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H∞ Fuzzy Control for A Class of Cyber-Physical
Systems Under Frequency-Duration-Constrained

Replay Attacks
Haoyang Yu, Zidong Wang, Yezheng Wang, and Lei Zou

Abstract—In this article, the H∞ fuzzy control problem is
investigated for a class of nonlinear systems subject to replay at-
tacks with frequency-duration constraints. Owing to the vulnera-
bility of the open shared communication network, the information
transmitted from the sensor to the controller may be exposed
to replay attackers. A novel yet comprehensive replay attack
model is constructed to characterize the repeated replay behavior
of the adversary. On the basis of the constructed model, a
fuzzy controller is designed to guarantee asymptotic stability and
the desired H∞ performance. By employing Lyapunov stability
theory and the orthogonal decomposition technique, sufficient
conditions are derived to ensure the existence of the desired
controller parameter. Finally, simulation results are presented
to verify the effectiveness and correctness of the proposed fuzzy
controller for T-S fuzzy systems under replay attacks.

Index Terms—T-S Fuzzy Systems, cyber-physical systems,
H∞ control, cyber attacks, replay attacks, frequency-duration
constraints.

I. INTRODUCTION

Cyber-physical systems (CPSs) are a class of large-scale
systems in which physical layers and computation processes
are integrated by network layers. Such integration brings the
higher computing efficiency and wider applications. Mean-
while, the advantages (e.g., low installation costs, flexible
structure, and remote control) have been inherited by CPSs
since network technologies are adopted. Thus, CPSs have been
widely applied in various fields such as smart grids [1], [2],
unmanned aerial vehicles [3], [4], and industrial automation
systems [5]–[7].
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Although the advantages of communication networks are
inherited by CPSs, the application of network technologies
has inevitably given rise to induced phenomena such as
packet dropouts [8]–[10], time delays [11], [12], and fading
channels [13], [14]. Moreover, transmission signals have been
rendered vulnerable to cyber-attacks owing to the open shared
communication network in CPSs. It has been demonstrated
in several studies that system performance can be disrupted
by malicious attackers [15]–[17]. Hence, it is of significant
importance that a control law be designed such that the
desired system performance is maintained while accounting
for the effects of potential cyber-attacks. For example, secure
control problems have been investigated for CPSs modeled
by Markov jump systems under cyber-attacks in [18], [19].
A composite H∞ control scheme and a novel resilient hybrid
learning scheme are designed to guarantee the desired system
performance, respectively.

According to the security requirements of transmission data,
cyber-attacks have been classified into availability attacks
(e.g., Denial-of-Service (DoS) attacks) [20]–[22] and integrity
attacks (e.g., false-data injection (FDI) attacks and replay
attacks) [23]–[26]. From the perspective of attackers, the DoS
attack strategy can be launched by blocking data transmissions,
the FDI attack strategy can be executed by injecting false data
packets into the original data, and the replay attack strategy
can be carried out by replacing real-time data with recorded
historical data. Owing to their high stealthiness and ease of
implementation, replay attacks have been regarded as one of
the most threatening cyber-attacks for CPSs [27], [28].

During the execution of replay attacks, a sequence of
historical data is recorded, and the collected data is replayed
to replace the real-time data. In comparison with FDI attacks,
replay attacks are easier to carry out since no prior system
information is required by the adversary. Over the past decade,
secure filtering and control problems under replay attacks have
been investigated, and several models have been proposed to
illustrate the principles of replay attacks. For instance, in [29],
a model of replay attacks has been established in which the
measurement output has been represented as a model with
constant time delays. In [30], replay attacks have been modeled
as the measurement output with bounded time-varying delays.
It is worth noting that most of the existing studies have
assumed that the collected data can only be replayed once.
Clearly, this assumption is overly restrictive, since adversaries
may repeatedly replay the collected data. Therefore, a novel
model needs to be developed to characterize the behavior of
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repeated replay attacks, and the secure control problem under
such attacks should be investigated.

The Takagi-Sugeno (T-S) system has been proposed to
approximate nonlinear functions by employing a set of linear
subsystems interconnected through time-varying membership
functions. It has been demonstrated in the relevant literature
that any smooth nonlinear function can be approximated to any
desired accuracy by means of T-S fuzzy technology [31]–[33].
In recent years, the security control problem of networked T-
S fuzzy systems has received considerable attention owing
to the prevalence of cyber-attacks in nonlinear CPSs [34],
[35]. For instance, the secure control problem of T-S fuzzy
systems has been investigated in [36], where DoS and FDI
attacks have been taken into account. Nevertheless, the impact
of replay attacks on the secure control problem has not yet
been addressed for T-S fuzzy systems, which serves as the
motivation of the present study.

Based on the above discussions, the H∞ fuzzy control
problem is investigated for networked T-S fuzzy systems under
replay attacks. The main challenges of this problem can be
summarized as follows: 1) how to design a reasonable model
of replay attacks that can capture the behavior of repeated
replay? and 2) how to analyze the dynamical behavior of
the system state subject to replay attacks? Correspondingly,
the primary contributions of this article can be highlighted as
follows:

1) a novel mathematical model of replay attacks is devel-
oped to characterize the repeated replay behavior;

2) sufficient conditions are derived to guarantee the expo-
nential stability and the H∞ performance of the closed-
loop system under replay attacks; and

3) the relations between the frequency/duration of replay
attacks and the H∞ disturbance attenuation level are
thoroughly established.

The remainder of this article is organized as follows. In
Section II, the fuzzy model under replay attacks and the fuzzy
controller are introduced. In Section III, several sufficient
conditions are proposed to ensure the stability and H∞ per-
formance of the closed-loop system under replay attacks, and
the desired controller gains are derived. A simulation example
is provided in Section IV to demonstrate the feasibility of the
proposed fuzzy control scheme. Finally, Section V concludes
this article.

Notations: In this paper, R
n denotes the n-dimensional

Euclidean space. l2[0,+∞) denotes the space of square
summable sequences. For a matrix A, its transposition is
denoted as AT . B−1 and λmax(B) (λmin(B)) denotes the
inverse and the maximum (minimum) eigenvalue of the square
matrix B, respectively. C⊥ represents the orthogonal basis for
the null space of the full column rank matrix C. A diagonal-
block matrix D is denoted by D = diag{D11, D22, . . . , Dnn}.
In a symmetric matrix, the symmetric parts are denoted as an
asterisk “ ∗ ”.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Model
Consider a class of nonlinear systems described by the

following T-S fuzzy system:

System Rule i: IF ρ1(k) is Wi1, and ρ2(k) is Wi2, and · · · ,
and ρs(k) is Wis, THEN⎧⎪⎨

⎪⎩
x(k + 1) =Aix(k) +Biu(k) + Eiω(k)

y(k) =Cx(k) + Fω(k)

z(k) =Gix(k), i ∈ I � {1, 2, · · · , r}
(1)

where r is the number of fuzzy rules; Wi1, · · · ,Wis are fuzzy
sets; ρi(k) (i = 1, 2, · · · , s) are the measurable variables;
x(k) ∈ R

n, y(k) ∈ R
m, z(k) ∈ R

h, and u(k) ∈ R
o denote, re-

spectively, the system state, the measurement output, the con-
trol output, and the control input; ω(k) ∈ (Rnω , l2[0,+∞))
is the energy-bounded external noise (including process and
measurement noises); Ai, Bi, Ei, C, F , and Gi are real
constant matrices of appropriate dimensions.

