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Abstract—With increasing wind power penetration, the 
inherent uncertainty of wind power poses significant 
challenges to dispatch decisions in power systems. To 
address this issue, this paper proposes a two-stage 
distributionally robust chance-constrained (TDRC) model 
for the unit commitment problem with wind power 
uncertainty. In this model, an ambiguity confidence set is 
developed to characterise wind power uncertainty with 
unknown probability distributions, and wind power 
curtailment and load shedding levels are modelled as 
chance constraints to balance wind power uncertainty and 
system security of dispatch decisions. A hybrid parallel 
solution (HPS) is proposed for efficient computation by 
integrating Benders decomposition (BD) and column-and-
constraint generation (C&CG) methods. Case studies on the 
IEEE 24- and 118-bus systems demonstrate the rationality 
of the proposed approach, while experiments on a practical 
126-bus system using the cyber-physical power system
(CPPS) dispatch platform further validate the effectiveness
and practical applicability of the proposed TDRC model.

Note to Practitioners—This paper addresses the unit 
commitment problem in power systems with uncertain wind 
power by developing a two-stage distributionally robust 
chance-constrained (TDRC) model. This model captures 
the worst-case probability distribution of wind power 
output within an ambiguity confidence set that is designed 
based on 1L  and L  norms. This ensures that the dispatch 
decisions can handle extreme scenarios in wind power 
output, thereby improving the reliability of the system. 
Meanwhile, chance constraints are employed to regulate 
wind power curtailment and load shedding levels, balancing 
the flexibility and conservativeness in dispatch decision-
making. Finally, a hybrid parallel solution (HPS) algorithm 
is developed to solve the TDRC model, innovatively 
integrating Benders decomposition (BD) and column-and-

constraint generation (C&CG) methods to improve 
computational efficiency. The proposed TDRC framework 
can be implemented for security dispatch of practical large-
scale power systems with uncertain wind power. 

Index Terms— Ambiguity confidence set, power systems, 
wind power curtailment, load shedding, hybrid parallel 
solution algorithm. 

NOMENCLATURE 
Constants and Parameters 
NT Number of time periods in 24 h. 

i , d , w , t Indices of units, loads, wind farms, and 
time periods. 

  Confidence set for wind power output 
probability distribution. 

NG , ND , NW   Numbers of units, loads, and wind farms. 
s Index of wind power output scenarios. 

0
sp Initial probability value. 

w Wind power utilisation rate. 
on

iT , off
iT Minimum ON and OFF time of unit i . 

on
,i tX , off

,i tX ON and OFF time of unit i  at time t . 
g
iC Generation cost of unit i . 
up
iC , dw

iC Upward and downward reserve costs of 
unit i . 

up
iS , dw

iS Startup and shutdown costs of unit i . 
up

ir , dw
ir

Maximum upward and downward reserve 
of unit i . 

g
iP , g

iP Upper and lower bounds of generation of 
unit i . 

dw
tr , dw

tr
Upper and lower bounds of downward 
reserve of units at time t . 

up
tr , up

tr
Upper and lower bounds of upward 
reserve of units at time t . 

SF Shift factor matrix. 

KP , KD , KW  Bus-unit, bus-load, and bus-wind farm 
incidence matrices. 

f Power flow limit vector of lines. 

,
d

d tP , d
tP Load demand and load demand vector of 

load buses at time t . 

,
w

w tP Forecasted power output of wind farm w  
at time t . 

,0
, ( )w

w tP s Power output scenario � of wind farm w  
at time t .  

LSL Load shedding level (LSL) limitation. 
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WPCL Wind power curtailment level (WPCL) 
limitation. 

  Power flow capacity expansion factor. 
Variables 

sp Probability of wind power output scenario 
s . 

,
g

i tP Generation of unit � at time t . 

, ( )w
w tP s Power curtailment of wind farm w  at 

time t  in wind power output scenario s . 

,i tI , ,i ty , ,i tz Binary commitment, startup, and 
shutdown variables of unit i   at time t . 

,
up

i tr , ,
dw

i tr Upward and downward reserve of unit i  
at time t . 

,
w

w tP Power output of wind farm w  at time t . 

, ( )up
i tr s , , ( )dw

i tr s
Upward and downward reserve provided 
by unit i  at time t  in wind power output 
scenario s . 

, ( )d
d tP s  Load shedding of load bus d  at time t  in 

wind power output scenario s . 
g

tP Generation vector of units at time t . 
w

tP Power output vector of wind farms at time 
t . 

tf Power flow vector of lines at time t . 

( )G
t sP Generation vector of units at time t  in 

wind power output scenario s . 

( )w
t sP Power curtailment vector of wind farms at 

time t  in wind power output scenario s . 

( )d
t sP  Load shedding vector of load buses at time 

t  in wind power output scenario �. 

( )t sF Power flow vector of lines at time t  in 
wind power output scenario s . 

I. INTRODUCTION

VER the last several decades, environmental issues and 
energy crises have promoted the sustainable development 

of renewable energy, such as wind power [1-3]. For example, 
Uruguay, Ireland, and the United Kingdom now generate 40.4%, 
38.0%, and 35.5% of their electricity from wind power, 
respectively [4]. However, high wind power penetration also 
poses a security risk to power system operation as it may 
compromise dispatch decisions due to its inherent uncertainty 
[5, 6]. Thus, it is crucial for the system operator to utilise 
Supervisory Control and Data Acquisition (SCADA) system 
and energy management system (EMS) to manage wind power 
uncertainty in order to make robust dispatch decisions, such as 
economic dispatch [7, 8] and unit commitment [9, 10].  

In practice, day-ahead unit commitment and economic 
dispatch aim to minimise the operational cost of power systems 
by considering uncertain wind power, while enhancing the 
reliability of the system based on dispatch decisions [11]. At 
present, several advanced modelling methods are employed to 
deal with uncertain wind power. For example, stochastic 
programming (SP) (e.g., [12, 13]) and robust optimisation (RO) 
(e.g., [14, 15]) techniques are widely utilised to address wind 
power uncertainty and determine robust dispatch decisions. 
Here, the SP approach characterises the uncertainty of wind 

power output by generating a set of representative scenarios 
derived from an assumed probability distribution of wind power. 
Nevertheless, since the true distribution of wind power output 
is often unknown, a large number of scenarios must be 
constructed to sufficiently capture the underlying stochastic 
behaviour, which inevitably results in a significant 
computational burden. In contrast, a RO approach characterises 
uncertainty through an ambiguity set that encompasses all 
possible realisations of uncertain parameters, without relying 
on a specific probability distribution. However, this method 
often yields overly conservative dispatch decisions, as it 
focuses on the worst-case realisation of uncertainty, which is 
typically of low probability or even unrealistic under practical 
power system operating conditions. 

