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Abstract—In this paper, we consider the fair access problem
and the Age of Information (Aol) under 5G New Radio (NR)
Vehicle-to-Infrastructure (V2I) Mode 2 in vehicular networks.
Specifically, vehicles follow Mode 2 to communicate with Road-
side Units (RSUs) to obtain accurate data for driving assistance.
Nevertheless, vehicles often have different velocity when they are
moving in adjacent lanes, leading to difference in RSU dwell
time and communication duration. This results in unfair access
to network resources, potentially influencing driving safety. To
ensure the freshness of received data, the Aol should be analyzed.
Mode 2 introduces a novel preemption mechanism, necessitating
simultaneous optimization of fair access and Aol to guarantee
timely and relevant data delivery. We propose a joint optimization
framework for vehicular network, defining a fairness index and
employing Stochastic Hybrid Systems (SHS) to model Aol under
preemption mechanism. By adaptively adjusting the selection
window of Semi-Persistent Scheduling (SPS) in Mode 2, we
address the optimization of fairness and Aol. We apply a
large language model (LLM)-Based Multi-objective Evolutionary
Algorithm Based on Decomposition (MOEA/D) to solve this
problem. Simulation results demonstrate the effectiveness of our
scheme in balancing fair access and minimizing Aol.
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I. INTRODUCTION

UTONOMOUS driving technology represents a promis-
ing innovation that is expected to transform transporta-
tion systems and serve as a critical component of future smart
cities [1]. Many companies, such as Baidu Apollo, BYD, and
Tesla, are currently developing autonomous driving solutions,
with pilot autonomous vehicles already operating in cities
like Beijing, San Francisco, Shanghai, and Los Angeles [2].
Information acquisition is a critical component of autonomous
driving technology. To perceive their surroundings, vehicles
are typically equipped with multiple sensors, such as high-
definition cameras and Light Detection And Ranging (LiDAR)
[3]], [4]. However, the large amount of redundant information
imposes significant computational burdens on systems.
Cloud computing has been widely adopted to address com-
putational resource limitations [5]—[9]]. Specifically, vehicles
upload raw data to remote cloud servers with high processing
power, which return refined information after computation.
However, the geographical distance between cloud servers and
vehicles introduces substantial transmission latency, rendering
this approach unsuitable for high-speed vehicular environ-
ments [[10], [11]. This issue is addressed by using the Edge
computing framework which uses the edge server to provide
low latency information to vehicles [12f]. Specifically, with
the 3rd Generation Partnership Project (3GPP) Release 16
establishing the first 5G New Radio (NR) standard, two com-
munication modes are defined: Mode 1 and Mode 2 [13]]. In
Mode 1, Base Stations (BS) allocate communication resources,
requiring vehicles to move within network coverage. This not
only increases latency but also restricts mobility. Conversely,
Mode 2 enables vehicles to independently select SideLink (SL)
resources, allowing communication even outside network [14]].
In addition, in high-speed scenarios, vehicles frequently enter
and exit the coverage area of the base station, which may
result in instantaneous communication interruptions. Frequent
coverage switching can also cause occasional high latency.
Furthermore, in remote areas, there are regions where the base
station under Mode 1 is difficult to cover. Therefore, compared
with Mode 2, Mode 1 can lead to situations that are relatively
dangerous for high-speed vehicles. In contrast, Mode 2 can
autonomously select communication resources based on semi-
persistent scheduling (SPS), allowing independent decision-
making without network coverage and avoiding the scheduling
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time required for communication with the base station, thereby
enabling low-latency communication. Thus, vehicles typically
adopt the SPS mechanism in Mode 2 for communication [/15]]—
[18]]. However, the SPS mechanism introduces new challenges:
vehicles in adjacent lanes with varying speeds experience un-
equal RSU dwell times, leading to unfair access and degraded
Aol—issues not fully addressed by prior works.

Under the SPS mechanism, vehicles first reserve SL re-
sources and then upload redundant data to Roadside Units
(RSUs) equipped with edge servers [19]-[22]]. These edge
servers help to process the data and return actionable infor-
mation to vehicles. Since RSUs are deployed near roadways,
the communication latency remains sufficiently low to support
real-time driving decisions, effectively mitigating safety risks
caused by delayed updates. However, compared with Long-
Term Evolution (LTE) Mode 4, 5G NR Vehicle to Everything
(V2X) Mode 2 introduces a unique preemption mechanism,
whereby high-priority vehicles can occupy the communica-
tion resources of low-priority vehicles to achieve prioritized
communication—this is a mechanism that does not exist in
LTE Mode 4. Therefore, although the introduction of this
mechanism ensures that higher-priority vehicles can transmit
first, once high-priority vehicles frequently preempt resources,
it becomes difficult for low-priority vehicles to communicate.
This not only exacerbates the problem of fair access but also
leads to an increase in the Aol of low-priority vehicles.

Specifically, on highways, vehicles in different lanes operate
at varying speeds. This results in unequal dwell times within
RSU coverage: faster vehicles communicate with RSUs for
shorter durations, receiving less information compared to
slower vehicles. Specifically, within the same RSU coverage
area, the amount of information received by each vehicle
should ideally be equal. However, in reality, faster-moving
vehicles often obtain less information due to shorter communi-
cation times with the RSU. This may result in situations where
only slower vehicles receive information that should have been
available to all vehicles within the RSU’s coverage, or where
high-speed vehicles fail to timely obtain the requested infor-
mation. Such unfair information acquisition within the same
area can pose safety risks to nearby vehicles, especially those
moving at high speeds. Therefore, it is necessary to define
a fairness index to ensure fair access for all vehicles within
the same region. This unfair access in 5G NR Vehicle-to-
Infrastructure (V2I) Mode 2 compromises the decision-making
accuracy and safety of high-speed vehicles. Additionally,
data freshness, measured using the Age of Information (Aol)
[23]-[25]], critically impacts safety in high-speed vehicular
networks. Elevated Aol delays critical updates, hindering vehi-
cles’ ability to respond to dynamic environments. In summary,
it is crucial to jointly consider fair access in 5G NR and the
optimization of Aol under the preemption mechanism, which
motivates us to undertake this work.

This paper proposes a multi-objective optimization frame-
work for 5G NR V2X Mode 2 vehicular networks, where
the selection window size is adaptively adjusted based on
vehicle speed to ensure fair access and minimize Aol. The

main contributions are outlined belowﬂ

1) We define a novel fairness index that considers the
preemption mechanism in 5G NR V2X which existing
works didn’t consider. We adaptively adjust the selection
window size according to vehicle speed to achieve fair
access for vehicles with different speeds.

2) Considering that the preemption mechanism in 5G NR
V2X exacerbates fairness issue and increases Aol [26],
we employ the Stochastic Hybrid System (SHS) to model
the vehicles” Aol. This model explicitly incorporates the
preemption mechanism and establishes the relationship
between the vehicles’ Aol and the selection window size,
which is not addressed in existing works like [27]], [28].

3) We propose a multi-objective optimization scheme that
jointly considers fairness and Aol, aiming to simultane-
ously optimize fair access and the potential increase in
Aol caused by the change of selection window under
the preemption mechanism. A Large Language Model
(LLM)-Based Multi-objective Evolutionary Algorithm
Based on Decomposition (MOEA/D) is applied.
Meanwhile, no existing work has employed LLM-guided
multi-objective optimization to address Aol derived from
SHS and fair access under the 5G NR preemption mecha-
nism. Simulation experiments validate the effectiveness of
our scheme in achieving fairness and Aol minimization.

