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Abstract—Semantic Communication (SC) combined with Ve-
hicular edge computing (VEC) provides an efficient edge task
processing paradigm for Internet of Vehicles (IoV). Focusing on
highway scenarios, this paper proposes a Tripartite Cooperative
Semantic Communication (TCSC) framework, which enables Ve-
hicle Users (VUs) to perform semantic task offloading via Vehicle-
to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communi-
cations. Considering task latency and the number of semantic
symbols, the framework constructs a Mixed-Integer Nonlinear
Programming (MINLP) problem, which is transformed into
two subproblems. First, we innovatively propose a multi-agent
proximal policy optimization task offloading optimization method
based on parametric distribution noise (MAPPO-PDN) to solve
the optimization problem of the number of semantic symbols;
second, linear programming (LP) is used to solve offloading ratio.
Simulations show that performance of this scheme is superior to
that of other algorithms.

Index Terms—Semantic communication, vehicle edge comput-
ing, task offloading, multi-agent reinforcement learning.

I. INTRODUCTION

IN the rapidly moving Internet of Vehicles (IoV), a large
number of computation intensive and delay sensitive tasks

(such as autonomous driving and vehicle road coordination)
put forward strict requirements for low latency and high
reliability, which is difficult to be met solely by on-board
terminals. Task offloading and resource allocation can alleviate
bottleneck by transferring part of the computation to Road Side
Units (RSUs), base stations or neighboring vehicles [1] [2].

Traditional bit-level communication has redundancy and is
difficult to meet the requirements of ultra-low latency and
low power consumption. As a new paradigm [3], semantic
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communication (SC) focuses on the semantic validity of in-
formation and task relevance, and can significantly reduce the
load while ensuring accuracy [4] [5]. Vehicle edge computing
(VEC) has become a key technology for IoV. Through col-
laborative offloading between vehicles and edge servers, IoV
achieves flexible semantic offloading. With SC, VEC enhances
communication and computing efficiency as well as system
robustness and security [6], offering a new paradigm to meet
IoV’s low-latency and high-reliability demands.

Extensive studies have explored SC in Mobile Edge Com-
puting (MEC). For instance, Zheng et al. [7] proposed a
semantics-aware offloading scheme for deep neural network
inference, which reduces energy consumption and latency
through task feature compression and computation-aware
scheduling. Zheng et al. [6] further introduced a joint opti-
mization approach for computation offloading and semantic
compression, improving task completion efficiency. For IoV
scenarios, the integration of SC with Vehicle-to-Everything
(V2X) collaboration has become a trend. Su et al. [5] devel-
oped a Device-to-Device (D2D) based dynamic resource to
enhance spectrum efficiency, while Tang et al. [1] designed a
semantic QoS-driven offloading algorithm balancing similarity
and resources. MARL has also been applied to VEC. Zeng et
al. [8] proposed Deep Reinforcement Learning (DRL) based
offloading approach for latency-sensitive tasks with depen-
dencies, effectively reducing semantic latency. However, most
existing works only consider a single Vehicle-to-Infrastructure
(V2I) link and fail to fully leverage advantages brought by
Vehicle-to-Vehicle (V2V) collaboration.

To address the aforementioned issues, the main contribu-
tions of our work are as follows1:

• We propose a flexible tripartite collaborative semantic
communication (TCSC) framework integrating V2I/V2V
links, enabling dynamic task offloading among local
vehicles, RSUs and service vehicles (SVs) for efficient
semantic transmission.

• We innovatively propose multi-agent proximal policy
optimization based on parametric distribution noise
(MAPPO-PDN) with linear programming for semantic
communication-driven task offloading, achieving low la-
tency and outperforming traditional MARL.

• Simulations show that the proposed MAPPO-PDN out-
performs traditional VEC schemes in system delay under
different real-world environments.

1Source code can be found at: https://github.com/qiongwu86/Semantic-
Aware-Cooperative-Communication-and-Computation-Framework-in-
Vehicular-Networks.git
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II. SYSTEM MODEL

A. System Scenario

The system scenario is illustrated in Fig. 1, where features
a two-lane highway. A RSU, connected to a MEC server
and covering all lane vehicles, is deployed roadside. Vehicles
are categorized into two types: vehicle users (VUs) and
SVs. VUs is denoted as I = {1, 2, . . . , I} and edge node
as J = {0, 1, 2, . . . , J}, where 0 denotes the RSU, and
1 ∼ J denote SVs. All vehicles and RSU are equipped with
deep learning-enabled Semantic Communication (DeepSC)
systems [9]. Time splits into slots T = {1, 2, . . . , T}, each
with a duration of ∆t. In slot t, VU task arrivals follow
a Poisson distribution, and text-based semantic tasks have
size yi, with VUs as sources. Vehicle speeds follow a truncated
Gaussian distribution, and vehicles are uniformly distributed
along the road. Each VU preferentially selects the nearest SV
as its offloading node. A quasi-static channel is considered,
where channel conditions remain constant within a slot but
may vary across adjacent slots.