By using the standard fuzzy inference technique, the fuzzy
system (1) can be described by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(k + 1) =

r∑
i=1

ϕi(ρ(k))(Aix(k) +Biu(k) + Eiω(k))

y(k) =Cx(k) + Fω(k)

z(k) =

r∑
i=1

ϕi(ρ(k))Gix(k)

(2)

where ρ(k) �
[
ρ1(k) ρ2(k) · · · ρs(k)

]T ∈ R
s is the

premise variable vector, and

ϕi(ρ(k)) �
∏s

ι=1Wiι(ρι(k))∑r
i=1

∏s
ι=1Wiι(ρι(k))

is the normalized membership function with the membership
grade 0 ≤ Wiι(ρι(k)) ≤ 1 of ρι(k) in Wiι. For ∀k ≥ 0, the
normalized membership function satisfies ϕi(ρ(k)) ≥ 0 and∑r

i=1 ϕi(ρ(k)) = 1.

B. Replay Attack

An original replay attack model has been constructed in
[37], where an assumption has been made that the attacker is
able to record and erase the real sensor measurements. When
a replay attack occurs, the actual measured output y(k) is
replaced by the recorded historical measured output y(k− τ).
It is worth noting that τ is a positive integer denoting the
number of recorded data packets.

In practice, owing to the existence of certain defensive
measures and technical limitations, attackers cannot record the
real sensor measurements at will. Consequently, the recorded
data packets may be replayed repeatedly, and the number
of packets may be time-varying in practical engineering. For
example, adversaries have been shown capable of launching
multiple consecutive replay attacks in [38], [39]. A novel
model has been proposed in [26] to describe the recording of
a varying number of data packets. In reality, replay attackers
can determine not only the length of the recorded data packets
but also the number of times they are replayed. Therefore, a
novel model of replay attacks will be proposed in this work
to characterize these features.

Based on the above analysis, it is reasonable to assume that
the attacker can 1) record and erase the sensor measurements;
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and 2) inject the recorded data into the system. The process
of replay attacks is divided into the following phases:

1) In the attack sleeping time [kt, kt+Δt− 1], the attacker
records a series of the measurement output {y(kt+Δt−
τt), y(kt +Δt − τt + 1), . . . , y(kt +Δt − 1}, where Δt

and τt (t = 1, 2, . . .) denote the sleeping length and the
number of recording data packets for the tth replay attack.
kt is the beginning of sleeping time before the tth attack;

2) In the attack time [kt +Δt, kt+1 − 1], the measurement
output is first erased by the attacker. Then, the recorded
measurement output is repeatedly injected into the chan-
nel in sequence. During this process, the attacker replays
the recorded measurement outputs {y(kt+Δt−τt), y(kt+
Δt − τt +1), . . . , y(kt +Δt − 1} periodically for certain
times. Without loss of generality, we assume that the
recorded measurement outputs are replayed for dt times
with dt being a positive integer. In this situation, it is
obvious that kt+1 = kt +Δt + dtτt.

For simplicity, the following symbols are defined to indicate
the specific time instants:

kt(1) �kt +Δt, kt(2) � kt +Δt + τt,

kt(3) �kt +Δt + 2τt, · · · ,
kt(dt) �kt +Δt + (dt − 1)τt.

To illustrate the timing of replay attacks, Fig. 1 is presented,
and it is clear that the number of recorded data packets τt and
the replay times dt are determined by the attacker in each
attack. Note that, in practical applications, a replay attacker is
only able to record a limited number of sensor measurements
and to launch a finite number of attacks. Therefore, it is
assumed that τ(k) ≤ τ̄ and d(k) ≤ d̄.

( ) ( )-1( ) ( )-1( ) ( )-1( ) ( ) 1
Fig. 1: The timing diagram of replay attacks.

According to the above discussions, a novel replay attack
model is established as:

ỹ(k) = (1 − α(k))y(k) + α(k)y(k − d(k)τ(k)) (3)

where

α(k) �
{
0, k ∈ [kt, kt +Δt − 1]

1, k ∈ [kt +Δt, kt+1 − 1]
,

d(k) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, k ∈ [kt +Δt, kt +Δt + τt − 1]

2, k ∈ [kt +Δt + τt, kt +Δt + 2τt − 1]
...

...
dt, k ∈ [kt +Δt + (dt − 1)τt, kt+1 − 1]

,

and τ(k) � τt when k ∈ [kt, kt+1 − 1].
Remark 1: In the replay attack model (3), the variable α(k)

is introduced to indicate whether replay attacks occur at time
instant k. It is easy to see that the controller receives the actual
signal y(k) when α(k) = 0. When α(k) = 1, the real-time
signals are replaced by the recorded measurement output y(k−
d(k)τ(k)). Note that, in each attack phase, the replay attacker
can decide both the number of recorded data packets and the
replay times. However, this does not imply that an infinite
number of sensor measurements can be recorded or replayed,
since storage and energy resources are limited. Hence, it is
assumed that the number of recorded sensor measurements and
replay times are bounded. As shown in Fig. 1, the designed
attack model (3) is more general and can reduce to the replay
attack models in [40], [26] by setting d(k) = 1.

Remark 2: As introduced in the proposed replay attack
strategy, the measurement output is recorded and replayed.
The stealthiness of replay attacks is realized since the replay
measurement output is recorded in the absence of an attack. In
addition, the existence of time-delay caused by replay attacks
may bring about performance degradation and even system
instability.

For the convenience of subsequent controller design, the
following assumptions on the frequency and duration of replay
attacks are adopted.