To address these issues in SP and RO methods, the authors 
in [16, 17] proposed a distributionally robust optimisation 
(DRO) approach for power systems against uncertainties. The 
DRO method considered uncertainty in the probability 
distributions of uncertain variables, thereby making more 
appropriate dispatch decisions. Thus, a moment-based DRO 
method was developed in [18] for the system operator to 
determine the optimal dispatch decisions that can hedge against 
uncertain variables in the unit commitment problem. However, 
incorporating second-order moment information introduces 
nonlinear constraints, thereby complicating the reformulation 
of the problem into a convex optimisation framework. 
Moreover, this moment-based method only captures a portion 
of the true distribution by considering merely the first and 
second moments, which may still degrade the reliability and 
economic efficiency of dispatch decisions. Then, the authors in 
[19] proposed a statistical-distance-based DRO approach to
comprehensively quantify the discrepancy between probability
distributions of uncertainty. Compared with previous DRO
methods, this statistical-distance-based approach addresses
uncertain variables by incorporating more detailed information
about their probability distributions. Similarly, the authors in
[20] presented a Kullback-Leibler (KL) divergence-based DRO
methodology to address the uncertainty of wind power in the 
unit commitment problem for power systems. However, this 
approach applies only to continuous distributions with well-
defined probability densities. Moreover, when the wind power 
output exhibits a heavy-tailed distribution, the KL-based DRO 
formulation may yield an unbounded or infinite worst-case 
expectation, which undermines its practical applicability. To 
deal with the drawbacks of this method, a Wasserstein metric-
based DRO approach was further developed to tackle the unit 
commitment problem in power systems under uncertainty [21]. 
However, both continuous and discrete Wasserstein metric-
based DRO methods still present some disadvantages. 
Specifically, the continuous Wasserstein metric-based DRO 
method involves nonlinear functional constraints on probability 
distributions of uncertain variables, leading to high 
computational complexity. In the discrete Wasserstein-
distance-based DRO model, the support points are treated as 
decision variables, which introduces nonlinearities and makes 
the optimisation problem nonconvex. In addition, its 
performance depends heavily on the sample size, as too few 
samples may cause overfitting, while too many samples can 
impose excessive computational burdens. Then, the authors in 
[22] presented a data-driven DRO method for the unit
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commitment problem in power systems with uncertain 
variables, which employed a norm (e.g., L1 norm or L∞ norm) to 
construct a confidence set that covers the probability 
distribution of uncertain variables. The norm-based DRO 
method neither requires moment information nor relies on 
probability density assumptions, and it does not introduce 
nonlinear terms, thereby achieving a better trade-off between 
the economic efficiency and robustness of dispatch decisions in 
large-scale power systems. 

In addition, chance-constrained optimisation (CO) method is 
an effective approach for solving the unit commitment problem 
with uncertain variables [23]. At present, researchers have 
extensively studied the distributionally robust chance-
constrained optimisation (DRCO) approach [24, 25]. For 
example, a data-driven DRCO model [26] was applied to tackle 
the unit commitment problem for power systems with uncertain 
wind power, allowing power imbalances at a low probability 
level predefined by a chance-constrained approach. In [27], the 
authors proposed a chance-constrained method for energy 
management involving uncertain wind power, integrated with 
the DRO method, in which the power balance constraints were 
formulated in a probabilistic manner. Recently, a joint chance-
constrained model based on the DRO approach was developed 
in [28] for microgrids considering power system contingencies 
and uncertain wind power. However, high wind power 

utilisation and low wind power curtailment are often excluded 
from the optimisation approach in these methods, leading to 
unsustainable dispatch decisions when wind power utilisation 
is encouraged under practical power system operating 
conditions. 

To support the utilisation of renewable energy, wind power 
is often prioritised by system operators in dispatch decisions, 
and wind power curtailment are therefore reduced, as is the case 
in Germany [29]. By incorporating wind power curtailment 
levels into dispatch decisions, the system operator can optimise 
the dispatch of available renewable energy, thereby reducing 
the amount of wind power that is curtailed unnecessarily. This 
leads to higher wind power utilisation, which is particularly 
beneficial in power systems with high renewable energy 
penetration. In addition, uncertain wind power may cause 
power imbalances that can result in large-scale load shedding, 
which poses a significant threat to system security [30]. By 
considering load shedding levels, the system operator can 
establish acceptable levels of load shedding risk while still 
ensuring that the overall system remains reliable even under 
uncertain wind power output. Overall, from a practical power 
system operation perspective, the system operator should 
proactively consider wind power curtailment and load shedding 
levels, balancing the wind power uncertainty and system 
security in dispatch decisions.  

TABLE I.  
COMPARISON OF REPRESENTATIVE LITERATURE WITH THE PROPOSED METHOD 

† This paper integrates the BD and C&CG methods into a hybrid parallel solution (HPS) algorithm, denoted as BD+C&CG. 

In summary, Table I presents a comparison between the 
proposed approach and several representative studies in the 
literature. Existing studies reveal the following research gaps: 
SP approaches depend on large amounts of historical data to 
generate representative scenarios, while RO approaches often 
yield overly conservative dispatch decisions. Although DRO 
approaches are developed to deal with wind power uncertainty, 
most studies ignore wind power curtailment and load shedding 
levels under practical power system operating conditions, and 
these conditions are not incorporated into chance constraints to 
adjust risk-averse levels for wind power uncertainty and system 
security in decision-making in unit commitment. Furthermore, 
few studies have developed scalable solution algorithms to 
improve computational efficiency or have validated their 
respective proposed methods through the practical power 
system dispatch platform for large-scale systems. To address 
these research gaps, this paper proposes a two-stage 
distributionally robust chance-constrained (TDRC) model that 
explicitly considers wind power curtailment and load shedding 

levels, solved via integrated BD and C&CG methods. The main 
contributions of this paper are summarised below: 

(1) A two-stage distributionally robust chance-constrained
(TDRC) model is proposed for the unit commitment
problem with uncertain wind power. The TDRC model
incorporates chance constraints to flexibly regulate wind
power curtailment and load shedding levels by
constructing an ambiguity set based on 1L  and L

norms to characterise the uncertainty of wind power
output. These features enable the model to achieve the
trade-off between the wind power uncertainty and
system security of dispatch decisions.

(2) To solve the TDRC model, probability theory is first
used to transform chance constraints into equivalent
deterministic constraints, reformulating the problem into
a tractable formulation. Then, a hybrid parallel solution
(HPS) algorithm is developed to iteratively solve the
TDRC model through a decomposition into a master and
multiple sub-problems. The proposed algorithm
integrates the advantages of BD and C&CG methods to

Ref. Category Uncertainty  
handling methods 

Chance- 
constrained 

Unit  
commitment 

Wind power  
curtailment level 

Load  
shedding level 

Solution  
algorithms 

Dispatch 
Platforms 

[12] SP Multiple scenarios     BD 

[14] RO Worst-case scenario     C&CG 

[18] Moment-based DRO  First- and second order      BD 

[20] KL-based DRO  KL divergence     C&CG 

[21] Wasserstein-based DRO Wasserstein metric     C&CG 

[22] Data-driven DRO Confidence set     BD 

[24] Wasserstein-based DRO Wasserstein metric     C&CG 

[26] Data-driven DRO Ambiguity set     C&CG 

This paper Norm-based DRO Combined 1L  and L -norms     BD+C&CG  



improve computational efficiency and does not rely on 
duality information. 