In V2X scenarios, we have discussed the V2I commu-
nication model and the V2V communication model. When
semantic offloading processing is performed on vehicle tasks,
the Signal-to-Interference-plus-Noise Ratio (SINR) between
VUs and RSU (or other SVs) can be expressed as

γi,j =
pi,j |gi,j |
I0 + Ii,j

, (1)

where pi,j is transmission power from the i-th VU to the
j-th edge node. gi,j is the channel gains from the i-th TV
to thej-th edge node, expressed as gi,j = h0

d2i,0
, where h0 is

channel gain at distance d0 = 1m, di,j is the distance
between the i-th VU and the j-th edge node, expressed as
di,j =

√
(xj − xi)2 + (yj − yi)2. (xi, yi) are coordinates of

the VU, and (xj , yj) are coordinates of the edge node. I0 rep-
resents the noise power. Ii,j =

∑
x̸=i αi,jpx,j |gx,j | +∑

x̸=i αi,jpx,j |gx,j | is interference from the i-th VU to the j-
th edge node. αi,j indicates binary spectrum allocation. αi,j =
1 means transmission from the i-th VU to the j-th edge node
uses the same channel.

B. Semantic Communication Model

We use DeepSC as the text semantic communication model
[9]. VUs encode text into semantic symbols via DeepSC and
send them to the RSU and SVs for semantic decoder [10].
Unlike traditional data rate, semantic rate, measured in ‘suts/s’,
depends on semantic units and information content to reflect
semantic information transmitted per unit time [11].

Ri,j =
BSi,j
Li,jki,j

δi,j , (2)

where B is channel bandwidth, Si,j is average semantic
information of a sentence, Li,j is average length of a sentence,
and ki,j is semantic symbols per word transmissible in a time
slot. δi,j is semantic similarity of VU at time slot t, relates
to semantic symbols and SINR as δi,j = f(ki,j , γi,j), with
its mapping relying on DeepSC’s neural structure and channel
conditions [12]. Running a pre-trained DeepSC on an AWGN
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Fig. 1. System overview.

channel to get the mapping between δi,j and (ki,j , γi,j). In
[12], a table is formed where the columns are ki,j and the
rows are SINR. The SINR interval is (-10, 20) dB. Since
semantic similarity is significantly correlated with the value
of ki,j , optimizing ki,j within this interval can further improve
the semantic transmission rate.

C. Computation Model

Based on the task offloading framework of TCSC, we
analyze the computing model of the IoV system.

1) Local computing: We assume that the local execution
ratio of VU in time slot t is ρlocal

i . Therefore, the local
computing delay required by VU is calculated as

T loc
i =

ρlocal
i yiC

f loc
i

, (3)

where C denotes the number of CPU cycles required to
compute one bit, f loc

i represents computing capability of VU.
2) Processed on the RSU: We denote offloading ratio of

tasks to RSU as ρRSU
i . Therefore, transmission delay for VU to

offload tasks to the RSU in time slot t can be expressed as

T Tr,RSU
i,j =

ρRSU
i di Si,j
Ri,j

=
ρRSU
i di ki,j Li,j

B δi,j
, (4)

where di is the number of semantic task queues of VU in time
slot t, expressed as di = yi/H . Here, H is conversion factor
that converts the data volume yi into the number of sentences.
The computation delay for VU to offload to the RSU can be
calculated as

TRSU
i,j =

ρRSU
i yi C

fRSU
i,j /N

, (5)

Considering that the RSU needs to allocate computing capabil-
ity to all connected VUs, we set the total computing capability
of the RSU as fRSU

i,j and have it shared by N VUs.
After processing, the RSU returns the results to the cor-

responding VU. Since the result size is negligible, downlink
transmission delay is ignored.
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3) Processed on the SV: We denote the offloading ratio of
tasks to j-th SV as ρSV

i . The transmission delay for VU to
offload tasks to j-th SV in time slot t can be expressed as

T Tr,SV
i,j =

ρSV
i di Si,j
Ri,j

=
ρSV
i di ki,j Li,j

B δi,j
. (6)

