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Abstract—With increasing wind power penetration, the
inherent uncertainty of wind power poses significant
challenges to dispatch decisions in power systems. To
address this issue, this paper proposes a two-stage
distributionally robust chance-constrained (TDRC) model
for the unit commitment problem with wind power
uncertainty. In this model, an ambiguity confidence set is
developed to characterise wind power uncertainty with
unknown probability distributions, and wind power
curtailment and load shedding levels are modelled as
chance constraints to balance wind power uncertainty and
system security of dispatch decisions. A hybrid parallel
solution (HPS) is proposed for efficient computation by
integrating Benders decomposition (BD) and column-and-
constraint generation (C&CG) methods. Case studies on the
IEEE 24- and 118-bus systems demonstrate the rationality
of the proposed approach, while experiments on a practical
126-bus system using the cyber-physical power system
(CPPS) dispatch platform further validate the effectiveness
and practical applicability of the proposed TDRC model.

Note to Practitioners—This paper addresses the unit
commitment problem in power systems with uncertain wind
power by developing a two-stage distributionally robust
chance-constrained (TDRC) model. This model captures
the worst-case probability distribution of wind power
output within an ambiguity confidence set that is designed
based on L, and L norms. This ensures that the dispatch

decisions can handle extreme scenarios in wind power
output, thereby improving the reliability of the system.
Meanwhile, chance constraints are employed to regulate
wind power curtailment and load shedding levels, balancing
the flexibility and conservativeness in dispatch decision-
making. Finally, a hybrid parallel solution (HPS) algorithm
is developed to solve the TDRC model, innovatively
integrating Benders decomposition (BD) and column-and-
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constraint generation (C&CG) methods to improve
computational efficiency. The proposed TDRC framework
can be implemented for security dispatch of practical large-
scale power systems with uncertain wind power.

Index Terms— Ambiguity confidence set, power systems,
wind power curtailment, load shedding, hybrid parallel
solution algorithm.

NOMENCLATURE
Constants and Parameters
NT Number of time periods in 24 h.

Indices of units, loads, wind farms, and

i,d,w,t . .
> time periods.

D Confidence set for wind power output

probability distribution.

NG, ND, NW Numbers of units, loads, and wind farms.

s Index of wind power output scenarios.

p! Initial probability value.

B, Wind power utilisation rate.

™, T Minimum ON and OFF time of unit i .

X, Xl"ff ON and OFF time of unit i at time .

C? Generation cost of unit 7.

cv ot Upward and downward reserve costs of
P unit 7.

S, s Startup and shutdown costs of unit 7.

—up —dw Maximum upward and downward reserve
P of unit 7.

P pe Upper and lower bounds of generation of
i unit 7.

-t Upper and lower bounds of downward
¢ 0 reserve of units at time ¢.

cw w Upper and lower bounds of upward
oA reserve of units at time ¢ .

SF Shift factor matrix.

KP . KD . KW Bus-unit, bus-load, and bus-wind farm

’ ’ incidence matrices.

f Power flow limit vector of lines.

pl pe Load demand and load demand vector of
dt> Tt load buses at time ¢ .

v Forecasted power output of wind farm w
wit at time ¢.

pro (s) Power output scenario s of wind farm w
Wt at time ¢.

isL Load shedding level (LSL) limitation.
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Wind power curtailment level (WPCL)

Vweer limitation.

H Power flow capacity expansion factor.

Variables

» Probability of wind power output scenario
s S.

P Generation of unit { at time ¢.

AP (s) Ppwer .curt'flilment of wind farm w at

" time ¢ in wind power output scenario s .

L.y, z, Binary corr_lmitment, ' s.tartup, and
BET AR shutdown variables of unit i at time ¢.

- Upward and downward reserve of unit i
L2 ht at time 7.

P Power output of wind farm w at time .

Upward and downward reserve provided
by unit i at time ¢ in wind power output
scenario s .

Load shedding of load bus & at time ¢ in

r(s), 15 (s)

AP/ (s ; .
0 (9) wind power output scenario s .
P# Generation vector of units at time ¢.
w Power output vector of wind farms at time
F ‘.
f Power flow vector of lines at time 7.
PO (s) Generation vector of units at time ¢ in
s . .
! wind power output scenario s .
AP (s) Power curtailment vector of wind farms at
o8 time ¢ in wind power output scenario s .
AP (5) Load shedding vector of load buses at time
! ¢t in wind power output scenario S.
, Power flow vector of lines at time ¢ in
F'(s)

wind power output scenario s .

I. INTRODUCTION

VER the last several decades, environmental issues and

energy crises have promoted the sustainable development
of renewable energy, such as wind power [1-3]. For example,
Uruguay, Ireland, and the United Kingdom now generate 40.4%,
38.0%, and 35.5% of their electricity from wind power,
respectively [4]. However, high wind power penetration also
poses a security risk to power system operation as it may
compromise dispatch decisions due to its inherent uncertainty
[5, 6]. Thus, it is crucial for the system operator to utilise
Supervisory Control and Data Acquisition (SCADA) system
and energy management system (EMS) to manage wind power
uncertainty in order to make robust dispatch decisions, such as
economic dispatch [7, 8] and unit commitment [9, 10].

In practice, day-ahead unit commitment and economic
dispatch aim to minimise the operational cost of power systems
by considering uncertain wind power, while enhancing the
reliability of the system based on dispatch decisions [11]. At
present, several advanced modelling methods are employed to
deal with uncertain wind power. For example, stochastic
programming (SP) (e.g., [12, 13]) and robust optimisation (RO)
(e.g., [14, 15]) techniques are widely utilised to address wind
power uncertainty and determine robust dispatch decisions.
Here, the SP approach characterises the uncertainty of wind

power output by generating a set of representative scenarios
derived from an assumed probability distribution of wind power.
Nevertheless, since the true distribution of wind power output
is often unknown, a large number of scenarios must be
constructed to sufficiently capture the underlying stochastic
behaviour, which inevitably results in a significant
computational burden. In contrast, a RO approach characterises
uncertainty through an ambiguity set that encompasses all
possible realisations of uncertain parameters, without relying
on a specific probability distribution. However, this method
often yields overly conservative dispatch decisions, as it
focuses on the worst-case realisation of uncertainty, which is
typically of low probability or even unrealistic under practical
power system operating conditions.