(3) Extensive case studies are conducted through both
numerical simulations and a cyber-physical power
system (CPPS) dispatch platform to verify the validity
and rationality of the proposed approach. The numerical
studies demonstrate the superior robustness and
computational efficiency of the TDRC model and the
HPS algorithm, while the SCADA and EMS integrated
CPPS dispatch platform further validates the practical
applicability of the proposed model under realistic
operational conditions.

The remainder of this paper is organised as follows: Section 
II gives the mathematical formulation and overall framework of 
the TDRC model. Section III presents the linearisation of the 
nonlinear constraints and develops a HPS algorithm to 
efficiently solve the TDRC model. Section IV conducts case 
studies on the IEEE 24- and 118-bus systems and experiments 
on a practical 126-bus system using the CPPS dispatch platform. 
Section V concludes this paper and discusses potential 
directions for future research. 

II. MATHEMATICAL FORMULATION

A. Ambiguity Confidence Set
In fact, achieving an accurate probability distribution of wind

power output is not feasible for the system operator. Thus, the 
1L  norm and the L  norm are used to construct an ambiguity 

confidence set to model wind power uncertainty, described as 
follows: 
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where   is a scalar parameter. According to [31], the following 
relationships are obtained: 
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where K  denotes the number of clusters, and sN  denotes the 
data sample sizes. The right-hand side of constraints (2) and (3), 
denoted by  , represent the confidence level. Thus, the 
following relationships are obtained: 
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Fig. 1 illustrates the relationship between wind power 
uncertainty and its ambiguity set. The ambiguity set is designed 
to capture more possible probability distributions. The worst-
case probability distribution is identified within the ambiguity 
confidence set to determine robust dispatch decisions. 
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Fig. 1. Illustration of the ambiguity confidence set. 

B. Proposed TDRC Model
In this section, a two-stage distributionally robust

optimisation model is developed with chance constraints based 
on an ambiguity confidence set  , aiming to regulate wind 
power curtailment and load shedding levels under the worst-
case probability distribution. Specifically, the first-stage 
objective is to minimise the total cost of optimal unit dispatch, 
which comprises unit generation costs, startup and shutdown 
costs, upward and downward reserve costs, and the expected 
penalty cost from the second-stage due to wind power 
curtailment and load shedding under the worst-case probability 
distribution. The second-stage is essentially a bilevel max-min 
problem that considers wind power uncertainty in power 
systems. The upper-level problem identifies the worst-case 
probability distribution within  , while the lower-level 
problem minimises the penalty cost associated with wind power 
curtailment and load shedding under the worst-case probability 
distribution. The overall structure of the TDRC framework is 
illustrated in Fig. 2. 

First-stage
Objective: Minimise the total cost of the optimal 
unit dispatchs while considering wind power 
curtailment and load shedding levels.

Upper-level
Objective: Identify the worst-case 
probability distribution based on corrective 
decisions.

Lower-level
Objective: Minimise the penatly cost for 
wind power curtailment and load shedding.

Second-stage

C
orrective decisions

U
nit dispatch decisions Corrective decisions Worst-case probability 

distribution

Fig. 2. Framework of the two-stage distributionally robust chance-constrained 
model. 

1) First-stage of the TDRC model: The first-stage of the
TDRC model is to minimise the total cost and optimise the unit 
dispatch decisions to ensure acceptable levels of wind power 



curtailment and load shedding. Thus, the first-stage model is 
formulated below: 

 
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, , , , ,
1 1
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where objective (6) aims to minimise the total unit dispatch cost 
including the unit generation costs, startup and shutdown costs, 
and upward and downward reserve costs, thereby defining the 
first-stage optimal dispatch decisions objective of the TDRC 
model. Constraints (7) and (8) represent the startup and 
shutdown unit commitment status constraints for each unit, 
respectively. Constraints (9) and (10) limit the minimum on- 
and off-time of each unit, respectively. Constraint (11) 
represents the power balance equation. Constraints (12) and (13) 
represent the minimum and maximum generation capability 
limitations for each unit, respectively. Constraints (14) and (15) 
define the up and downward reserve capability constraints for 
each unit, respectively. Constraints (16) and (17) represent the 
up and downward reserve capability constraints for the entire 
system, respectively. Constraint (18) indicates the actual wind 

power output limitation. Constraint (19) calculates the power 
flow, and constraint (20) restricts this power flow. Constraints 
(21) and (22) are chance constraints associated with load
shedding and wind power curtailment levels, respectively.

More specifically, constraint (21) ensures that the available 
generation, wind power, and upward reserve are sufficient to 
meet the total demand with a probability no less than LSL1  , 
thereby limiting the load shedding level. Constraint (22) limits 
the probability of excessive wind power curtailment by 
ensuring that the available downward reserve and generation 
flexibility are sufficient to keep the curtailed wind power within 
its allowable range with a probability not lower than WPCL1  . 
Also, constraint (23) defines the binary commitment variables 

,i tI , ,i ty  and ,i tz , which represent on and off, startup, and 
shutdown states of each unit. 

2) Second-stage of the TDRC model: The second-stage of
the TDRC model aims to minimise the expected penalty cost 
incurred under the worst-case probability distribution. Thus, the 
second-stage model is expressed as follows:  
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After the actual wind power output is observed and the unit 
dispatch decisions from the first stage are determined, the 
second-stage determines the corrective dispatch actions, 
including the redispatch of upward and downward reserves and 
the adjustment of wind power output. The objective in (24) is 
to minimize the expected penalty cost associated with these 
actions under the worst-case probability distribution. It is worth 
emphasising that the second-stage corrective decisions across 
all wind power scenarios aim to ensure that the first-stage unit 
dispatch decisions remain robust enough to maintain acceptable 
levels of wind power curtailment and load shedding. Based on 



the unit commitment from the first stage, constraint (25) 
calculates the actual unit generation in wind power output 
scenario s , and constraint (26) ensures the power balance in 
wind power output scenario s . Based on the on and off status 
of each unit from the first-stage, constraint (27) limits the unit 
generation capacity in wind power output scenario s . 
Constraints (28) and (29) limit the deployment capacity of 
upward and downward reserves in wind power output scenario 
s . Constraints (30) and (31) limit wind power curtailment and 
load shedding levels in wind power output scenario s , 
respectively. Constraint (32) calculates the power flow in each 
line, which involves wind power curtailment and load shedding 
in wind power output scenario s . Constraint (33) limits the 
power flow in wind power output scenario �, which ensures that 
the line overloading ratio is within the limit. 

To sum up, the TDRC model can be formulated as a tractable 
optimisation problem with objective function (34), subject to 
constraints (7)-(23) from the first-stage unit dispatch and 
constraints (25)-(33) from the second-stage corrective dispatch. 
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The transformation of chance constraints (21)-(22) and the 
solution of the tractable problem will be discussed in the next 
section. Finally, a HPS algorithm is developed to solve the 
TDRC model and determine the optimal dispatch decisions for 
the system operator. In this paper, although wind power is used 
as a representative example of renewable energy uncertainty, 
the TDRC model can potentially be extended to other 
renewable sources, such as photovoltaic power from solar 
farms. 

