FPR@95TPR). To perform
all the experiments, a single preprocessing and augmentation
pipeline was used.

A. TRAINING SETUP AND CONFIGURATION
The AdamW optimizer with a learning rate of 0.00044398,
cosine annealing schedule, and stratified 80/20 data splits
were used as model training was performed with 100 epochs.
Balance of the classes was addressed by using weighted
cross-entropy loss with label smoothing (0.1069), and
gradient was capped at 5.0. The last model attained a
validation accuracy of 99.67%which is a high generalization.

Hyperparameter optimization using anAutoML performed
by using Optuna was able to increase convergence stability
and decrease tuning overhead. The result of this search
(which is described in Section VII-C) was a four-layer
Transformer encoder (dimension 128, feed-forward width
1024, dropout 0.206) whose results were reproducible across
hardware settings.

Figure 3 summarizes model performance. The ROC curves
(Figure 3(a)) show perfect separability (AUC = 1.0) across
all classes, while the precision-recall heatmap (Figure 3(b))
confirms high per-class consistency (macro-F1 ≥ 0.99).
Environmental Robustness: The system’s stability was

further examined under additive noise (σ ∈ [0.005, 0.02]),
time-stretching, and far-field downsampling. AUC remained
above 0.998 in all cases, confirming robustness to acoustic
perturbations.

B. IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION
EVALUATION
The generalisation stability of the proposed Transformer
was first assessed through five-fold cross-validation on the
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TABLE 7. Transformer evaluation across five cross-validation folds
(in-distribution).

FIGURE 4. ROC and PR curves for OOD detection using UrbanSound8K
confounders.

in-distribution dataset. Each sample was used once for
validation and four times for training to ensure balanced
partitioning. As summarised in Table 7, the model achieved
highly consistent results across folds, with mean accuracy,
precision, recall, and F1-score of approximately 0.991. These
findings confirm the robustness of the architecture against
data-split variability and validate its reproducibility under
controlled training conditions.

1) OUT-OF-DISTRIBUTION EVALUATION
To assess robustness beyond the training domain, the
model was evaluated on non-gun acoustic events drawn
from the UrbanSound8K dataset (air_conditioner, car_horn,
children_playing, dog_bark, drilling, engine_idling, jack-
hammer, siren, street_music). Two settings were compared: a
baseline without Outlier Exposure (No-OE) and an enhanced
configuration trained with Outlier Exposure (OE-Random).
In the latter, 70% of the OOD samples were used for exposure
training and 30% for unseen testing.

As shown in Figure 4 and Table 8, OE-Random
achieved perfect OOD discrimination with AUROC= 1.000,
AUPRin = 1.000, and FPR@95TPR = 0%, while maintain-
ing in-distribution accuracy (0.991 ± 0.003) and calibration
(ECE = 0.065). In contrast, the No-OE model obtained
AUROC = 0.890 and FPR@95TPR = 27.3%, confirming
the substantial benefit of OE for open-set reliability.

Overall, the joint ID and OOD evaluation con-
firms that the proposed model not only maintains high
closed-set accuracy but also achieves complete separa-
tion of unseen confounders when equipped with Outlier
Exposure. This establishes strong reliability for firearm
event detection in realistic and acoustically diverse
environments.

TABLE 8. Out-of-Distribution evaluation with and without outlier
exposure (UrbanSound8K).

TABLE 9. AutoML ablation on in-distribution validation (50 Transformer
trials).

C. ABLATION AND MODEL SELECTION
A 50-trial Optuna-based AutoML search was conducted
on the in-distribution validation split to identify the most
efficient Transformer configuration under a fixed 128-band
log-mel front end. The search varied encoder depth, model
dimension, attention heads, feed-forward width, and dropout
while maintaining identical training and augmentation
pipelines. As summarized in Table 9, the four-layer encoder
(dmodel = 128, dff = 1024, dropout = 0.206) achieved
the highest validation accuracy (99.67%), outperforming
deeper or wider variants. A six-layer alternative (dmodel =

384) achieved comparable accuracy (99.56%) but with
higher computational cost. The four-layer configuration was
therefore adopted as the baseline for deployment optimization
discussed in Section VII-E.