To address these issues in SP and RO methods, the authors
in [16, 17] proposed a distributionally robust optimisation
(DRO) approach for power systems against uncertainties. The
DRO method considered uncertainty in the probability
distributions of uncertain variables, thereby making more
appropriate dispatch decisions. Thus, a moment-based DRO
method was developed in [18] for the system operator to
determine the optimal dispatch decisions that can hedge against
uncertain variables in the unit commitment problem. However,
incorporating second-order moment information introduces
nonlinear constraints, thereby complicating the reformulation
of the problem into a convex optimisation framework.
Moreover, this moment-based method only captures a portion
of the true distribution by considering merely the first and
second moments, which may still degrade the reliability and
economic efficiency of dispatch decisions. Then, the authors in
[19] proposed a statistical-distance-based DRO approach to
comprehensively quantify the discrepancy between probability
distributions of uncertainty. Compared with previous DRO
methods, this statistical-distance-based approach addresses
uncertain variables by incorporating more detailed information
about their probability distributions. Similarly, the authors in
[20] presented a Kullback-Leibler (KL) divergence-based DRO
methodology to address the uncertainty of wind power in the
unit commitment problem for power systems. However, this
approach applies only to continuous distributions with well-
defined probability densities. Moreover, when the wind power
output exhibits a heavy-tailed distribution, the KL.-based DRO
formulation may yield an unbounded or infinite worst-case
expectation, which undermines its practical applicability. To
deal with the drawbacks of this method, a Wasserstein metric-
based DRO approach was further developed to tackle the unit
commitment problem in power systems under uncertainty [21].
However, both continuous and discrete Wasserstein metric-
based DRO methods still present some disadvantages.
Specifically, the continuous Wasserstein metric-based DRO
method involves nonlinear functional constraints on probability
distributions of uncertain variables, leading to high
computational complexity. In the discrete Wasserstein-
distance-based DRO model, the support points are treated as
decision variables, which introduces nonlinearities and makes
the optimisation problem nonconvex. In addition, its
performance depends heavily on the sample size, as too few
samples may cause overfitting, while too many samples can
impose excessive computational burdens. Then, the authors in
[22] presented a data-driven DRO method for the unit



commitment problem in power systems with uncertain
variables, which employed a norm (e.g., L1 norm or L« norm) to
construct a confidence set that covers the probability
distribution of uncertain variables. The norm-based DRO
method neither requires moment information nor relies on
probability density assumptions, and it does not introduce
nonlinear terms, thereby achieving a better trade-off between
the economic efficiency and robustness of dispatch decisions in
large-scale power systems.

In addition, chance-constrained optimisation (CO) method is
an effective approach for solving the unit commitment problem
with uncertain variables [23]. At present, researchers have
extensively studied the distributionally robust chance-
constrained optimisation (DRCO) approach [24, 25]. For
example, a data-driven DRCO model [26] was applied to tackle
the unit commitment problem for power systems with uncertain
wind power, allowing power imbalances at a low probability
level predefined by a chance-constrained approach. In [27], the
authors proposed a chance-constrained method for energy
management involving uncertain wind power, integrated with
the DRO method, in which the power balance constraints were
formulated in a probabilistic manner. Recently, a joint chance-
constrained model based on the DRO approach was developed
in [28] for microgrids considering power system contingencies
and uncertain wind power. However, high wind power

utilisation and low wind power curtailment are often excluded
from the optimisation approach in these methods, leading to
unsustainable dispatch decisions when wind power utilisation
is encouraged under practical power system operating
conditions.

To support the utilisation of renewable energy, wind power
is often prioritised by system operators in dispatch decisions,
and wind power curtailment are therefore reduced, as is the case
in Germany [29]. By incorporating wind power curtailment
levels into dispatch decisions, the system operator can optimise
the dispatch of available renewable energy, thereby reducing
the amount of wind power that is curtailed unnecessarily. This
leads to higher wind power utilisation, which is particularly
beneficial in power systems with high renewable energy
penetration. In addition, uncertain wind power may cause
power imbalances that can result in large-scale load shedding,
which poses a significant threat to system security [30]. By
considering load shedding levels, the system operator can
establish acceptable levels of load shedding risk while still
ensuring that the overall system remains reliable even under
uncertain wind power output. Overall, from a practical power
system operation perspective, the system operator should
proactively consider wind power curtailment and load shedding
levels, balancing the wind power uncertainty and system
security in dispatch decisions.

TABLE L.
COMPARISON OF REPRESENTATIVE LITERATURE WITH THE PROPOSED METHOD
Ref. Category Unpertainty Change- Ur‘1it Wipd power Lpad Solu_tion Dispatch
handling methods constrained commitment curtailment level shedding level algorithms  Platforms
[12] SP Multiple scenarios x v x x BD x
[14] RO Worst-case scenario x v x x C&CG x
[18] Moment-based DRO First- and second order v v x x BD x
[20] KL-based DRO KL divergence x v x x C&CG x
[21] Wasserstein-based DRO Wasserstein metric x 4 x x C&CG x
[22] Data-driven DRO Confidence set x 4 x x BD x
[24]  Wasserstein-based DRO Wasserstein metric v x x x C&CG x
[26] Data-driven DRO Ambiguity set v v x x C&CG x
This paper ~ Norm-based DRO  Combined L, and L_ -norms 4 v v v BD+C&CG v

+  This paper integrates the BD and C&CG methods into a hybrid parallel solution (HPS) algorithm, denoted as BD+C&CG.

In summary, Table I presents a comparison between the
proposed approach and several representative studies in the
literature. Existing studies reveal the following research gaps:
SP approaches depend on large amounts of historical data to
generate representative scenarios, while RO approaches often
yield overly conservative dispatch decisions. Although DRO
approaches are developed to deal with wind power uncertainty,
most studies ignore wind power curtailment and load shedding
levels under practical power system operating conditions, and
these conditions are not incorporated into chance constraints to
adjust risk-averse levels for wind power uncertainty and system
security in decision-making in unit commitment. Furthermore,
few studies have developed scalable solution algorithms to
improve computational efficiency or have validated their
respective proposed methods through the practical power
system dispatch platform for large-scale systems. To address
these research gaps, this paper proposes a two-stage
distributionally robust chance-constrained (TDRC) model that
explicitly considers wind power curtailment and load shedding

levels, solved via integrated BD and C&CG methods. The main
contributions of this paper are summarised below:

(1) A two-stage distributionally robust chance-constrained
(TDRC) model is proposed for the unit commitment
problem with uncertain wind power. The TDRC model
incorporates chance constraints to flexibly regulate wind
power curtailment and load shedding levels by
constructing an ambiguity set based on L, and L,

norms to characterise the uncertainty of wind power
output. These features enable the model to achieve the
trade-off between the wind power uncertainty and
system security of dispatch decisions.

(2) To solve the TDRC model, probability theory is first
used to transform chance constraints into equivalent
deterministic constraints, reformulating the problem into
a tractable formulation. Then, a hybrid parallel solution
(HPS) algorithm is developed to iteratively solve the
TDRC model through a decomposition into a master and
multiple sub-problems. The proposed algorithm
integrates the advantages of BD and C&CG methods to



improve computational efficiency and does not rely on
duality information.

(3) Extensive case studies are conducted through both
numerical simulations and a cyber-physical power
system (CPPS) dispatch platform to verify the validity
and rationality of the proposed approach. The numerical
studies demonstrate the superior robustness and
computational efficiency of the TDRC model and the
HPS algorithm, while the SCADA and EMS integrated
CPPS dispatch platform further validates the practical
applicability of the proposed model under realistic
operational conditions.