Assumption 1: (Replay Attack Frequency) Within the time
interval [kg, kh] for any 0 ≤ kg < kh, there exist scalars σ > 0
and θ > 1 such that the number of replay attacks H(kg, kh)
satisfies the following inequality:

H(kg, kh) ≤ σ +
kh − kg

θ
. (4)

Assumption 2: (Replay Attack Duration) Within the time
interval [kg, kh] for any 0 ≤ kg < kh, there exist scalars
α > 0 and β > 1 such that the length of total time interval of
replay attacks M(kg, kh) satisfies the following inequality:

M(kg, kh) ≤ α+
kh − kg

β
. (5)

Remark 3: The frequency and duration constraints have
been widely employed to describe general DoS attacks in
[41], where such constraints are less restrictive compared with
strict assumptions on statistical behaviors. Furthermore, these
assumptions are motivated by practical considerations: in real-
world scenarios, continuously injecting attack signals with-
out constraints on frequency or duration would significantly
increase the likelihood of detection. Moreover, sustaining
such persistent attacks would demand considerable energy
resources, which is often undesirable from the attacker’s
perspective. Therefore, a large body of work addressing secure
estimation and control problems under DoS attacks with fre-
quency and duration constraints has appeared in the literature;
see [42]–[44]. Motivated by this literature, frequency and
duration constraints are adopted here to describe the behaviors
of replay attacks.

Under the effects of the above replay attack, the control
input is constructed as:
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Controller Rule j: IF �1(k) is Mi1, and �2(k) is Mi2, and
· · · , and �e(k) is Mie, THEN

u(k) = Kj ỹ(k) (6)

where �(k) �
[
�1(k) �2(k) · · · �e(k)

]T is the premise
variable vector of the controller; Mi1,Mi2, . . . ,Mie are fuzzy
sets; Kj is the controller gain to be designed.

The controller (6) can be rewritten in the following compact
form:

u(k) =

f∑
j=1

ψj(�(k))Kj ỹ(k) (7)

where ψj(�(k)) is the normalized membership function and
calculated by

ψj(�(k)) �
∏s

ι=1Wjι(�ι(k))∑f
j=1

∏s
ι=1Wjι(�ι(k))

.

Considering the replay attack model (3) and the structure
of controller (7), the system (2) can be expressed as:

x(k + 1) =
r∑

i=1

ϕi(ρ(k))

f∑
j=1

ψj(�(k))

×
(
(Ai + (1− α(k))BiKjC)x(k)

+ α(k)BiKjCx(k − d(k)τ(k))

+ (Ei + (1− α(k))BiKjF )ω(k)

+ α(k)BiKjFω(k − d(k)τ(k))
)
.

(8)

Remark 4: In most literature on PID control for nonlinear
systems, it is commonly necessary to impose assumptions
on the nonlinear functions, such as satisfying the Lipschitz
condition or being sector-bounded. Whereas, the fuzzy feed-
back control strategy we employ only requires the nonlinear
system to be smooth, thereby leading to broader applicabil-
ity of our results. In contrast to other model-based control
methods, such as state-feedback control, the proposed output-
feedback approach does not require the states to be strictly
measurable, which further reduces implementation constraints.
More importantly, under reasonable replay attack assumptions,
the designed fuzzy controller exhibits strong robustness against
both external disturbances and replay attacks, effectively main-
taining closed-loop stability and performance even when the
system is subject to repeated signal injection.
The objective of this paper is to design a controller that ensures
the closed-loop system (8) subject to replay attacks satisfies
the following two requirements:
R1) With ω(k) = 0, the system (8) is asymptotically stable;
R2) For all nonzero ω(k) ∈ l2[0,+∞), under the zero

initial condition, the controlled output z(k) satisfies the
following H∞ performance:

∞∑
k=0

zT (k)z(k) ≤ λ2
∞∑
k=0

ωT (k)ω(k) (9)

where λ > 0 is a given constant.

III. MAIN RESULTS

In this section, the stability and H∞ performance of the
closed-loop system under frequency-duration-constrained re-
play attacks are analyzed, and the desired controller gains are
computed.

The following theorem provides a sufficient criterion to
ensure both stability and H∞ performance of the closed-loop
system (8).

Theorem 1: Let the controller gains Kj (j = 1, 2, . . . , f),
and scalars λ1 > λ0 > 0, γ1 > 1, and 0 < γ0 < 1 be
given. The closed-loop system (8) is asymptotically stable and
satisfies the H∞ performance in (9) if there exist a positive-
definite matrix P and a positive scalar μ such that

ῩT
ijP Ῡij + Ῡi <0 (10)

Ψ̄T
ijP Ψ̄ij + Ψ̄ǐi <0 (11)

Ψ̄T
ijP Ψ̄ij + Φ̄ǐi <0 (12)

(1− γ0)
−τ̄ <μ (13)

θ−1 ln(1 + d̄μ) + β−1 ln γ1

+(1− β−1) ln(1− γ0) <0 (14)

where

Ῡij �
[
Ai +BiKjC Ei +BiKjF

]
,

Ῡi �diag{GT
i Gi − (1− γ0)P,−λ20I},

Ψ̄ij �
[
Ai BiKjC Ei BiKjF

]
,

Ψ̄ǐi �diag{GT
i Gi − γ1P,−(γ1 + γ0 − 1)P,

− λ20I, (λ
2
0 − λ21)I},

Φ̄ǐi �diag{GT
i Gi − γ1P,−γ1P,−λ20I,−λ21I}.

Proof: To analyze the stability of system (8), the follow-
ing Lyapunov function is constructed:

V (k) � xT (k)Px(k) + α(k)xT (k − d(k)τ(k))P

× x(k − d(k)τ(k)). (15)

On the basis of (8) and (15), the proof is divided into the
following steps.

Step 1: Under condition (10), prove

V (k + 1)− (1− γ0)V (k) < 0, when k ∈ [kt, kt(1) − 1].
(16)

When k ∈ [kt, kt(1) − 1], we calculate that

V (k + 1)− V (k) + γ0V (k)

=

r∑
i=1

f∑
j=1

r∑
ǐ=1

f∑
ǰ=1

ϕi(ρ(k))ψj(�(k))ϕǐ(ρ(k))ψǰ(�(k))

×(
(Ai +BiKjC)x(k) + (Ei +BiKjF )ω(k)

)T
P

×(
(Aǐ +BǐKǰC)x(k) + (Eǐ +BǐKǰF )ω(k)

)
− (1− γ0)x

T (k)Px(k)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(k))ψj(�(k))
(
(Ai +BiKjC)x(k)

+ (Ei +BiKjF )ω(k)
)T
P
(
(Ai + BiKjC)x(k)

+ (Ei +BiKjF )ω(k)
)− (1− γ0)x

T (k)Px(k)
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=

r∑
i=1

f∑
j=1

ϕi(ρ(k))ψj(�(k))

×
[
x(k)
ω(k)

]T
(ῩT

ijP Ῡij − (1 − γ0)P̄ )

[
x(k)
ω(k)

]

where P̄ � diag{P, 0}.
Letting ω(k) = 0 and considering (10), we can see that (16)

holds.
Step 2: Under condition (11), prove that the following

inequality

V (k + 1)− γ1V (k) < 0 (17)

holds when k ∈ [kt(l), kt(l+1)).
For k ∈ [kt(l), kt(l+1)), it follows from (15) that

