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Abstract—In this paper, we consider the fair access problem1

and the Age of Information (AoI) under 5G New Radio (NR)2

Vehicle-to-Infrastructure (V2I) Mode 2 in vehicular networks.3

Specifically, vehicles follow Mode 2 to communicate with Road-4

side Units (RSUs) to obtain accurate data for driving assistance.5

Nevertheless, vehicles often have different velocity when they are6

moving in adjacent lanes, leading to difference in RSU dwell7

time and communication duration. This results in unfair access8

to network resources, potentially influencing driving safety. To9

ensure the freshness of received data, the AoI should be analyzed.10

Mode 2 introduces a novel preemption mechanism, necessitating11

simultaneous optimization of fair access and AoI to guarantee12

timely and relevant data delivery. We propose a joint optimization13

framework for vehicular network, defining a fairness index and14

employing Stochastic Hybrid Systems (SHS) to model AoI under15

preemption mechanism. By adaptively adjusting the selection16

window of Semi-Persistent Scheduling (SPS) in Mode 2, we17

address the optimization of fairness and AoI. We apply a18

large language model (LLM)-Based Multi-objective Evolutionary19

Algorithm Based on Decomposition (MOEA/D) to solve this20

problem. Simulation results demonstrate the effectiveness of our21

scheme in balancing fair access and minimizing AoI.22

Index Terms—Fairness, AoI, Access, Vehicular Networks.23
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I. INTRODUCTION 24

AUTONOMOUS driving technology represents a promis- 25

ing innovation that is expected to transform transporta- 26

tion systems and serve as a critical component of future smart 27

cities [1]. Many companies, such as Baidu Apollo, BYD, and 28

Tesla, are currently developing autonomous driving solutions, 29

with pilot autonomous vehicles already operating in cities 30

like Beijing, San Francisco, Shanghai, and Los Angeles [2]. 31

Information acquisition is a critical component of autonomous 32

driving technology. To perceive their surroundings, vehicles 33

are typically equipped with multiple sensors, such as high- 34

definition cameras and Light Detection And Ranging (LiDAR) 35

[3], [4]. However, the large amount of redundant information 36

imposes significant computational burdens on systems. 37

Cloud computing has been widely adopted to address com- 38

putational resource limitations [5]–[9]. Specifically, vehicles 39

upload raw data to remote cloud servers with high processing 40

power, which return refined information after computation. 41

However, the geographical distance between cloud servers and 42

vehicles introduces substantial transmission latency, rendering 43

this approach unsuitable for high-speed vehicular environ- 44

ments [10], [11]. This issue is addressed by using the Edge 45

computing framework which uses the edge server to provide 46

low latency information to vehicles [12]. Specifically, with 47

the 3rd Generation Partnership Project (3GPP) Release 16 48

establishing the first 5G New Radio (NR) standard, two com- 49

munication modes are defined: Mode 1 and Mode 2 [13]. In 50

Mode 1, Base Stations (BS) allocate communication resources, 51

requiring vehicles to move within network coverage. This not 52

only increases latency but also restricts mobility. Conversely, 53

Mode 2 enables vehicles to independently select SideLink (SL) 54

resources, allowing communication even outside network [14]. 55

In addition, in high-speed scenarios, vehicles frequently enter 56

and exit the coverage area of the base station, which may 57

result in instantaneous communication interruptions. Frequent 58

coverage switching can also cause occasional high latency. 59

Furthermore, in remote areas, there are regions where the base 60

station under Mode 1 is difficult to cover. Therefore, compared 61

with Mode 2, Mode 1 can lead to situations that are relatively 62

dangerous for high-speed vehicles. In contrast, Mode 2 can 63

autonomously select communication resources based on semi- 64

persistent scheduling (SPS), allowing independent decision- 65

making without network coverage and avoiding the scheduling 66
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time required for communication with the base station, thereby67

