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Abstract—Despite the widespread adoption of vision sensors
in edge applications, such as surveillance, video transmission
consumes substantial spectrum resources. Semantic communi-
cation (SC) offers a solution by extracting and compressing
information at the semantic level, but traditional SC without
sensing capabilities faces inefficiencies due to the repeated
transmission of static frames in edge videos. To address this
challenge, we propose an SC with computer vision sensing
(SCCYVS) framework for edge video transmission. The framework
first introduces a compression ratio (CR) adaptive SC (CRSC)
model, capable of adjusting CR based on whether the frames
are static or dynamic, effectively conserving spectrum resources.
Simultaneously, we present a knowledge distillation (KD)-based
approach to ensure the efficient learning of the CRSC model.
Additionally, we implement a computer vision (CV)-based sensing
model (CVSM) scheme, which intelligently perceives the scene
changes by detecting the movement of the sensing targets.
Therefore, CVSM can assess the significance of each frame
through in-context analysis and provide CR prompts to the
CRSC model based on real-time sensing results. Moreover, both
CRSC and CVSM are designed as lightweight models, ensuring
compatibility with resource-constrained sensors commonly used
in practical edge applications. Experimental results show that
SCCYVS improves transmission accuracy by approximately 70 %
and reduces transmission latency by about 89% compared with
baselines. We also deploy this framework on an NVIDIA Jetson
Orin NX Super, achieving an inference speed of 14 ms per
frame with TensorRT acceleration and demonstrating its real-
time capability and effectiveness in efficient semantic video
transmission.

Index Terms—Semantic communication; computer vision;
video transmission; intelligence sensing

I. INTRODUCTION
A. Backgrounds

With the rapid advancement of the Internet of Things (IoT),
vision sensors are increasingly deployed to provide intelligent
services, particularly in the surveillance domain. Video surveil-
lance is highly valued not only for its ability to solve crimes
but also for its potential role in crime prevention. As a result,
numerous vision sensors are commonly installed in public
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spaces, malls, and residential areas [1], [2]. Compared to wired
networks, wireless-based sensors offer greater flexibility in
deployment, especially in geographically dispersed or complex
environments, as they eliminate the need for physical cables
[3]. While wireless transmission is more versatile, transmitting
edge video, which typically involves large data sizes, imposes
substantial spectrum resource demands. This hinders the de-
velopment of wireless sensor-based edge applications [4].

Semantic communication (SC), a key technology for 6G,
significantly reduces the data transmission requirements by
extracting and compressing information at the semantic level,
while maintaining precision and relevance [5], [6]. Unlike
traditional communication approaches, which prioritize error-
free symbol delivery, SC focuses on achieving “semantic
fidelity,” effectively mitigating the “cliff effect” caused by
decreasing signal-to-noise ratios (SNR) [7]. Consequently, SC
offers a promising solution to the issue of spectrum scarcity.
However, existing deep SC methods typically adopt a fixed
compression ratio (CR) or perform uniform feature extraction
for all frames, without considering temporal redundancy. This
leads to unnecessary transmission of static or near-identical
frames, causing spectrum inefficiency.

Radar can provide high-accuracy sensing for various ap-
plications [8], including autonomous vehicle driving, robot
navigation, and indoor localization for virtual reality [9].
Therefore, radar sensing appears to offer a viable solution for
detecting changes in scenes. However, this approach requires
sensors to be equipped with advanced radar systems, which
is difficult to implement with the widely deployed general-
purpose sensors due to the high cost. Recently, the rapid
development of deep learning, particularly in the field of
computer vision (CV), has led to significant advancements
in perception technologies. CV models, such as YOLOv10
[10] and FastSAM [11], can automatically extract features
from large datasets and perform complex visual tasks such
as image recognition, object detection, and semantic segmen-
tation. Compared to the radar sensing methods, CV offers
substantial improvements in accuracy and robustness while
running efficiently on standard hardware [12]. These advance-
ments offer new opportunities for implementing cost-effective
content-aware video transmission systems.

B. Related Work

To achieve high-efficiency video transmission, numerous
studies have been conducted, focusing primarily on three
aspects: video encoding, content-aware adaptive compression,
and inference acceleration.
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Traditional and learning-based video coding methods pri-
marily aim to optimize rate-distortion performance. For ex-
ample, Wu et al. [13] proposed a region of interest (ROI)-
based video compression framework that integrates a texture-
driven ROI extraction algorithm into the H.265/HEVC quad-
tree structure, allowing differentiated encoding between ROI
and non-ROI regions. Djelouah et al. [14] introduced an end-
to-end neural video coding framework that performs optical
flow-based temporal prediction in pixel space and encodes
residuals in latent space, enabling unified compression of
key and intermediate frames. Wang et al. [15] designed a
deep video semantic transmission framework for end-to-end
video transmission over wireless channels, utilizing nonlinear
transforms and conditional coding to adaptively extract and
transmit semantic representations across video frames using
deep joint source-channel coding (JSCC). While these methods
achieve significant compression gains, they are largely task-
agnostic and content-unaware, limiting their effectiveness in
scenarios where transmission bandwidth is constrained.

To address this, content- and task-aware compression tech-
niques have been proposed to integrate semantic or Al-task
relevance into the encoding process. Hu et al. [16] developed
a content- and task-aware image compression framework for
IoT cameras that jointly optimizes perceptual and inference
quality under packet loss. Du et al. [17] leveraged server-
side deep neural network (DNN) feedback to dynamically
guide encoding decisions, while Xiao et al. [18] introduced
gradient-based spatio-temporal adaptation to balance bitrate
and semantic accuracy under time-varying network conditions.
However, these approaches typically integrate video content
analysis and codec optimization tightly into a single model,
resulting in strong coupling between content perception and
encoding. This results in the reliance on pre-trained task-
specific models, which limits adaptability to unseen tasks or
varied scenarios and reduces their scalability and practicality.