The remainder of this paper is organised as follows: Section

IT gives the mathematical formulation and overall framework of
the TDRC model. Section III presents the linearisation of the
nonlinear constraints and develops a HPS algorithm to
efficiently solve the TDRC model. Section IV conducts case
studies on the IEEE 24- and 118-bus systems and experiments

on a practical 126-bus system using the CPPS dispatch platform.

Section V concludes this paper and discusses potential
directions for future research.

II. MATHEMATICAL FORMULATION

A. Ambiguity Confidence Set

In fact, achieving an accurate probability distribution of wind
power output is not feasible for the system operator. Thus, the
L, norm and the L norm are used to construct an ambiguity

confidence set to model wind power uncertainty, described as
follows:
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where 6 is a scalar parameter. According to [31], the following
relationships are obtained:
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where K denotes the number of clusters, and N denotes the

data sample sizes. The right-hand side of constraints (2) and (3),
denoted by « , represent the confidence level. Thus, the
following relationships are obtained:
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Fig. 1 illustrates the relationship between wind power
uncertainty and its ambiguity set. The ambiguity set is designed
to capture more possible probability distributions. The worst-
case probability distribution is identified within the ambiguity
confidence set to determine robust dispatch decisions.
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Fig. 1. Illustration of the ambiguity confidence set.

B. Proposed TDRC Model

In this section, a two-stage distributionally robust
optimisation model is developed with chance constraints based
on an ambiguity confidence set 22, aiming to regulate wind
power curtailment and load shedding levels under the worst-
case probability distribution. Specifically, the first-stage
objective is to minimise the total cost of optimal unit dispatch,
which comprises unit generation costs, startup and shutdown
costs, upward and downward reserve costs, and the expected
penalty cost from the second-stage due to wind power
curtailment and load shedding under the worst-case probability
distribution. The second-stage is essentially a bilevel max-min
problem that considers wind power uncertainty in power
systems. The upper-level problem identifies the worst-case
probability distribution within 22 , while the lower-level
problem minimises the penalty cost associated with wind power
curtailment and load shedding under the worst-case probability
distribution. The overall structure of the TDRC framework is
illustrated in Fig. 2.

First-stage
Objective: Minimise the total cost of the optimal
unit dispatchs while considering wind power
curtailment and load shedding levels.

Second-stage

Upper-level

Objective: Identify the worst-case
probability distribution based on corrective
(decisions.

SUOISIIIP IATIILIO))

Worst-case probabilit
distribution

lsuogspep yoedsip jun

Corrective decisionsf

- <

Lower-level

Objective: Minimise the penatly cost for
wind power curtailment and load shedding.

Fig. 2. Framework of the two-stage distributionally robust chance-constrained
model.

1) First-stage of the TDRC model: The first-stage of the
TDRC model is to minimise the total cost and optimise the unit
dispatch decisions to ensure acceptable levels of wind power



curtailment and load shedding. Thus, the first-stage model is

formulated below:
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where objective (6) aims to minimise the total unit dispatch cost
including the unit generation costs, startup and shutdown costs,
and upward and downward reserve costs, thereby defining the
first-stage optimal dispatch decisions objective of the TDRC
model. Constraints (7) and (8) represent the startup and
shutdown unit commitment status constraints for each unit,
respectively. Constraints (9) and (10) limit the minimum on-
and off-time of each unit, respectively. Constraint (11)
represents the power balance equation. Constraints (12) and (13)
represent the minimum and maximum generation capability
limitations for each unit, respectively. Constraints (14) and (15)
define the up and downward reserve capability constraints for
each unit, respectively. Constraints (16) and (17) represent the
up and downward reserve capability constraints for the entire
system, respectively. Constraint (18) indicates the actual wind

power output limitation. Constraint (19) calculates the power
flow, and constraint (20) restricts this power flow. Constraints
(21) and (22) are chance constraints associated with load
shedding and wind power curtailment levels, respectively.
More specifically, constraint (21) ensures that the available
generation, wind power, and upward reserve are sufficient to
meet the total demand with a probability no less than 1-y,, ,

thereby limiting the load shedding level. Constraint (22) limits
the probability of excessive wind power curtailment by
ensuring that the available downward reserve and generation
flexibility are sufficient to keep the curtailed wind power within
its allowable range with a probability not lower than 1—yyp -

Also, constraint (23) defines the binary commitment variables
I,,, v, and z;,, which represent on and off, startup, and

it
shutdown states of each unit.

2) Second-stage of the TDRC model: The second-stage of
the TDRC model aims to minimise the expected penalty cost
incurred under the worst-case probability distribution. Thus, the
second-stage model is expressed as follows:
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After the actual wind power output is observed and the unit
dispatch decisions from the first stage are determined, the
second-stage determines the corrective dispatch actions,
including the redispatch of upward and downward reserves and
the adjustment of wind power output. The objective in (24) is
to minimize the expected penalty cost associated with these
actions under the worst-case probability distribution. It is worth
emphasising that the second-stage corrective decisions across
all wind power scenarios aim to ensure that the first-stage unit
dispatch decisions remain robust enough to maintain acceptable
levels of wind power curtailment and load shedding. Based on



the unit commitment from the first stage, constraint (25)
calculates the actual unit generation in wind power output
scenario s, and constraint (26) ensures the power balance in
wind power output scenario s . Based on the on and off status
of each unit from the first-stage, constraint (27) limits the unit
generation capacity in wind power output scenario s .
Constraints (28) and (29) limit the deployment capacity of
upward and downward reserves in wind power output scenario
s . Constraints (30) and (31) limit wind power curtailment and
load shedding levels in wind power output scenario s ,
respectively. Constraint (32) calculates the power flow in each
line, which involves wind power curtailment and load shedding
in wind power output scenario s . Constraint (33) limits the
power flow in wind power output scenario s, which ensures that
the line overloading ratio is within the limit.

To sum up, the TDRC model can be formulated as a tractable
optimisation problem with objective function (34), subject to
constraints (7)-(23) from the first-stage unit dispatch and

constraints (25)-(33) from the second-stage corrective dispatch.
NT NG
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The transformation of chance constraints (21)-(22) and the
solution of the tractable problem will be discussed in the next
section. Finally, a HPS algorithm is developed to solve the
TDRC model and determine the optimal dispatch decisions for
the system operator. In this paper, although wind power is used
as a representative example of renewable energy uncertainty,
the TDRC model can potentially be extended to other
renewable sources, such as photovoltaic power from solar
farms.

III. HYBRID PARALLEL SOLUTION METHODOLOGY

A. Linearisation of Chance Constraints

In this paper, the wind power output is assumed to follow a
Gaussian distribution, which is theoretically justified by the
central limit theorem and empirically through short-term wind
power output analyses [32-34]. Although the chance constraints
(21)-(22) cannot be directly solved due to their nonlinear
formulations, they can be further transformed into deterministic
linear forms under the Gaussian distribution assumption. The
transformation equations for these chance constraints are as
follows:

Chance Constraint for Load Shedding: 1f the maximum
available power output from units, wind power, and upward
reserve capacity is insufficient to meet the load demand, load
shedding will be required to ensure power balance in power
systems. It is worth noting that constraint (21) can be
equivalently transformed into equation (35).