VU offloads a fraction ρSV
i of its task to the nearest j-th SV,

the available computing resource depends on j-th SV capacity
and the number of connected tasks. Let the total capacity of
j-th SV be fSV

i,j , with N VUs and J SVs. If M VU pick
j-th SV as the computing node in the same time slot, j-th
SV evenly allocates resources to them. M has a threshold 0 <
M < N/J ; if exceeded, VUs offload to the second nearest SV.
The computation delay for VU offloading to SV is

T SV
i,j =

ρSV
i yi C

fSV
i,j /M

. (7)

Similar to the aforementioned RSU offloading section, the
downlink delay for returning these results is not considered.
Finally, based on the task offloading decision for VU, the total
delay of task yi is given by the following formula

T tot
i = max

{
T loc
i , T tr,RSU

i,j + TRSU
i,j , T tr,SV

i,j + T SV
i,j

}
. (8)

D. Problem Formulation
Considering that the offloading ratio ρ and the number of

semantic symbols k under the TCSC framework are adjustable,
we minimize the total delay of all vehicles by jointly adjusting
them. The optimization problem can be formulated as

P1: min
ρ,k

∑
i∈I

T tot
i (9a)

s.t. ρloc
i , ρRSU

i , ρSV
i ∈ [0, 1], ∀i (9b)

ρloc
i + ρRSU

i + ρSV
i = 1, ∀i (9c)

δi,j ≥ δth, ∀i, j (9d)
ki,j ∈ {1, . . . , kmax

i,j } (9e)

T loc
i ≤ Dmax

i , ∀i (9f)

T tr,RSU
i,j + TRSU

i,j ≤ Dmax
i , ∀i, j (9g)

T tr,SV
i,j + T SV

i,j ≤ Dmax
i , ∀i, j (9h)

In P1, constraint (9b) denotes task allocation ratios; (9c)
ensures complete distribution across local, RSU, and SV
execution; (9d) guarantees semantic similarity in V2I/V2V
links exceeds a threshold; (9e) limits the average number of
semantic symbols per word. Constraints (9f), (9g), and (9h)
ensure each task portion meets delay constraints.

Problem P1 is hard to solve as the objective function couples
the continuous offloading ratio ρ and discrete semantic symbol
count ki,j . Using only Multi-Agent Proximal Policy Optimiza-
tion (MAPPO) needs extra design to disperse continuous vari-
ables, raising complexity and lowering accuracy. Therefore,
following [13], we decompose the problem. First, based on
the parameter uncertainty regularization concept in [14], we
propose a MAPPO-PDN for multi-agent to optimize discrete
semantic symbol counts. Introducing parametric distribution
noise (PDN) boosts generalization and convergence stability.
Second, linear programming (LP) is used to optimize continu-
ous offloading ratio, thereby reducing the overall complexity.

III. PROBLEM FORMULATION AND SOLUTION

A. Semantic Symbol Optimization Based on MAPPO-PDN

To select the optimal number of semantic symbols ki,j ,
we use the MAPPO-PDN algorithm to optimize the discrete
variable ki,j in (9a). This algorithm is a modified MAPPO.
Therefore, the constraints only related to the value of ki,j ,
and are kept by fixing ρ, we transform original problem into:

P2: min
k

∑
i∈I

T tot
i

s.t. (9d), (9e), (9g), (9h)
(10)

Training the number of semantic symbols using the
MAPPO-PDN algorithm, all VUs act as agents. Through
multi-agent interaction and adjusting the number of semantic
symbols according to policies, it can provide the solution to
the optimization problem P2. Generally, it consists of state
space s, action space a, and reward function r.

1) State space: State space can be expressed as st =
{γi,j , d̂i,j , yi,Fγ}, where γi,j represents the SINR, d̂i,j is the
normalization of the distance di,j , yi is the task size, and Fγ is
a vector composed of semantic similarity values obtained from
the mapping function δi,j = f(ki,j , γi,j). Different dimensions
represent the semantic similarity corresponding to different
values of k under the current SINR condition. Each agent
makes decisions independently based on state information.

2) Action space: All agents select the optimal action based
on the currently observed state st. While SINR is in the
range of (-10, 20) dB, this action can be expressed as at =
{1, . . . , kmax

i,j }, where kmax
i,j represents the maximum average

number of semantic symbols used for each word. If SINR
is lower than the minimum threshold we trained, ki,j takes
kmax
i,j ; if SINR is higher than the maximum threshold we

trained, ki,j takes 1. This is because when the SINR is good,
a relatively small k is sufficient to achieve a high semantic
similarity. However, when the SINR is poor, a larger k value
is needed to ensure the semantic similarity.