1) EFFECT OF CLASS-AWARE TEMPORAL PREPROCESSING
To quantify the impact of the class-specific augmentation
strategy described in Section IV-B, two models were
compared: (i) a baseline Transformer trained on raw log-
mel spectrograms, and (ii) the proposed model incorporating
class-aware temporal preprocessing. Both shared the same
four-layer encoder architecture and identical data splits. The
proposed pipeline yielded a large improvement in overall
accuracy (+17.17 percentage points; 82.50% improved to
99.67%). Class-wise gains were especially prominent for
acoustically similar rifle typesM4 andM16, where F1-scores
improved from 0.1026 and 0.3784 to 1.000 for both, as shown
in Figure 5 and Table 10. This confirms that targeted temporal
alignment and augmentation effectively reduce confusion
between overlapping spectral-temporal firearm signatures.
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FIGURE 5. Ablation comparison: (a) baseline; (b) proposed model with
class-aware temporal preprocessing.

TABLE 10. Comparison of class-aware temporal preprocessing and
baseline training in automated fine-tuning.

TABLE 11. Ablation of situational intelligence metrics in the TAPI
optimization framework.

Only two minor misclassifications occurred in the full
13-class confusion matrix (12-gauge as AR15; Desert Eagle
as M16), confirming that residual errors arise primarily
between spectrally similar firearm categories. This demon-
strates that the proposed preprocessing pipeline substantially
improves fine-grained discrimination within closely overlap-
ping acoustic subspaces.

2) INTEGRATION WITH SYSTEM-LEVEL INTELLIGENCE
To extend architectural ablation toward the fog-intelligence
layer, further experiments analyzed the effect of removing
individual situational metrics (CRS, CTPI, ERDIS) from the
TAPI optimization framework. As reported in Table 11, the
absence of CRS produced the largest performance drop across
all metrics, including average latency, routing success rate,
and scalar fitness, indicating its dominant contribution to
threat-aware routing efficiency.

A subsequent sensitivity analysis (Table 12) verified
ACA-MOEA/D stability under ±20% variations in iteration
count and decomposition weights. Across 100 independent
runs (10 fog nodes, Intel i9-285H), variations in latency,

TABLE 12. Sensitivity analysis of ACA-MOEA/D parameters and weights.

FIGURE 6. Scalar fitness analyses: (a) fixed-weight strategies;
(b) adaptive ACA-MOEA/D compared to fixed-weight baselines.

FIGURE 7. Intelligent Gunshot Alert Email (IGAE) automatically generated
by the fog system.

energy, imbalance, and hypervolume remained below 5%,
confirming convergence robustness. Figure 6 further illus-
trates the superior convergence of ACA-MOEA/D compared
with fixed-weight scalarization, validating its adaptability for
dynamic edge-fog networks.

Finally, the Intelligent Gunshot Alert Email (IGAE)
module (Figure 7) is an example that demonstrates the
integration of the classification and routing pipelines, which
automatically generates low-latency firearm alerts with
predicted class, confidence, timestamp, GPS, and intelligence
measures. This confirms end-to-end operational readiness for
real-time public-safety deployments.

D. PERFORMANCE TRADE-OFF ANALYSIS
Here examines latency, energy consumption, and concur-
rency compromises regulating immediate implementation
in edge-fog contexts. The results cover both the adaptive

634 VOLUME 14, 2026



A. Al-Ahbabi, H. Al-Raweshidy: AI-Telecommunications Synergy in Public Safety Systems

FIGURE 8. Situational intelligence and adaptive prioritization results:
(a) profiles for six alerts; (b) ACA-based TAPI with threshold band.

FIGURE 9. Optimization results: (a) multi-objective Pareto front;
(b) scalar fitness comparison across methods.

optimization layer (ACA-MOEA/D) and measured per-
formance of Transformer classifier under the concurrent
workloads.

1) SITUATIONAL INTELLIGENCE AND OPTIMIZATION
RESULTS
The ACA-MOEA/D framework dynamically balances
latency, energy, and load imbalance while adapting to
contextual threat levels through situational intelligence
metrics. Figure 8(a) illustrates the computed CRS, CTPI,
ERDIS, and TAPI scores for six representative gunshot alerts,
showing how high TAPI values trigger escalation to upper
fog or hybrid cloud layers. Figure 8(b) demonstrates the
temporal evolution of TAPI, where ACA ensures sharper
responsiveness in high-risk zones, escalating alerts beyond
local fog tiers when necessary.