III. HYBRID PARALLEL SOLUTION METHODOLOGY

A. Linearisation of Chance Constraints
In this paper, the wind power output is assumed to follow a

Gaussian distribution, which is theoretically justified by the 
central limit theorem and empirically through short-term wind 
power output analyses [32-34]. Although the chance constraints 
(21)-(22) cannot be directly solved due to their nonlinear 
formulations, they can be further transformed into deterministic 
linear forms under the Gaussian distribution assumption. The 
transformation equations for these chance constraints are as 
follows: 

Chance Constraint for Load Shedding: If the maximum 
available power output from units, wind power, and upward 
reserve capacity is insufficient to meet the load demand, load 
shedding will be required to ensure power balance in power 
systems. It is worth noting that constraint (21) can be 
equivalently transformed into equation (35). 
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Hence, Eq. (35) is the deterministic equivalent of the chance 
constraint on load shedding. It is derived by applying quantile-
based reformulation to convert the probabilistic constraint in 

(21) into a tractable deterministic formulation. In this equation,
LSL  denotes the standard normal quantile corresponding to the

violation probability LSL , and ,
w
w t  represents the standard 

deviation of the wind power uncertainty for wind farm �  at 
time t . This formulation ensures that the total available 
generation and upward reserve are sufficient to satisfy the load 
demand in at least LSL1   of all scenarios, thereby 
guaranteeing system reliability under uncertain wind power 
output conditions. 

Chance Constraint for Wind Power Curtailment: If the 
excess power output from units, wind power, and downward 
reserve cannot be absorbed by the load demand, wind power 
will be curtailed in power systems. However, to guarantee the 
wind power utilisation, the wind power utilisation rate is 
required not to fall below its minimum utilisation rate w . Note 
that this chance constraint (22) can be further reformulated into 
the following deterministic form: 
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Here, Eq. (36) represents the deterministic equivalent of the 
chance constraint on wind power curtailment. It is derived 
through the quantile-based reformulation of the probabilistic 
constraint in (22), converting the stochastic inequality into a 
tractable deterministic formulation. In this equation, WPCL  
denotes the standard normal quantile associated with the 
violation probability WPCL , and ,

w
w t  denotes the standard 

deviation of wind power uncertainty for wind farm w  at time 
t . The parameter w  denotes the minimum acceptable wind 
power utilisation rate. This formulation ensures that, in at least 

WPCL1  of all scenarios, the downward reserve and load 
demand are sufficient to absorb wind power fluctuations, 
thereby keeping the wind power curtailment within its 
allowable level. 

B. Linearisation of 1L  and L  norms

Similarly, 1L  and L  norms are transformed into linear
formulations to facilitate the optimisation solution. 

For the 1L  norm case, the nonlinear term 0
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For the L  norm case, the nonlinear term 0
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C. Overall framework of the HPS Algorithm
For simplicity and without loss of generality, the TDRC

model can be represented in the following compact form: 

T T T

, ( , , )1

ˆmin max min
s ss

K
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p
 

 
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 z
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  (40) 

subject to: 
Ax e   { , } 0 1x   (41) 

 Bx Cy d   (42) 

s s   zFx Dy Gξ H g s (43) 

where vector x  represents binary variables and vector y
represents continuous variables in the first-stage problem. 
Vector sz  represents continuous variables in the second-stage 
problem. Notably, vector sξ  represents the wind power output 

scenario, i.e., ,0
, ( )w

i tP s . Matrix A  and vector e  represent the 
coefficient matrices and constant vectors of constraints (7)-(10), 
respectively. Matrices B , C , and vector d  denote the 
coefficient matrices and constant vectors of constraints (11)-
(22), respectively. Matrices F , D , G , H , and vector g  are 
the coefficient matrices and constant vectors of constraints 
(25)-(33), respectively. 

The developed HPS algorithm is a hybrid parallel-based 
approach that does not rely on duality information, and it 
incorporates the advantages of the BD and C&CG methods to 
improve computational efficiency. To solve the overall 
problem, the TDRC model is first decomposed into a master 
problem P0 and a sub-problem P1, as described in detail below. 

Master problem P0: 
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n
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where ��,�  denotes the dual variable associated with the 
following sub-problems. n  represents the current iteration 
number. Constraints (47)-(48) represent the C&CG cut, and 
constraint (49) represents the Benders cut.  

The minimisation and summation operations corresponding 
to the expected term can be interchanged due to the 
independence of different scenarios sξ . Hence, the second-
stage problem can be further decomposed into several smaller-
scale sub-problems without requiring the dual problem 
information, which can be solved in parallel for computational 
efficiency. 

Sub-problem P1: 
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subject to: 
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where ,n s
t  and ,n s

t  are auxiliary positive variables, which are 
introduced only in the BD algorithm. Eq. (52) relaxes the 
coupling variables between the first-stage and second-stage 
problems to guarantee the feasibility of sub-problems in the BD 
algorithm. In addition, n

st  denotes , ,n s n s
 t t . ν  is a large 

positive vector. ,n sπ  is the dual variable vector. When the sub-
problems are solved under the C&CG algorithm, the auxiliary 
variables ,n s

t  and ,n s
t  are both set to 0. Finally, a master 

problem and sub-problems are iteratively solved until the 
convergence threshold is met. It should be emphasised that the 
reformulated problems are convex mixed-integer programs 
with linearised chance constraints and ambiguity set 
representations. The HPS algorithm iteratively solves a 
decomposed master problem and multiple sub-problems, where 
each sub-problem is convex and feasible under the worst-case 
probability distribution.  

Based on the convergence properties of the BD and C&CG 
methods [35, 36], the HPS algorithm can guarantee finite-step 
convergence to the global optimum. The overall steps of 
solution algorithm are outlined as follows. 

Algorithm 1: Hybrid Parallel Solution (HPS) Algorithm 
1. Initialise: Set the optimality tolerance gap 0.0001   . Initialise: 

BL    , BU    , and 0n   . Also, the initial solution of sub-

problem P1 is set to T
,( )ˆ ˆ ˆ, ,n n

s s n sp z π . 

2. If B B B/U L U   : do  

3. Solve master problem P0 based on T
,( )ˆ ˆ ˆ, ,n n

s s n sp z π   and obtain the 

optimal solution 1 1 1ˆ ˆ ˆ( , , )n n n  x y ; 
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B 1 1 1ˆ ˆ ˆn n nL    a x b y ; 

5. Substitute 1 1ˆ ˆ( , )n n x y   into sub-problem P1 and then solve P1 to 

obtain the optimal solution 1 1 T
1,( )ˆ ˆ ˆ, ,n n

s s n sp  
z π ; 

6. Update the worst-case probability 1ˆ n
sp  ; 

7. Update T T
B B 1 1 sp 1 1ˆ ˆ ˆ ˆmin { , ( , )}n n n nU U f     a x b y x y ; 

8. Create variables 1n
s
z  and add constraints 
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to master problem; 
9. 1n n 
10. Else: do 
11. Output the optimal dispatch solutions.
12. End 



IV. CASE STUDIES

This section conducts case studies to verify the superiority of 
the proposed approach over other methods. Meanwhile, a 
Monte Carlo algorithm is employed to generate independent 
wind power output scenarios that fit the historical data, and 
these scenarios are referred to as data samples. In addition, the 
probabilistic distance algorithm is used to group wind power 
output scenarios into K  clusters. The TDRC model is solved 
using the Gurobi 10.0.3 solver in MATLAB 2019b. 