ND NG NG
ST 2

Hence, Eq. (35) is the deterministic equivalent of the chance
constraint on load shedding. It is derived by applying quantile-
based reformulation to convert the probabilistic constraint in

1

= Dw w2
e 3P -2 Y] e
w=1

w=1

(21) into a tractable deterministic formulation. In this equation,
Zs. denotes the standard normal quantile corresponding to the

violation probability y, , and o), represents the standard

deviation of the wind power uncertainty for wind farm w at
time ¢ . This formulation ensures that the total available
generation and upward reserve are sufficient to satisfy the load
demand in at least 1-y; of all scenarios, thereby
guaranteeing system reliability under uncertain wind power
output conditions.

Chance Constraint for Wind Power Curtailment. If the
excess power output from units, wind power, and downward
reserve cannot be absorbed by the load demand, wind power
will be curtailed in power systems. However, to guarantee the
wind power utilisation, the wind power utilisation rate is
required not to fall below its minimum utilisation rate S, . Note
that this chance constraint (22) can be further reformulated into
the following deterministic form:

z ZwpcL [Z(ﬁ Uw) J =B, prnr

w=1 w=1

NG o ND 4
Do+ P,
i=1 d=1

Vi (36)

Here, Eq. (36) represents the deterministic equivalent of the
chance constraint on wind power curtailment. It is derived
through the quantile-based reformulation of the probabilistic
constraint in (22), converting the stochastic inequality into a
tractable deterministic formulation. In this equation, Zjq,
denotes the standard normal quantile associated with the

violation probability yype. , and o)., denotes the standard

w,t
deviation of wind power uncertainty for wind farm w at time
¢t . The parameter f, denotes the minimum acceptable wind

power utilisation rate. This formulation ensures that, in at least
1—7wpc Of all scenarios, the downward reserve and load

demand are sufficient to absorb wind power fluctuations,
thereby keeping the wind power curtailment within its
allowable level.

B. Linearisation of L, and L norms

Similarly, L, and L, norms are transformed into linear
formulations to facilitate the optimisation solution.
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For the L norm case, the nonlinear term max|p, - p, | <0
in 22 can be replaced by the following constraint (39).
0
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C. Overall framework of the HPS Algorithm

For simplicity and without loss of generality, the TDRC
model can be represented in the following compact form:

len {aTx+bTy+rprvlggﬁf ) dr/r(lir)lyé)hTzz} (40)
subject to:

Ax<e xe{0,1} (41)

Bx+Cy<d (42)

Fx+Dy+G¢ +Hz < g Vs (43)

where vector x represents binary variables and vector y

represents continuous variables in the first-stage problem.
Vector z, represents continuous variables in the second-stage

problem. Notably, vector &, represents the wind power output

. . ,0 .
scenario, i.e., P (s). Matrix A and vector e represent the

coefficient matrices and constant vectors of constraints (7)-(10),

respectively. Matrices B, C , and vector d denote the
coefficient matrices and constant vectors of constraints (11)-
(22), respectively. Matrices ¥ , D, G, H, and vector g are

the coefficient matrices and constant vectors of constraints
(25)-(33), respectively.

The developed HPS algorithm is a hybrid parallel-based
approach that does not rely on duality information, and it
incorporates the advantages of the BD and C&CG methods to
improve computational efficiency. To solve the overall
problem, the TDRC model is first decomposed into a master
problem P0 and a sub-problem P1, as described in detail below.

Master problem PO0:

min aTx+bTy+77 (44)
x.y.2¢.1
subject to:
Ax<e (45)
Bx+Cy<d (46)
> max min  h'z" Vn<r,Vs 47
n Py epzp zye¥ (x,p.&,) s ( )
Fx+Dy+G¢ +Hz! < g Vn<r,Vs (48)
K
nzY pl(h'z +v'e )+ Z P, (=3,
s=1
Vn<r,Vs (49)

where m,; denotes the dual variable associated with the
following sub-problems. n represents the current iteration
number. Constraints (47)-(48) represent the C&CG cut, and
constraint (49) represents the Benders cut.

The minimisation and summation operations corresponding
to the expected term can be interchanged due to the
independence of different scenarios &, . Hence, the second-

stage problem can be further decomposed into several smaller-
scale sub-problems without requiring the dual problem
information, which can be solved in parallel for computational
efficiency.

Sub-problem P1:

[ (X, 0,) = max z P! min Az’ +v't (50)
o Aderepe) ’
subject to:
Fx, +Dy' +Gé +Hz! <g vn<r,Vs (51
y'=y,+t, -t T, vn<r,Vs  (52)
t, 1,20 Vn<r,Vs  (53)
where ¢, and ¢, are auxiliary positive variables, which are

introduced only in the BD algorithm. Eq. (52) relaxes the
coupling variables between the first-stage and second-stage
problems to guarantee the feasibility of sub-problems in the BD

algorithm. In addition, ¢/ denotes #, +7, . v is a large

is the dual variable vector. When the sub-

n,s

positive vector.
problems are solved under the C&CG algorithm, the auxiliary

variables 7, and ¢, are both set to 0. Finally, a master

problem and sub-problems are iteratively solved until the
convergence threshold is met. It should be emphasised that the
reformulated problems are convex mixed-integer programs
with linearised chance constraints and ambiguity set
representations. The HPS algorithm iteratively solves a
decomposed master problem and multiple sub-problems, where
each sub-problem is convex and feasible under the worst-case
probability distribution.

Based on the convergence properties of the BD and C&CG
methods [35, 36], the HPS algorithm can guarantee finite-step
convergence to the global optimum. The overall steps of
solution algorithm are outlined as follows.

Algorithm 1: Hybrid Parallel Solution (HPS) Algorithm
1. [Initialise: Set the optimality tolerance gap & <« 0.0001 .

Initialise:
Ly <~ , Uy <=+, and n < 0. Also, the initial solution of sub-

53 A

problem P1is setto (p!,2!,7, ).
2. M |Uy—Ly|/Uy>¢:do
3. Solve master problem PO based on (p”,z!,#, ) and obtain the
optimal solution (X,,,, J,.1>7,.) 5

4. Update Ly < a'%,., +b" 9, +7,.

5. Substitute (X,,,¥,,) into sub-problem P1 and then solve P1 to

Antl '\n+l ~T

obtain the optimal solution (p;",2{",7,,, )

~ 71+]

6. Update the worst-case probability p

7. Update Uy < min {UB’a X, +b' Punt +j;p('%n+l’j>n+l)} 5

+1

8. Create variables z!" and add constraints

7 > max Z p! min  h'z"

peD 2eY (x,p.8,)

Fx+Dy+Gé + Hz," < g

7]>z il (hTz:H +thxn+) zp”“ L“ (y=34)

to master problem,

9. n<«n+l1

10. Else: do

11.  Output the optimal dispatch solutions.
12. End




IV. CASE STUDIES

This section conducts case studies to verify the superiority of
the proposed approach over other methods. Meanwhile, a
Monte Carlo algorithm is employed to generate independent
wind power output scenarios that fit the historical data, and
these scenarios are referred to as data samples. In addition, the
probabilistic distance algorithm is used to group wind power
output scenarios into K clusters. The TDRC model is solved
using the Gurobi 10.0.3 solver in MATLAB 2019b.