The following structure is arranged as below: Section [I]
discusses related work. Section introduces the system
model. Section presents the fairness metric. Section
analyzes the average Aol in networks using SHS. Section
defines the optimization problem and details the LLM-Based
MOEA/D. Section presents simulation results. Finally,
Section summarizes the findings of the paper.

II. RELATED WORKS

This section provides an overview of related studies.

A. SPS mechanism

Existing works explored SPS mechanisms in C-V2X [29]-
[31]. In [29]], Amr et al. developed the C-V2X simulator
analyzing the impact of resource pool configurations and
essential parameters. In [30], Ye et al. introduced an in-
novative scheme and corresponding scheduler which uses
past transmission data to decrease delay. In [31], Gu et al
developed an analytical SPS model to quantify the effects of
beacon rate and configurations on access collision rate and
latency outage rate. This model provides critical insights for
optimizing communication configurations, comprising signal
detection radius, transmission power and resource reservation.
The optimized system maintains consistent packet delivery
rates and low delays under varying traffic density conditions.

Additional research has focused on SPS mechanisms in 5G
NR-V2X [32[]-[34]]. In [32], Malik et al. proposed an enhanced
SPS scheme for aperiodic traffic resource reservation. This

'Source code can be found at : https:/github.com/qiongwu86/Enhanced-
Velocity- Adaptive-Scheme-Joint- Fair- Access-and- Age-of-Information-
Optimization-in-iov
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approach dynamically adjusts the sensing window size accord-
ing to traffic distribution intensity and vehicle velocity while
incorporating a re-evaluation mechanism to confirm resource
availability through repeated sensing after selection. In [33]],
Daw et al. presented a method considering data priority that
classifies urgent vehicles as High-Priority (HP) with elevated
Reselection Counter (RC), enabling them to transmit Co-
operative Awareness Message (CAM) messages on reserved
channel resources. This reduces collision probability among
heterogeneous vehicles. In [34]], Luca et al. analyzed and
compared the effectiveness of SPS with Dynamic Scheduling
(DS) across varying data flows and Packet Delay Budget
(PDB) limits. Their results show that adaptive scheduling
strategies, allowing vehicles to choose the optimal method
for traffic patterns, achieve superior performance in hybrid
scenarios combining periodic and aperiodic traffic. However,
none of these studies address the joint optimization of fairness
and Aol.

B. Fairness of network

Several studies have focused on ensuring fairness in wireless
networks [35]-[37]. In [35], Park et al. proposed a power
control-based equitable channel access scheme for wireless
networks. This scheme employs a distributed channel access
algorithm that adjusts individual node access probabilities to
achieve fairness in the update intervals of randomly accessed
network states. Simulation results demonstrated high infor-
mation coverage while maintaining fairness among nodes. In
[36], Zhang et al. introduced a dynamic Media Access Control
Address (MAC) protocol to address temporal unfairness in
dynamic channel access. Their approach assigns different time
slot allocation schemes to different nodes, thereby ensuring
spatial access fairness. Similarly, in [37]], Gibson et al. mod-
eled fairness criteria for MAC protocols in multi-hop sensor
networks, ensuring that transmission rates between sensors and
BS remain equal.

Additionally, some studies have investigated fairness in
vehicle access scenarios. In [28]], Wan et al. considered the
unfair access issue between vehicles and RSUs under the IEEE
802.11p protocol. They defined a fairness index and proposed
an approach that adjusts the minimum contention window
according to vehicle speeds to realize fair access. Furthermore,
they modeled and optimized the network’s Aol. In [38],
Muhammed et al. addressed the issue of imbalanced resource
allocation due to significant variations in vehicle density across
different regions. They proposed a scheme for fair resource al-
location among edge nodes, which was evaluated in real-world
scenarios. In [39], Wang et al. examined the unfair network
resource allocation problem caused by structural asymmetry
in uplink and downlink connections. They proposed an edge
network system that leverages edge computing to provide
fair access services. In [40], Harigovindan er al. studied fair
vehicle access in V2I networks under the IEEE 802.11p
protocol. Their approach accounts for unfair access caused by
variations in vehicle speeds and derives the optimal Contention
Window (CW) to ensure fairness.

In our previous work [27], we considered the issue of
fair access in 5G NR V2X. However, that work only ad-

dressed the difference between 5G NR V2X and LTE V2X
in terms of resource collision probability and did not take
into account the unique preemption mechanism introduced
in 5G NR V2X. Under preemption mechanism, high-priority
vehicles can preempt the communication resources of low-
priority vehicles. Admittedly, this grants high-priority ve-
hicles the privilege of prioritized communication, ensuring
the communication speed required for emergency situations.
Nevertheless, if high-priority vehicles repeatedly preempt the
resources of low-priority vehicles, it can become difficult
for low-priority vehicles to obtain communication resources,
significantly exacerbating the fairness issue. At the same time,
the Aol of low-priority vehicles increases as they wait for
resources. This situation can be particularly dangerous in high-
speed vehicular environments. Therefore, considering only fair
access is one-sided after the introduction of the preemption
mechanism in 5G NR, which may cause the increase of Aol
due to the change of selection window [41]].

However, in [28]], Wan et al. did jointly consider access
fairness and Aol. However, this work only focused on fair ac-
cess under the IEEE 802.11p protocol and did not consider the
novel 5G NR V2X protocol. In addition, their Aol modeling
did not account for the presence of the preemption mechanism.

Moreover, to the best of our knowledge, current research on
fairness does not take into account the 5G NR V2X protocol,
especially the preemption mechanism. Moreover, there is no
comprehensive work that optimizes both vehicle fair access
and Aol after the introduction of the preemption mechanism in
5G NR. Additionally, considering the preemption mechanism
in 5G NR and deriving Aol using SHS seems to be an
unexplored area, which motivates us to undertake this work.

C. Age of information

As a metric for data freshness, Aol is indispensable in
high-speed scenarios, especially for vehicular networks. Con-
sequently, extensive research has focused on Aol optimization.
In [42], Azizi et al. used reinforcement learning in C-V2X
to minimize Aol while maximizing energy efficiency, and
investigated the impact of increased inter-vehicle spacing on
Aol. In [43], Zhang et al. analyzed the relationship between
multi-priority queues and Non-Orthogonal Multiple Access
(NOMA) with Aol, proposing a DRL-based method to op-
timize both energy consumption and Aol. In [44], Ali et al.
modeled Aol using stochastic hybrid systems in Carrier Sense
Multiple Access (CSMA) environments, minimizing average
Aol by calibrating backoff times. In [45]], Roy et al. extended
stochastic hybrid systems to derive generalized Aol results
applicable to multi-source systems, reducing Aol evaluation
complexity to stationary distribution analysis of finite-state
Markov chains. In [46], Yu et al. considered the problem of
detachment caused by failures in an edge-enabled vehicular
metaverse, which disrupts the sense of immersion. They pro-
posed a scheme based on redundant backups and maintaining
the Aol of the backups to avoid such detachment, with the
focus primarily on preventing disconnection. However, this
work did not consider the issue of fair access resulting from
vehicles with different speeds generating different amounts of
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Fig. 1: Scenario Model

data exchange. Moreover, it also did not consider modeling
the Aol using SHS.