Additionally, recent work has also emphasized inference-
aware and deployment-oriented designs to improve the end-
to-end efficiency of video streaming. Du et al. [19] proposed
AccMPEQG, an accuracy-aware encoding framework that learns
macroblock-level accuracy gradients to optimize encoding
latency, DNN inference accuracy, and edge computational
cost simultaneously. Wang et al. [20] developed Orchestra,
a sensitivity-aware spatial quality adaptation framework that
uses regional accuracy sensitivity to guide video zoning, qual-
ity selection, and estimation of frame-level accuracy. These
methods are typically applied as post-processing optimization,
meaning the models are deployed to edge devices first and
then adapted for task-specific improvements. This approach
introduces additional computational overhead on resource-
constrained edge devices and, due to device heterogeneity,
the same optimization strategy may not generalize effectively
across different hardware.

C. Challenges

Based on the above analysis, despite significant advances
in video compression and semantic-aware transmission, two
key challenges remain for achieving high-efficiency video
streaming:

1) Coupling of Content Perception and Encoding: Exist-
ing methods that integrate content analysis and codec op-
timization, whether task-aware compression frameworks
or semantic-communication-based approaches (e.g., [16]
- [18].), are typically tightly coupled, jointly optimizing
feature extraction and video encoding. Although this can
enhance bandwidth efficiency and inference accuracy,
such strong coupling limits adaptability to new tasks,
heterogeneous devices, and dynamic network conditions,
thereby reducing system scalability and generality.

2) Edge Computation versus Low-Latency Transmis-
sion: Balancing computational cost on edge devices with
the need for low-latency video delivery remains chal-
lenging. Many inference-driven optimization methods,
such as [19] and [20], rely on post-deployment fine-
tuning or sensitivity estimation at the edge, introducing
additional computational overhead and limiting general-
ization across devices with varying capabilities.

D. Contributions

To overcome the above challenges, we propose a Semantic
Communication with CV Sensing (SCCVS) framework. The
framework adopts a separation-based design that decouples
scene perception from semantic encoding, thereby enhancing
scalability and adaptability. In addition, each module employs
lightweight Al models to meet the computational constraints
of edge vision sensors. The key features of SCCVS, compared
with existing methods, are summarized in Table I. Our main
contributions are as follows:

1) CR Adaptive Semantic Communication (CRSC):
We develop a compression-aware semantic communica-
tion model with two distinct encoding strategies: high-
compression semantic encoding for static frames and
low-compression encoding for scene-relevant frames.
A knowledge distillation (KD)-based training approach
allows the two encoding branches to learn from each
other, enhancing semantic reconstruction quality under
high compression while maintaining low transmission
overhead.

2) Computer Vision-based Sensing Model (CVSM): We
propose a CV-based sensing scheme that leverages ob-
ject detection and semantic segmentation models to
identify scene changes and provide CR guidance to the
CRSC module. By decoupling perception from encod-
ing, CVSM reduces the reliance on complex sensing
equipment and enables adaptive encoding decisions in
real time.

3) Lightweight Design: In the CRSC module, a
lightweight vision transformer (ViT) and Kolmogorov-
Arnold Networks (KAN) [21] are used for semantic
extraction and encoding. In CVSM, quantized detection
and segmentation models are employed to achieve real-
time inference on general-purpose sensors, ensuring that
the entire SCCVS framework operates efficiently under
edge device resource constraints.

4) Experimental Validation: Simulations on the VIRAT
Video Dataset [22] demonstrate that the proposed SC-
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TABLE I: Comparison of SCCVS with Existing Methods

Method Content-Aware  Semantic Encoding

Adaptive Encoding

Inference Optimization Perception-Encoding Decoupling

Wu et al. [13]
Djelouah et al. [14]
Wang et al. [15]
Hu et al. [16]

Du et al. [17]

Xiao et al. [18]

Du et al. [19]
Wang et al. [20]
Ours
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CVS framework improves transmission accuracy by

approximately 70% and reduces transmission latency by

about 89% compared with baseline methods. Moreover,

when deployed on an NVIDIA Jetson Orin NX Super

with TensorRT acceleration, SCCVS achieves a real-

time inference speed of 14 ms per frame, validating the

efficiency of its separation-based and lightweight design.

The structure of this paper is as follows. Section II provides

a detailed description of the system model. Section III presents

the proposed SCCVS framework, which mainly includes the

CRSC and CVSM schemes. Section IV employs experimen-

tal simulations to evaluate the performance of the proposed
methods. Lastly, Section V concludes this paper.

II. SYSTEM MODEL

As illustrated in Fig. 1, a video surveillance scenario is
considered where the visual sensor has a fixed camera angle,
such as in a parking lot, resulting in a static monitoring scene.
The primary variations within the scene are due to movable
objects like pedestrians and vehicles. These objects, however,
are typically in motion for only a small fraction of the time and
remain stationary for the majority of the observation period.
Due to limited local storage capacity, the sensor must transmit
the captured video data to a nearby base station (BS) via a
wireless link. To address the issue of spectrum scarcity, an
SC system with sensing capabilities at both the sensor and
the BS is implemented for data transmission. In this system,
the sensor functions as the transmitter, while the BS serves as
the receiver. A semantic encoder is deployed at the sensor
to extract and encode semantic information from the raw
video data, and a semantic decoder is employed at the BS
to decode the information and reconstruct the video. This
approach transmits only high-density semantic information
instead of raw video data, significantly reducing the bandwidth
requirements.