G
Bus 18

G G
Bus 21 Bus 22

Bus 23

G
G

G
G

Bus 14

Bus 19 Bus 20Bus 16

Bus 15

Bus 17

Bus 11Bus 24

Bus 3

Bus 9

G

Bus 13

B

A

G

C

D

E

GG

Bus 4

Bus 5
Bus 8

Bus 7Bus 2

cable

Bus 1

Bus 6

Bus 12

Bus 10

cable

F

G

G Thermal unit W Wind Farm

W

W

W

W

Fig. 3. Architecture diagram of the IEEE 24-bus system. 

(1) IEEE 24-bus System: This system has 17 loads, 10 units,
and 38 lines, and its peak load level is 2,850 MW. In addition,
there are 4 wind farms at buses 1, 6, 11, and 16, respectively, as
shown in Fig. 3. This results in a wind power penetration level
of over 28%. Furthermore, the wind power utilisation rate is set
to 85%, i.e., 0.85w  . 

A. Impact of the Data Sample Size
This case analyses the impact of data sample size on the

TDRC model by varying the data sample size from 10 to 5000. 
Additionally, the load shedding and wind power curtailment 
levels are held constant at 0.050 and 0.100, respectively. The 
number of clusters is 5K  , and the confidence level   is 
0.95. Table II shows the simulation results under different data 
sample sizes. 

It is observed that the total cost decreases as the data sample 
size increases. For example, if the data sample size is equal to  
1000 (i.e., S 1000N  ), the total cost is $648,702.05, while it 
reduces to $648,021.13 when S 3000N  . This decrease occurs 
because a larger sample size shrinks the designed ambiguity 
confidence set, making the dispatch strategy less conservative. 
Moreover, in the proposed TDRC model, as the sample size 
increases, the total cost almost approaches that of the SP and 
Wasserstein-based DRO models. This is because, with more 
available data samples, the wind power output probability 
distribution becomes closer to the true distribution, while 
diminishing the difference in performance between the 
designed ambiguity confidence set and the Wasserstein-based 
ambiguity set. The results further indicate that the dispatch 
decisions obtained in the RO model incur the highest total cost, 
which results from its consideration of the worst-case scenario 
to make overly conservative dispatch decisions. Since the KL-
divergence-based ambiguity set exponentially reweights tail 
scenarios, increasing the likelihood of extreme events, the KL-
based DRO model tends to yield more conservative dispatch 
decisions with a higher total cost. However, the proposed 
TDRC approach can yield less conservative decisions, 
achieving greater cost effectiveness. Meanwhile, the results 
indicate that if the TDRC model is partially designed with an 
ambiguity confidence set using only the 1L  norm (denoted as 
the 1L -based DRO model), the total cost becomes higher with 
more conservative dispatch decisions than the full TDRC model 
(i.e., the proposed TDRC approach), which combines the 1L
norm and the L  norm, under the same data sample size. This 
is due to the fact that their combination yields a smaller 
ambiguity confidence set compared to that derived by only 1L
norm. To sum up, the proposed TDRC approach is superior to 
other approaches in adjusting its conservativeness. 

TABLE II.  
COMPARISON OF TOTAL COST BETWEEN VARIOUS MODELS UNDER DIFFERENT DATA SAMPLE SIZES ($) 

# of data TDRC 1L SP [12] RO [14] KL [20] Wasserstein [21] 
10 651277.42 651507.18 649909.42 653496.95 651092.04 650031.56 
50 650010.34 650312.81 649698.17 653496.95 650297.61 649766.32 

200 648728.16 648777.30 648679.37 653496.95 648909.61 648702.77 
1000 648702.05 648711.84 648688.07 653496.95 648810.91 648702.02 
3000 648021.13 648025.28 648016.90 653496.95 648810.65 648025.93 
5000 647552.45 647554.39 647550.81 653496.95 647590.03 647555.59 

† The L1-, KL- and Wasserstein-based methods correspond to different DRO models. The full names of these models are not provided in the table due to space limitations. 



B. Impact of the Confidence Level
This case examines the impact of the confidence level (i.e.,

 ) on the conservativeness of the TDRC model. Meanwhile, 
the confidence level   influences the scalar parameter   in 
equations (4) and (5), which in turn affects the conservativeness 
of dispatch decisions in power systems. To analyse their effects, 
load shedding and wind power curtailment levels are set to 
0.025 and 0.050, respectively. The size of data samples is 
assumed to be 1000, i.e., S 1000N  , and the number of 
clusters K  is 5. Table III shows the simulation results under 
different parameters   and  . 

From the simulation results on the left side of Table III, it is 
observed that as   increases, the total cost also increases. This 
occurs because a larger α causes the designed ambiguity 
confidence set to include more unknown probability 
distributions of wind power output. Thus, with a higher 
confidence level, the TDRC model makes more conservative 
decisions due to the consideration of additional unknown 
probability distributions, which increases the total cost. When 
the TDRC model considers only the L1 norm to construct the 
ambiguity confidence set (i.e., 1L -based DRO model), the total 
cost in the 1L -based model is higher than that in the proposed 
TDRC model. Similarly, from the simulation results on the right 
side of Table III, it is observed that a confidence set based on a 
larger   can contain more extreme probability distributions, 
thereby leading to a higher total cost. Furthermore, the total cost 
obtained in the L -based DRO model is higher than that 
produced in the TDRC model. This is because the designed 
confidence set, which integrates both the 1L  norm and the L  

norm, is smaller than the ambiguity confidence set designed 
based on either 1L  norm or L  norm alone, making the TDRC 
model less conservative. This indicates that the proposed 
approach is superior to other approaches in designing a suitable 
ambiguity confidence set with minimum total cost. In addition, 
the TDRC model offers an alternative way for the system 
operator to flexibly regulate the conservativeness of the TDRC 
model by directly adjusting the confidence level �. 

TABLE III.  
COMPARISON OF TOTAL COST BETWEEN DIFFERENT CONDITIONS UNDER 

DIFFERENT PARAMETERS ($) 
  TDRC 1L  TDRC L

0.1 657024.06 657027.49 0.1 657164.91 657459.90 
0.2 657024.32 657027.92 0.2 657310.40 657880.66 
0.3 657024.62 657028.41 0.3 657457.44 657995.55 
0.4 657024.96 657028.96 0.4 657602.27 658010.81 
0.5 657025.37 657029.63 0.5 657685.31 658015.51 
0.6 657025.87 657030.45 0.6 657761.87 658016.70 
0.7 657026.51 657031.50 0.7 657841.06 658017.90 
0.8 657027.41 657032.98 0.8 657901.86 658022.70 
0.9 657028.96 657035.51 0.9 657959.68 658018.22 

0.99 657034.09 657043.92 0.99 657994.60 658018.22 
† The L1- and L∞-based methods correspond to different DRO models. The full names of these models 
are not provided in the table due to space limitations. 