enabling low-latency communication. Thus, vehicles typically68

adopt the SPS mechanism in Mode 2 for communication [15]–69

[18]. However, the SPS mechanism introduces new challenges:70

vehicles in adjacent lanes with varying speeds experience un-71

equal RSU dwell times, leading to unfair access and degraded72

AoI—issues not fully addressed by prior works.73

Under the SPS mechanism, vehicles first reserve SL re-74

sources and then upload redundant data to Roadside Units75

(RSUs) equipped with edge servers [19]–[22]. These edge76

servers help to process the data and return actionable infor-77

mation to vehicles. Since RSUs are deployed near roadways,78

the communication latency remains sufficiently low to support79

real-time driving decisions, effectively mitigating safety risks80

caused by delayed updates. However, compared with Long-81

Term Evolution (LTE) Mode 4, 5G NR Vehicle to Everything82

(V2X) Mode 2 introduces a unique preemption mechanism,83

whereby high-priority vehicles can occupy the communica-84

tion resources of low-priority vehicles to achieve prioritized85

communication—this is a mechanism that does not exist in86

LTE Mode 4. Therefore, although the introduction of this87

mechanism ensures that higher-priority vehicles can transmit88

first, once high-priority vehicles frequently preempt resources,89

it becomes difficult for low-priority vehicles to communicate.90

This not only exacerbates the problem of fair access but also91

leads to an increase in the AoI of low-priority vehicles.92

Specifically, on highways, vehicles in different lanes operate93

at varying speeds. This results in unequal dwell times within94

RSU coverage: faster vehicles communicate with RSUs for95

shorter durations, receiving less information compared to96

slower vehicles. Specifically, within the same RSU coverage97

area, the amount of information received by each vehicle98

should ideally be equal. However, in reality, faster-moving99

vehicles often obtain less information due to shorter communi-100

cation times with the RSU. This may result in situations where101

only slower vehicles receive information that should have been102

available to all vehicles within the RSU’s coverage, or where103

high-speed vehicles fail to timely obtain the requested infor-104

mation. Such unfair information acquisition within the same105

area can pose safety risks to nearby vehicles, especially those106

moving at high speeds. Therefore, it is necessary to define107

a fairness index to ensure fair access for all vehicles within108

the same region. This unfair access in 5G NR Vehicle-to-109

Infrastructure (V2I) Mode 2 compromises the decision-making110

accuracy and safety of high-speed vehicles. Additionally,111

data freshness, measured using the Age of Information (AoI)112

[23]–[25], critically impacts safety in high-speed vehicular113

networks. Elevated AoI delays critical updates, hindering vehi-114

cles’ ability to respond to dynamic environments. In summary,115

it is crucial to jointly consider fair access in 5G NR and the116

optimization of AoI under the preemption mechanism, which117

motivates us to undertake this work.118

This paper proposes a multi-objective optimization frame-119

work for 5G NR V2X Mode 2 vehicular networks, where120

the selection window size is adaptively adjusted based on121

vehicle speed to ensure fair access and minimize AoI. The122

main contributions are outlined below1: 123

1) We define a novel fairness index that considers the 124

preemption mechanism in 5G NR V2X which existing 125

works didn’t consider. We adaptively adjust the selection 126

window size according to vehicle speed to achieve fair 127

access for vehicles with different speeds. 128

2) Considering that the preemption mechanism in 5G NR 129

V2X exacerbates fairness issue and increases AoI [26], 130

we employ the Stochastic Hybrid System (SHS) to model 131

the vehicles’ AoI. This model explicitly incorporates the 132

preemption mechanism and establishes the relationship 133

between the vehicles’ AoI and the selection window size, 134

which is not addressed in existing works like [27], [28]. 135

3) We propose a multi-objective optimization scheme that 136

jointly considers fairness and AoI, aiming to simultane- 137

ously optimize fair access and the potential increase in 138

AoI caused by the change of selection window under 139

the preemption mechanism. A Large Language Model 140

(LLM)-Based Multi-objective Evolutionary Algorithm 141

Based on Decomposition (MOEA/D) is applied. 142

Meanwhile, no existing work has employed LLM-guided 143

multi-objective optimization to address AoI derived from 144

SHS and fair access under the 5G NR preemption mecha- 145

nism. Simulation experiments validate the effectiveness of 146

our scheme in achieving fairness and AoI minimization. 147

The following structure is arranged as below: Section II 148

discusses related work. Section III introduces the system 149

model. Section IV presents the fairness metric. Section V 150

analyzes the average AoI in networks using SHS. Section VI 151

defines the optimization problem and details the LLM-Based 152

MOEA/D. Section VII presents simulation results. Finally, 153

Section VIII summarizes the findings of the paper. 154

II. RELATED WORKS 155

This section provides an overview of related studies. 156

A. SPS mechanism 157

Existing works explored SPS mechanisms in C-V2X [29]– 158

[31]. In [29], Amr et al. developed the C-V2X simulator 159

analyzing the impact of resource pool configurations and 160

essential parameters. In [30], Ye et al. introduced an in- 161

novative scheme and corresponding scheduler which uses 162

past transmission data to decrease delay. In [31], Gu et al. 163

developed an analytical SPS model to quantify the effects of 164

beacon rate and configurations on access collision rate and 165

latency outage rate. This model provides critical insights for 166

optimizing communication configurations, comprising signal 167

detection radius, transmission power and resource reservation. 168

The optimized system maintains consistent packet delivery 169

rates and low delays under varying traffic density conditions. 170

Additional research has focused on SPS mechanisms in 5G 171

NR-V2X [32]–[34]. In [32], Malik et al. proposed an enhanced 172

SPS scheme for aperiodic traffic resource reservation. This 173

1Source code can be found at : https://github.com/qiongwu86/Enhanced-
Velocity-Adaptive-Scheme-Joint-Fair-Access-and-Age-of-Information-
Optimization-in-iov
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approach dynamically adjusts the sensing window size accord-174