®, © ®
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Fig. 3. Architecture diagram of the IEEE 24-bus system.

(1) IEEE 24-bus System: This system has 17 loads, 10 units,
and 38 lines, and its peak load level is 2,850 MW. In addition,
there are 4 wind farms at buses 1, 6, 11, and 16, respectively, as
shown in Fig. 3. This results in a wind power penetration level
of over 28%. Furthermore, the wind power utilisation rate is set
to 85%, i.e., B, =0.85.

A. Impact of the Data Sample Size

This case analyses the impact of data sample size on the
TDRC model by varying the data sample size from 10 to 5000.
Additionally, the load shedding and wind power curtailment
levels are held constant at 0.050 and 0.100, respectively. The
number of clusters is K =5, and the confidence level o is
0.95. Table II shows the simulation results under different data
sample sizes.

It is observed that the total cost decreases as the data sample
size increases. For example, if the data sample size is equal to
1000 (i.e., Ng =1000), the total cost is $648,702.05, while it

reduces to $648,021.13 when Ng = 3000 . This decrease occurs

because a larger sample size shrinks the designed ambiguity
confidence set, making the dispatch strategy less conservative.
Moreover, in the proposed TDRC model, as the sample size
increases, the total cost almost approaches that of the SP and
Wasserstein-based DRO models. This is because, with more
available data samples, the wind power output probability
distribution becomes closer to the true distribution, while
diminishing the difference in performance between the
designed ambiguity confidence set and the Wasserstein-based
ambiguity set. The results further indicate that the dispatch
decisions obtained in the RO model incur the highest total cost,
which results from its consideration of the worst-case scenario
to make overly conservative dispatch decisions. Since the KL-
divergence-based ambiguity set exponentially reweights tail
scenarios, increasing the likelihood of extreme events, the KL-
based DRO model tends to yield more conservative dispatch
decisions with a higher total cost. However, the proposed
TDRC approach can yield less conservative decisions,
achieving greater cost effectiveness. Meanwhile, the results
indicate that if the TDRC model is partially designed with an
ambiguity confidence set using only the L, norm (denoted as

the L, -based DRO model), the total cost becomes higher with

more conservative dispatch decisions than the full TDRC model
(i-e., the proposed TDRC approach), which combines the L,

norm and the L, norm, under the same data sample size. This
is due to the fact that their combination yields a smaller
ambiguity confidence set compared to that derived by only L,

norm. To sum up, the proposed TDRC approach is superior to
other approaches in adjusting its conservativeness.

TABLE II.
COMPARISON OF TOTAL COST BETWEEN VARIOUS MODELS UNDER DIFFERENT DATA SAMPLE SIZES ($)
# of data TDRC L SP[12] RO [14] KL [20] Wasserstein [21]
10 651277.42 651507.18 649909.42 653496.95 651092.04 650031.56
50 650010.34 650312.81 649698.17 653496.95 650297.61 649766.32
200 648728.16 648777.30 648679.37 653496.95 648909.61 648702.77
1000 648702.05 648711.84 648688.07 653496.95 648810.91 648702.02
3000 648021.13 648025.28 648016.90 653496.95 648810.65 648025.93
5000 647552.45 647554.39 647550.81 653496.95 647590.03 647555.59

f  The Li-, KL- and Wasserstein-based methods correspond to different DRO models. The full names of these models are not provided in the table due to space limitations.



B. Impact of the Confidence Level

This case examines the impact of the confidence level (i.e.,
a ) on the conservativeness of the TDRC model. Meanwhile,
the confidence level a influences the scalar parameter € in
equations (4) and (5), which in turn affects the conservativeness
of dispatch decisions in power systems. To analyse their effects,
load shedding and wind power curtailment levels are set to
0.025 and 0.050, respectively. The size of data samples is
assumed to be 1000, i.e., Ng=1000, and the number of

clusters K is 5. Table III shows the simulation results under
different parameters o and 6.

From the simulation results on the left side of Table III, it is
observed that as « increases, the total cost also increases. This
occurs because a larger a causes the designed ambiguity
confidence set to include more unknown probability
distributions of wind power output. Thus, with a higher
confidence level, the TDRC model makes more conservative
decisions due to the consideration of additional unknown
probability distributions, which increases the total cost. When
the TDRC model considers only the L1 norm to construct the
ambiguity confidence set (i.e., L, -based DRO model), the total
cost in the L, -based model is higher than that in the proposed
TDRC model. Similarly, from the simulation results on the right
side of Table III, it is observed that a confidence set based on a
larger @ can contain more extreme probability distributions,
thereby leading to a higher total cost. Furthermore, the total cost
obtained in the L, -based DRO model is higher than that
produced in the TDRC model. This is because the designed
confidence set, which integrates both the L, norm and the L_

norm, is smaller than the ambiguity confidence set designed
based on either L, norm or L_ norm alone, making the TDRC

model less conservative. This indicates that the proposed
approach is superior to other approaches in designing a suitable
ambiguity confidence set with minimum total cost. In addition,
the TDRC model offers an alternative way for the system
operator to flexibly regulate the conservativeness of the TDRC
model by directly adjusting the confidence level a.

TABLE III.

COMPARISON OF TOTAL COST BETWEEN DIFFERENT CONDITIONS UNDER
DIFFERENT PARAMETERS ($)

a TDRC L [ TDRC L,

0.1 657024.06 657027.49 0.1 657164.91 657459.90
0.2 657024.32 657027.92 0.2 657310.40 657880.66
0.3 657024.62 657028.41 0.3 657457.44 657995.55
0.4 657024.96 657028.96 0.4 657602.27 658010.81
0.5 657025.37 657029.63 0.5 657685.31 658015.51
0.6 657025.87 657030.45 0.6 657761.87 658016.70
0.7 657026.51 657031.50 0.7 657841.06 658017.90
0.8 657027.41 657032.98 0.8 657901.86 658022.70
0.9 657028.96 657035.51 0.9 657959.68 658018.22
0.99 657034.09 657043.92 0.99 657994.60 658018.22

T The Li- and L.-based methods correspond to different DRO models. The full names of these models
are not provided in the table due to space limitations.