C. Impact of the Wind Power Output Scenario Cluster
The number of clusters K  for wind power output scenarios

may have direct impacts on the dispatch decisions, which is 
reflected in the total cost. Thus, the number of clusters K  is 
varied from 5 to 15 with an incremental step of 2. The 
confidence level � is set to 0.99. In addition, the data sample 
size is 1000, i.e., S 1000N  , and wind power curtailment and 
load shedding levels both remain constant at 0.05.  

TABLE IV.  
COMPARISON OF TOTAL COST UNDER DIFFERENT WIND POWER OUTPUT SCENARIO CLUSTERS K ($) 

K TDRC 1L SP [12] RO [14] KL [20] Wasserstein [21] 
5 648918.03 648928.99 648901.63 655060.27 649031.23 648916.90 
7 648908.48 648927.61 648887.54 655060.27 649028.68 648902.77 
9 648877.32 648905.17 648852.03 655060.27 648993.53 648867.22 
11 648830.26 648866.45 648799.56 655060.27 648946.01 648814.85 
13 648823.08 648867.20 648786.58 655060.27 648944.94 648801.83 
15 648755.48 648869.36 648697.92 655060.27 648950.55 648728.25 

† The L1-, KL- and Wasserstein-based methods correspond to different DRO models. The full names of these models are not provided in the table due to space limitations. 

It is clear from Table IV that a larger cluster number K  for 
wind power output scenarios can result in a decrease in the total 
cost. For example, the total cost is $648,908.48 when K is set to 
7, whereas the total cost decreases to $648,877.32 if it is 
increased to 9. This is due to the fact that a larger number of 
clusters K  can capture more typical scenarios to support the 
proposed TDRC model in determining more accurate dispatch 
decisions, which become more effective as an increasing 
number of typical wind power output scenarios are captured. 
These typical scenarios can support the TDRC model in making 
cost-effective decisions, and the proposed approach also offers 
an opportunity for the system operator to adjust the 
conservativeness of TDRC model by varying the number of 
clusters K . Although the Wasserstein-based DRO model 
yields a slightly lower total cost than the TDRC model as the 
number of scenario clusters increases, the results remain very 

close. Nevertheless, the Wasserstein approach entails a higher 
computational complexity due to transport variables and 
nonlinear coupling, whereas the proposed approach achieves 
comparable costs with lower complexity. Meanwhile, it is 
interesting to note that the total cost in the SP model is lower 
than that in the TDRC model. This is because the proposed 
TDRC model accounts for the worst-case probability 
distribution, thereby leading to more conservative dispatch 
decisions. Nevertheless, it still outperforms both the 1L -based 
DRO, KL-based DRO and the RO models in terms of total cost, 
highlighting its superiority in adapting to uncertainty under 
different wind power output scenario clusters. 

D. Impact of the Load Shedding Level
The impact of load shedding levels on the total cost and the

upward and downward reserve costs is examined by varying the 



load shedding level from 0.005 to 0.200, i.e., 
 LSL 0.005  0.200  ， . The wind power curtailment level

remains constant at 0.025. The size of data samples is 1000, i.e., 
S 1000N  . A confidence level of 0.99   is used and the 

data is divided into five clusters, i.e., 5K  . 
Table V presents the total cost and the upward and downward 

reserve cost at different load shedding levels. The total cost 
decreases as the load shedding level increases. For instance, the 
total cost is $667,465.93 at a load shedding level of 0.01, 
whereas it decreases to $660,238.20 at a load shedding level of 
0.020. In addition, it is observed that the load shedding level 
can have a more significant impact on the upward reserve than 
on the downward reserve. This is due to the fact that when the 
available power is insufficient to meet the load demand, it 
necessitates providing more upward reserve from units to 
mitigate load shedding, resulting in a higher upward reserve 
cost compared to the downward reserve cost. Thus, the upward 
reserve cost is consistently higher than the downward reserve 
cost at all load shedding levels. Additionally, Fig. 4 shows the 
ratio of upward and downward reserve costs to the total cost, 
respectively. The ratio of upward reserve cost to total cost 
gradually decreases as the load shedding level increases, since 
a larger load shedding level can relieve the requirement for the 
upward reserve provided by units. However, the ratio of 
downward reserve cost to total cost remains around 0.2% when 
the load shedding level is greater than or equal to 0.100, since 
the requirement for downward reserve remains almost 
unchanged. This suggests that the proposed approach provides 
an effective method for selecting a load shedding level based 
on various cost budgets. 

TABLE V.  
EFFECTS OF THE LOAD SHEDDING LEVELS ($) 

LSL Total cost Upward reserve cost Downward reserve cost 

0.005 674149.29 13978.41 5638.37 
0.010 667465.93 12946.95 4678.07 
0.020 660238.20 12276.32 3490.63 
0.025 657766.96 12024.44 3102.74 
0.050 649642.65 10920.20 2063.06 
0.100 640864.88 9331.53 1244.63 
0.200 632168.01 6666.57 1239.18 
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Fig. 4. Ratio of upward and downward costs to total cost under different load 
shedding levels.

E. Impact of the Wind Power Curtailment Level
This case further investigates the impact of wind power

curtailment levels on total and upward and downward reserve 
costs. Therefore, the wind power curtailment level is varied 
from 0.005 to 0.200, i.e.,  WPCL 0.005  0.200  ， . The 
confidence level � is maintained at 0.99, and the size of data 
samples is 1000, i.e., S 1000N  . The load shedding level is 
fixed at 0.025, and the number of clusters K  is set to 5.  

TABLE VI.  
EFFECTS OF THE WIND POWER CURTAILMENT LEVEL ($) 

WPCL Total cost Upward reserve cost Downward reserve cost 

0.005 660023.01 12190.88 6696.47 
0.010 658985.04 12024.44 5279.21 
0.020 658043.22 12024.44 3660.20 
0.025 657766.96 12024.44 3102.74 
0.050 657034.09 11981.49 1532.13 
0.100 656720.83 11841.55 604.25 
0.200 656640.27 11752.61 230.93 
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Fig. 5. Ratio of upward and downward reserve costs to total cost under 
different wind power curtailment levels.

From Table VI, the results show that the downward reserve 
cost decreases as the level of wind power curtailment increases. 
It is observed that the total cost is $149,194.36 when the wind 
power curtailment level is 0.010, whereas the total cost is 
$103,439.95 when the curtailment level is 0.020. It is worth 
noting that the wind power curtailment level does not 
significantly affect the upward reserve cost. The primary cause 
is that the downward reserve is mainly used for regulating wind 
power output. In particular, in high wind situations where the 
total generation exceeds the system load, both downward 
reserve and wind power curtailment actions are taken to ensure 
power balance. The higher the wind power curtailment level, 
the less downward reserve is required for the downward 
regulation of excessive generation. This indicates that the 
relationship between wind power curtailment and downward 
reserve is stronger than that with the upward reserve. Similarly, 
Fig. 5 also shows the ratio between upward and downward 
reserve costs and total cost. With a higher wind power 
curtailment level, the ratio between downward reserve cost and 
total cost becomes lower. In contrast, the ratio between upward 
reserve cost and total cost is maintained at around 1.82%, since 



the requirement for upward reserve shows little variation. 
Similarly, the wind power curtailment level can be reasonably 
selected to adjust the TDRC model’s upward and downward 
reserve cost and dispatch decisions according to different 
operational cost budgets of power systems. 
(2) IEEE 118-bus System: To verify the benefits of the
proposed TDRC approach in large-scale power systems,
additional numerical simulations are performed on the IEEE
118-bus system with a peak load demand of 6,600 MW. Fig. 6
illustrates the locations of five wind farms with an installed
capacity of 200 MW, which are at buses 1, 29, 60, 92 and 118.
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Fig. 6. Architecture diagram of the IEEE 118-bus system. 