ing to traffic distribution intensity and vehicle velocity while175

incorporating a re-evaluation mechanism to confirm resource176

availability through repeated sensing after selection. In [33],177

Daw et al. presented a method considering data priority that178

classifies urgent vehicles as High-Priority (HP) with elevated179

Reselection Counter (RC), enabling them to transmit Co-180

operative Awareness Message (CAM) messages on reserved181

channel resources. This reduces collision probability among182

heterogeneous vehicles. In [34], Luca et al. analyzed and183

compared the effectiveness of SPS with Dynamic Scheduling184

(DS) across varying data flows and Packet Delay Budget185

(PDB) limits. Their results show that adaptive scheduling186

strategies, allowing vehicles to choose the optimal method187

for traffic patterns, achieve superior performance in hybrid188

scenarios combining periodic and aperiodic traffic. However,189

none of these studies address the joint optimization of fairness190

and AoI.191

B. Fairness of network192

Several studies have focused on ensuring fairness in wireless193

networks [35]–[37]. In [35], Park et al. proposed a power194

control-based equitable channel access scheme for wireless195

networks. This scheme employs a distributed channel access196

algorithm that adjusts individual node access probabilities to197

achieve fairness in the update intervals of randomly accessed198

network states. Simulation results demonstrated high infor-199

mation coverage while maintaining fairness among nodes. In200

[36], Zhang et al. introduced a dynamic Media Access Control201

Address (MAC) protocol to address temporal unfairness in202

dynamic channel access. Their approach assigns different time203

slot allocation schemes to different nodes, thereby ensuring204

spatial access fairness. Similarly, in [37], Gibson et al. mod-205

eled fairness criteria for MAC protocols in multi-hop sensor206

networks, ensuring that transmission rates between sensors and207

BS remain equal.208

Additionally, some studies have investigated fairness in209

vehicle access scenarios. In [28], Wan et al. considered the210

unfair access issue between vehicles and RSUs under the IEEE211

802.11p protocol. They defined a fairness index and proposed212

an approach that adjusts the minimum contention window213

according to vehicle speeds to realize fair access. Furthermore,214

they modeled and optimized the network’s AoI. In [38],215

Muhammed et al. addressed the issue of imbalanced resource216

allocation due to significant variations in vehicle density across217

different regions. They proposed a scheme for fair resource al-218

location among edge nodes, which was evaluated in real-world219

scenarios. In [39], Wang et al. examined the unfair network220

resource allocation problem caused by structural asymmetry221

in uplink and downlink connections. They proposed an edge222

network system that leverages edge computing to provide223

fair access services. In [40], Harigovindan et al. studied fair224

vehicle access in V2I networks under the IEEE 802.11p225

protocol. Their approach accounts for unfair access caused by226

variations in vehicle speeds and derives the optimal Contention227

Window (CW) to ensure fairness.228

In our previous work [27], we considered the issue of229

fair access in 5G NR V2X. However, that work only ad-230

dressed the difference between 5G NR V2X and LTE V2X 231

in terms of resource collision probability and did not take 232

into account the unique preemption mechanism introduced 233

in 5G NR V2X. Under preemption mechanism, high-priority 234

vehicles can preempt the communication resources of low- 235

priority vehicles. Admittedly, this grants high-priority ve- 236

hicles the privilege of prioritized communication, ensuring 237

the communication speed required for emergency situations. 238

Nevertheless, if high-priority vehicles repeatedly preempt the 239

resources of low-priority vehicles, it can become difficult 240

for low-priority vehicles to obtain communication resources, 241

significantly exacerbating the fairness issue. At the same time, 242

the AoI of low-priority vehicles increases as they wait for 243

resources. This situation can be particularly dangerous in high- 244

speed vehicular environments. Therefore, considering only fair 245

access is one-sided after the introduction of the preemption 246

mechanism in 5G NR, which may cause the increase of AoI 247

due to the change of selection window [41]. 248

However, in [28], Wan et al. did jointly consider access 249

fairness and AoI. However, this work only focused on fair ac- 250

cess under the IEEE 802.11p protocol and did not consider the 251

novel 5G NR V2X protocol. In addition, their AoI modeling 252

did not account for the presence of the preemption mechanism. 253

Moreover, to the best of our knowledge, current research on 254

fairness does not take into account the 5G NR V2X protocol, 255

especially the preemption mechanism. Moreover, there is no 256

comprehensive work that optimizes both vehicle fair access 257

and AoI after the introduction of the preemption mechanism in 258

5G NR. Additionally, considering the preemption mechanism 259

in 5G NR and deriving AoI using SHS seems to be an 260

unexplored area, which motivates us to undertake this work. 261

C. Age of information 262

As a metric for data freshness, AoI is indispensable in 263

high-speed scenarios, especially for vehicular networks. Con- 264

sequently, extensive research has focused on AoI optimization. 265

In [42], Azizi et al. used reinforcement learning in C-V2X 266