C. Impact of the Wind Power Output Scenario Cluster

The number of clusters K for wind power output scenarios
may have direct impacts on the dispatch decisions, which is
reflected in the total cost. Thus, the number of clusters K is
varied from 5 to 15 with an incremental step of 2. The
confidence level a is set to 0.99. In addition, the data sample
size is 1000, i.e., Ng =1000, and wind power curtailment and

load shedding levels both remain constant at 0.05.

TABLE IV.
COMPARISON OF TOTAL COST UNDER DIFFERENT WIND POWER OUTPUT SCENARIO CLUSTERS K ($)

K TDRC L SP[12] RO [14] KL [20] Wasserstein [21]
5 648918.03 648928.99 648901.63 655060.27 649031.23 648916.90
7 648908.48 648927.61 648887.54 655060.27 649028.68 648902.77
9 648877.32 648905.17 648852.03 655060.27 648993.53 648867.22
11 648830.26 648866.45 648799.56 655060.27 648946.01 648814.85
13 648823.08 648867.20 648786.58 655060.27 648944.94 648801.83
15 648755.48 648869.36 648697.92 655060.27 648950.55 648728.25

f  The Li-, KL- and Wasserstein-based methods correspond to different DRO models. The full names of these models are not provided in the table due to space limitations.

It is clear from Table IV that a larger cluster number K for
wind power output scenarios can result in a decrease in the total
cost. For example, the total cost is $648,908.48 when K is set to
7, whereas the total cost decreases to $648,877.32 if it is
increased to 9. This is due to the fact that a larger number of
clusters K can capture more typical scenarios to support the
proposed TDRC model in determining more accurate dispatch
decisions, which become more effective as an increasing
number of typical wind power output scenarios are captured.
These typical scenarios can support the TDRC model in making
cost-effective decisions, and the proposed approach also offers
an opportunity for the system operator to adjust the
conservativeness of TDRC model by varying the number of
clusters K . Although the Wasserstein-based DRO model
yields a slightly lower total cost than the TDRC model as the
number of scenario clusters increases, the results remain very

close. Nevertheless, the Wasserstein approach entails a higher
computational complexity due to transport variables and
nonlinear coupling, whereas the proposed approach achieves
comparable costs with lower complexity. Meanwhile, it is
interesting to note that the total cost in the SP model is lower
than that in the TDRC model. This is because the proposed
TDRC model accounts for the worst-case probability
distribution, thereby leading to more conservative dispatch
decisions. Nevertheless, it still outperforms both the L, -based

DRO, KL-based DRO and the RO models in terms of total cost,
highlighting its superiority in adapting to uncertainty under
different wind power output scenario clusters.

D. Impact of the Load Shedding Level

The impact of load shedding levels on the total cost and the
upward and downward reserve costs is examined by varying the



load shedding level
71 €[0.005, 0.200] .

remains constant at 0.025. The size of data samples is 1000, i.e.,
Ng =1000. A confidence level of a@=0.99 is used and the

data is divided into five clusters, i.e., K =5.

Table V presents the total cost and the upward and downward
reserve cost at different load shedding levels. The total cost
decreases as the load shedding level increases. For instance, the
total cost is $667,465.93 at a load shedding level of 0.01,
whereas it decreases to $660,238.20 at a load shedding level of
0.020. In addition, it is observed that the load shedding level
can have a more significant impact on the upward reserve than
on the downward reserve. This is due to the fact that when the
available power is insufficient to meet the load demand, it
necessitates providing more upward reserve from units to
mitigate load shedding, resulting in a higher upward reserve
cost compared to the downward reserve cost. Thus, the upward
reserve cost is consistently higher than the downward reserve
cost at all load shedding levels. Additionally, Fig. 4 shows the
ratio of upward and downward reserve costs to the total cost,
respectively. The ratio of upward reserve cost to total cost
gradually decreases as the load shedding level increases, since
a larger load shedding level can relieve the requirement for the
upward reserve provided by units. However, the ratio of
downward reserve cost to total cost remains around 0.2% when
the load shedding level is greater than or equal to 0.100, since
the requirement for downward reserve remains almost
unchanged. This suggests that the proposed approach provides
an effective method for selecting a load shedding level based
on various cost budgets.

from 0.005 to 0.200,
The wind power curtailment level

ie.,

TABLE V.
EFFECTS OF THE LOAD SHEDDING LEVELS ($)

VisL Total cost Upward reserve cost Downward reserve cost
0.005 674149.29 13978.41 5638.37
0.010 667465.93 12946.95 4678.07
0.020 660238.20 12276.32 3490.63
0.025 657766.96 12024.44 3102.74
0.050 649642.65 10920.20 2063.06
0.100 640864.88 9331.53 1244.63
0.200 632168.01 6666.57 1239.18
2.5 .

E= Ratio of upward reserve cost

Ratio of downward reserve cost

- = 5
= n =

costs to total cost (%)

Ratio of upward and downward reserve
j=)
[

0.005 0.010 0.020 0.025 0.050
Load shedding level
Fig. 4. Ratio of upward and downward costs to total cost under different load

shedding levels.
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E. Impact of the Wind Power Curtailment Level

This case further investigates the impact of wind power
curtailment levels on total and upward and downward reserve
costs. Therefore, the wind power curtailment level is varied
from 0.005 to 0.200, ie., pypq €[0.005, 0.200] . The
confidence level a is maintained at 0.99, and the size of data
samples is 1000, i.e., Ng =1000. The load shedding level is

fixed at 0.025, and the number of clusters K is setto 5.

TABLE VL.
EFFECTS OF THE WIND POWER CURTAILMENT LEVEL (§)

YwecL Total cost Upward reserve cost ~ Downward reserve cost
0.005 660023.01 12190.88 6696.47
0.010 658985.04 12024.44 5279.21
0.020 658043.22 12024.44 3660.20
0.025 657766.96 12024.44 3102.74
0.050 657034.09 11981.49 1532.13
0.100 656720.83 11841.55 604.25
0.200 656640.27 11752.61 230.93
20 EE  Ratio of upward reserve cost

EE Ratio of downward reserve cost

o
o

<=
~

Ratio of upward and downward reserve
costs to total cost (%)

0.005 0.010 0.020 0.025 0.050 0.100 0.200

Wind power curtailment level
Fig. 5. Ratio of upward and downward reserve costs to total cost under
different wind power curtailment levels.

From Table VI, the results show that the downward reserve
cost decreases as the level of wind power curtailment increases.
It is observed that the total cost is $149,194.36 when the wind
power curtailment level is 0.010, whereas the total cost is
$103,439.95 when the curtailment level is 0.020. It is worth
noting that the wind power curtailment level does not
significantly affect the upward reserve cost. The primary cause
is that the downward reserve is mainly used for regulating wind
power output. In particular, in high wind situations where the
total generation exceeds the system load, both downward
reserve and wind power curtailment actions are taken to ensure
power balance. The higher the wind power curtailment level,
the less downward reserve is required for the downward
regulation of excessive generation. This indicates that the
relationship between wind power curtailment and downward
reserve is stronger than that with the upward reserve. Similarly,
Fig. 5 also shows the ratio between upward and downward
reserve costs and total cost. With a higher wind power
curtailment level, the ratio between downward reserve cost and
total cost becomes lower. In contrast, the ratio between upward
reserve cost and total cost is maintained at around 1.82%, since



the requirement for upward reserve shows little variation.
Similarly, the wind power curtailment level can be reasonably
selected to adjust the TDRC model’s upward and downward
reserve cost and dispatch decisions according to different
operational cost budgets of power systems.