A. Semantic Communication Model

In the proposed SC model, the captured raw video is
transmitted frame-by-frame. This scenario is modeled as a
point-to-point wireless image transmission system enabled by
deep JSCC. The raw video is denoted as V = {x;|i €
{1,...,V}}, where x; represents the ith frame, and V is the
total number of frames. The primary objective is to reconstruct
all video frames at the receiver (i.e., the BS) transmitted by
the transmitter (i.e., the vision sensor) under varying channel
SNR and CR conditions.

1) Encoder: Each frame is assumed to have a height H,
width W, and depth C. The source bandwidth of each frame
is defined as m = H x W x C, leading to a total source
bandwidth of m -V for the entire raw video. At the transmitter,
a semantic encoder coupled with signal modulation transforms
the ith frame x; into an n;-dimensional complex vector c; €
C?. This process is formulated as:

C; = Fse(xi7ri7a)7

(D

where Fi.(-) denotes the semantic encoder with parameters «,
and r; = (m—n;)/m is the CR for frame x; [23]. Accordingly,
the overall CR of the edge video is expressed as:

Z'}/:l T
=7

2) Wireless channel: When transmitted over a wireless fad-
ing channel, the complex vector c; is subject to transmission
impairments, including distortion and noise. This transmission
process can be modeled as:

T =

)

yi=H-c;+N, 3

where y; is the received complex vector, H represents the
channel gain between the transmitter and receiver, and N
denotes the Additive White Gaussian Noise (AWGN). To
enable end-to-end training of both the encoder and decoder, the
channel model must support backpropagation. Consequently,
the wireless channel is simulated using neural network-based
approaches [24].

3) Decoder: Upon receiving the vector y;, the semantic
decoder is responsible for reconstructing the corresponding
frame. This reconstruction process can be expressed as:

4)

where Fy(-) denotes the semantic decoder parameterized
by [, and x; represents the reconstructed ith frame. Upon
completing the transmission of all frames, the reconstructed
video, denoted as f/ is obtained.

x; = Ful(yi, i, B),

B. Delay model

During the uplink transmission of the complex vector from
the vision sensor to the BS, the transmission rate can be
expressed as [25]:

v = Blog, (1 + ¢), &)
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Fig. 1: The system model of SC with sensing for transmitting edge videos.

where B indicates the bandwidth and ¢ denotes the SNR. The
transmission delay for the ith frame is then given by:
A
b= 29, (©)

(%

where Z(c;) represents the number of bits required to transmit
the complex vector c; to the BS. Consequently, the total
transmission delay for the edge video can be calculated as:

=5t )

C. Problem formulation

Considering that edge video frames often contain high levels
of redundancy with limited valuable information, traditional
metrics that assess the consistency of every frame between
the raw and reconstructed videos may not be appropriate. To
more accurately assess the performance of video SC, it is
essential to focus on minimizing differences in valuable frames
while accounting for transmission delays. Thus, the objective
function of the proposed SC system for edge video can be
formulated as:

\4
}: i—%)7 (L=r) +(T, )

st.r; €{0,1}, Vie {1,...,

where R = {r;[i = 1,...,V} represents the set of CR for
each frame, and ( denotes an adjustment coefficient. The
constraint in Eq. (8b) indicates that each frame is either
compressed or not.

To solve the optimization problem in Eq. (8a), we propose
the SCCVS framework. On the one hand, the CRSC module
is designed to minimize the distortion term (x; — X;)> by
optimizing the parameters « and /5 during model training. On
the other hand, the CVSM module dynamically senses frame
changes to optimize 7;, thereby reducing the transmission
delay associated with static frames.

v, (8b)

III. PROPOSED SCCVS FRAMEWORK
A. Overview

In practical scenarios, addressing the substantial spectrum
resource consumption caused by video transmission from
vision sensors is crucial. To this end, we introduce the SCCVS
framework, which integrates SC and CV sensing technologies
to achieve efficient video transmission. As depicted in Fig. 2,
the framework consists of two primary modules:

1) CRSC for Edge Video Transmission: For each video
frame, the CRSC module first utilizes a lightweight ViT to
extract semantic information from a given frame x;, generating
a high-dimensional semantic representation s;. A KAN is
then employed to compress s; based on the specified CR
r;, resulting in a semantic encoding e; with either a high or
low CR. This semantic encoding is subsequently modulated
into a complex vector c; for wireless transmission. At the
receiver side, the complex vector y;, which may include noise
distortions, is demodulated and processed by a KAN and
ViT-based semantic decoder to reconstruct the frame X;. The
CRSC scheme is detailed in Algorithm 2. Upon completing
the transmission of all frames, the reconstructed video Vs
obtained. Through this innovative SC approach, the CRSC
module achieves highly efficient data transmission for edge
video.

2) CVSM for Edge Video Sensing: To accurately detect
changes within the scene and dynamically adjust the CR
in the CRSC module, while minimizing the sensing cost
for vision sensors, the CVSM module employs CV-based
models to analyze video frames. Specifically, the framework
employs an object detection model (ODM) to detect movable
objects, such as pedestrians and vehicles, within the frames. A
semantic segment model (SSM) is then applied to segment key
targets, isolating their corresponding pixel sets. The identified
elements are subsequently analyzed across frames to detect
contextual changes in the scene. Based on these results, the CR
r; for the current frame is determined and fed into the CRSC
module to guide the semantic encoding process. Algorithm 4
provides a detailed description of the CVSM scheme. By CV-
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based image processing techniques, we reduce the high sensing
costs typically associated with radar-based equipment.
Assuming the D represents the training dataset. To facilitate
understanding, Fig. 3 illustrates the data flow of the proposed
SCCVS framework, and Algorithm 1 outlines the workflow.