For 5G NR V2X, Liu et al. [47] analyzed SPS parameters
in Mode 2 to ensure message freshness. In [48]], Saad et
al. developed a deep reinforcement learning-based congestion
control mechanism addressing Mode 2 NR-V2X’s inefficiency
in handling aperiodic packet scheduling while optimizing Aol.
However, these studies neglect the fair access in the system. At
the same time, considering the resources of edge servers, Yu et
al. in [49] used a Markov Model to infer the refresh rate and
privacy of the edge server. In [50], a Markov Model was also
used to represent the activation and deployment of the edge
server. However, [49], [[50] did not consider the transmission
model under 5G NR and the derivation of Aol through SHS.

Existing research lacks solutions that jointly optimize fair
access and Aol, motivating our work to address this gap.

III. SYSTEM MODEL

This section presents the system model, which is primarily
divided into the scenario model and the SPS protocol model
under 5G NR V2X Mode 2.

A. Scenario

Fig. [I] presents our scenario model, where we consider a
multi-lane highway scenario within the RSU’s range, which
is deployed along the roadside. The RSU is equipped with
an edge server that has sufficient computational resources.
It is assumed that vehicles attempt to communicate with the
RSU to obtain useful information whenever they are within its
coverage area. The vehicles in the same lane move at a uniform
speed, while vehicles in adjacent lanes differ in velocity at
least 4 m/s. Each vehicle communicates with the RSU and
receives useful information. Considering that the downlink
data volume is significantly larger than the uplink data volume,
we focus only on the uplink transmission [51].

B. SPS

Following the Mode 2 SPS protocol, vehicles autonomously
allocate communication resources instead of relying on base
station assignments, allowing resource allocation even in the
absence of network coverage. Specifically, as shown in Fig.
the channel is divided into different subchannels. These
subchannels are utilized for both data transmission and control

Frequency
A Resource selected [ Selected and reserved
by last packet candidate resource
Selection window Subfi
Packet generated ubZrame
AI A
Sub
channel
Re=1 Re=0
Sci
TB
\ o RRI S Time
N g
T, w

Fig. 2: SPS Model

information. Data is transmitted in the form of Transport
Blocks (TBs), each of which carries a SideLink Control
Information (SCI) which provides metadata about TB. When
the RC reaches 0, vehicle need to choose new resources.

Each time a vehicle selects resources, it follows a sensing-
based mechanism, with a Resource Reservation Interval (RRI)
between consecutive resource selections. The vehicle first
identifies candidate resources within a selection window,
whose size is determined by the vehicle’s application require-
ments. Next, the vehicle discards certain resources according
to the following conditions:

1) Resources reserved by other vehicles are excluded.

2) Resources with a time-averaged Reference Signal Re-

ceived Power (RSRP) exceeding a threshold are excluded.

After eliminating unsuitable resources, from the available
resources, the vehicle chooses one at random, further reducing
the probability of collisions with other vehicles. Once a re-
source is selected, the vehicle proceeds with TB transmission.

Compared to LTE Mode 4, Mode 2 introduces a preemption
mechanism, enabling more flexible resource allocation based
on traffic priority. If a priority threshold is predefined, a
vehicle will release its resources when another vehicle with a
higher priority exceeds this threshold. This mechanism helps
prevent resource collisions with high-priority transmissions.
Specifically, if a lower-priority vehicle has already reserved
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TABLE I: Symbols in this paper

Symbol | Description
Bitt The expected total data size transmitted by vehicle ¢
during the coverage area of the RSU.
T; The time vehicle 7 spends within RSU’s range.
Pprpri | The probability of successful transmission
R The coverage range of the RSU.
C; Vehicle 7’s bit rate.
B The bandwidth.
Di The transmission power of vehicle 4.
h; The channel gain.
d; The geometric distance between vehicle ¢ and the RSU.
P! The position of vehicle 3.
f3 The Doppler frequency of vehicle 7.
K, .. | The fairness index of vehicle 4.
Kindex | The overall fairness of the network
q(t) The channel state.
2o(t) The Aol at the RSU.
z1(t) The Aol at vehicle k
Aj The reset mapping for that transition.
z’ The continuous process values before and after the reset
A The transition rate of the discrete process L.
Vgq The stationary correlation between ¢; and xg.
Vgy The stationary correlation between ¢; and x7.
Ay The averaged Aol for link k.
Hy, The average successful transition rate of link k.
Ry The averaged failed transition rate.
TG The steady-state distribution of q.
Ts The average transmission success time.
Tini The total transmission time.
tr The time required for retransmission.
Tsch The time required for resource scheduling.
Tkt The actual transmission time.
tp The time required for the sender to deal the data.
tra Constrained by the duration of the time slot.
Tw The time required for resource scheduling.
TNACK The transmission delay of the NACK.
Ty The average transmission failure time.
Nge The number of subchannels.
9 The probability of a data packet collision between vehicle
COL | and vehicle j-
b A vector of a two-dimensional differential equation which
q describes the age evolution at state q.
P The probability that the selection windows of vehicle ¢
o and j overlapped.
P The probability that vehicle ¢ and 7 choose resource from
SH|O the overlapped window
Di,j The average rate at which link ¢ is preempted by link j.
N The amount of shared resources within the overlapped
Sh selection window.
59 The probability that both vehicles transmit data simulta-
HD neously.

a resource within its selection window, and a higher-priority
vehicle subsequently requires the same resource, the lower-
priority vehicle will relinquish its reservation, allowing the
higher-priority vehicle to use the resource.

IV. FAIRNESS INDEX

This section establishes the link between fairness, selection
window size, and vehicle velocity. First, we propose a fairness
index to measure fair access. Then, we analyze the successful
transmission probability of vehicle packets. Finally, we find
that the fairness index relates to vehicle velocity and window
size. Table [I] lists the parameters used in this paper.

A. Transmission rate

To ensure fairness access means that vehicles moving with
varying speeds should transmit the same data quantity when

covered by the RSU. This requirement can therefore be
formulated as: '
E[Bit!] = C, (1)

where Bit' denotes the data size transmitted by vehicle 4. C'is
a constant, considering the possibility of transmission failure,
we take the expected value. Specifically, Bit* is given by:

Bitt = C; - T;. )

We set Pprp® as the probability of successful transmission.
Thus, Eq. (I) is given by:

Ci-T;- Pprr' =C, 3)

where C; denotes vehicle’s transmission rate, while 7 repre-
sents the duration vehicle ¢ remains within the RSU’s coverage
area. Thus, T; is given by:

R
T=—
Vi

3 @)
where R indicates RSU’s range, and v; represents the vehicle’s
velocity. Considering the upper limit of our presented frame-

work, following Shannon theory, C; can be mathematically
formulated as:

i+ i -
C; = B -logy(1 + b : ), o)

where B denotes system bandwidth, 0 denotes the path loss
index, p; denotes the transmission power of vehicle ¢. d; , is
the geometric distance between vehicle ¢ and RSU. h; ;. is
the channel gain between vehicle i and RSU. o2 refers to the
additive white Gaussian noise power. The distance d; , can be
described as:

di,r: HPO’L-*POTHa (6)

where P! denotes the vehicle 4’s position, and P! is the RSU’s
position.

Based on [52f], we apply the Autoregressive model [53|]
which characterizes the temporal dependency between con-
secutive channel gains ;. and hj

hiﬂ“ = pPi- hé,r + e(t) Vv 1- p127 (7N

where p; is the autocorrelation coefficient, h;,. is the channel
gains at previous slot, while the error vector e(t) follows a
Gaussian distribution. In addition, to model vehicular mobility-
induced Doppler spread [54]], we employ Jake’s fading spec-
trum, p; = Jo(2nfit), where Jo(-) denotes the first-kind
zeroth-order Bessel function. ft represents the Doppler fre-
quency determined by:

i Y
fi= A cosf, 8)

where Ag denotes the wavelength, and cos@ indicates the
cosine value between the vehicle’s velocity vector and the
signal propagation direction.