During optimization, the Pareto front converged after
100 iterations (Figure 9(a)), achieving a latency of 13.19 ms,
energy of 0.1028 J, and load imbalance of 0.2542, with
a scalar fitness of 0.2519 and normalized hypervolume of
0.9452. Dynamic weight updates within ACA improved
adaptability compared to fixed-weight scalarization strate-
gies, as confirmed in Figure 9(b), which compares the scalar
fitness distributions across 100 runs. Statistical testing (p <

0.05) verified that ACA-MOEA/D achieves significantly
higher convergence stability than baseline optimizers.

These findings confirm that the ACA-MOEA/D optimizer
provides effective tradeoffs between latency, energy and
load distribution, and operational real-time flexibility at alert
conditions that are dynamic.

Real-Time Execution and Benchmarking: The system was
able to achieve a real-time firearm occurrence management
with an average latency of 13.19 ms and energy consumption
of 0.10 joules per inference, which showed that the system
was low-latency efficient when running on CPU-based fog
nodes. Table 13 compares the framework with existing
optimizers for fog computing, and it demonstrates superior
efficiency in terms of latency, energy, and load balance
metrics and is the only one offering as a scalar fitness
objective to holistically assess performance.

The findings show that ACA-MOEA/D provides state-of-
the-art optimization efficiency with real-time performance
preserving the latency, energy and load metrics.

2) LATENCY PERFORMANCE
The total computational cost per firearm event was defined as

Ccomp = Tprep + Tqueue + Tinfer + Tsync, (24)

where Tprep denotes input decoding and feature extraction
time, Tqueue is the average scheduling delay before inference,
Tinfer represents model inference latency, and Tsync accounts
for post-inference synchronization, including fog-node com-
munication and metadata update. All latency components
were measured on an Intel i9-285H edge CPU (4 threads,
batch = 1 per stream) without GPU acceleration.

3) ENERGY AND COMPLEXITY EFFICIENCY
The proposed edge Transformer exhibits a compact architec-
ture with 3.21 million parameters, 0.27 G MACs (equivalent
to 0.54 GFLOPs), and a 3.4 MB memory footprint in INT8
precision. Measured energy consumption per firearm event
was 15.4 mJ, computed from idle-subtracted CPU package
power readings during the Ccomp interval. The lightweight
arrangement empowers extended operation sustainability for
battery-operated fog nodes and facilitates minimal-energy
edge deduction without dependence on GPU enhancement.

4) SCALABILITY AND EDGE DEPLOYMENT FEASIBILITY
Concurrency experiments were performed using 2.56 s
audio windows (representing individual firearm-event clips)
with N = {1, 2, 3, 4, 5, 8, 10, 15, 20} simultaneous
data streams (batch = 1 per stream). As demonstrated
in Table 14 and Figure 10, detection integrity was above
99.8% for all concurrency levels. Throughput peaked at
571.7 samples/s with 5 streams and was close to 550 sam-
ples/s up to 15 streams. Latency increased sublinearly with
load, up to 200 ms with four streams and 490 ms with twenty
streams, indicating that the queue was managed consistently
and the schedule was aware of the fog conditions at high
loads.

a: JITTER CHARACTERIZATION AND STABILITY ASSESSMENT
In order to further quantify the consistency of real-time,
latency (jitter) (P7) as a new performance metric was
introduced as the standard deviation of the end-to-end latency
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TABLE 13. Benchmarking performance comparison of fog computing models.