B. CRSC for Edge Video Transmission

To enable efficient transmission of edge video while ad-
dressing the sensor’s resource constraints, we propose the
CRSC scheme. Since the semantic encoder is deployed on the
sensor side, we adopt a lightweight ViT for semantic feature
extraction, as it efficiently captures global spatial dependencies
with minimal parameters compared to conventional CNNs. For
semantic encoding, we employ a KAN, which provides high
nonlinear fitting capability and strong generalization with com-
pact architectures, further reducing model complexity. This
combination effectively minimizes the computational burden

This work is licensed under a Creative Commons Attribution 4.0 Licens

while ensuring high-quality video reconstruction. Considering
the high redundancy in video frames, two SC models with
distinct CRs are designed to handle static and dynamic frames
separately. Moreover, to enhance transmission robustness, es-
pecially under high compression, we introduce a KD mecha-
nism to enable mutual learning between the two SC models.
The key modules of the CRSC scheme are detailed as follows:

1) Light ViT-Based Semantic Extraction: As illustrated in
Fig. 2(a), we present a lightweight ViT that incorporates
a bilevel routing attention (BRA) mechanism [26], which
efficiently captures both global semantic dependencies and
local structural cues.

First, each input frame x; is divided into S x S non-
overlapping patches through a patch embedding layer, re-
sulting in x7 € RS *HW/S**C Linear projections are then
applied to obtam the query, key, and value tensors:

Q=x'W¢ K=xIWk V=xIW? 9)
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Algorithm 1 SCCVS Framework Workflow

Input: Raw video V, training dataset D.
Output: Reconstructed video V, semantic encoder’s parame-
ters o, semantic encoder’s parameters [.

Inference Phase:
1. fori=1,2,...,V do
2:  Sense the current frame x; and determine the corre-
sponding CR r; using Algorithm 4.
3:  Reconstruct the frame X; based on Algorithm 2 and
the determined CR r;.
4: end for
5: Combine all reconstructed frames to obtain the final
reconstructed video V.
6: Assess the transmission quality of the video SC based on
the objective function in Eq. (8a).

Training Phase:
7: Obtain the trained parameters: « and 3, by training the
CRSC model according to Algorithm 3, using D.

where W42, W% and W denote the corresponding learnable
projection matrices.

Then, to model global dependencies, region-level queries
and keys, Q" and K", are obtained by averaging token features
within each patch. Their correlation matrix, A” = Q" (KT)T,
reflects semantic affinities between regions. To mitigate the in-
fluence of irrelevant or noisy regions, only the top-k strongest
semantic connections are retained through a routing index
matrix I" = topk(A"). This region-level routing establishes
a coarse semantic graph that guides subsequent fine-grained
attention.

Next, based on I", semantically related key-value pairs are
selectively gathered for detailed token-level attention:

K9 = gather (K,I"),

V9 = gather (V,I"), (10)

The final output of the BRA layer is computed as:

O = Attention (Q, K9, V9) + LCE(V), (11)
where the first term performs attention restricted to routed
regions, and LCE(-) denotes the local context enhancement
term that reinforces neighborhood consistency and prevents
semantic fragmentation.

Finally, a linear projection layer Fpy; is applied to map the
aggregated output into a high-level semantic feature space:

S; = Fpmj(O). (12)

Overall, the BRA mechanism-based lightweight ViT enables
selective attention among semantically correlated regions, ef-
fectively reducing quadratic attention complexity while en-
hancing interpretability. By coupling region-level routing with
local context enhancement, it preserves essential structural
details and mitigates over-sparsification.

2) KAN-Based Semantic Encoding: First, the semantic rep-
resentation s; is flattened into an n-dimensional vector, st

=

(851,85 9,---,85,] € R™ Based on the Kolmogorov—Arnold

theorem, any continuous function f(-) can be represented as:

2n-+1 n

F(S51,Sharusin) = D> @0 | D tap(sy) |, (13)
qg=1 p=1

where ¢, and )4, are learnable nonlinear functions used for
feature mapping and combination. Eq. (13) provides the theo-
retical basis for KAN by demonstrating that any n-dimensional
function can be constructed through a set of one-dimensional
functions.

Next, KAN applies a nonlinear mapping to each compo-
nent st, generating intermediate feature representations. This
mapping is performed by the function 1), defined as:

hap = Vgp (SE) )

where h,, represents the mapped output for each input
component z,. This mapping is applied to each dimension
p = 1,2,...,n producing distinct intermediate features hgp,.
These intermediate features are then combined to form the
final output representation. For each ¢, the combined feature
U, is computed as:

(14)

n
Ug =Y hqp. (15)
p=1
Finally, a set of nonlinear functions, ¢, is applied to the
combined features u,, producing the final semantic encoding:

2n+1 2n-+1 n

e; = Z Wq(uq) = Z Pq qup(sf) s
q=1 q=1 p=1

where e; € R™ ™ represents the semantic encoding based on
the given CR r;. After modulating on e;, the complex vector
c; is obtained and transmitted over the wireless channel, to be
decoded at the receiver.

Unlike conventional multilayer perceptrons (MLPs) that rely
on high-dimensional matrix multiplications, KAN decomposes
multivariate mappings into combinations of low-dimensional
nonlinear functions, significantly reducing parameter count
and computational overhead. Therefore, the KAN-semantic
encoder not only ensures theoretical completeness in repre-
senting complex semantic relationships but also provides a
compact and efficient encoding for resource-constrained edge
devices.

The inference phase of CRSC is summarized in Algorithm

(16)

2.

Algorithm 2 Inference phase of CRSC

Input: The ¢th frame x;, the ith frame’s CR r;.
Output: The reconstructed ith frame X;.
1: Extract the semantic representation s; using Eqs. (9)-(12).