B. Successful receiving probability

Then, we focus on the Pprp‘. PpRRi quantifies the suc-
cessful receiving probability of vehicle ¢ transmissions at the
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RSU, mathematically defined as:

Pprp’ :H(I*MCOL)'HO*(S]HD)- )
J# JF#

The collision probability 67coyr characterizes Physical Re-
source Block (PRB) allocation conflicts between vehicle ¢ and
interfering vehicle 5 where multiple transmitters may share the
same PRBs, when multiple vehicles attempt to select resources
at nearly the same time. Let 33 yp denote the probability
that vehicles transmit simultaneously. Following the collision
probability in [55], 67 coyr is defined through:

Cea
N&,’
where Pp denotes the probability that the selection window
for vehicle 7 and j overlap. Meanwhile, Pgf|o represents the
chance that vehicles choose resources from this overlapped
window. In cases where an overlap occurs, Cc, expresses
the candidate PRBs that vehicles have in common, while
N¢, stands for the total average number of candidate PRBs
available. The mathematical expression for Py is given by:

o witwi+l (1)

1000 - 2# - RRI

where w; and w; denotes the selection windows size of vehicle
7 and j respectively. RRI represents the resource selection

interval. y represents the subcarrier spacing coefficient. Ps|0
is given by:

8’ cor = Po - Psmjo - (10)

Po

Ns. - Nsp 2
_— 12
N, ) (12)

where Ng. denotes the total number of subchannels, while
Ngy, refers to the number of resources that are common within
the overlapping selection window. N, is the total number of
resources. Specifically, Ng;, can be defined as:

(wi + 1)(wj + 1)
wi—l—wj—i—l '

Psrjo = (

Ngp = (13)
Owing to the half-duplex constraint in vehicular communi-

cations, if vehicles transmit simultaneously, the receiver will

be unable to decode the data packet, resulting in a error

transmission. According to [S5], 7 yp is given by:
1000’

where 7; indicates the rate at which vehicle j generates

packets. Consequently, Pprp" is related with w.

& up (14)

C. Fairness index

According to the analysis above, Eq. (3) is reformulated as:
hig - (din) R

0'2 ).’Ui

JI=6con) [ (1 = up).

J#i J#i

C =B log,(1 + 2~
(15)

By discarding terms that are not related to vehicle ¢, Eq.(T3)
can be rewritten as:

i C pi hip - dw—a
index — v :10g2(1 + ) 2( , )

)

(o4 o
[1Q-dcor) (16)
L J#
V; ’
where
C'=B-R-[[(1-6up). (17)

J#

As a result, we now formulate a fairness metric for vehicle
i. In addition, due to the fact that d; , is related with v; while
Pprr' depends on the selection window w, the fairness index

i dex is influenced by v and w. This means that if we get a
vehicle’s velocity, the w can be adaptively adjusted to improve
fairness.

Furthermore, through computing the average value of

K for all the vehicles within the RSU’s range, we can

index

get:

i
index
N
The overall average fairness of the network is quantified by
the index K, 4e.- When an individual vehicle’s fairness index
K Zln dex Closely aligns with K, 4., it signifies that the vehicle

is accessing communication in a fair manner.

So far, we have only achieved fair access among vehicles
by adjusting the selection window size. However, adjusting
the selection window size may lead to an increase in the
Aol of vehicles. In particular, considering the existence of the
preemption mechanism, when high-priority vehicles frequently
preempt the communication resources of low-priority vehicles,
the Aol of the preempted vehicles may significantly increase
due to waiting for resources. At the same time, in order to
achieve fairness, it may be necessary to enlarge the selection
window size for certain vehicles, which can likewise cause
their Aol to grow. Therefore, in the following, we will model
and analyze the Aol under the preemption mechanism.

M=

.
Il
_

Kinder = (18)

V. AGE OF INFORMATION

In this section, we further analyze the average Aol in the
proposed model. The Aol refers to the mean age of the data
exchanged between each vehicle and the RSU. The communi-
cation relationships among vehicles and RSU are referred as
transmission links, where link & denotes the communication
link between vehicle k& and the RSU.

We employ the SHS to design the system transition [44],
[45]. The data sampling time is assumed to be negligible, as
it is significantly smaller compared to the data transmission
time [56].

Next, we model the transmission process. We define the
state set as (q(t),z(t)), where ¢(t) € {0,1,2,..., N} rep-
resents the system state at time slot £, and /N denotes the
amount of vehicles. Specifically, ¢(¢) = 0 stands for that no
transmission occurs at time ¢, i.e. the channel is idle, whereas
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l q —q] A0 ' =xA; A iqz =g A
1 0 S
1 0—1 Ry [zo, 2] [O 1] [@o0, To1]
1 0 S
N 0— N Ry [0, z1] [O J [Do0, Do1]
- 0 1 I
N+1 10 H, [0, 21] 10 [T10,11]
0 1 _
N+k k—0 Hy, [21,0] 00 [Tk1,0]
. 1 o] . _
2N N—=0 Hy [wo, 1] 11 [Tno, U]
1 0 S
2N +1 1—-2 Py [0, z1] 01 [©10, V1]
. 1 0] S
3N -1 1> N PN [0, z1] 01 [©10, 1]
1 0
k+1)N—-k+2 ko1 Pr1 2.0 |y o [Tx0, 0]
) ) o _
<k+2)]\ —k k— N Pk,N [(L‘(J,O] 00 [’Uk(),o]
. 1 0 o
N2+2 N—1 P [0, 2] 01 [Tno, 1]
) ) 10 o
N*+N N—N-1 Pyn-1 [xo, 2] 0 1 [Tno, 1)

TABLE II: SHS Transitions model

Fig. 3: Markov Model

q(t) = k indicates that link % captures the channel and is
transmitting data.

We set x(t) = [zo(t), z1(t)] as the Aol of link k, where
2o(t) denotes the Aol at the RSU, and x(t) denotes the Aol
of data generated and transmitted at vehicle & at time ¢.

At system initialization, the Aol at the RSU xz(t) is set
to 0 and then begins increasing with unit slope. When a data
packet from link & is received, (¢) is reset to the Aol of link
k. Similarly, when vehicle & generates a data packet, the Aol
at the sender 1 (t) is initialized to 0. Next, it begins increasing
with unit slope until the data is successfully received by the
RSU.

Thus, based on the above definitions, ¢(t) can be mapped as
a discrete process, while & (t) can be mapped as a continuous
process.

In a Markov chain, transitions occur between multiple states.

According to the SHS framework, transitions between discrete
states ¢(t) will trigger resets of the continuous process x(t).
This reset process is given by x’ = xA;, where [ represents
the transition of the discrete process, and Ap represents the
reset mapping for that transition. Here, & and =’ denote the
continuous process values before and after the reset, while
¢ and g] represent the discrete states before and after the
transition.

We set A as the transition rate of the discrete process [.
Additionally, vg, = [v4,,v,, ] represents the stationary correla-
tion between ¢; and x = [z, z1]. Specifically, vy, denotes the
stationary correlation between ¢; and x, while v,, represents
the correlation between ¢; and x,. Given '’ = xzA;, we
can derive vy = vq, Ay, Where v, represents the stationary
correlation between ¢; and the reset process x’.