to minimize AoI while maximizing energy efficiency, and 267

investigated the impact of increased inter-vehicle spacing on 268

AoI. In [43], Zhang et al. analyzed the relationship between 269

multi-priority queues and Non-Orthogonal Multiple Access 270

(NOMA) with AoI, proposing a DRL-based method to op- 271

timize both energy consumption and AoI. In [44], Ali et al. 272

modeled AoI using stochastic hybrid systems in Carrier Sense 273

Multiple Access (CSMA) environments, minimizing average 274

AoI by calibrating backoff times. In [45], Roy et al. extended 275

stochastic hybrid systems to derive generalized AoI results 276

applicable to multi-source systems, reducing AoI evaluation 277

complexity to stationary distribution analysis of finite-state 278

Markov chains. In [46], Yu et al. considered the problem of 279

detachment caused by failures in an edge-enabled vehicular 280

metaverse, which disrupts the sense of immersion. They pro- 281

posed a scheme based on redundant backups and maintaining 282

the AoI of the backups to avoid such detachment, with the 283

focus primarily on preventing disconnection. However, this 284

work did not consider the issue of fair access resulting from 285

vehicles with different speeds generating different amounts of 286
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Fig. 1: Scenario Model
data exchange. Moreover, it also did not consider modeling287

the AoI using SHS.288

For 5G NR V2X, Liu et al. [47] analyzed SPS parameters289

in Mode 2 to ensure message freshness. In [48], Saad et290

al. developed a deep reinforcement learning-based congestion291

control mechanism addressing Mode 2 NR-V2X’s inefficiency292

in handling aperiodic packet scheduling while optimizing AoI.293

However, these studies neglect the fair access in the system. At294

the same time, considering the resources of edge servers, Yu et295

al. in [49] used a Markov Model to infer the refresh rate and296

privacy of the edge server. In [50], a Markov Model was also297

used to represent the activation and deployment of the edge298

server. However, [49], [50] did not consider the transmission299

model under 5G NR and the derivation of AoI through SHS.300

Existing research lacks solutions that jointly optimize fair301

access and AoI, motivating our work to address this gap.302

III. SYSTEM MODEL303

This section presents the system model, which is primarily304

divided into the scenario model and the SPS protocol model305

under 5G NR V2X Mode 2.306

A. Scenario307

Fig. 1 presents our scenario model, where we consider a308

multi-lane highway scenario within the RSU’s range, which309

is deployed along the roadside. The RSU is equipped with310

an edge server that has sufficient computational resources.311

It is assumed that vehicles attempt to communicate with the312

RSU to obtain useful information whenever they are within its313

coverage area. The vehicles in the same lane move at a uniform314

speed, while vehicles in adjacent lanes differ in velocity at315

least 4 m/s. Each vehicle communicates with the RSU and316

receives useful information. Considering that the downlink317

data volume is significantly larger than the uplink data volume,318

we focus only on the uplink transmission [51].319

B. SPS320

Following the Mode 2 SPS protocol, vehicles autonomously321

allocate communication resources instead of relying on base322

station assignments, allowing resource allocation even in the323

absence of network coverage. Specifically, as shown in Fig.324

2, the channel is divided into different subchannels. These325

subchannels are utilized for both data transmission and control326

Frequency

Time

0T w

Sensing window Selection window

Sub
channel

Sci

TB

SubframePacket generated

RRI

Selected and reserved 
candidate resource

 Resource selected
 by last packet

Rc=1 Rc=0

Fig. 2: SPS Model

information. Data is transmitted in the form of Transport 327

Blocks (TBs), each of which carries a SideLink Control 328

Information (SCI) which provides metadata about TB. When 329

the RC reaches 0, vehicle need to choose new resources. 330

Each time a vehicle selects resources, it follows a sensing- 331

based mechanism, with a Resource Reservation Interval (RRI) 332

between consecutive resource selections. The vehicle first 333

identifies candidate resources within a selection window, 334

whose size is determined by the vehicle’s application require- 335

ments. Next, the vehicle discards certain resources according 336

to the following conditions: 337

1) Resources reserved by other vehicles are excluded. 338

2) Resources with a time-averaged Reference Signal Re- 339

ceived Power (RSRP) exceeding a threshold are excluded. 340

After eliminating unsuitable resources, from the available 341

resources, the vehicle chooses one at random, further reducing 342

the probability of collisions with other vehicles. Once a re- 343

source is selected, the vehicle proceeds with TB transmission. 344

Compared to LTE Mode 4, Mode 2 introduces a preemption 345

mechanism, enabling more flexible resource allocation based 346

on traffic priority. If a priority threshold is predefined, a 347

vehicle will release its resources when another vehicle with a 348

higher priority exceeds this threshold. This mechanism helps 349

prevent resource collisions with high-priority transmissions. 350

Specifically, if a lower-priority vehicle has already reserved 351
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TABLE I: Symbols in this paper

Symbol Description

Biti
The expected total data size transmitted by vehicle i
during the coverage area of the RSU.