V (k + 1)− γ1V (k)

=xT (k + 1)Px(k + 1)− γ1x
T (k)Px(k)

+ xT (k + 1− lτt)Px(k + 1− lτt)

− γ1x
T (k − lτt)Px(k − lτt)

=

r∑
i=1

f∑
j=1

r∑
ǐ=1

f∑
ǰ=1

ϕi(ρ(k))ψj(�(k))ϕǐ(ρ(k))ψǰ(�(k))

× (
Aix(k) +BiKjCx(k − lτt) + Eiω(k)

+BiKjFω(k − lτt)
)T
P
(
Aǐx(k) + Eǐω(k)

+BǐKǰCx(k − lτt) +BǐKǰFω(k − lτt)
)

+

r∑
i=1

f∑
j=1

r∑
ǐ=1

f∑
ǰ=1

ϕi(ρ(k − lτt))ψj(�(k − lτt))

× ϕǐ(ρ(k − lτt))ψǰ(�(k − lτt))

× (
(Ai +BiKjC)x(k − lτt) + (Ei +BiKjF )

× ω(k − lτt)
)T
P
(
(Aǐ +BǐKǰC)x(k − lτt)

+ (Eǐ +BǐKǰF )ω(k − lτt)
)

− γ1x
T (k)Px(k)− γ1x

T (k − lτt)Px(k − lτt)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(k))ψj(�(k))

× (
Aix(k) +BiKjCx(k − lτt) + Eiω(k)

+BiKjFω(k − lτt)
)T
P
(
Aix(k) + Eiω(k)

+BiKjCx(k − lτt) +BiKjFω(k − lτt)
)

+
r∑

i=1

f∑
j=1

ϕi(ρ(k − lτt))ψj(�(k − lτt))

+
(
(Ai +BiKjC)x(k − lτt) + (Ei +BiKjF )

× ω(k − lτt)
)T
P
(
(Ai +BiKjC)x(k − lτt)

+ (Ei +BiKjF )ω(k − lτt)
)− γ1x

T (k)Px(k)

− γ1x
T (k − lτt)Px(k − lτt)

=

r∑
i=1

f∑
j=1

ϕi(ρ(k))ψj(�(k))

×
[
x̄(k)
ω̄(k)

]T
(Ψ̄T

ijP Ψ̄ij − γ1P̃ + (1− γ0)�P )

[
x̄(k)
ω̄(k)

]

+

r∑
i=1

f∑
j=1

ϕi(ρ(k − lτt))ψj(�(k − lτt))

×
[
x(k − lτt)
ω(k − lτt)

]T
(ῩT

ijP Ῡij − (1− γ0)P̄ )

×
[
x(k − lτt)
ω(k − lτt)

]

where

x̄(k) �
[

x(k)
x(k − lτt)

]
, ω̄(k) �

[
ω(k)

ω(k − lτt)

]
,

P̃ �diag{P, P, 0, 0}, �P � diag{0, P, 0, 0}.
According to the definition of time series, it is easy to see

that k − lτt ∈ [kt, kt(1) − 1] when k ∈ [kt(l), kt(l+1)). Letting
ω̄(k) = 0, and considering (10), (11), and (16), we obtain

V (k + 1)− γ1V (k)

<V (k − lτt + 1)− (1− γ0)V (k − lτt)

<0.

Step 3: Under condition (12), prove

V (kt(l))− γ1V (kt(l) − 1)− V (kt(1) − τt) < 0. (18)

Recalling the definition of V (k), we have

V (kt(l)) =x
T (kt(l))Px(kt(l))

+ xT (kt(1) − τt)Px(kt(1) − τt),

V (kt(l) − 1) =xT (kt(l) − 1)Px(kt(l) − 1)

+ xT (kt(1) − 1)Px(kt(1) − 1).

Furthermore, the system state suffered from replay attacks at
kt(l) can be represented as:

x(kt(l)) =

r∑
i=1

f∑
j=1

ϕi(ρ(kt(l) − 1))ψj(�(kt(l) − 1))

×
(
Aix(kt(l) − 1) +BiKjCx(kt(1) − 1)

+ Eiω(kt(l) − 1) +BiKjFω(kt(1) − 1)
)
.

Thus, we have

V (kt(l))− γ1V (kt(l) − 1)− V (kt(1) − τt)

=
r∑

i=1

f∑
j=1

r∑
ǐ=1

f∑
ǰ=1

ϕi(ρ(kt(l) − 1))ψj(�(kt(l) − 1))

× ϕǐ(ρ(kt(l) − 1))ψǰ(�(kt(l) − 1))
(
Aix(kt(l) − 1)

+BiKjCx(kt(1) − 1) + Eiω(kt(l) − 1)

+BiKjFω(kt(1) − 1)
)T
P
(
Aǐx(kt(l) − 1)

+BǐKǰCx(kt(1) − 1) + Eǐω(kt(l) − 1)

+BǐKǰFω(kt(1) − 1)
)− γ1

(
xT (kt(l) − 1)Px(kt(l) − 1)

+ xT (kt(1) − 1)Px(kt(1) − 1)
)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(kt(l) − 1))ψj(�(kt(l) − 1))

× (
Aix(kt(l) − 1) +BiKjCx(kt(1) − 1) + Eiω(kt(l) − 1)
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+BiKjFω(kt(1) − 1)
)T
P
(
Aix(kt(l) − 1) +BiKjC

× x(kt(1) − 1) + Eiω(kt(l) − 1) +BiKjFω(kt(1) − 1)
)

− γ1
(
xT (kt(l) − 1)Px(kt(l) − 1)

+ xT (kt(1) − 1)Px(kt(1) − 1)
)

=

r∑
i=1

f∑
j=1

ϕi(ρ(kt(l) − 1))ψj(�(kt(l) − 1))

×
[
x̄(kt(l) − 1)
ω̄(kt(l) − 1)

]T
(Ψ̄T

ijP Ψ̄ij − γ1P̃ )

[
x̄(kt(l) − 1)
ω̄(kt(l) − 1)

]

where

x̄(kt(l) − 1) �
[
xT (kt(l) − 1) xT (kt(1) − 1)

]T
,

ω̄(kt(l) − 1) �
[
ωT (kt(l) − 1) ωT (kt(1) − 1)

]T
.