Furthermore, we define the average service rate of link
k as Hj while the average failed transmission rate as Ry.
Considering the preemption mechanism specific to the SPS
in NR V2X, we introduce p;; to represent the average
rate at which link ¢ is preempted by link j. When link &
successfully transmits, the channel transitions to an idle state,
and the original state k transitions to state 0 at a rate of Hy.
Conversely, if link & fails to transmit, due to the retransmission
mechanism in SPS, link £ will recapture the channel, causing
state 0 to transition back to state k at a rate of Rjy. Additionally,
when link ¢ is preempted by link j, state ¢ transitions to state
J at a rate of p; ;.

According to Fig. 3] we can summarize the SHS transitions
in Table [

We now provide a detailed explanation of the transitions
listed in Table

1) Transition 3 (I; = {1,2,3,...,N}), representing the
scenario where an idle channel is occupied, and a transi-
tion occurs on link k at a rate of Ry. This implies that the
previous transmission has failed. Thus, the Aol remains
unchanged. As a result, we have:

' =z Ay, = [zo0,71], gy, = Vai, A1, = [v00, vou]-

2) Transition Iy (Is = {N + 1, N +2,...,2N}), indicating
that the channel enters an idle state and transitions on link
N + k at a rate of Hy. This corresponds to a successful
transmission, where the x; is reset to x;, while the Aol
of vehicle k is reset to 0. Thus, we obtain:

' =xA,, = [11,0], Vg = Vg, Ay, = [vp1,0].

For transitions other than N +k, a successful transmission
on any other link does not reset the Aol of link k. Hence,
we have:

’
' =z A, = [xo,21], vy = Vg, At -

3) Transition I3 (I3 = {2N + 1,2N + 2,...,N%? + N}),
representing the preemption process occurring at a rate
of p; ;. During this transition, the RSU’s Aol does not
reset. The Aol of the link is reset to 0 and begins linear
growth with a slope of 1 because when the vehicle being
preempted estimates that its resources will be used, it will
release the resources, that is, when the preempt vehicle’s
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packets are generated. Thus, we have:

x' =z Ay, = [10,0], vy =vg, Aty = [Uko,0].

‘113

Similarly, for transitions other than n + k, a successful
transmission on any other link does not reset the Aol of
link k. Therefore, we obtain:

/
' =z Ay, = [x0,11], Vg = Vg, Ag,.

According to [45]], the average Aol for link k is calculated
as:

Ak:ZT)QOa Vk€172a"'7Na (19)

According to this formula, to compute the average Aol Ay
for link k, it is essential to derive .
Firstly, based on the analytical approach provided in [45],

Vgl <Z )\(la)> =bg7g + > AW 5g, Ayl € Ly,
la lb

Iy € L/q,

(20)

where b, denotes a vector of a two-dimensional differential
equation describing the age evolution in state ¢, and 7, denotes
the stationary probability of state g. Additionally, [, and [,
refer to the discrete states sets before and after the transition.
Since vehicle k generates data packets and initiates trans-
missions only upon capturing the channel, there are no data
packets for link k in the system network unless the state
equals k. Consequently, the Aol on link k increases linearly
at a unit rate when ¢ = k and remains at zero otherwise.
Simultaneously, the Aol at the RSU always grows linearly at
a unit rate. Based on this analysis, we derive the following:

_ [1’0}7
b= {[1, 1,

Then, in order to apply Eq. (20), we need to get the stationary
distribution of state q. Based on [45]], the stationary distribution
can be obtained as follows:

7> A=Yz, geq,

leL, leL’y
qeqQ

By solving the above equations, we can derive:

for Vq # k,

21
for Vg = k. @D

(22)

= 1
o = C(R)’

- Ry 23)
T = 4C(R)(H4kj_§kpj,k)’

where C'(R) is a normalization factor:

)=1 24
+ZH/¢*ZPM 9

Our goal is to apply Eq. (2Z0) to obtain vg. When ¢ = 0,
based on Eq.(ZI), we know that b, = [1,0]. In this case,
according to [28], the left side of Eq. represents the
transition from other states to states except ¢ = 0, that is,
the transitions from 1 to N and 2N + 1 to N2+ N as shown

in Table II. The right part represents the transition from other
states to state O, that is, the transitions from N + 1 to 2NV as
shown in Table [

Furthermore, according to [45], we know that Eq.
applies to any set of reset mappings {A;}. Therefore, Eq.
[0) is applicable to the transitions from 2N + 1 to N2 + N
caused by the preemption mechanism.

In summary, combining with Table [lI we can derive:

Yoo ( ZR +ZU]0 szg-FUkome

Jj=1 i#£]j i#]
J#k (25)
= To + Z H;vj0 + HyVka,
j=1
J#k
N
LIRS SUAS SRS SIS
j=1 j=1 i#£]
J#k Jsﬁk

Moreover, the left part represents transitions from other
states to state O when ¢ # 0, that are transitions N + 1 to
2N as shown. The right part represents transitions from other
states to state k, i.e. 1 to N and from 2N + 1 to N2 + N
as shown in Table II. Therefore, based on Table II, we can
obtain:

N-1
’qu 'Hq = 7_Tq+Rq"l_)00+ Z pq,quOa fO’I" Vq = {1,2, ,N}
J#4
27)
N-1
o Hy =Ry 001+ 00 Y pgj for a#k  (28)
i7#q
N-1
w1 Hy =7+ Ri 001+ 01 Y prj, for =k (29)
7k

Based on the formula derived above, we will next derive
vgo and vgo. According to Eq. (27), we can obtain ¥,o when

q#0:
7_Tq+Rq'500

N—1
Hy — Z DPq,j

Jj#q

(30)

Vg0 =

According to Eq. (T9), to determine the Aol in the network, we
still need to obtain vgg. From Eq. (23)), obtaining vgg requires
determining vg;. Based on Eq. and Eq. (29), we can
obtain:

R, -V
g = —— e, 31
Hy - > Pq,j
J#q
_ T+ Ry -0
Up = (32)
Hy — 3 prj

i#k
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By combining Eq. (31)) with Eq. (26), we obtain:

N N
Vo1 ZRJ = Vp1" Z R,.
Jj=1 q=
q#k
Therefore, 7, = 0. Combining Eq. with Eq. (32), we
can obtain:

(33)

Tk
N—1

Hyp — > prj
37k

Finally, by combining Eq. (34) and Eq. (30) with Eq. (23], we
can obtain:

(34)

Vg1 =

N—-1
Hy = > prj
ik

35
. R (35)

Voo =

At this point, we have derived ¥40. Substituting it into Eq.
(19), we derive the Aol for link k:

N
A=) 14,7k €{1,2,...,

q=0

N
= Upo + Z Vq0
g=1
N _ _
Z Tq + Rq Voo ‘|

q=1 H Zg;éq Pq.j

_ Hy, _ijsk Pk.j [1+i R, ‘|
Hi - B q= 1 Hq — Zﬂéq Pq.j
N

_ Hk - Zj;ﬁk Pk,j ) iv:
N Hy - Ry, pre

N}

= Voo

Z#q Pq.;

- Zj;éq Pq,j
(36)
Next, by summing the Aol for all links in the network and
taking the average, we get the average Aol as:

N _

> Ay
A _ k=1

N
According to Eq. (36), the Aol in the network is determined
by the transition rates of successful and failed vehicle trans-
missions, as well as the preemption process, i.e. H;, ;, p; ;.
Therefore, the next step is to further derive H;, R;, and p; ;.