Ti The time vehicle i spends within RSU’s range.
PPRRi The probability of successful transmission

R The coverage range of the RSU.
Ci Vehicle i’s bit rate.
B The bandwidth.
pi The transmission power of vehicle i.
hi The channel gain.
di The geometric distance between vehicle i and the RSU.
P i
o The position of vehicle i.

f i
d The Doppler frequency of vehicle i.

Ki
index The fairness index of vehicle i.

Kindex The overall fairness of the network
q(t) The channel state.
x0(t) The AoI at the RSU.
x1(t) The AoI at vehicle k
AL The reset mapping for that transition.
x′ The continuous process values before and after the reset
λ The transition rate of the discrete process L.
vq0 The stationary correlation between ql and x0.
vq1 The stationary correlation between ql and x1.
∆̄k The averaged AoI for link k.
Hk The average successful transition rate of link k.
Rk The averaged failed transition rate.
π̄q̄ The steady-state distribution of q.
Ts The average transmission success time.
Tini The total transmission time.
tr The time required for retransmission.

Tsch The time required for resource scheduling.
Tpkt The actual transmission time.
tp The time required for the sender to deal the data.
tfa Constrained by the duration of the time slot.
Tw The time required for resource scheduling.

tNACK The transmission delay of the NACK.
Tf The average transmission failure time.
NSc The number of subchannels.

δjCOL
The probability of a data packet collision between vehicle
i and vehicle j.

bq
A vector of a two-dimensional differential equation which
describes the age evolution at state q.

PO
The probability that the selection windows of vehicle i
and j overlapped.

PSH|O
The probability that vehicle i and j choose resource from
the overlapped window

pi,j The average rate at which link i is preempted by link j.

NSh
The amount of shared resources within the overlapped
selection window.

δjHD
The probability that both vehicles transmit data simulta-
neously.

a resource within its selection window, and a higher-priority352

vehicle subsequently requires the same resource, the lower-353

priority vehicle will relinquish its reservation, allowing the354

higher-priority vehicle to use the resource.355

IV. FAIRNESS INDEX356

This section establishes the link between fairness, selection357

window size, and vehicle velocity. First, we propose a fairness358

index to measure fair access. Then, we analyze the successful359

transmission probability of vehicle packets. Finally, we find360

that the fairness index relates to vehicle velocity and window361

size. Table I lists the parameters used in this paper.362

A. Transmission rate363

To ensure fairness access means that vehicles moving with364

varying speeds should transmit the same data quantity when365

covered by the RSU. This requirement can therefore be 366

formulated as: 367

E[Biti] = C, (1)

where Biti denotes the data size transmitted by vehicle i. C is 368

a constant, considering the possibility of transmission failure, 369

we take the expected value. Specifically, Biti is given by: 370

Biti = Ci · Ti. (2)

We set PPRR
i as the probability of successful transmission. 371

Thus, Eq. (1) is given by: 372

Ci · Ti · PPRR
i = C, (3)

where Ci denotes vehicle’s transmission rate, while Ti repre- 373

sents the duration vehicle i remains within the RSU’s coverage 374

area. Thus, Ti is given by: 375

Ti =
R

vi
, (4)

where R indicates RSU’s range, and vi represents the vehicle’s 376

velocity. Considering the upper limit of our presented frame- 377

work, following Shannon theory, Ci can be mathematically 378

formulated as: 379

Ci = B · log2(1 +
pi · hi,r · (di,r)−∂

σ2
), (5)

where B denotes system bandwidth, ∂ denotes the path loss 380

index, pi denotes the transmission power of vehicle i. di,r is 381

the geometric distance between vehicle i and RSU. hi,r is 382

the channel gain between vehicle i and RSU. σ2 refers to the 383

additive white Gaussian noise power. The distance di,r can be 384

described as: 385

di,r =
∥∥Po

i − Po
r
∥∥ , (6)

where P i
o denotes the vehicle i’s position, and P r

o is the RSU’s 386

position. 387

Based on [52], we apply the Autoregressive model [53] 388

which characterizes the temporal dependency between con- 389

secutive channel gains hi,r and h′
i,r: 390

hi,r = ρi · h′
i,r + e(t) ·

√
1− ρ2i , (7)