(2) IEEE 118-bus System: To verify the benefits of the
proposed TDRC approach in large-scale power systems,
additional numerical simulations are performed on the IEEE
118-bus system with a peak load demand of 6,600 MW. Fig. 6
illustrates the locations of five wind farms with an installed
capacity of 200 MW, which are at buses 1, 29, 60, 92 and 118.

® Wind farm

@ Thermal unit

Fig. 6. Architecture diagram of the IEEE 118-bus system.

F. Impact of the Wind Power Utilisation Rate

This case study examines the impact of wind power
utilisation rate S, on the TDRC model. From chance

constraint (22), it is observed that £ can affect the system

operator’s dispatch decisions. Accordingly, the wind power
utilisation rate S, is varies from 0.80 to 0.95. Similarly, the

size of data samples is 1000, i.e., Ny =1000. The confidence
level a is assumed to be 0.99, and the number of clusters K is

5. The wind power curtailment level is set within the interval
[0.005, 0.200], while the load shedding level is fixed at 0.025.

Table VII shows the total cost under different wind power
utilisation rates. For a given wind power curtailment level, the
total cost decreases as the wind power utilisation rate increases.
This is because, to guarantee a higher wind power utilisation
rate, the system operator needs to dispatch more unit generation
and store more reserve to absorb wind power. In contrast to the
downward reserve cost, the upward reserve cost may decrease
as the wind power utilisation rate increases. When py, s

fixed at 0.050, the upward reserve cost is $21,844.73 if S is
set to 0.85, while it is $24,798.37 when S, is 0.95. However,

the overall trend of the upward reserve cost still shows an
increase with the increase in the wind power utilisation rate.
Moreover, the wind power curtailment level has less effect on
the upward reserve cost compared to the downward reserve cost.
This is because the upward reserve is more sensitive to the load
shedding level than to the wind power curtailment level, as
clarified above. Meanwhile, Fig. 7 shows the corresponding
total cost of the proposed TDRC model under different
combinations when g is 0.95. This means that the system

operator can flexibly determine dispatch decisions based on the
cost budget by considering different combination scenarios.

Total cost of the system operation ($)

0.005

Fig. 7. Total cost for the power system operation under different combination
conditions.

TABLE VIIL
COMPARISON OF TOTAL COST UNDER DIFFERENT WIND POWER UTILISATION RATES ($)
Vs = 0.025 B,=0.80 B,=0.85 B, =095

Total Upward reserve  Downward Total Upward reserve  Downward Total Upward reserve  Downward
Tweet cost cost reserve cost cost cost reserve cost cost cost reserve cost
0.005 1401423.89 23067.36 41.62 1407116.40 24888.59 6797.27 1423293.58 24827.53 23992.61
0.010 1400915.19 20845.10 0 1404937.16 24798.49 4119.58 1420351.45 24798.37 20999.89
0.020 1400553.56 18812.05 0 1402646.16 24798.50 1183.80 1417129.41 24798.37 17718.73
0.025 1400490.52 18226.90 0 1401978.73 24748.48 224.82 1416032.86 24827.53 16588.95
0.050 1400350.75 17026.52 0 1401116.18 21844.73 0 1412428.20 24798.37 12802.98
0.100 1400255.66 16175.74 0 1400542.07 18771.07 0 1408487.07 24817.20 8440.11
0.200 1400182.96 15561.17 0 1400329.04 16852.15 0 1404176.85 24798.49 3187.84

G. Comparative Analysis

In this case, the TDRC model is further compared with other
models to validate the performance of the proposed approach.
The size of data samples is set to range from 10 to 5000. The
confidence level « is 0.95. Wind power curtailment and load

shedding levels are held constant at 0.05 and 0.025, respectively.
Table VIII shows the simulation results under different data
sample sizes.

It can be observed that as the size of data samples increases,
the total cost decreases. For the same data sample size, the total



cost in the TDRC model is lower than that of the L, -based, KL-

based DRO and RO models, except for that in the Wasserstein-
based DRO and SP models. However, with an increase in
available data samples, the proposed TDRC model almost
converges to the Wasserstein-based DRO and SP models, as an
increased number of available data samples results in a more
accurate probability distribution estimation, while reducing the
performance gap between the combined L, and L, norms

ambiguity confidence set and the Wasserstein-based ambiguity
set. Thus, the proposed TDRC approach has advantages in
determining dispatch decisions for the system operator in the
unit commitment problem when compared with other methods.

Meanwhile, it is worth mentioning that the maximum
solution time is 240.68 seconds for the case presented in Table
VIII, which is significantly lower than the 259.64 seconds
required by the C&CG algorithm. This is also well within the
day-ahead dispatch time scale of 24 hours. This is due to the
fact that the proposed HPS algorithm combines the advantages
of BD and C&CG approaches, thus resulting in shorter
computational time. This indicates that the proposed HPS
algorithm enhances computational efficiency in solving large-
scale problems. Furthermore, this case validates the scalability
and superiority of the proposed TDRC approach for large-scale
power systems.

TABLE VIIL
SIMULATION RESULTS BETWEEN DIFFERENT APPROACHES IN IEEE 118-BUS SYSTEM ($)
# of data TDRC L SP[12] RO [14] KL [20] Wasserstein[21]
10 1403286.45 1403540.81 1402095.34 1415128.72 1403353.64 1402179.72
50 1400655.17 1400849.53 1400305.40 1415128.72 1401236.70 1400358.33
200 1400676.48 1400773.77 1400574.60 1415128.72 1400992.37 1400612.39
1000 1400179.18 1400200.20 1400154.81 1415128.72 1400343.59 1400177.81
3000 1399690.23 1399783.22 1399758.13 1415128.72 1399747.70 1399692.40
5000 1399640.59 1399654.70 1399638.69 1415128.72 1399676.05 1399642.52

t  The Li-, KL- and Wasserstein-based methods correspond to different DRO models. The full names of these models are not provided in the table due to space limitations.

(3) Cyber-Physical Power System Dispatch Platform: To
further verify the practical applicability of the proposed TDRC
approach, additional experiments are performed on a practical
126-bus system using a CPPS dispatch platform. This system
has 91 loads, 54 units, and 194 lines, and its peak load level is
3,668 MW. In addition, there are 18 wind farms at buses 4, 6,
10, 12, 15, 18, 19, 24, 25, 26, 31, 32, 46, 69, 99, 116, 119 and
120, respectively. Detailed information about this 126-bus
system can be found in [37]. Meanwhile, the architectural
diagram of the CPPS dispatch platform is shown in Fig. 8, and
this platform is mainly composed of three parts: the physical
layer, the cyber layer and the control centre.