F. Impact of the Wind Power Utilisation Rate
This case study examines the impact of wind power

utilisation rate w  on the TDRC model. From chance 
constraint (22), it is observed that w  can affect the system 
operator’s dispatch decisions. Accordingly, the wind power 
utilisation rate w  is varies from 0.80 to 0.95. Similarly, the 
size of data samples is 1000, i.e., S 1000N  . The confidence 
level � is assumed to be 0.99, and the number of clusters K  is 

5. The wind power curtailment level is set within the interval
[0.005, 0.200], while the load shedding level is fixed at 0.025.

Table VII shows the total cost under different wind power 
utilisation rates. For a given wind power curtailment level, the 
total cost decreases as the wind power utilisation rate increases. 
This is because, to guarantee a higher wind power utilisation 
rate, the system operator needs to dispatch more unit generation 
and store more reserve to absorb wind power. In contrast to the 
downward reserve cost, the upward reserve cost may decrease 
as the wind power utilisation rate increases. When WPCL  is 
fixed at 0.050, the upward reserve cost is $21,844.73 if w  is 
set to 0.85, while it is $24,798.37 when w  is 0.95. However, 
the overall trend of the upward reserve cost still shows an 
increase with the increase in the wind power utilisation rate. 
Moreover, the wind power curtailment level has less effect on 
the upward reserve cost compared to the downward reserve cost. 
This is because the upward reserve is more sensitive to the load 
shedding level than to the wind power curtailment level, as 
clarified above. Meanwhile, Fig. 7 shows the corresponding 
total cost of the proposed TDRC model under different 
combinations when w  is 0.95. This means that the system 
operator can flexibly determine dispatch decisions based on the 
cost budget by considering different combination scenarios. 
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Fig. 7. Total cost for the power system operation under different combination 
conditions. 

TABLE VII.   
COMPARISON OF TOTAL COST UNDER DIFFERENT WIND POWER UTILISATION RATES ($) 

G. Comparative Analysis
In this case, the TDRC model is further compared with other

models to validate the performance of the proposed approach. 
The size of data samples is set to range from 10 to 5000. The 
confidence level   is 0.95. Wind power curtailment and load 

shedding levels are held constant at 0.05 and 0.025, respectively. 
Table VIII shows the simulation results under different data 
sample sizes. 

It can be observed that as the size of data samples increases, 
the total cost decreases. For the same data sample size, the total 

LSL 0.025  0.80w  0.85w  0.95w 

WPCL Total 
cost 

Upward reserve 
cost 

Downward
reserve cost 

Total 
cost 

Upward reserve
cost 

Downward
reserve cost 

Total 
cost 

Upward reserve 
cost 

Downward
reserve cost 

0.005 1401423.89 23067.36 41.62 1407116.40 24888.59 6797.27 1423293.58 24827.53 23992.61 
0.010 1400915.19 20845.10 0 1404937.16 24798.49 4119.58 1420351.45 24798.37 20999.89 
0.020 1400553.56 18812.05 0 1402646.16 24798.50 1183.80 1417129.41 24798.37 17718.73 
0.025 1400490.52 18226.90 0 1401978.73 24748.48 224.82 1416032.86 24827.53 16588.95 
0.050 1400350.75 17026.52 0 1401116.18 21844.73 0 1412428.20 24798.37 12802.98 
0.100 1400255.66 16175.74 0 1400542.07 18771.07 0 1408487.07 24817.20 8440.11 
0.200 1400182.96 15561.17 0 1400329.04 16852.15 0 1404176.85 24798.49 3187.84 



cost in the TDRC model is lower than that of the 1L -based, KL-
based DRO and RO models, except for that in the Wasserstein-
based DRO and SP models. However, with an increase in 
available data samples, the proposed TDRC model almost 
converges to the Wasserstein-based DRO and SP models, as an 
increased number of available data samples results in a more 
accurate probability distribution estimation, while reducing the 
performance gap between the combined 1L  and L  norms 
ambiguity confidence set and the Wasserstein-based ambiguity 
set. Thus, the proposed TDRC approach has advantages in 
determining dispatch decisions for the system operator in the 
unit commitment problem when compared with other methods. 

Meanwhile, it is worth mentioning that the maximum 
solution time is 240.68 seconds for the case presented in Table 
VIII, which is significantly lower than the 259.64 seconds 
required by the C&CG algorithm. This is also well within the 
day-ahead dispatch time scale of 24 hours. This is due to the 
fact that the proposed HPS algorithm combines the advantages 
of BD and C&CG approaches, thus resulting in shorter 
computational time. This indicates that the proposed HPS 
algorithm enhances computational efficiency in solving large-
scale problems. Furthermore, this case validates the scalability 
and superiority of the proposed TDRC approach for large-scale 
power systems. 

TABLE VIII.   
SIMULATION RESULTS BETWEEN DIFFERENT APPROACHES IN IEEE 118-BUS SYSTEM ($) 

# of data TDRC 1L SP [12] RO [14] KL [20] Wasserstein[21] 
10 1403286.45 1403540.81 1402095.34 1415128.72 1403353.64 1402179.72 
50 1400655.17 1400849.53 1400305.40 1415128.72 1401236.70 1400358.33 

200 1400676.48 1400773.77 1400574.60 1415128.72 1400992.37 1400612.39 
1000 1400179.18 1400200.20 1400154.81 1415128.72 1400343.59 1400177.81 
3000 1399690.23 1399783.22 1399758.13 1415128.72 1399747.70 1399692.40 
5000 1399640.59 1399654.70 1399638.69 1415128.72 1399676.05 1399642.52 

† The L1-, KL- and Wasserstein-based methods correspond to different DRO models. The full names of these models are not provided in the table due to space limitations. 

(3) Cyber-Physical Power System Dispatch Platform: To
further verify the practical applicability of the proposed TDRC 
approach, additional experiments are performed on a practical 
126-bus system using a CPPS dispatch platform. This system
has 91 loads, 54 units, and 194 lines, and its peak load level is
3,668 MW. In addition, there are 18 wind farms at buses 4, 6,
10, 12, 15, 18, 19, 24, 25, 26, 31, 32, 46, 69, 99, 116, 119 and
120, respectively. Detailed information about this 126-bus
system can be found in [37]. Meanwhile, the architectural
diagram of the CPPS dispatch platform is shown in Fig. 8, and
this platform is mainly composed of three parts: the physical
layer, the cyber layer and the control centre.