where ρi is the autocorrelation coefficient, h′
i,r is the channel 391

gains at previous slot, while the error vector e(t) follows a 392

Gaussian distribution. In addition, to model vehicular mobility- 393

induced Doppler spread [54], we employ Jake’s fading spec- 394

trum, ρi = J0(2πf
i
dt), where J0(·) denotes the first-kind 395

zeroth-order Bessel function. f i
dt represents the Doppler fre- 396

quency determined by: 397

f i
d =

vi
Λ0
· cos θ, (8)

where Λ0 denotes the wavelength, and cos θ indicates the 398

cosine value between the vehicle’s velocity vector and the 399

signal propagation direction. 400

B. Successful receiving probability 401

Then, we focus on the PPRR
i . PPRR

i quantifies the suc- 402

cessful receiving probability of vehicle i transmissions at the 403
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RSU, mathematically defined as:404

PPRR
i =

∏
j ̸=i

(1− δjCOL)·
∏
j ̸=i

(1− δjHD). (9)

The collision probability δjCOL characterizes Physical Re-405

source Block (PRB) allocation conflicts between vehicle i and406

interfering vehicle j where multiple transmitters may share the407

same PRBs, when multiple vehicles attempt to select resources408

at nearly the same time. Let δjHD denote the probability409

that vehicles transmit simultaneously. Following the collision410

probability in [55], δjCOL is defined through:411

δjCOL = PO · PSH|O ·
CCa

N2
Ca

, (10)

where PO denotes the probability that the selection window412

for vehicle i and j overlap. Meanwhile, PSH|O represents the413

chance that vehicles choose resources from this overlapped414

window. In cases where an overlap occurs, CCa expresses415

the candidate PRBs that vehicles have in common, while416

NCa stands for the total average number of candidate PRBs417

available. The mathematical expression for PO is given by:418

PO =
wi + wj + 1

1000 · 2µ ·RRI
, (11)

where wi and wj denotes the selection windows size of vehicle419

i and j respectively. RRI represents the resource selection420

interval. µ represents the subcarrier spacing coefficient. PSH|O421

is given by:422

PSH|O = (
NSc ·NSh

Nr
)
2

, (12)

where NSc denotes the total number of subchannels, while423

NSh refers to the number of resources that are common within424

the overlapping selection window. Nr is the total number of425

resources. Specifically, NSh can be defined as:426

NSh =
(wi + 1)(wj + 1)

wi + wj + 1
. (13)

Owing to the half-duplex constraint in vehicular communi-427

cations, if vehicles transmit simultaneously, the receiver will428

be unable to decode the data packet, resulting in a error429

transmission. According to [55], δjHD is given by:430

δjHD =
τj

1000
, (14)

where τj indicates the rate at which vehicle j generates431

packets. Consequently, PPRR
i is related with w.432

C. Fairness index433

According to the analysis above, Eq. (3) is reformulated as:434

C =B · log2(1 +
pi · hi,r · (di,r)−∂

σ2
) · R

vi

·
∏
j ̸=i

(1− δjCOL)·
∏
j ̸=i

(1− δjHD).
(15)

By discarding terms that are not related to vehicle i, Eq.(15) 435

can be rewritten as: 436

Ki
index =

C

C ′ =log2(1 +
pi · hi,r · (di,r)−∂

σ2
)

·

∏
j ̸=i

(1− δjCOL)

vi
,

(16)

where 437

C ′ = B ·R ·
∏
j ̸=i

(1− δjHD). (17)

As a result, we now formulate a fairness metric for vehicle 438

i. In addition, due to the fact that di,r is related with vi while 439

PPRR
i depends on the selection window w, the fairness index 440

Ki
index is influenced by v and w. This means that if we get a 441

vehicle’s velocity, the w can be adaptively adjusted to improve 442

fairness. 443

Furthermore, through computing the average value of 444

Ki
index for all the vehicles within the RSU’s range, we can 445

get: 446

Kindex =

N∑
i=1

Ki
index

N
. (18)