2: Perform the semantic encoding to obtain e; using Eqgs.
(13)-(16) with the given CR r;.

3: Generate the complex vector c¢; by modulating e;.

4: Receive the complex vector y; according to Eq. (3).

5: Reconstruct the frame X; using Eq. (4).
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3) KD-Based Model Training: To account for the varying
nature of video content, we design two distinct SC models:
one with a high CR, 7;gh, to process static frames, and another
with a low CR, 7w, to process dynamic frames. Given that
high CR can lead to significant semantic loss, we introduce
KD during the training process to improve the performance
of the high-CR SC model. KD is a transfer learning approach
technique that utilizes a mentor-student framework to transfer
knowledge from a well-performing mentor model to a less
capable student model. In this context, the low-CR SC model
serves as the mentor, while the high-CR SC model acts as
the student. The training process for the mentor and student
models using KD is illustrated in Fig. 3(a), and is described
as follows:

Distill Knowledge from Hard Labels: Both the mentor
and student models calculate the loss between their outputs
and the corresponding hard labels, which are defined by the
specific task at hand [27]. In this case, since the focus is on
video frame reconstruction, the hard labels correspond to the
original video frames. Let the input frame be x;; the task losses
for the mentor and student models are defined as follows:

tdsk - MSE(XM )’ (17)
task - MSE(XZ7 ) (18)

where X" and X} denote the reconstructed frames generated by
the mentor and student models after transmission, respectively.
The mean-square error function, MSE(-), is employed to en-
sure pixel-level consistency between the original frame and the
reconstructed frames. In summary, these task losses provide
direct task-specific supervision to guide both the mentor and
student models during training.

Distill Knowledge from Soft Labels: In addition to hard
label distillation, knowledge transfer between the mentor and
student models also occurs through soft labels, such as the
semantic encodings produced by each model [27]. Given that
incorrect prediction from either the mentor or student model
could negatively impact the other during KD, we implement
an adaptive approach that adjusts the distillation loss based
on the quality of the predicted hard labels (i.e., Egs. (17) and
(18)). The adaptive distillation loss for the student model is
expressed as:

KL("S *m)

l’ 7

Lo ’

task

Lxp = 19)
where KL(-) represents the Kullback—Leibler divergence, and
S} and 8" are the semantic representations reconstructed by
the student and mentor models, respectively. Specifically, 8} is
generated from the mentor’s semantic encoding e} € R™ "ov,
while 87" is derived from the student’s semantic encoding e} €
R Thigh

Both the mentor and student models are trained by minimiz-
ing a combination of task and KD losses using the stochastic
gradient descent (SGD) optimizer [28]. Here, G denotes the
number of training epochs, and D represents the training
dataset. The parameters «, and [, refer to the semantic
encoder and decoder in the mentor model, while a and [
represent the corresponding parameters in the student model.
The training process for CRSC is outlined in Algorithm 3.

Algorithm 3 Training Phase of CRSC

Input: Training dataset D.

Output: The mentor model’s semantic encoder and decoder
parameters, o, Om, and the student model’s semantic
encoder and decoder parameters g, [S.

1: for each epoch in G do
2:  for each batch sample in D do

3: Compute task losses L and L using Egs. (17)
and (18).

: Compute KD loss Lg;s using Eq. (19).

5: Update oy, and 3, by minimizing L£{}, using SGD
optimizer.

6: Update o and 3, by minimizing £}, + Lxp using

the SGD optimizer.
7:  end for
8: end for

C. CVSM for Edge Video Sensing

The CRSC model lacks inherent sensing capabilities and
cannot autonomously determine whether a given frame is static
or dynamic, making it unable to adjust the CR in real time.
Traditional radar-based sensing systems require specialized
hardware, which significantly increases deployment cost and
energy consumption on edge sensors. To overcome this limita-
tion, we propose the CVSM scheme, which leverages vision-
based lightweight sensing to intelligently detect scene changes
and guide the transmission process of CRSC. Specifically, for
each video frame, we employ an ODM, designed based on the
YOLO architecture [29], to locate movable targets. Its efficient
convolutional backbone and one-stage detection design allow
fast inference and compact deployment on resource-limited
edge devices. Following this, the SSM is applied to isolate key
pixel regions within each frame. The SSM adopts a lightweight
attention-based network that focuses on semantically relevant
areas while maintaining low computational complexity, en-
suring responsiveness for continuous video sensing. Finally,
contextual information is compared across frames to detect
scene changes, allowing CR adjustments to be dynamically
performed within the CRSC system. To further enhance ef-
ficiency, quantization is applied to both ODM and SSM,
ensuring real-time execution without compromising sensing
precision. The overall CVSM process is as follows:

1) ODM-Based Object Location: First, the current frame
x; is processed to obtain feature maps, denoted as F; €
RH XW'XC" \where H', W', and C’ are the dimensions of
the feature maps. This process can be expressed as:

Fi = COHV(X@), (20)

where Conv(-) represents the convolution operation.

Then, each anchor box is parameterized by its width w, and
height h,, customized to fit the objects detected in the feature
maps F;. For the jth anchor box, ODM predicts a bounding
box offset t; = (7, t@;, ty, th) and a confidence score c;. The
offset t; adjusts the anchor box to better fit the detected object,
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which is formulated as follows:

tw

(xjvyjawjv h]) = (U(t]m) + .1??, U(t?) + y] ) wae i h eth)
(2D
where (2,y?) denotes the grid cell’s top-left coordinate, o(-)

is the sigmoid activation, and the exponential term ensures
adaptive scaling of box size. This compact parameterization
enhances the regression flexibility and significantly improves
detection precision.