FIGURE 10. Performance under concurrent load conditions. The system maintains high detection integrity, low latency, and stable throughput up to
15 concurrent streams, demonstrating suitability for real-time edge deployment.(a) Detection integrity vs. concurrent streams;(b) latency
scaling;(c) throughput trend;(d) latency and jitter component breakdown.

of a processed samples for each concurrency level [83]:

J =

√√√√ 1
N

N∑
n=1

(wn − w)2, (25)

where wn denotes the per-sample latency and w is the mean
latency. Lower jitter indicates smoother and more predictable
scheduling, which is critical for time-sensitive public-safety
alerts. In the evaluated system, jitter remained below 120 ms
for up to five concurrent streams and below 300 ms for up to
twenty streams, confirming high stability even under heavy
concurrency. The observed jitter pattern Figure 10(d) reflects
minor load-dependent variations due to queue reallocation
among CPU threads.

b: STATUS CLASSIFICATION
Each joint latency-jitter threshold was used to give each
concurrency configuration a stability state to enable qualita-
tive interpretation of the results. Best configurations P2 ≤
150 ms and P7 ≤ 80 ms were denoted, Good configurations
(≤ 200 ms) and jitter (≤ 120 ms), and Stable configurations
(≤ 500 ms, ≤ 300 ms) as shown in Table 14. No cases
of degraded performance were reported and this ensured
strong concurrency management and deterministic real time
behaviour on all the test cases.

An example real-time dashboard (Figure 11) which was
created using the Streamlit visualization tool depicts system
behavior when a small concurrent batch of 11 samples is
being run. The balanced accuracy was 95.0%, batch accuracy
90.9%, and average confidence 94.1%. Mean intelligence

TABLE 14. Edge-Fog concurrency performance metrics and stability
classification.

metrics were CRS = 0.842, CTPI = 0.500, ERDIS = 0.048,
and TAPI = 0.580. The routing distribution (HP+Cloud =
72.7%, Fog_Computing = 27.3%, Queue/Suppress = 0%)
confirms appropriate escalation under the ACA-MOEA/D
policy. Quantitative conclusions are drawn from the sys-
tematic concurrency study (Table 14, Figure 10), while the
dashboard provides qualitative evidence of live stability.
End-to-End Latency Breakdown: To provide a coher-

ent interpretation of all timing measurements across the
framework, Table 15 summarizes latency values at three
complementary levels: (i) model-level inference latency,
(ii) system-level end-to-end latency under concurrent load,
and (iii) network-level fog-routing latency. Each of the layers
is associated with its processing step in the hybrid edge-fog
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TABLE 15. Summary of latency components across model, system, and fog levels.

TABLE 16. Performance and complexity comparison with prior gunshot models. Results for † entries are obtained via matched re-implementation on the
YouTube-851 subset (p < 0.001).

pipeline, which relates to an entire timeline of computations
involved in processing firearm events.

Overall, the framework achieves a balanced trade-off
between latency, energy efficiency, and scalability, attaining
sub-10 ms inference, 15 mJ per-event energy, and stable
multi-stream operation up to twenty concurrent audio inputs.
These results validate the system’s readiness for deployment
in privacy-preserving public-safety monitoring and edge-IoT
infrastructures.

E. EDGE DEPLOYMENT VALIDATION AND BENCHMARK
COMPARISON
CPU-based inference validation confirmed that ONNX-INT8
quantization delivers real-time performance on a laptop-
class Intel i9-285H processor (4 threads, CPU configuration).
Measured latency ranged from 6.0-6.5 ms per firearm event,
with idle-subtracted energy consumption of approximately
112 mJ per inference. Quantized execution maintained full

top-1 equivalence with FP32 precision (100 %), verifying
lossless compression suitability for edge deployment.

Table 16 presents a comparative benchmark against recent
acoustic-event classifiers. The proposed lightweight Trans-
former achieves a balanced accuracy-efficiency trade-off,
combining 99.67% classification accuracy with a compact
architecture of 3.21M parameters, 270MMACs, and 3.4MB
INT8 memory footprint, surpassing prior CNN-Transformer
and transfer-learning models in both precision and computa-
tional efficiency.
Cross-Dataset Perspective: Reported benchmarks vary

across datasets and noise conditions (YouTube, NIJ, Urban-
Sound8K, BGG, TAU Mobile, AudioSet). Subset-matched
re-implementations of YAMNet + DNN [30] and Multi-
Scale CNN [44] on the same 851-sample YouTube partition
produced accuracies of 95.2 % ± 0.5 % and 94.8 % ± 0.6
%, respectively, compared with 99.67 % ± 0.30 % for the
proposed model (p < 0.001, McNemar’s test). Accordingly,
Table 16 reports both published and subset-aligned results,

VOLUME 14, 2026 637



A. Al-Ahbabi, H. Al-Raweshidy: AI-Telecommunications Synergy in Public Safety Systems

FIGURE 11. Real-time dashboard summarizing accuracy, intelligence
metrics, and fog-tier routing.

treating heterogeneous-domain models as complexity refer-
ences rather than direct accuracy baselines.