Similarly, letting ω̄(kt(l) − 1) = 0, it is easy to obtain that

V (kt(l))− γ1V (kt(l) − 1)− V (kt(1) − τt)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(kt(l) − 1))ψj(�(kt(l) − 1))

× x̄T (kt(l) − 1)(ΦT
ijPΦij − γ1P̄ )x̄(kt(l) − 1)

where Φij �
[
Ai BiKjC

]
which, together with (11), leads

to (18).
Step 4: Under condition (10), prove

V (kt(1))− (1− γ0)V (kt(1) − 1)− V (kt(1) − τt) < 0. (19)

With (15) and the state dynamics of system (8) at kt(1) − 1

x(kt(1)) =

r∑
i=1

f∑
j=1

ϕi(ρ(kt(1) − 1))ψj(�(kt(1) − 1))

× (
(Ai +BiKjC)x(kt(1) − 1)

+ (Ei +BiKjF )ω(kt(1) − 1)
)
,

we can see that

V (kt(1))− (1 − γ0)V (kt(1) − 1)− V (kt(1) − τt)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(kt(1) − 1))ψj(�(kt(1) − 1))

×
[
x(kt(1) − 1)
ω(kt(1) − 1)

]T
(ῩT

ijP Ῡij − (1 − γ0)P̄ )

[
x(kt(1) − 1)
ω(kt(1) − 1)

]
.

Letting ω(kt(1) − 1) = 0, we have

V (kt(1))− (1− γ0)V (kt(1) − 1)− V (kt(1) − τt)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(kt(1) − 1))ψj(�(kt(1) − 1))xT (k1t − 1)

× (
(Ai +BiKjC)

TP (Ai +BiKjC)

− (1− γ0)P
)
x(k1t − 1).

Noticing (10), we know that the inequality (19) holds.
Step 5: Under condition (12), prove

V (kt)− γ1V (kt − 1) < 0. (20)

Similar to the above analysis process, according to the
Lyapunov functions V (kt), V (kt − 1) and the dynamics of
system state x(kt), one obtains

V (kt)− γ1V (kt − 1)

=xT (kt)Px(kt)− γ1

(
xT (kt − 1)Px(kt − 1)

+ xT (kt−1(1) − 1)Px(kt−1(1) − 1)
)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(kt − 1))ψj(�(kt − 1))
(
Aix(kt − 1)

+BiKjCx(kt−1(1) − 1) + Eiω(kt − 1)

+BiKjFω(kt−1(1) − 1)
)T

P
(
Aix(kt − 1)

+BiKjCx(kt−1(1) − 1) + Eiω(kt − 1)

+BiKjFω(kt−1(1) − 1)
)
− γ1

(
xT (kt − 1)

× Px(kt − 1) + xT (kt−1(1) − 1)Px(kt−1(1) − 1)
)

=

[
x̄(kt − 1)
ω̄(kt − 1)

]T
(Ψ̄T

ijP Ψ̄ij − γ1P̃ )

[
x̄(kt − 1)
ω̄(kt − 1)

]
where

x̄(kt − 1) �
[
xT (kt − 1) xT (kt−1(1) − 1)

]T
,

ω̄(kt − 1) �
[
ωT (kt − 1) ωT (kt−1(1) − 1)

]T
.

Letting ω̄(kt−1) = 0, the inequality (20) can be concluded
from the condition (12).

Step 6: Based on the inequalities proved in the above five
steps and under conditions (13) and (14), prove that the closed-
loop system (8) is asymptotically stable.

It follows from (17) that

V (k) <γ1V (k − 1) < · · · < γ
k−kt(l)

1 V (kt(l)). (21)

The following inequality is inferred from (16):

V (kt(1) − 1) <(1− γ0)V (kt(1) − 2)

< . . . < (1 − γ0)
Δt−1V (kt).

(22)

Without loss of generality, we assume k ∈ [kt(l), kt(l+1)).
Combining (18), (19), and (20) with (21), (22), we obtain that:

V (k) <γ
k−kl

t
1 H(l, τt,Δt)V (kt)

<γ
k−kl

t
1 H(l, τt,Δt)H(dt−1, τt−1,Δt−1)V (kt−1)

< . . .

<γ
k−kl

t
1 H(l, τt,Δt)

t−1∏
p=1

H(dp, τp,Δp)V (k1)

where

H(l, τt,Δt) �γ(l−1)τt
1 (1− γ0)

Δt

+ (1− γ0)
Δt−τt

l−1∑
q=0

γqτt1 ,

H(dp, τp,Δp) �γdpτp
1 (1− γ0)

Δp

+ (1− γ0)
Δp−τp

dp∑
q=1

γ
qτp
1 .
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Under condition (13) and taking γ1 > 1, τt ≤ τ̄ , and dt ≤ d̄
into account, it is easy to see that

μ >(1− γ0)
−τ̄ > (1 − γ0)

−τp ,

dp∑
q=1

γ
qτp
1 <dpγ

dpτp
1 < d̄γ

dpτp
1 ,

and then

H(l, τt,Δt) ≤ (1 + lμ)γ
(l−1)τt
1 (1 − γ0)

Δt ,

H(dp, τp,Δp) ≤ (1 + d̄μ)γ
dpτp
1 (1− γ0)

Δp .

Thus, we have

V (k) <(1 + lμ)(1 + d̄μ)t−1γ
k−kl

t+(l−1)τt+
∑t−1

p=1 dpτp
1

× (1− γ0)
∑t

p=1 ΔpV (k1)

<(1 + d̄μ)tγ
k−kl

t+(l−1)τt+
∑t−1

p=1 dpτp
1

× (1− γ0)
∑t

p=1 ΔpV (k1).

(23)

In light of Assumption 1 and Assumption 2, we have

t =H(k, k1) ≤ σ +
k − k1
θ

,

M(k, k1) =k − klt + (l − 1)τt +
t−1∑
p=1

dpτp

≤α+
k − k1
β

,

t∑
p=1

Δp =k − k1 −M(k, k1)

≥− α+ (1− 1

β
)(k − k1).

(24)

Substituting (24) into (23) yields

V (k) <(1 + d̄μ)H(k1,k)γ
M(k1,k)
1 (1− γ0)

k−k1−M(k1,k)V (k1)

<(1 + d̄μ)σ+
k−k1

θ (
γ1

1− γ0
)α+

k−k1
β (1− γ0)

k−k1V (k1).

When k1 = 0, we have

V (k) < eκeςkV (0)

where

κ �σ ln(1 + d̄μ) + α ln γ1 − α ln(1− γ0),

ς �θ−1 ln(1 + d̄μ) + β−1 ln γ1 + (1 − β−1) ln(1 − γ0).

Furthermore, it is worth noting that

ηxT (k)x(k) ≤xT (k)Px(k),
xT (0)Px(0) ≤η̄xT (0)x(0)

where η � λmin{P} and η̄ � λmax{P}. Finally, it follows
that

‖x(k)‖2 < η̄

η
eκeςk‖x̃(0)‖2.