Finally, the set B; of all the detected boxes in x; is as the
output:

Bi = {(l’j,yj,Wj,hj,Cj)|j S {1,2,...,02'}},

where (z;,y;,w;,h;) represents the coordinates of the jth
box, c; is the confidence score for the detected object, and O;
represents the number of detected objects. Thus, B; provides
the location of all the movable targets in the current frame x;.

2) SSM-Based Semantic Segmentation: The frame x;, along
with the location data B; (obtained from ODM), is provided as
input to SSM, denoted as FT, to perform segmentation [24]:

FF : (XMB’L) — (Mlv SivLi)v (23)

where M, represents the generated binary mask with di-
mensions (H, W), indicating whether a pixel belongs to the
target object (1) or not (0). Additionally, S; represents the
Intersection over Union (IoU) score, measuring the overlap
between the mask and the ground truth annotation, while L;
provides the class label of the detected object. The resulting
mask M; is treated as the sensing result for frame x;.

To detect changes between consecutive frames, we define
the difference between the sensing results of two consecutive
frames, M;_; and M;, as follows:

1 H W
i = WZZ|Mi,a,b -M

a=1b=1

(22)

i*l,a,b|7 (24)
where M; , ;, denotes each pixel in the mask. Since M; 43, €
{0,1}, m; < € indicates that there are no changes between
frames, classifying M, as a static. € represents a threshold,
default as le — 4 in this paper. If changes are detected, the
frame is labeled as dynamic. Based on this classification, the
appropriate CR 7; € {71ow, Thign } is assigned to the frame. The
workflow for CVSM is outlined in Algorithm 4.

Algorithm 4 CVSM

Input: Detected boxes set B;, the ith frame x;.
Output: The ¢th frame’s CR r;.
1: Obtain the location information B; for frame x; using Eqs.
(20)-(22).
2: Based on B;, obtain the sensing results M, using Eq. (23).

3: Calculate the difference 7; between the current and pre-
vious frames using Eq. (24).

4: if n; == 0 then
5: Ti = Tlow-

6: else

7: Ti = Thigh-

8: end if

3) Quantization for Real-time Sensing: To ensure that both
the ODM and SSM can operate efficiently on edge devices
with constrained computational and memory resources, we ap-
ply post-training quantization techniques to reduce the model
sizes and accelerate inference without significant performance
degradation. Specifically, we quantize the weights and activa-
tions of both models from 32-bit floating-point precision to
8-bit integers.

Let w € R"™ be the original full-precision weights in a
given layer. The quantization process maps w to an 8-bit
integer representation w, € Z" through the following affine

transformation:
W —
w, = round <Mw) :
Sw

W R Sy - Wq + Haws

(25)

(26)

where s,, is the scale factor and p,, is the zero-point offset
that ensures zero is representable in the quantized range. The
same transformation is applied to activations during inference.
This quantization process reduces both memory footprint and
computational overhead.

IV. EXPERIMENTAL SIMULATIONS

This section describes the simulation dataset, parameter set-
tings, and evaluation results. The simulations are conducted on
a server equipped with an Intel Xeon CPU (2.3 GHz, 256 GB
RAM) and two NVIDIA RTX 4090 GPUs (24 GB SGRAM
each), leveraging the PyTorch framework to implement the
proposed schemes.

A. Simulation Settings

1) Dataset Setup: To evaluate the proposed methods, we
employ the VIRAT Video Dataset [22], which contains a
variety of surveillance videos captured in different scenarios.
The dataset is divided into two primary activity categories:
single-object and two-object scenarios, involving both humans
and vehicles. During the training phase, we capture one frame
per second from each video, resulting in approximately 9,600
RGB images. This dataset is used to train the CRSC model as
described in Algorithm 3. During inference, two consecutive
video clips from distinct scenes (see Fig. 4) are used as test
samples and processed according to Algorithm 1.

2) Parameters Settings: For the system model, the band-
width is set to B = 1 KHz, and the SNR is varied between 0
dB and 25 dB. In the inference phase, we assess the SC model
using different fixed SNR values. During training, the SNR is
randomly varied in each forward propagation to improve the
robustness of the CRSC model against channel noise. In the
inference phase, we evaluate the SC model under fixed SNR
conditions. Additionally, for the CR, we make the following
simplifications: when r; = 7y, the length of the semantic
encoding e; is set to 256. Conversely, when 7; = rpigp, the
length of e; is set to 16. This implies that for static frames,
only 6.25% of the data volume required for dynamic frames
is transmitted.
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Scenario 1

i=363

=441

Two-frame Three-frame YOLOV10-n + YOLOv10-x +
differencing differencing FastSAM-s FastSAM-x

Fig. 4: Visualization of sensing results of different schemes in two scenarios.

BZZ YoSan NI YoSax E=J TwDf ThDf accuracy at the expense of greater model complexity.
50 o Two/Three Frame differencing (TwDf/ThDf) [30]: A clas-

sical motion-based method that identifies moving regions
by calculating pixel-wise differences between consecutive
frames. The three-frame version further enhances robust-
ness against noise and background fluctuations.

43.0 42.0

N
o

w
o

********************************************** For the video transmission, several conventional and
learning-based schemes are compared to validate the channel
robustness of SCCVS:

e H.265+LDPC [15]: A conventional hybrid video com-

10.0 pression and channel coding pipeline, where H.265 per-

”””””””””””””””””””” forms source compression and LDPC codes are applied

for channel protection with different coding rates (1/3,

10000 0god 1/2, and 2/3). All transmissions adopt 16QAM modu-

Scenario 1 Scenario 2 lation to ensure consistent bandwidth utilization across
Scenario settings.

e DeepJSCC-V [31]: A deep joint source—channel cod-
ing model designed for end-to-end image and video
transmission, featuring predictive and adaptive semantic
representation.