3) Reward function: The reward rt refers to the immediate
reward obtained when action at is executed under state st,
and the reward function is designed as rt = Tmin/Ti, where
Tmin is minimum delay obtained by iterating over all ki,j using
Equation (8). Ti is delay calculated based on the action.

Different from the point estimation method for policy
parameters in traditional MAPPO, our method models the
parameters θk of the Actor as a Gaussian distribution q(θk) =
N (µk, σ

2
k), and samples decisions for each agent n at each

time t via reparameterization θ
(n)
k = µk+σkξ

(n)
k . Here, k de-

notes the parameter index, n denotes the agent index. All
agents share (µk, σk) but sample ξ

(n)
k independently, its effect

will be truncated in the following processing. This design
enables policy to directly learn parameter groups, thereby
explicitly modeling uncertainty and maintaining strong ro-
bustness in scenarios with environmental changes and out-of-
distribution cases. This parallel posterior sampling mechanism
not only improves exploration diversity but reduces overfitting
risk in non-stationary multi-agent environments. Drawing on
idea of PDN, we introduce a PDN upper bound constraint into
the MAPPO loss [14]:
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LSNR = E
[
(max (Ωk − Ωmax, 0))

2
]
, (11)

We define PDN of a specific parameter as Ωk = |µk|
σk

.
Where Ωmax is upper limit for PDN. Complex and unstable
environments require a larger Ωmax. It limits the upper bound
of parameter uncertainty, ensuring exploration diversity and
improving generalization ability. The clipped policy loss func-
tion of MAPPO is:

Lπ = −E
[
min

(
ρtÂt, clip (ρt, 1− ε, 1 + ε) Ât

)]
, (12)

where ρ
(n)
t =

πθ

(
a
(n)
t

∣∣s(n)
t

)
πθold

(
a
(n)
t

∣∣s(n)
t

) is importance sampling ratio, πθ

is actor policy, and πθold is old policy for sampling data. Ât is
advantage function. clip(ρt, 1−ε, 1+ε) clips ρ(n)t to [1−ϵ, 1+
ϵ]. The value function loss is the mean squared error between
the predicted state value and the actual return, expressed as

LV =
1

2
E
[(

Vψ(st)− V̂t

)2]
, (13)

where V̂t = Ât + Vψ(st), and V̂t is the regression target
value constructed by the critic during training. To improve the
exploration ability of MAPPO, we define the regularization
function as LH = −E [H (πθ(· | st))], where H(πθold) is the
strategy entropy. Finally, PDN regularization is added to the
loss of MAPPO to form our method, MAPPO-PDN.

L = Lπ + cvLV + βtLH + ωLSNR, (14)

cv , βt and ω are weight of value loss, weight of entropy
regularization, and weight of PDN regularization, respectively.

B. Offloading Rate Based on Linear Programming

To select the optimal offloading rate ρ with lower complex-
ity and higher accuracy, we use LP to solve the other part.

P3 : min
ρ

∑
i∈I

T tot
i (15a)

s.t. (10b), (10c), (10f), (10g), (10h) (15b)

Constraints (10f), (10g), and (10h) are all inequalities related
to ρ. We set AL = yiC

f loc
i

, AR =
diki,jLi,j

Bδi,j
+ yiC

fRSU
i,j /N

and AS =
diki,jLi,j

Bδi,j
+ yiC

fSV
i,j/M

, they can be simplified as

ρlocal
i

(
yiC

f loc
i

)
= ρlocal

i AL ≤ Dmax
i (16)

ρRSU
i

(
diki,jLi,j
Bδi,j

+
yiC

fRSU
i,j /N

)
= ρRSU

i AR ≤ Dmax
i (17)

ρSV
i

(
diki,jLi,j
Bδi,j

+
yiC

fSV
i,j /M

)
= ρSV

i AS ≤ Dmax
i (18)

To find the optimal solution, all constraints should be tight.
Therefore, we have ρlocal

i AL = Dmax∗
i , ρRSU

i AR = Dmax∗
i ,

and ρSV
i AS = Dmax∗

i . According to constraint C2, we obtain

Dmax∗
i

(
1

AL
+

1

AR
+

1

AS

)
= 1 (19)

Fig. 2. Convergence performance comparisons.