(37

1) Average Service Rate: Based on [51]], the average service
rate is given by:
1
H;, = T,for Vie{l,2,...N}, (38)
where T, denotes the average successful transmission time.
According to [57], it can be expressed as:
T =T

ini T TZ’ (39)

where T!. represents the total transmission time, and t,

denotes the time required for retransmission. Due to successful

Fig. 4: Lantency Model

g || || H ||

transmission, we consider the information is transmitted only
once, so the retransmission time is zero. T7 . is given by:

ini
Tzlnl = .sch + tpkh (40)

where ¢’ _, represents the time required for resource schedul-
ing, while t;kt denotes the actual transmission time. According
to Fig. 4, t% , can be expressed as:

toon = th + thy + 1, (41)
where t; represents the time required for the sender to process
the data, which, according to [[15], depends on the vehicle’s
computational processing capability. Within the Uplink (UL),
the Physical UL Control Channel (PUCCH) transmission
always occurs in a slot’s last symbol, with the remaining
symbols allocated for the Physical Uplink Shared Channel
(PUSCH) to transmit. Therefore, tgca is constrained by the
time slot, which based on digital numerology, ranges from
1 ms to 0.0625 ms. t,, refers to the time required for resource
scheduling, i.e. the size of the selection window. tpkt is the
time actually used for data transmission can be expressed as:
i Bit

pkt Cz’ ’ (42)
where Bit denotes the packet size.
2) Average Failure Rate: Similarly, the average transition
rate when link ¢ fails to transmit is given by:

1
R = —, for Vie {1,2,...N}, (43)
Ty
where T’y denotes the average transmission failure time:
Tf Tzlnz +n- Ti, (44)

where T} is the same as for a successful transmission. Since
the SPS scheduling mechanism uses the HARQ retransmission
mechanism, and due to the inability to predict whether or when
the RSU may need a retransmission, dynamic scheduling is
employed. If the packet transmit fail, a retransmission occurs,
and the RSU transmit a negative acknowledgment (NACK).
Because of the additional transmission, a delay #nack iS

introduced. Therefore, Tj can be expressed as:

T} =thyack + then + tore, 45)

thacwk =ty + tha + thws- (46)

3) Average preemption Rate: Next, we consider the average
transition rate during the preemption process.
According to [15], the preemption process occurs when the
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preempting side generates a data packet. Once the preempting
side identifies its higher traffic priority, the preempted side
releases the resources for the preempting side to choose.
Therefore, the average transition time for the preemption
process can be expressed as:

Ty, , = Toen + 1), (47)

where T, denote the time required for resource scheduling of
link i. Therefore, the average transition rate of the preemption

process can be expressed as:
1

P ;= (48)

T,

Pi,j

VI. OPTIMIZATION PROBLEM AND SOLUTION

This section, we presents the formulation of a joint opti-
mization problem for fair access and Aol based on section
and [V] To solve this problem, we propose an enhanced
MOEA/D algorithm integrated with LLMs [58]|. The objective
is to determine the optimal selection window size for each
vehicle, thereby achieving equitable channel access across
the vehicular network while jointly minimizing the network
average Aol.

A. Optimization Objective

The optimization framework simultaneously addresses two
critical objectives:

(1) Fair access among vehicles.
(2) Minimization of the network’s Aol.

The decision variables are the selection window sizes of
individual vehicles. A fairness index K iindw is defined such
that when K, approximates the network’s average fairness
index Kj;,4er, €qual channel access is considered achieved.
The mathematical formulation of this optimization problem is
expressed as:

Objectives 1 to INV: To reduce the difference between each
vehicle’s fair index and the averaged index.

Ji€l,...,N], (49)

FKri (UJ) = ‘Kindex(w) - iindem(w)
w = {w',w?, ..., wV}.

Objective N+1: To minimize the averaged Aol in the
network.

(50)

Fage = min A.

Thus, the joint multi-objective optimization problem is
given by:

min F(w) = [F, (w), Fr,(w),..., Fgy(w), Fage(w)]”

w
s.t
w = {w',w? ..., v},
whB <w' <wYBiell,...,N],
(51)
L

where w’? and wY P represent the lower and upper limit of
the selection window sizes, according to the 3GPP standard
[59]I.

To solve Eq. (51), we can get a Pareto optimal solution set,
and in order to have an exact window size for each vehicle,
we need to filter out an optimal solution. We formulate the
filtering rules as follows: under the condition that all F, (w)
are within the bounds, the group of solutions with the smallest
Aol is selected. Therefore, we can define the optimization goal
as:

min Fg.(w)
w

s.t FKi, (w) < Kpound,t € [1, 2,... (52)

w € P.

aN]a

where P is the Pareto optimal solution set which is solved
by Eq. (31).To adaptively determine Kpoung, We first sort all
fairness deviations in ascending order, and then select the
minimal deviation among the largest 10% of them. Thus,
Kpouna can be described as:

Koound — min{Fg) ‘ j=[0.97 79} . (53)
where FI((] ) represents the j-th smallest value in the ascend-
ingly ordered sequence of all fairness deviations F;,.

Then, after solving the optimization objective, we can adjust
the window size of the vehicle adaptively according to the
speed of the vehicle, so as to minimize the Aol of the network
under the condition of ensuring that all vehicles are close to
fair access.

B. Optimization Solution

In this section, we employ a MOEA/D algorithm based
on a LLM to solve the optimization problem defined in
Eq. (51) [58]. The algorithm inputs consist of the number
of objectives, maximum iteration count, reference direction
partitioning number, vehicle speed, and neighborhood size.
The detailed workflow is presented in Algorithm

First, weight vectors W = {wy,...,wy} are generated
by the Das-Dennis uniform sampling scheme to decompose
the multi-objective problem into H subproblems, each cor-
responding to an optimization direction. Cosine similarity
between weight vectors is computed to select K nearest
neighbors as:

Wi-Wj

cos(wi, wj) = (54)

[l wsl|

Population initialization is performed by assigning ran-
domly generated initial solutions to each weight vector. The
ideal point is initialized to record current optimal values
of each objective function, guiding subsequent optimization
directions (This completes Steps 1-9 of the algorithm.).

In each iteration cycle: For each subproblem, parent solu-
tions are selected with probability p,,.; based on neighborhood
relationships; otherwise, random selection is performed. Next,
we will perform LLM-guided crossover operations. Here,
the LLM serves as a black-box operator used to generate a
new set of offspring solutions based on the parent solutions
and their objective values. To reduce the input complexity
of the LLM and mitigate the impact of numerical range
on inference stability, we first normalize the inputs to the
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Algorithm 1: LLM-Based MOEA/D Algorithm

Input: objectives N + 1, generations G ., Partition
Number n,, speed v, neighbor size K
Output: w*
1 Initialization Phase:
2 for i < 1 to H do

R e
Np " Mp

ku
o

4 where k1 + ko +---+ kg =n,

5 W {wq,...,wpy}

foreach w;, € W do

7 N « arg Topk cos(w;, w;)

L JEH]

8 P <+ {'wl,...,wH}

9 z* (minFKl(’P)7 ... ,minFKNH(P))
10 Main Optimization Loop:

11 for g =1 to Gax do

=)

12 | foreach subproblem i € [H| do

s Pruents Select from M w1th' Dnei
Random selection with 1 — ppe;

14 LLM-guided Crossover:

15 offspring o <— LLM-Mate(Pparents)

16 z* + min(z*, F'(0))