1) Physical layer: In the developed CPPS dispatch platform,
this physical layer comprises the digital power system and 
remote terminal unit (RTU). This digital power system 
simulates the operation state of the system and serves as the data 
source in the physical layer. It requires accurate modelling of 
the dynamic behaviour of power systems. Here, we simulate a 
practical 126-bus power system. The RTU serves as the 
interface between the physical and cyber layers. It not only 
acquires measurements from the digital power system and 
transmits them to the control centre through the cyber layer but 
also receives control commands from the control centre and 
executes them at the physical layer. 

2) Cyber layer: This cyber layer comprises the network
switch and the front-end processor (FEP). The network switch 
serves as the communication hub, forwarding data packets from 
the RTU to the FEP and ensuring reliable data transmission 
within the system. Note that the measurements collected by the 
RTU are transmitted to the cyber layer through the IEC 60870-
5-104 protocol. The FEP receives the data from multiple RTUs,
decodes and parses the communication frames, and converts
them into a unified data format which is then published to
control systems such as SCADA via the MQTT protocol,

allowing the control centre to subscribe to and utilise the data 
efficiently. 

3) Control centre: In this platform, the control centre is
composed of the SCADA system and the EMS. These two 
systems are interconnected through the network switch, and in 
the CPPS dispatch platform, their communication is 
implemented via the HTTPS protocol, which ensures secure 
and reliable data exchange. The SCADA system performs real-
time monitoring, visualisation, and basic control of the power 
systems with wind power and units, while the EMS conducts 
higher-level analysis such as power flow calculation, wind 
power forecasting, and optimal dispatch based on the 
operational data provided by SCADA system. 

Fig. 8. Architecture of CPPS dispatch platform based on the practical 126-bus 
system.

Based on the CPPS dispatch platform, a practical 126-bus 
power system can be simulated within a realistic dispatch 
environment that integrates the SCADA system and EMS. In 
this test, the 24-hour load fluctuation curve is shown in Fig. 8. 
Meanwhile, based on 5-minute historical wind power output 



measurements, a gradient boosting regression (GBR) model is 
employed with lag and rolling statistical features to forecast the 
24-hour wind power output. This forecasting process is not the
focus of this paper and does not affect the essence of our
proposed approach. Note that the load shedding and wind
power curtailment levels are set to 0.005. In addition, the
confidence level   is 0.99, and the wind power utilisation rate
is set to 95%, i.e., 0.95w  . The number of clusters is 7K  ,
and the size of data samples is 1000, i.e., S 1000N  . The test
results under different models are shown in Table IX.

TABLE IX.  
SIMULATION RESULTS UNDER DIFFERENT MODELS IN A PRACTICAL 126-BUS 

SYSTEM 

Models Total cost ($) 
Calculation time (second) 

HPS C&CG BD 
TDRC 942067.16 529.93 546.71 >1800
L1 942134.13 538.31 541.09 >1800
SP [12] 942066.05 534.08 553.01 >1800
KL [20] 942072.42 538.44 553.44 >1800
Wasserstein [21] 942066.92 537.55 551.57 >1800

† The L1-, KL- and Wasserstein-based methods correspond to different DRO models. The full names 
of these models are not provided in the table due to space limitations. 
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Fig. 9. 24-hour load fluctuation curve. 

The results show that the proposed TDRC model achieves a 
lower total cost (i.e., $942,067.16) than the 1L -based and 
Wasserstein-based DRO methods, demonstrating superior 
economic performance. Although the total cost under the 
TDRC model is close to that obtained by the SP and 
Wasserstein-based DRO models, their practical applicability is 
limited because the SP method relies on assumed probability 
distributions and the Wasserstein approach involves high 
computational complexity. In addition, the EMS executes the 
HPS algorithm to solve the TDRC model in order to obtain the 
optimal dispatch decisions within 529.93 seconds, while data 
transmission and control instruction execution are completed in 
less than 1 second. Considering the day-ahead dispatch horizon, 
this computation time is acceptable. In addition, since real-time 
dispatch in power systems is typically updated every 15 
minutes, the proposed HPS algorithm can be executed within 
this operational window to find the optimal solution, 
demonstrating the real-time applicability of the proposed 

TDRC approach for large-scale power systems. It is worth 
noting that the HPS algorithm converges faster than the C&CG 
method and avoids the non-convergence issue of BD under the 
same tolerance. It achieves convergence within approximately 
530 seconds, while C&CG requires 540-550 seconds and BD 
fails to converge within 1800 seconds. These results confirm 
the superior computational efficiency and scalability of the 
proposed HPS algorithm for large-scale power system 
applications. In this paper, the wind power output forecasting 
code and the hardware-in-the-loop demonstration video of the 
proposed TDRC approach are publicly available and can be 
accessed online [38]. 

V. CONCLUSION AND FUTURE DIRECTION

This paper proposes a two-stage distributionally robust 
chance-constrained (TDRC) model for the unit commitment 
problem with wind power uncertainty. The TDRC model offers 
a comprehensive framework to address the inherent uncertainty 
of wind power and enhance the robustness of dispatch decisions 
in power systems. By constructing an ambiguity confidence set 
to manage wind power uncertainty and incorporating chance 
constraints to flexibly regulate wind power curtailment and load 
shedding levels, the model ensures system resilience against 
unpredictable variations in renewable energy generation. To 
obtain the optimal dispatch strategy, a hybrid parallel solution 
(HPS) algorithm is developed by integrating the advantages of 
BD and C&CG methods, thereby improving computational 
performance. The HPS algorithm decomposes the TDRC model 
into a master problem and multiple sub-problems that can be 
solved in parallel without relying on duality information, thus 
enhancing scalability and efficiency. The effectiveness and 
practical feasibility of the proposed TDRC approach are 
validated through extensive numerical simulations and further 
demonstrated on a cyber-physical power system dispatch 
platform, demonstrating its applicability in practical power 
system environments. 

In the future work, several limitations of this paper will be 
addressed to enhance the practicality of the proposed model. 
More specifically, 1) the TDRC model only considers wind 
power uncertainty, while other stochastic factors such as load 
demand, photovoltaic generation, and market price fluctuations 
are not simultaneously considered. Further research will be 
conducted on incorporating multi-source uncertainties to 
provide a more comprehensive representation of stochastic 
characteristics in power systems; 2) the static and decision-
independent ambiguity set may limit the TDRC model’s ability 
to capture the interaction between dispatch decisions and 
uncertainty realisations. Developing a decision-dependent 
ambiguity set will better reflect this endogenous correlation 
between dispatch decisions and uncertainty realisations; 3) 
although the HPS algorithm improves computational efficiency, 
its scalability for larger-scale systems with high wind 
penetration still requires enhancement. Advanced 
decomposition and parallelisation methods will be further 
explored to improve the adaptability of the proposed model for 
large-scale real-world applications. In addition, future work 
will explore advanced machine learning approaches for 
predicting commitment decisions with high confidence and 



fixing a subset of binary variables to further improve 
computational efficiency. 
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