In term of the condition (14), one has ς < 0, which implies
0 < eς < 1, and we have x(k) → 0 as k → ∞. Thus, the
closed-loop system is asymptotically stable.

Next, we will proceed with the H∞ performance analysis
of system (8). To this end, define the following function as:

J(k) �zT (k)z(k)− λ20ω
T (k)ω(k)

− α(k)λ21ω
T (k − d(k)τ(k))ω(k − d(k)τ(k)).

When k ∈ [kt, kt(1) − 1], one has

V (k + 1)− (1− γ0)V (k) + J(k)

=

r∑
i=1

f∑
j=1

r∑
ǐ=1

f∑
ǰ=1

ϕi(ρ(k))ψj(�(k))ϕǐ(ρ(k))ψǰ(�(k))

× (
(Ai +BiKjC)x(k) + (Ei +BiKjF )ω(k)

)T
P

× (
(Aǐ +BǐKǰC)x(k) + (Eǐ +BǐKǰF )ω(k)

)
− (1 − γ0)x

T (k)Px(k) + zT (k)z(k)− λ20ω
T (k)ω(k)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(k))ψj(�(k))
((

(Ai +BiKjC)x(k)

+ (Ei +BiKjF )ω(k)
)T
P
(
(Aǐ +BǐKǰC)x(k)

+ (Eǐ +BǐKǰF )ω(k)
)
+ xT (k)GT

i Gix(k)
)

− (1 − γ0)x
T (k)Px(k)− λ20ω

T (k)ω(k)

=

[
x(k)
ω(k)

]T
(ῩT

ijP Ῡij + Ῡi)

[
x(k)
ω(k)

]
.

It can be concluded from (10) that

V (k + 1)− (1− γ0)V (k) + J(k) < 0, (25)

For k ∈ [kt(l), kt(l+1)), we have

V (k + 1)− γ1V (k) + J(k)

=

r∑
i=1

f∑
j=1

r∑
ǐ=1

f∑
ǰ=1

ϕi(ρ(k))ψj(�(k))ϕǐ(ρ(k))ψǰ(�(k))

× (
Aix(k) +BiKjCx(k − lτt) + Eiω(k)

+BiKjFω(k − lτt)
)T
P
(
Aǐx(k) + Eǐω(k)

+BǐKǰCx(k − lτt) +BǐKǰFω(k − lτt)
)

− γ1x
T (k)Px(k)− γ1x

T (k − lτt)Px(k − lτt)

+ zT (k)z(k)− λ20ω
T (k)ω(k) + xT (k − lτt + 1)

× Px(k − lτt + 1)− λ21ω
T (k − lτt)ω(k − lτt)

≤
r∑

i=1

f∑
j=1

ϕi(ρ(k))ψj(�(k))

×
((
Aix(k) +BiKjCx(k − lτt) + Eiω(k)

+BiKjFω(k − lτt)
)T
P
(
Aix(k) + Eiω(k)

+BiKjCx(k − lτt) +BiKjFω(k − lτt)
)

+ xT (k)GT
i Gix(k)

)
− γ1x

T (k)Px(k)

− γ1x
T (k − lτt)Px(k − lτt)− λ20ω

T (k)ω(k)

− λ21ω
T (k − lτt)ω(k − lτt) + xT (k − lτt + 1)

× Px(k − lτt + 1).

According to the inequality (25), one has

V (k + 1)− γ1V (k) + J(k)
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<

r∑
i=1

f∑
j=1

ϕi(ρ(k))ψj(�(k))

×
((
Aix(k) +BiKjCx(k − lτt) + Eiω(k)

+BiKjFω(k − lτt)
)T
P
(
Aix(k) + Eiω(k)

+BiKjCx(k − lτt) +BiKjFω(k − lτt)
)

+ xT (k)GT
i Gix(k)

)
− γ1x

T (k)Px(k)

− (γ1 + γ0 − 1)xT (k − lτt)Px(k − lτt)

− λ20ω
T (k)ω(k)− (λ21 − λ20)ω

T (k − lτt)ω(k − lτt).

Based on the condition (11), it is deduced that

V (k + 1)− γ1V (k) + J(k) < 0.

Similarly, the following inequalities can be inferred from
(11) and (12), respectively

V (kt(l))− γ1V (kt(l) − 1)− V (kt(1) − τt)

+ J(kt(l) − 1) < 0,

V (kt(1))− (1− γ0)V (kt(1) − 1)− V (kt(1) − τt)

+ J(kt(1) − 1) < 0,

V (kt)− γ1V (kt − 1) + J(kt − 1) < 0.

Thus, we conclude that:

V (k) <γ1V (k − 1)− J(k − 1)

<γ21V (k − 2)− γ1J(k − 2)− J(k − 1)

< . . .

<γ
k−kt(l)

1 H(l, τt,Δt)

t−1∏
p=1

H(dp, τp,Δp)V (k1)

− γ
k−kt(l)

1 H(l, τt,Δt)

t−1∑
p̄=2

t−1∏
p=p̄

H(dp, τp,Δp)

×
(
H̄(dp, τp,Δp)

kp−1(1)−1−τp−1∑
s=kp−1

(1− γ0)
kp−1(1)−τp−1

× (1 − γ0)
−s−1J(s) + γ

dp−1τp−1

1

×
kp−1(1)−1∑

s=kp−1(1)−τp−1

(1− γ0)
kp−1(1)−s−1J(s)

+

kp−1∑
s=kp−1(1)

γ
kp−s−1
1 J(s)

)
− γ

k−kt(l)

1 H(l, τt,Δt)

×
( kt−1(1)−1−τt−1∑

s=kt−1

(1 − γ0)
kt−1(1)−s−1−τt−1J(s)

+ γ
dt−1τt−1

1

kt−1(1)−1∑
s=kt−1(1)−τt−1

(1− γ0)
kt−1(1)−s−1J(s)

+

kt−1∑
s=kt−1(1)

γkt−s−1
1 J(s)

)
− γ

k−kt(l)

1 H̄(l, τt,Δt)

×
kt(1)−1−τt∑

s=kt

(1− γ0)
kt(0)−s−1J(s)

− γ
k−kt(1)

1

kt(1)−1∑
s=kt(1)−τt

(1− γ0)
kt(1)−s−1J(s)

−
k−1∑

s=kt(1)

γk−s−1
1 J(s)

where

H̄(dp, τp,Δp) �H(dp, τp,Δp)(1 − γ0)
τp−Δp ,

H̄(l, τt,Δt) �H(l, τt,Δt)(1 − γ0)
τt−Δt .