The overall average fairness of the network is quantified by 447

the index Kindex. When an individual vehicle’s fairness index 448

Ki
index closely aligns with Kindex, it signifies that the vehicle 449

is accessing communication in a fair manner. 450

So far, we have only achieved fair access among vehicles 451

by adjusting the selection window size. However, adjusting 452

the selection window size may lead to an increase in the 453

AoI of vehicles. In particular, considering the existence of the 454

preemption mechanism, when high-priority vehicles frequently 455

preempt the communication resources of low-priority vehicles, 456

the AoI of the preempted vehicles may significantly increase 457

due to waiting for resources. At the same time, in order to 458

achieve fairness, it may be necessary to enlarge the selection 459

window size for certain vehicles, which can likewise cause 460

their AoI to grow. Therefore, in the following, we will model 461

and analyze the AoI under the preemption mechanism. 462

V. AGE OF INFORMATION 463

In this section, we further analyze the average AoI in the 464

proposed model. The AoI refers to the mean age of the data 465

exchanged between each vehicle and the RSU. The communi- 466

cation relationships among vehicles and RSU are referred as 467

transmission links, where link k denotes the communication 468

link between vehicle k and the RSU. 469

We employ the SHS to design the system transition [44], 470

[45]. The data sampling time is assumed to be negligible, as 471

it is significantly smaller compared to the data transmission 472

time [56]. 473

Next, we model the transmission process. We define the 474

state set as (q(t),x(t)), where q(t) ∈ {0, 1, 2, . . . , N} rep- 475

resents the system state at time slot t, and N denotes the 476

amount of vehicles. Specifically, q(t) = 0 stands for that no 477

transmission occurs at time t, i.e. the channel is idle, whereas 478
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l ql → q′
l λ(l) x′ = xAl Al vq′

l
= vqlAl

1 0→ 1 R1 [x0, x1]

[
1 0
0 1

]
[v00, v01]

...
...

...
...

...
...

N 0→ N RN [x0, x1]

[
1 0
0 1

]
[v00, v01]

N + 1 1→ 0 H1 [x0, x1]

[
0 1
1 0

]
[v10, v11]

...
...

...
...

...
...

N + k k → 0 Hk [x1, 0]

[
0 1
0 0

]
[vk1, 0]

...
...

...
...

...
...

2N N → 0 HN [x0, x1]

[
1 0
1 1

]
[vN0, vN1]

2N + 1 1→ 2 P1,2 [x0, x1]

[
1 0
0 1

]
[v10, v11]

...
...

...
...

...
...

3N − 1 1→ N P1,N [x0, x1]

[
1 0
0 1

]
[v10, v11]

(k + 1)N − k + 2 k → 1 Pk,1 [x0, 0]

[
1 0
0 0

]
[vk0, 0]

...
...

...
...

...
...

(k + 2)N − k k → N Pk,N [x0, 0]

[
1 0
0 0

]
[vk0, 0]

N2 + 2 N → 1 PN,1 [x0, x1]

[
1 0
0 1

]
[vN0, vN1]

...
...

...
...

...
...

N2 +N N → N − 1 PN,N−1 [x0, x1]

[
1 0
0 1

]
[vN0, vN1]

TABLE II: SHS Transitions model

0

1 N

k

Rk Hk

P1,N

PN,1

Fig. 3: Markov Model

q(t) = k indicates that link k captures the channel and is479

transmitting data.480

We set x(t) = [x0(t), x1(t)] as the AoI of link k, where481

x0(t) denotes the AoI at the RSU, and x1(t) denotes the AoI482

of data generated and transmitted at vehicle k at time t.483

At system initialization, the AoI at the RSU x0(t) is set484

to 0 and then begins increasing with unit slope. When a data485

packet from link k is received, x0(t) is reset to the AoI of link486

k. Similarly, when vehicle k generates a data packet, the AoI487

at the sender x1(t) is initialized to 0. Next, it begins increasing488

with unit slope until the data is successfully received by the489

RSU.490

Thus, based on the above definitions, q(t) can be mapped as491

a discrete process, while x(t) can be mapped as a continuous492

process.493

In a Markov chain, transitions occur between multiple states.494

According to the SHS framework, transitions between discrete 495

states q(t) will trigger resets of the continuous process x(t). 496

This reset process is given by x′ = xAl, where l represents 497

the transition of the discrete process, and AL represents the 498

reset mapping for that transition. Here, x and x′ denote the 499

continuous process values before and after the reset, while 500

ql and q′l represent the discrete states before and after the 501

transition. 502

We set λ as the transition rate of the discrete process l. 503

Additionally, vql = [vq0 , vq1 ] represents the stationary correla- 504

tion between ql and x = [x0, x1]. Specifically, vq0 denotes the 505

stationary correlation between ql and x0, while vq1 represents 506

the correlation between ql and x1. Given x′ = xAl, we 507

can derive vq′
l
= vqlAl, where vq′

l
represents the stationary 508

correlation between q′l and the reset process x′. 509

Furthermore, we define the average service rate of link 510

k as Hk while the average failed transmission rate as Rk. 511

Considering the preemption mechanism specific to the SPS 512

in NR V2X, we introduce pi,j to represent the average 513

rate at which link i is preempted by link j. When link k 514

successfully transmits, the channel transitions to an idle state, 515

and the original state k transitions to state 0 at a rate of Hk. 516

Conversely, if link k fails to transmit, due to the retransmission 517

mechanism in SPS, link k will recapture the channel, causing 518

state 0 to transition back to state k at a rate of Rk. Additionally, 519

when link i is preempted by link j, state i transitions to state 520

j at a rate of pi,j . 521

According to Fig. 3, we can summarize the SHS transitions 522

in Table II. 523

We now provide a detailed explanation of the transitions 524

listed in Table II: 525

1) Transition l1 (l1 = {1, 2, 3, . . . , N}), representing the 526

scenario where an idle channel is occupied, and a transi- 527

tion occurs on link k at a rate of Rk. This implies that the 528

previous transmission has failed. Thus, the AoI remains 529

unchanged. As a result, we have: 530

x′ = xAl1 = [x0, x1], vq′
l1

= vql1
Al1 = [v00, v01].