N
o

Inference delay (ms)

N
o

Fig. 5: Inference delay of different sensing schemes.

3) Comparison Schemes: To assess the efficiency of dif-
ferent perception front-ends for semantic feature extraction,
four representative detection or motion estimation methods are
evaluated:

e YOLOV10-n+FastSAM-s (YoSa-n) [10], [11]: A
lightweight combination of object detection (YOLOv10-
n) and segmentation (FastSAM-s), enabling real-time
perception with low computational overhead.

e YOLOvVI10-x+FastSAM-x (YoSa-x) [10], [11]: A more
advanced configuration employing larger variants of
YOLOv10 and FastSAM to achieve higher detection

To analyze the contribution of key components in the
proposed framework, the following ablated variants are im-
plemented:

e SCCVS (w/o CVSM): In this variant, the CVSM is
disabled, and the CRSC model is used for all frames
without receiving CR prompts from CVSM, resulting in
uniform low-CR transmission.

¢ SCCVS (w/o KD): KD is excluded during training, and
the high-CR and low-CR models are trained indepen-
dently.
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Fig. 6: Performance comparison of CRSC assisted by different sensing schemes.
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Fig. 7: Transmission delay and identified dynamic frame
ratio of CRSC assisted by different sensing schemes.

4) Evaluation Metrics: The performance of the proposed
SCCVS framework is evaluated from four perspectives: pixel
fidelity, perceptual quality, distribution similarity, and semantic
integrity. Therefore, we consider the following metrics:

o Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity Index (SSIM): evaluate the pixel-level fidelity
between the reconstructed and reference videos. Higher
values of PSNR and SSIM indicate better reconstruction
quality and structural preservation.

o Learned Perceptual Image Patch Similarity (LPIPS) [32]:
measures perceptual similarity by comparing deep fea-
tures extracted from pretrained neural networks, provid-
ing a more human-aligned perception metric.

o Fréchet Inception Distance (FID) [33]: quantifies the dis-
tribution similarity between the reconstructed and original
videos in the feature space, serving as an indicator of
semantic consistency and visual realism.

B. Evaluation of Scenario Sensing

This subsection aims to verify the effectiveness of the neural
network-based visual sensing modules (i.e., the ODM and
SSM) in accurately capturing dynamic scene information. We
compare multiple sensing schemes in terms of their sensing
quality and inference latency to demonstrate their impact on
the overall performance of the SC system.

As shown in Fig. 4, we visualize the sensing results of
different schemes across two representative scenarios. Specif-

ically, two frames from each video are selected for visu-
alization: the 42nd and 230th frames from the first video
and the 363rd and 441st frames from the second video. We
observe that traditional methods, such as TwDf and ThDf, can
roughly identify motion regions but often fail to detect small
or partially occluded targets. In contrast, the neural network-
based YoSa-n and YoSa-x methods, which integrate object
detection with semantic segmentation models, are capable of
capturing much finer-grained changes within the scene. This
allows the sensing module to locate key dynamic objects
more accurately and even perceive subtle contextual variations.
Notably, although YoSa-x achieves the highest detection accu-
racy, its increased network complexity leads to a considerably
higher inference delay, as shown in Fig. 5. YoSa-n, on the
other hand, maintains competitive sensing performance while
achieving a significantly lower delay, thereby achieving a
better trade-off between accuracy and efficiency.

To further evaluate how different sensing schemes affect
the overall semantic transmission process, we integrate them
into the CRSC model and analyze both reconstruction quality
and transmission efficiency. As illustrated in Fig. 6, the re-
sults show that YoSa-based sensing notably enhances CRSC
performance compared to traditional frame-differencing ap-
proaches, achieving higher PSNR, SSIM, and lower perceptual
distortion. Fig. 7 demonstrates that the sensing method directly
influences both the proportion of frames identified as dynamic
and the overall transmission latency. Specifically, while YoSa-
x recognizes the highest number of dynamic frames, it incurs
the longest delay. TwDf and ThDf, on the other hand, have
lower latency but miss most subtle dynamic changes, identify-
ing only a small proportion of dynamic frames (e.g., less than
15%). In contrast, YoSa-n achieves a moderate dynamic frame
ratio and maintains a much lower transmission delay, achieving
the most favorable balance between perception sensitivity and
transmission efficiency.

Therefore, we select the YoSa-n as the CVSM in our
SCCVS framework to achieve an optimal balance between
sensing precision and real-time responsiveness.

C. Evaluation of Video Transmission

To verify the effectiveness of the proposed SCCVS frame-
work in video transmission, we compare it with both tradi-
tional and Al-based transmission methods.
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Fig. 9: Comparison of transmission performance of different schemes in scenario 2.
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Fig. 10: Comparison of transmission delay of different video
transmission schemes.

The comparison is conducted under two distinct scenarios,
and the results are illustrated in Fig. 8 and Fig. 9. In the
low-SNR regime, where transmission errors are more severe,
SCCVS exhibits overwhelming superiority in terms of both
pixel-level fidelity (PSNR and SSIM) and perceptual quality
(LPIPS and FID). Compared with traditional H.265+LDPC
systems that suffer from severe quality degradation or even
complete decoding failure at low SNRs, SCCVS maintains sta-
ble and high-quality video reconstruction. This improvement
arises from the semantic-aware visual sensing and adaptive
transmission mechanisms, which enable the model to priori-
tize key information under noisy channel conditions. In the
high-SNR regime, SCCVS continues to achieve performance
comparable to that of H.265+2/3LDPC while preserving strong

achieve robust and efficient video transmission. It not only
surpasses conventional codec-based methods in noisy environ-
ments but also approaches their upper-bound performance in
high-quality transmission scenarios, demonstrating its strong
adaptability and scalability across diverse channel conditions.