17 foreach j € \V; do

18 if g(o|w;,z*) < g(wj|w;,z") then

19 L | wj+o

20 initialize A = 400

21 foreach p € P do

22 if for each p € [1,...,N|, Fx, < Kpouna then
23 if Fge <A then

24 L A = Fuge, w* = wP

25 return w*

26 Procedure LLM Crossover(Pparens)
~ —wlB

27 w <— m, Yw € Ppa_rems

28 T <+ Prompt Construction: (w, f(w))

29 repeat

30 Onorm < LLM with(T)

31 if Validate(o,,m) then

2 | break

33 until 3 times

34 0 + Oporm - (WY —w?) + wk
35 return o

LLM. The inputs here are the parent solution set obtained
in the previous step and their corresponding objective values,
i.e., w and their corresponding f(w). Subsequently, prompt
engineering is carried out. The prompt needs to be divided
into several parts: 1. A detailed description of the task; 2.
The input data to be processed; 3. The expected output data
format. For example, for the optimization task in this paper,
we can describe it as follows: You need to help me optimize
a multi-objective optimization problem. I will provide you

with multiple optimization variables and their corresponding
objective values. Based on these variables and their objective
values, you need to generate new offspring solutions, while
ensuring that the objective values corresponding to the off-
spring solutions are all less than or equal to those of the
parent solutions. Next, I will provide you with the input data:
[w1, wa, ..wr], [f(w1), f(w2), ...f(ws)]. Note that the output
should include only the offspring solutions. Each offspring
solution should start with <start> and end with <end>.
No additional explanations are needed. With this, the prompt
engineering is completed. At this point, the LLM, as a black-
box operator, can generate a new round of offspring solutions.
Here is an example of prompt engineering:

Example Prompt

You will assist me in minimizing a four objective task.
The number of optimization variable is vector. The
dimension of each variable is three. I have a set of
variables along with their function values. The vector
start with <start> and end with <end>.

vector: <start>0.137,0.572,0.671<end>

value: <start>0.025,0.034,0.041,64<end>

vector: <start>0.147,0.255,0.615<end>

value: <start>0.017,0.022,0.047,85<end>

Provide a new vector that different from all the vectors
listed above and function values smaller than the
smallest value among them. Avoid writing any code or
providing explanations. Each output new vector need
to begin with <start> and end with <end>.

Denormalized solutions update the ideal point and optimize
neighboring subproblems, the j th Subproblem can be formu-
lated as:

min g(w;jlwyi,z) = max  {wji-[fi(w;) —zl}, (55

1<i<N+1
where z denotes the ideal point, wj ; is the ith weight in wj.
Neighborhood solutions are replaced if offspring solutions
exhibit superior performance on corresponding subproblems.
The Pareto solution set P = {w1,...,wg} is obtained
upon reaching maximum iterations. Optimal solution wx is
selected through:
(1) Filtering solutions with all objective values below prede-
fined thresholds;
(2) Selecting the solution with minimal Fg4. from threshold-
satisfying candidates.
Now, we obtain the optimal selection window size wsx.

C. Computational Complexity Analysis

In this section, we will analyze the computational complex-
ity of our approach. Our computational complexity analysis
refers to the standard MOEA/D. The complexity analysis can
be divided into two parts: the initialization phase and the
iterative phase. Since the initialization phase is executed only
once, its complexity is much smaller than that of the iterative
phase.
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First, analyzing the initialization phase: generating
weight vectors, the complexity can be expressed as O(H).
Next, constructing neighborhoods: For each weight vector,
compute cosine similarity with all others and retrieve top NV,
the cosine similarity complexity is O(H), and the top K
sorting is with O(H log K). Therefore, the total complexity
at this point can be expressed as: O(H(H + Hlog K)) =
O(H? + H?log K).

Next, generating the initial solution set is with O(H),
computing the minimum value of each objective function over
H solutions is with O(H - (N + 1)). Therefore, the total
complexity of the initialization phase can be expressed as:
O(H?log K + H(N +1)).

Then entering the iterative phase: first the outer loop
with G4, generations, followed by the inner loop with
H subproblems. For each subproblem, randomly selecting
neighbors or global individuals is with O(K), normalizing
input for Pprents (assumed size M), constructing prompts
is withO(M). Calling the LLM for inference: assumed to
be O(Crra). At most 3 attempts, so the total complexity
at this step is: O(M + Cpar). Next, updating the reference
point: O(N+1), iterating over K neighbors: O(K), computing
g(olw;,z*) each time is with O(1). Therefore, the per-
subproblem complexity per generation is given by: O(K) +
O(M+Crrm)+O(N+1)+0O(K) = O(M+Crru+K+N).

Per-generation complexity (H subproblems): H - O(M +
Crrv + K + N). Complexity over Giuq. generations:
GmaxH -O(M + Cprpy + K + N). Finally, archive updating
(lines 20-24): iterating over H individuals: O(H).

So far, the initialization Phase complexity can be described
as: O(H?log K + H(N + 1)). The main Optimization Loop
complexity can be described as: O(Gae H( M +Criym+K+
N). However, in practice, since the number of iterations G4z
is large, the computational complexity of the initialization
phase can be ignored. Therefore, the overall algorithm com-
plexity can be expressed as: O(Guao H(M+Crry+K+N).

VII. NUMERICAL SIMULATION RESULTS AND ANALYSIS

This section we validate the effectiveness of the proposed
framework through extensive numerical experiments. The
LLM adopted in the simulations is the DeepSeek V3 model.
Our baseline comparison algorithms include classical multi-
objective algorithms such as NSGA-II, MEOA/D, NSGA-III,
and SPEA2, as well as a deep reinforcement learning-based
multi-objective algorithm (PPO-MO). Multi-objective opti-
mization algorithms, including MOEA/D ,NSGA-II, NSGA-
III, and SPEA2 were implemented using the pymoo framework
under Python 3.9. All experimental results were obtained from
more than 30 trials in order to eliminate occasional errors,
and Kyoung Wwas determined based on statistical results after
extensive experiments.

A three-lane highway model was constructed, where vehicle
speeds range between 20 m/s and 30 m/s. Speed differences
across lanes are maintained at 4 m/s to simulate realistic traffic
dynamics. The default selection window size and its bounds
align with the 5G NR specifications.Table presents the
average running time to converge of each algorithm. Although

Algorithms

Algorithm Running Time to Converge (s)
LLM-MOEA/D 51.41

NSGA-III 56.22

NSGA-II 44.35

MOEAD 95.45

SPEA2 121.32

PPO-MO 3492.79

TABLE IV: Simulation parameters

Parameters Value Parameters Value
N 3 « 3
B 20MHZ a2 9dB
v)) 20m/s vo 30m/s
o 0 RRI 100ms
Ngc 10 Ny 100
R 200m Ncoa 10
Bit 500bit tra 0.468ms
Prnei 0.8 Np 7
K 20 H 120
wr 20ms w? 150ms

g TABLE III: Comparison of convergence speed for Different

LLM has slightly longer inference time, its total runtime to
reach convergence is only slightly behind NSGA-II, due to
the fewer iterations required compared to other algorithms.
Additional parameter configurations are summarized in Table
v

Fig. [§] illustrates the correlation between vehicle speed
and selection window size, indicating a general trend of
decreasing window size as average speed increases among
different vehicles. This occurs because higher vehicle speeds
reduce the communication duration within the RSU coverage,
thereby decreasing the achievable data volume. To enhance
data throughput and ensure fairness, the selection window size
is dynamically reduced to minimize communication latency.
Notably, faster vehicles adopt smaller windows to balance
fairness across the network. We also found that sometimes
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Fig. 5: Selection window size VS Average velocity
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when the average speed increased, the window of some
vehicles increased, because the increase in the average speed
was caused by other vehicles, whose speed remained the same
or decreased slightly. This shows that our scheme adaptively
adjusts the selection window size according to the vehicle
speed.