1) Physical layer: In the developed CPPS dispatch platform,
this physical layer comprises the digital power system and
remote terminal unit (RTU). This digital power system
simulates the operation state of the system and serves as the data
source in the physical layer. It requires accurate modelling of
the dynamic behaviour of power systems. Here, we simulate a
practical 126-bus power system. The RTU serves as the
interface between the physical and cyber layers. It not only
acquires measurements from the digital power system and
transmits them to the control centre through the cyber layer but
also receives control commands from the control centre and
executes them at the physical layer.

2) Cyber layer: This cyber layer comprises the network
switch and the front-end processor (FEP). The network switch
serves as the communication hub, forwarding data packets from
the RTU to the FEP and ensuring reliable data transmission
within the system. Note that the measurements collected by the
RTU are transmitted to the cyber layer through the IEC 60870-
5-104 protocol. The FEP receives the data from multiple RTUs,
decodes and parses the communication frames, and converts
them into a unified data format which is then published to
control systems such as SCADA via the MQTT protocol,

allowing the control centre to subscribe to and utilise the data
efficiently.

3) Control centre: In this platform, the control centre is
composed of the SCADA system and the EMS. These two
systems are interconnected through the network switch, and in
the CPPS dispatch platform, their communication is
implemented via the HTTPS protocol, which ensures secure
and reliable data exchange. The SCADA system performs real-
time monitoring, visualisation, and basic control of the power
systems with wind power and units, while the EMS conducts
higher-level analysis such as power flow calculation, wind
power forecasting, and optimal dispatch based on the
operational data provided by SCADA system.

Topology of the pr:

|

Fig. 8. Architecture of CPPS dispatch platform based on the practical 126-bus
system.

Based on the CPPS dispatch platform, a practical 126-bus
power system can be simulated within a realistic dispatch
environment that integrates the SCADA system and EMS. In
this test, the 24-hour load fluctuation curve is shown in Fig. 8.
Meanwhile, based on 5-minute historical wind power output



measurements, a gradient boosting regression (GBR) model is
employed with lag and rolling statistical features to forecast the
24-hour wind power output. This forecasting process is not the
focus of this paper and does not affect the essence of our
proposed approach. Note that the load shedding and wind
power curtailment levels are set to 0.005. In addition, the
confidence level « is 0.99, and the wind power utilisation rate

is set to 95%, i.e., S, =0.95. The number of clustersis K =7,
and the size of data samples is 1000, i.e., Ny =1000. The test
results under different models are shown in Table IX.

TABLE IX.
SIMULATION RESULTS UNDER DIFFERENT MODELS IN A PRACTICAL 126-BUS
SYSTEM
Model Calculation time (second)
odaels
Total cost ($) HPS C&CG BD
TDRC 942067.16 529.93 546.71 >1800
L 942134.13 538.31 541.09 >1800
SP[12] 942066.05 534.08 553.01 >1800
KL [20] 942072.42 538.44 553.44 >1800
Wasserstein [21] 942066.92 537.55 551.57 >1800

t  The Li-, KL- and Wasserstein-based methods correspond to different DRO models. The full names
of these models are not provided in the table due to space limitations.
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Fig. 9. 24-hour load fluctuation curve.

The results show that the proposed TDRC model achieves a
lower total cost (i.e., $942,067.16) than the L, -based and

Wasserstein-based DRO methods, demonstrating superior
economic performance. Although the total cost under the
TDRC model is close to that obtained by the SP and
Wasserstein-based DRO models, their practical applicability is
limited because the SP method relies on assumed probability
distributions and the Wasserstein approach involves high
computational complexity. In addition, the EMS executes the
HPS algorithm to solve the TDRC model in order to obtain the
optimal dispatch decisions within 529.93 seconds, while data
transmission and control instruction execution are completed in
less than 1 second. Considering the day-ahead dispatch horizon,
this computation time is acceptable. In addition, since real-time
dispatch in power systems is typically updated every 15
minutes, the proposed HPS algorithm can be executed within
this operational window to find the optimal solution,
demonstrating the real-time applicability of the proposed

TDRC approach for large-scale power systems. It is worth
noting that the HPS algorithm converges faster than the C&CG
method and avoids the non-convergence issue of BD under the
same tolerance. It achieves convergence within approximately
530 seconds, while C&CG requires 540-550 seconds and BD
fails to converge within 1800 seconds. These results confirm
the superior computational efficiency and scalability of the
proposed HPS algorithm for large-scale power system
applications. In this paper, the wind power output forecasting
code and the hardware-in-the-loop demonstration video of the
proposed TDRC approach are publicly available and can be
accessed online [38].

V. CONCLUSION AND FUTURE DIRECTION

This paper proposes a two-stage distributionally robust
chance-constrained (TDRC) model for the unit commitment
problem with wind power uncertainty. The TDRC model offers
a comprehensive framework to address the inherent uncertainty
of wind power and enhance the robustness of dispatch decisions
in power systems. By constructing an ambiguity confidence set
to manage wind power uncertainty and incorporating chance
constraints to flexibly regulate wind power curtailment and load
shedding levels, the model ensures system resilience against
unpredictable variations in renewable energy generation. To
obtain the optimal dispatch strategy, a hybrid parallel solution
(HPS) algorithm is developed by integrating the advantages of
BD and C&CG methods, thereby improving computational
performance. The HPS algorithm decomposes the TDRC model
into a master problem and multiple sub-problems that can be
solved in parallel without relying on duality information, thus
enhancing scalability and efficiency. The effectiveness and
practical feasibility of the proposed TDRC approach are
validated through extensive numerical simulations and further
demonstrated on a cyber-physical power system dispatch
platform, demonstrating its applicability in practical power
system environments.

In the future work, several limitations of this paper will be
addressed to enhance the practicality of the proposed model.
More specifically, 1) the TDRC model only considers wind
power uncertainty, while other stochastic factors such as load
demand, photovoltaic generation, and market price fluctuations
are not simultaneously considered. Further research will be
conducted on incorporating multi-source uncertainties to
provide a more comprehensive representation of stochastic
characteristics in power systems; 2) the static and decision-
independent ambiguity set may limit the TDRC model’s ability
to capture the interaction between dispatch decisions and
uncertainty realisations. Developing a decision-dependent
ambiguity set will better reflect this endogenous correlation
between dispatch decisions and uncertainty realisations; 3)
although the HPS algorithm improves computational efficiency,
its scalability for larger-scale systems with high wind
penetration  still  requires  enhancement. = Advanced
decomposition and parallelisation methods will be further
explored to improve the adaptability of the proposed model for
large-scale real-world applications. In addition, future work
will explore advanced machine learning approaches for
predicting commitment decisions with high confidence and



fixing a subset of binary variables to further improve
computational efficiency.
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