Overall, the validated ONNX-INT8 deployment confirms
that the proposed architecture sustains sub-10 ms inference,
full-precision fidelity, and millijoule-level energy use meet-
ing the operational requirements of embedded public-safety
and edge-IoT applications.

F. ETHICAL AND FUTURE CONSIDERATIONS
Implementation of the acoustic-based AI systems in the
public environments needs to be handled with significant
ethical consideration with focus being on privacy, data
protection and algorithm bias. The proposed framework,
unlike the camera-based surveillance, uses only non-speech
acoustic indicators like the muzzle blasts and the shock
wave of a ball, which do not record any personal statistics.
The processing is all done at the level of the fog and edge
nodes, and only anonymized threat flags will be sent to the
upper levels, which will have privacy-preserving situational
awareness consistent with GDPR and other similar legislation
at the regional level. Diverse firearm types, recording
conditions and noise settings were incorporated into dataset

design to reduce bias and bias audits and transparency are
protocols that will be incorporated in the future field trials to
ensure that no large scale deployment occurs.

Technically, the future research will be aimed at max-
imizing the efficiency of the on-device and increasing
multi-modal integration. Future directions will be to switch
between dynamic and static INT8 quantization, the use of
calibrated post-training and fused kernels. Also, performance
measurement will be done on ARM based processors and
NPUs with low power focus. Finally, the efficiency of the
mel-spectrogram front-end computation will be improved
and either fused or streaming code will be used. Further
research will look into multi-sensor fusion based on seismic
and acceleration sensor measurements in order to increase
strength with complicated acoustic environments. Lastly,
interoperability with NG911, CAP, and IoT gateways will be
tested at large scale, to guarantee the successful and ethically
controlled real-life deployment.

VIII. CONCLUSION
The proposed system has been demonstrated to classify
with high accuracy in 13 different classes of gunshots and
can be combined with intelligent edge-fog communication
layer to facilitate a low-latency transmission of alerts.
In order to improve the situational awareness, we proposed
three intelligence measures CRS, CTPI and ERDIS that
respectively represent the threat severity, recurrence patterns
and risk posed by delay in response. These are put together
into the TAPI to control alert routing under limited conditions
over cloud nodes and fogs.

Experimental results confirm the model’s strong predictive
performance, achieving an average cross-validation accuracy
of 99.10% and validation accuracy of 99.67%. Macro-
averaged precision, recall, and F1-score all exceeded 0.986,
demonstrating fine-grained discrimination across acousti-
cally similar classes, such as 9mm, AK-47, and Desert Eagle.
In real-time deployment through a Streamlit-based interface,
the system achieved an accuracy of 98.10%, confirming its
effectiveness under operational conditions.

Experimental results validate the strong prediction ability
of the model, the average accuracy of cross validation is
99.10%, and the average accuracy of validation is 99.67%.
Macro-averaged precision, recall and F1-score were all
over 0.986, indicating fine-grained discrimination across
acoustically similar classes, such as 9mm, AK-47 and
Desert Eagle. In real-time deployment via a Streamlit-based
interface, the system saw an accuracy of 98.10%, which
confirms the system under operational conditions.

This consistency of performance was substantially due
to the consistent accuracy of the model across training
folds in the AutoML-based hyperparameter optimization that
accelerated convergence rates and converged more quickly.
This illustrates the effectiveness of the suggested tuning
plan of intricate Transformer designs utilized in edge-fog AI
conditions.
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Beyond classification, the system has low latency of
inference and energy consumption at the edge, which has
been validated by deploying the system on an MQTT-driven
fog infrastructure. Multi-objective optimization with ACA-
MOEA/D gave Pareto-optimal solution with 10.20 ms
latency, 0.093 J energy consumption and 0.2285 task
imbalance which scalar fitness is 0.2519. A Mann-Whitney
U test confirmed the statistical superiority of the ACA-
MOEA/D method over the baseline (p < 0.05).
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