Fig. [6] compares the top-Nobjective values (representing
the deviation between individual vehicle fairness indices and
the network average) for vehicles using standard and adap-
tive window strategies. As speed increases, standard-window
vehicles exhibit significantly faster growth in objective values
than adaptive-window vehicles. This divergence arises because
fixed-window strategies fail to address the widening fairness
gap between high- and low-speed vehicles. In contrast, the
adaptive strategy mitigates this issue, limiting objective value
growth through dynamic window adjustments.

Fig. [7] analyzes the fairness index versus average speed.
While higher network speeds degrade fairness across all
vehicles, standard-window vehicles suffer severe fairness de-
terioration, whereas adaptive-window vehicles maintain near-
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Fig. 8: Aol VS Average velocity
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Fig. 9: HV comparison

stable fairness indices. The adaptive strategy compensates for
speed fluctuations by optimizing window sizes, whereas fixed
windows amplify speed-induced fairness variations. A more
stable equity index means that vehicles with different speeds
are accessing the channel and communicating with the RSU
in a more equitable way.

Fig. [8] evaluates the Aol under different strategies. Speed
variations minimally impact Aol, as Aol primarily depends on
window size optimization. Vehicles optimized via MOEA/D
with LLM achieve lower Aol than those using fixed windows,
proving the capability of the designed algorithm in minimizing
the Aol

Fig. 0] to [IT] present the comparison between our proposed
algorithm and other baseline algorithms. Fig. [J] illustrates the
Hypervolume (HV) comparison among different algorithms
which is a commonly used metric in multi-objective optimiza-
tion that evaluates the diversity, superiority, and convergence
of the solution set [60]. A higher HV value indicates better
diversity and performance of the solution set. As shown in Fig.
[l the HV of the LLM-MOEA/D algorithm is the highest and
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Fig. 10: Objective value comparison

achieves convergence with the fewest iterations. This indicates
that LLM-MOEA/D can quickly find the optimal solution in
fewer iterations, and the quality of the solution outperforms
those of the other algorithms. This is attributed to the LLM-
guided crossover operator, which consistently generates better
offspring solutions.

Fig. shows the top-N objective values of different
algorithms as the average speed increases. From the figure,
it can be observed that as the speed increases, the objective
values of all algorithms rise, indicating that higher speeds
lead to greater fairness deviations. However, although the
objective values of our algorithm also increase, the growth is
the smallest among them. This demonstrates that our algorithm
can effectively achieve fair access under increasing speed by
adjusting the selection window size.

Fig.[TT]presents the Aol performance of different algorithms
as the average speed increases. As shown in the figure, the
Aol of all algorithms increases slightly with speed. This is
because higher speeds make it more difficult to ensure fair
access, so in order to balance the joint optimization of fairness
and Aol, the requirement on information freshness is relaxed.
Compared with other algorithms, our algorithm achieves a
lower Aol, indicating that the LLM-guided crossover operator
is able to discover solution sets that Pareto-dominate those of
other algorithms, thus delivering better performance in terms
of Aol.

Fig. 2] presents the HV convergence plot for various
crossover operators within the MOEA/D algorithm framework.
As shown in the figure, the crossover operator guided by LLM
achieves convergence with the fewest iterations while also
obtaining the highest HV value. This indicates that the LLM-
guided crossover operator can provide the optimal solution
in fewer iterations while maintaining solution diversity. Other
crossover operators show significant fluctuations in HV values,
and their HV values are consistently lower than those of the
LLM-guided operator, demonstrating that LLM can deliver
diverse and high-quality solutions in fewer iterations.

Fig. [13] displays the optimization objectives of the top N
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Fig. 11: Aol comparison

solutions for each crossover operator within the MOEA/D
framework. As shown in the figure, as the average speed
increases, the performance of the algorithms with all crossover
operators starts to decline, and the optimization objectives
gradually increase. This suggests that as speed increases, it be-
comes more difficult for multi-objective algorithms to balance
fair access and Aol. Moreover, higher speeds lead to greater
fairness disparities. However, the LLM-guided crossover oper-
ator shows the lowest optimization objective value. Although
fairness slightly decreases with increasing speed, the LLM-
guided operator still outperforms other crossover operators,
demonstrating its ability to provide the optimal solution for
fair access.

Fig. [T4]illustrates the Aol performance of various crossover
operators within the MOEA/D framework. As the average
speed increases, the Aol of all algorithms tends to increase
slightly, due to the trade-off required for fair access. How-
ever, compared to other operators, the LLM-guided crossover
operator exhibits a smaller increase in Aol and its Aol value
is also lower than that of the other operators. This indicates
that LLM, when guiding the crossover operation, can provide
more diverse and better-performing solutions while selecting
those that most effectively balance fair access and Aol.

Fig. [T3] shows the variation of fairness index with respect to
the number of vehicles under our scheme. As observed in Fig.
[[3] when the number of vehicles in the RSU increases, the
fairness index of the vehicles in our scheme remains almost
unchanged, whereas the fairness index of vehicles following
the standard protocol decreases as the number of vehicles
increases. This is because, as the number of vehicles increases,
the probability of resource conflicts also increases, leading to
larger differences in the amount of data transmitted by differ-
ent vehicles, which results in a decline in fairness. However,
our scheme can adaptively adjust the selection window size
to ensure that the amount of data transmitted by each vehicle
remains almost the same, thus maintaining a stable fairness
index.

Fig. [T6] shows the variation of Aol with respect to the
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number of vehicles under our scheme. As shown in Fig.
since we measure the average Aol per vehicle, and our scheme
minimizes Aol by adjusting the selection window size, the
increase in the number of vehicles has minimal impact on
our scheme. On the other hand, for vehicles following the
standard 5G NR protocol, as the number of vehicles increases,
the probability of resource conflicts also increases, leading to
a significant increase in transmission time. From the figure,
we can observe that the Aol of the vehicles increases, which
reflects that our scheme effectively optimizes Aol even under
high-pressure scenarios.

VIII. CONCLUSION

In this paper, we propose an enhanced SPS scheme under
5G NR V2X Mode 2. This scheme adjusts the selection win-
dow size of vehicles to eliminate unfair access issues caused
by different vehicle speeds within the RSU coverage area
while minimizing the average Aol, modeled using the SHS
framework. We formulate a multi-objective optimization prob-
lem that jointly considers fair access and Aol minimization.
To solve this problem, we employ a LLM-Based MOEA/D
algorithm and determine the optimal selection window through
simulations. Based on the simulation, the following major
conclusions can be drawn:
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o The fairness of access is strongly affected by vehicles’
velocity. Higher vehicle speeds make it more challenging
to achieve fairness. Therefore, a slight sacrifice in the
Aol metric is necessary to maintain fairness. Achieving
both optimal fairness and the lowest Aol simultaneously
remains difficult.

e Aol is a function of the selection window size, and each
adjustment of the selection window primarily aims to
optimize Aol. Consequently, changes in vehicle speed
alone have a relatively minor impact on Aol.

o The LLM-Based algorithm exhibits superior convergence
performance compared to other algorithms. This is be-
cause large models do not generate poor solutions, en-
suring that each offspring solution is Pareto-dominant.

For future work, to further optimize fairness and Aol
simultaneously, additional parameters in 5G NR V2X Mode
2, such as RRI and RC size, can be explored to refine the
optimization strategy.
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