Under the zero initial condition V (0) = 0 and considering
the fact V (k) ≥ 0, one has

γ1
k−kt(l)H(l, τt,Δt)

t−1∑
p̄=2

t−1∏
p=p̄

H(dp, τp,Δp)

×
(
H̄(dp, τp,Δp)

kp−1(1)−1−τp−1∑
s=kp−1

(1− γ0)
kp−1(1)−τp−1

× (1 − γ0)
−s−1J(s) + γ

dp−1τp−1

1

×
kp−1(1)−1∑

s=kp−1(1)−τp−1

(1− γ0)
kp−1(1)−s−1J(s)

+

kp−1∑
s=kp−1(1)

γ
kp−s−1
1 J(s)

)
+ γ

k−kt(l)

1 H(l, τt,Δt)

×
( kt−1(1)−1−τt−1∑

s=kt−1

(1 − γ0)
kt−1(1)−s−1−τt−1J(s)

+ γ
dt−1τt−1

1

kt−1(1)−1∑
s=kt−1(1)−τt−1

(1− γ0)
kt−1(1)−s−1J(s)

+

kt−1∑
s=kt−1(1)

γkt−s−1
1 J(s)

)
+ γ

k−kt(l)

1 H̄(l, τt,Δt)

×
kt(1)−1−τt∑

s=kt

(1− γ0)
kt(0)−s−1J(s)

+ γ
k−kt(1)

1

kt(1)−1∑
s=kt(1)−τt

(1− γ0)
kt(1)−s−1J(s)

+

k−1∑
s=kt(1)

γk−s−1
1 J(s) < 0.

From the definitions of H̄(dp, τp,Δp) and H̄(l, τt,Δt), it
is easy to see that:

H̄(dp, τp,Δp) >γ
dpτp
1 (1− γ0)

τp ,

H̄(l, τt,Δt) >γ
(l−1)τt
1 (1− γ0)

τt

and
k−1∑
s=0

γ
M(s,k−1)
1 (1− γ0)

k−s−1−M(s,k−1)zT (s)z(s)

<

k−1∑
s=0

(1 + d̄μ)H(s,k−1)γ
M(s,k−1)
1
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× (1 − γ0)
k−s−1−M(s,k−1)

(
λ20ω

T (s)ω(s)

+ α(s)λ21ω
T (s− d(s)τ(s))ω(s − d(s)τ(s))

)
.

Recalling Assumption 1 and Assumption 2, we have
k−1∑
s=0

(1− γ0)
k−s−1

(
zT (s)z(s)

<
k−1∑
s=0

(1 + d̄μ)σ+
k−s−1

θ (
γ1

1− γ0
)α+

k−s−1
β

× (1− γ0)
k−s−1

(
λ20ω

T (s)ω(s)

+ α(s)λ21ω
T (s− d(s)τ(s))ω(s − d(s)τ(s))

)
.

Taking summation on both sides of the above inequality
from k = 1 to k = ∞ results in

∞∑
k=1

k−1∑
s=0

(1− γ0)
k−s−1zT (s)z(s)

<
∞∑
k=1

k−1∑
s=0

(1 + d̄μ)σ+
k−s−1

θ (
γ1

1− γ0
)α+

k−s−1
β

× (1− γ0)
k−s−1

(
λ20ω

T (s)ω(s)

+ α(s)λ21ω
T (s− d(s)τ)ω(s − d(s)τ)

)
,

which can be rewritten as:
∞∑
s=0

zT (s)z(s)

∞∑
k=s+1

(1− γ0)
k−s−1

<

∞∑
s=0

(
λ20ω

T (s)ω(s) + α(s)λ21ω
T (s− d(s)τ(s))

× ω(s− d(s)τ(s))
)

×
∞∑

k=s+1

(1 + d̄μ)
k−s−1

θ (
γ1

1− γ0
)

k−s−1
β (1− γ0)

k−s−1.

Owing to λ1 > λ0 > 0, it is easy to see that
∞∑
s=0

(
λ20ω

T (s)ω(s)

+ α(s)λ21ω
T (s− d(s)τ(s))ω(s − d(s)τ(s))

)
≤ 2λ21

∞∑
q=0

ωT (s)ω(s).

Considering the condition (14), we have
∞∑
k=0

zT (k)z(k) <
∞∑
k=0

λ̄2ωT (k)ω(k)

where

λ̄ �

√√√√ 2(1 + d̄μ)σγ0(1− γ0)−αγα1

1− (1 + d̄μ)
1
θ (1− γ0)

1− 1
β γ

1
β

1

λ1.

The proof is complete now.
In Theorem 1, sufficient conditions have been established,

with given controller gains, to ensure the asymptotic stability
and the H∞ performance of system (8). Based on Theorem 1,
the desired fuzzy controller gains are computed in Theorem 2.

Theorem 2: Let scalars μ > 1, γ1 > 1, 0 < γ0 < 1,
and λ > 0 be given. The closed-loop system in (8) is
asymptotically stable and satisfies the H∞ performance if
there exist a positive-definite matrix P̌ > 0, and matrices Kj ,
R̄j , Q11, Q21, and Q22 satisfying (13), (14), and the following
inequalities: [

Ψ̌11 ∗
Ψ̌21

ij Ψ̌22

]
< 0 (26)[

Φ̌11 ∗
Ψ̌21

ij Ψ̌22

]
< 0 (27)[

Υ̌11 ∗
Υ̌21 Υ̌22

]
< 0 (28)

where

Ψ̌11 �− diag{γ1(Q̄T + Q̄− P̌ ),

(γ1 + γ0 − 1)(Q̄T + Q̄− P̌ ),

λ20I, (λ
2
1 − λ20)I},

Ψ̌21
ij �

[
AiQ̄ BiR̄j Ei BiKjF
GiQ̄ 0 0 0

]
,

Ψ̌22 �− diag{P̌ , I}, Q̄ � TCQ,

Φ̌11 �− diag{γ1(Q̄T + Q̄− P̌ ), γ1(Q̄
T + Q̄− P̌ ),

− λ20I,−λ21I},
Υ̌11 �diag{(γ0 − 1)(Q̄T + Q̄− P̌ ),−λ2I},
Υ̌21

ij �
[
AiQ̄+BiR̄j Ei +BiKjF

GiQ̄ 0

]
,

Q �
[
Q11 0
Q21 Q22

]
, TC �

[
CT (CCT )−1 C⊥] .

Proof: By a simple matrix transformation, the inequality
in (11) can be rewritten as:

Ψ̃T
ijΨ̃

(1)Ψ̃ij + Ψ̃(2) < 0 (29)

where

Ψ̃ij �
[
Ai BiKjC Ei BiKjF
Gi 0 0 0

]
,

Ψ̃(1) �diag{P, I},
Ψ̃(2) �− diag{γ1P, (γ1 + γ0 − 1)P, λ20I, (λ

2
1 − λ20)I}.