D. Ablation Analysis

To investigate the effectiveness of the key components
in the proposed SCCVS framework, we conduct ablation
experiments under various SNR conditions.

Fig. 11 shows the experimental results on a video of
scenario 1. We can observe that the proposed SCCVS main-
tains stable reconstruction quality across all SNR levels. In
comparison, since all frames are transmitted at a low com-
pression ratio, SCCVS (w/o CVSM) achieves slightly higher
pixel-level scores. However, this design significantly increases
transmission delay, with the total time for sending one test
video reaching 95 s, compared to only 30 s for SCCVS. On
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Fig. 11: Performance comparison results of ablation experiments.
TABLE II: Model Complexity and Inference Delay of side components have a parameter size of 140.14 M and a
SCCVS Modules computational complexity of 56.3 GFLOPs. Without TensorRT
CvsM CRSC optimization, the end-to-end inference delay reaches 160.56
Module oo ssu s o S Total  yyo/frame. In contrast, with TensorRT acceleration on the
em. . em. . e, . .
Enc.  Codec  Dec. Jetson Orin NX Super, it is reduced to approximately 13.39
Params (M) 220 1178 1514 118 11175 14014 ms/fr?lrm.a, demonstranpg a speed-u‘p of over 10x. .These re-
GFLOPs 6.7 424 26 0007 46 563 sults indicate that the lightweight ViT-based semantic encoder
Delay w/o TensorRT (ms) 4321~ 23.80 9210 145 16056 achieves an excellent balance between semantic representation
Delay with TensorRT (ms) 1.09 1.08 11.10 0.12 - 13.39

the other hand, SCCVS (w/o KD) shows a clear performance
degradation compared with the full model, especially under
low SNRs. This reflects the effectiveness of the KD-based
training method in improving semantic representations be-
tween high-CR and low-CR models, thereby improving overall
reconstruction fidelity and robustness under noisy conditions.

Overall, these results demonstrate that both the CVSM and
KD-based training methods play essential roles in achieving
adaptive, high-quality, and low-latency semantic video trans-
mission within the SCCVS framework.

E. Evaluation of Lightweight

To verify the effectiveness of the proposed lightweight
design, we analyze the computational complexity and pa-
rameter size of the modules deployed on the edge device.
Specifically, this evaluation includes the ODM, SSM, and the
major components of the CRSC system, i.e., the lightweight
ViT-based semantic encoder and KAN-based channel codec.
These modules are deployed on an NVIDIA Jetson Orin
NX Super platform, which integrates an 8-core Arm Cortex-
AT8AE v8.2 64-bit CPU (2 MB L2 + 4 MB L3 cache) and an
NVIDIA Ampere GPU with a maximum frequency of 1,173
MHz, offering up to 157 TOPS of Al computing power and 16
GB LPDDRS5 memory [34]. Additionally, during deployment,
TensorRT-based optimization and inference acceleration [35]
are employed to fully exploit the parallel computing capability
of the embedded GPU, thereby significantly reducing latency
and improving runtime efficiency. This setup provides a repre-
sentative environment for evaluating device performance under
resource-constrained edge conditions.

In Table II, we summarize the parameter size, GFLOPs,
and inference delay for each module. Specifically, the edge-

capacity and computational efficiency, thanks to its compact
transformer architecture and adaptive token aggregation strat-
egy. The KAN-based channel codec further enhances effi-
ciency by replacing conventional MLP layers with functional
KANSs, significantly reducing parameter redundancy while
preserving expressive power for robust channel adaptation.
Although the CVSM module’s SSM contains a relatively larger
number of parameters due to its dense feature extraction
process, its inference delay still satisfies real-time requirements
for visual perception tasks on edge devices.

In summary, the experimental findings verify that the pro-
posed SCCVS achieves a well-optimized trade-off between
accuracy and efficiency. The introduction of TensorRT-based
acceleration dramatically reduces inference latency, making
the lightweight ViT-based and KAN-based components highly
feasible for large-scale deployment in edge-side intelligent
communication scenarios.

V. CONCLUSIONS

To mitigate the high spectrum resource demands associated
with vision sensors transmitting edge video, we propose the
SCCVS framework. This framework introduces a CRSC model
that intelligently adjusts the CRs of video frames based on
real-time sensing results, optimizing the balance between
compression efficiency and semantic fidelity. Additionally, the
CVSM scheme is incorporated, leveraging CV techniques to
detect changes in the edge scenes and assess the contextual
importance of each frame. This enables CVSM to guide
the CRSC model in applying lower CRs to dynamic frames
while assigning higher CRs to static frames. Furthermore, both
the CRSC and CVSM models are designed with lightweight
architectures, making the framework particularly suitable for
resource-constrained sensors in real-world edge applications.
Experimental results show that the proposed SCCVS frame-
work achieves approximately 70% higher transmission accu-
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racy and 89% lower latency compared with baselines. When
deployed on an NVIDIA Jetson Orin NX Super with TensorRT
acceleration, it attains a real-time inference speed of 14 ms
per frame, demonstrating its efficiency and suitability for edge
deployment.

Future research will explore multimodal sensing (e.g., com-
bining vision and radar signals) to further enhance scene
understanding and compression decision-making. We also aim
to incorporate online learning and model adaptation techniques
to ensure long-term stability and adaptability of the CRSC
and CVSM models in continuously changing environments.
Finally, extending SCCVS to support collaborative sensing
across multiple edge nodes, under a federated or distributed
framework, will be another key direction, allowing for more
intelligent and cooperative video compression strategies in
large-scale sensor networks.
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