Since the k value has been given by the previous MAPPO-
SNR algorithm, 1

AL
+ 1

AR
+ 1

AS
is a known value, and Dmax∗

i

can be obtained. Therefore, according to (17), (18), and (19),
all offloading rates ρ can be derived: ρlocal∗

i =
Dmax∗

i

AL
, ρRSU∗

i =
Dmax∗

i

AR
, and ρSV∗

i =
Dmax∗

i

AS
.

This method combines MAPPO-PDN with LP to design a
TCSC-based MAPPO-PDN-LP offloading strategy, which can
balance semantic symbol optimization and task allocation, and
improve the overall task processing efficiency of the system.

IV. SIMULATION RESULTS AND ANALYSIS

This section evaluates the performance of proposed TCSC
method through simulation, which includes one RSU and
vehicles distributed along a 400m road. When tasks are
allocated to VUs, each time slot generates a task volume of
0.8 Mbit, which is generated by a Poisson distribution, and
the required computing frequency C is 1000 cycles. We set
the number of VUs are 20, the number of SVs is fixed at
J = 5. Vehicle speeds are initialized by uniform sampling
within 50 to 80km/h and assumed constant thereafter. Vehicle
speed is for theoretical modeling and training settings; in
actual simulations, vehicle speed is constant, and inter-vehicle
spacing is related to the number of vehicles. Noise power is
−114dBm, V2V/V2I transmit powers are 15dBm and 23dBm,
respectively, and the bandwidth B is 540kHz. RSU, VUs
and SVs’ computing capacities fRSU

i,j , f loc
i , fSV

i,j are 6GHz,
1GHz and 3GHz. Additionally, the average length Li,j of each
sentence is set to 20, conversion factor H is 1200 bit, and
semantic similarity threshold δth is 0.9. Ωmax is set to 20.
Experiments are conducted using Python 3.8 and PyTorch.

The proposed MAPPO-PDN+LP method is compared with
the following methods: 1) MAPPO-PDN + lvy: Collabo-
rate MAPPO-PDN with lvy [15] for semantic offloading. 2)
MAPPO + LP: Collaborate MAPPO with LP for semantic
offloading. 3) MADQN + LP: Collaborate MADQN with LP
for semantic offloading. 4) Linear K-Selection: Linear selec-
tion of k values, combined with LP for semantic offloading.
5) Traditional + LP: Apply the LP method to traditional
communication offloading. 6) Traditional + lvy: Apply the lvy
method to traditional communication offloading. 7) Traditional
(No LP): Traditional communication offloading is performed
with a fixed offloading ratio.
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Fig. 3. Average transmission delay versus vehicular number.

Fig. 4. Average task delay versus vehicular number.

Fig. 2 shows the reward convergence performance of pro-
posed MAPPO-PDN method and other benchmark methods.
Traditional MARL is prone to overfitting or strategy instability
due to point estimation. However, MAPPO-PDN enhances
adaptability in non-stationary environments by means of pa-
rameter uncertainty modeling and PDN regularization, contin-
uously obtaining high rewards during training, and its rewards
are significantly higher than those of traditional MARL.

Fig. 3 plots total transmission delay under different VU
numbers. The vehicle speed remains constant. As vehicle rises,
overall delay trends upward due to limited resource blocks.
The transmission delay exhibits a concave downward trend
when vehicle number is 25 to 35. This is because more
vehicles mean closer VU and SV distance, lower transmission
loss, higher rate, reducing delay. But when vehicle number
hits a certain level (delay peaks at 40 vehicles as VUs reuse
resource blocks more), delay rises. Compared with other
methods, our method has lower latency.

Fig. 4 presents a bar chart of the average total task delay
under different numbers of VUs. The vehicle keeps moving
at a constant speed. It can be observed that as the number of
vehicles increases, the average task delay shows an upward
trend. This is because, in addition to the relationship between
the number of vehicles and transmission delay discussed in
Fig. 3 above, there is also a component of computational delay.
As the number of vehicles increases, the computing resources
of edge nodes are allocated on average, which leads to an
increase in computational delay and thus a higher total delay.

It can also be seen that the overall total delay mainly depends
on the computational delay. In conclusion, it is evident that the
proposed method demonstrates better performance and lower
delay compared with other methods.

V. CONCLUSION

This paper discussed the task offloading problem of col-
laborative semantic offloading using joint V2I/V2V in VEC
systems within high-speed moving IoV. Based on the TCSC
framework the MAPPO-PDN algorithm, combined with LP,
was proposed to minimize the total delay by jointly optimizing
the number of semantic symbols and offloading rate. Simu-
lation results demonstrate the effectiveness of our proposed
algorithm. In the future, we will explore multimodal semantic
communication in IoV scenarios.
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