By applying the Schur complement lemma, it follows that
(29) holds if and only if[

Ψ̃(2) ∗
Ψ̃ij −(Ψ̃(1))−1

]
< 0. (30)

Next, pre- and post-multiplying the matrix in (30) by
diag{Q̄T , Q̄T , I, I, I, I} and its transpose, the following in-
equality is obtained:[

Ψ̌(2) ∗
Ψ̌ij −(Ψ̃(1))−1

]
< 0 (31)

where

Ψ̌(2) �− diag{γ1Q̄TPQ̄, (γ1 + γ0 − 1)Q̄TPQ̄,

λ20I, (λ
2
1 − λ20)I},

Ψ̌ij �
[
AiQ̄ BiKjCQ̄ Ei BiKjF
GiQ̄ 0 0 0

]
.
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Since P > 0, it follows that

Q̄T + Q̄− Q̄TPQ̄− P−1

= −(Q̄− P−1)TP (Q̄ − P−1) ≤ 0

which implies Q̄TPQ̄ ≥ Q̄T + Q̄−P−1. Therefore, it can be
concluded that (31) is satisfied if (26) holds. By following a
similar reasoning, the inequalities in (27) and (28) can also be
derived. The proof is thus complete.

Remark 5: So far, the fuzzy controller design problem for T-
S fuzzy systems under replay attacks has been investigated. In
particular, a more general model has been proposed to describe
the behavior of replay attacks. Under the given assumptions
on the frequency and duration of replay attacks, sufficient
conditions have been established to guarantee the existence
of the desired controller gains.

Remark 6: In comparison with the existing literature, the
distinguishing novelties of this article are emphasized as
follows.

1) This work represents the first attempt to investigate the
fuzzy control problem for T-S fuzzy systems under replay
attacks subject to frequency and duration constraints.
While previous studies have primarily considered replay
attacks in terms of single occurrences or simplified as-
sumptions, the present study provides a rigorous frame-
work that explicitly incorporates both the frequency of
attacks and the duration of their impact, thereby offering
a more realistic and practical treatment of the problem.

2) A novel replay attack model is developed to characterize
the behavior of repeated replays. Unlike earlier models
reported in [29], [40], [45], which typically restricted
the number of replay times or assumed a fixed delay
structure, the proposed model allows both the number
of recorded data packets and the number of replays to
be determined by the adversary. As a result, the model is
more general and capable of capturing a wider range of
attack scenarios that may occur in practice.

3) The proposed replay attack model offers greater gener-
ality by capturing the process of repeatedly replaying
the same recorded data. While this generalization better
reflects practical attack scenarios, it also introduces sig-
nificant challenges in theoretical analysis. Unlike existing
studies where only the switching between the normal and
attacked modes needs to be considered, our model further
requires analyzing the switching between different replay
stages within the attack mode itself, which substantially
increases the complexity of deriving system performance.

4) A fuzzy controller is designed to effectively cope with
the measurement delays induced by replay attacks while
ensuring the desired system performance. The controller
design is derived under a set of sufficient conditions for-
mulated using Lyapunov stability theory, which guarantee
asymptotic stability as well as the required H∞ perfor-
mance. This contribution provides a systematic approach
to achieving robust control for T-S fuzzy systems in the
presence of replay attacks.

IV. NUMERICAL EXAMPLE

In this section, an illustrative example is given to verify the
effectiveness of the fuzzy controller for the plant under replay
attacks.

The nonlinear system is described by the following T-S
fuzzy model with two rules:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) =
2∑

i=1

ϕi(ρ(k))(Aix(k) +Biu(k) + Eiω(k))

y(k) =Cx(k) + Fω(k)

z(k) =

2∑
i=1

ϕi(ρ(k))Gix(k)

where

A1 =

[
1.02 0.3
0.2 0.32

]
, A2 =

[
0.94 0.2
0.3 0.2

]
,

B1 =

[
1.1
0.8

]
, B2 =

[
1.2
0.6

]
, G1 =

[
0.12 0
0 0.1

]
,

E1 =

[
0.2
0.5

]
, E2 =

[
0.1
0.2

]
, G2 =

[
0.1 0
0 0.2

]
,

C =
[
0.2 0.2

]
, F = 0.1,

ϕ1(ρ(k)) =sin2(k), ϕ2(ρ(k)) = cos2(k).

In the simulation, the noise is set as ω(k) = (0.8sin(k))/k
and the prescribed disturbance attenuation level is set to be
λ0 = 1.2 and λ1 = 1.8. The parameters of the replay attack
are taken as τ̄ = 4, d̄ = 5, α = 0.1, β = 50, σ = 0.1, and
θ = 40.

By solving matrix inequalities (13) and (14) in Theorem 1
and (26)-(28) in Theorem 2, the controller gains are calculated
by

K1 = −0.39558, K2 = −0.39694.

Simulation results are shown in Figs. 2–6. The state evolu-
tion of the open-loop system is plotted in Fig. 2. Fig. 3 shows
the difference between the normal measurement output y(k)
and the manipulated measurement output ỹ(k), from which
it is seen that the recorded measurement output is replayed
in sequence when k ∈ [6, 14], k ∈ [31, 45], k ∈ [56, 63],
and k ∈ [71, 90]. Fig. 4 plots the state evolution under replay
attacks, and the control output is plotted in Fig. 5. The time
instants of replay attacks are depicted in Fig. 6. Fig. 7 plots
the state evolution under replay attacks and possible packet
loss, where time delays caused by replay attacks are bounded
and the probability of packet loss is 20%. It can be seen that
the designed H∞ fuzzy controller keeps robustness against
network latency caused by replay attacks and packet loss.

V. CONCLUSIONS

In this article, the H∞ fuzzy control problem has been
investigated for T-S fuzzy systems subject to replay attacks.
In practice, adversaries may repeatedly launch replay attacks
by exploiting historical data. To capture this feature, a novel
mathematical model has been proposed to describe the repet-
itive replay behavior. On the basis of Lyapunov stability
theory, sufficient conditions have been derived to guarantee
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Fig. 2: Evolution of the system state x(k) without control.
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Fig. 3: The unmanipulated measurement output y(k) and the
attacked measurement output ỹ(k).

both the stability and the H∞ performance of the closed-
loop system. By incorporating assumptions on the frequency,
duration, record length, and replay count of replay attacks,
the disturbance attenuation level has been established. Subse-
quently, the fuzzy controller gains have been designed with
the aid of the orthogonal decomposition technique. Finally,
a simulation example has been presented to demonstrate the
effectiveness of the proposed fuzzy controller against replay
attacks.

Future research directions include the development of active
control strategies for T-S fuzzy systems under replay attacks
and the extension of the secure control problem to distributed
systems such as multi-agent systems [46], [47], sensor net-
works [48], [49], and complex networks [50].
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