2) Transition l2 (l2 = {N + 1, N + 2, . . . , 2N}), indicating 531

that the channel enters an idle state and transitions on link 532

N + k at a rate of Hk. This corresponds to a successful 533

transmission, where the x1 is reset to x1, while the AoI 534

of vehicle k is reset to 0. Thus, we obtain: 535

x′ = xAl2 = [x1, 0], vq′
l2

= vql2
Al2 = [vk1, 0].

For transitions other than N+k, a successful transmission 536

on any other link does not reset the AoI of link k. Hence, 537

we have: 538

x′ = xAl2 = [x0, x1], vq′
l2

= vql2
Al2 .

3) Transition l3 (l3 = {2N + 1, 2N + 2, . . . , N2 + N}), 539

representing the preemption process occurring at a rate 540

of pi,j . During this transition, the RSU’s AoI does not 541

reset. The AoI of the link is reset to 0 and begins linear 542

growth with a slope of 1 because when the vehicle being 543

preempted estimates that its resources will be used, it will 544

release the resources, that is, when the preempt vehicle’s 545
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packets are generated. Thus, we have:546

x′ = xAl3 = [x0, 0], vq′
l3

= vql3
Al3 = [vk0, 0].

Similarly, for transitions other than n + k, a successful547

transmission on any other link does not reset the AoI of548

link k. Therefore, we obtain:549

x′ = xAl3 = [x0, x1], vq′
l3

= vql3
Al3 .

According to [45], the average AoI for link k is calculated550

as:551

∆̄k =
∑

v̄q0, ∀k ∈ 1, 2, . . . , N, (19)

According to this formula, to compute the average AoI ∆̄k552

for link k, it is essential to derive v̄q0.553

Firstly, based on the analytical approach provided in [45],554

v̄qla

(∑
la

λ(la)

)
= bqπ̄q +

∑
lb

λ(lb)v̄qlbAlb ,la ∈ Lq,

lb ∈ L′
q,

(20)

where bq denotes a vector of a two-dimensional differential555

equation describing the age evolution in state q, and πq denotes556

the stationary probability of state q. Additionally, la and lb557

refer to the discrete states sets before and after the transition.558

Since vehicle k generates data packets and initiates trans-559

missions only upon capturing the channel, there are no data560

packets for link k in the system network unless the state561

equals k. Consequently, the AoI on link k increases linearly562

at a unit rate when q = k and remains at zero otherwise.563

Simultaneously, the AoI at the RSU always grows linearly at564

a unit rate. Based on this analysis, we derive the following:565

bq =

{
[1, 0], for ∀q ̸= k,

[1, 1], for ∀q = k.
(21)

Then, in order to apply Eq. (20), we need to get the stationary566

distribution of state q. Based on [45], the stationary distribution567

can be obtained as follows:568

π̄q̄

∑
l∈Lq

λ(l) =
∑
l∈L′

q

λ(l)π̄ql , q̄ ∈ Q,

∑
q̄∈Q

π̄q̄ = 1.
(22)

By solving the above equations, we can derive:569 π̄0 = 1
C(R) ,

π̄k = Rk

C(R)(Hk−
∑
j ̸=k

pj,k)
, (23)

where C(R) is a normalization factor:570

C(R) = 1 +
N∑

k=1

Rk

Hk −
∑
j ̸=k

pj,k
. (24)

Our goal is to apply Eq. (20) to obtain vq0. When q = 0,571

based on Eq.(21), we know that bq = [1, 0]. In this case,572

according to [28], the left side of Eq. (20) represents the573

transition from other states to states except q = 0, that is,574

the transitions from 1 to N and 2N +1 to N2 +N as shown575

in Table II. The right part represents the transition from other 576

states to state 0, that is, the transitions from N + 1 to 2N as 577

shown in Table II. 578

Furthermore, according to [45], we know that Eq. (20) 579

applies to any set of reset mappings {Al}. Therefore, Eq. 580

(20) is applicable to the transitions from 2N + 1 to N2 +N 581

caused by the preemption mechanism. 582

In summary, combining with Table II, we can derive: 583

v̄00(
n∑

j=1

Rj) +
N∑
j=1
j ̸=k

v̄j0 ·
N−1∑
i̸=j

pi,j+v̄k0
∑
i̸=j

pk,i

= π̄0 +
N∑
j=1
j ̸=k

Hj v̄j0 +Hkv̄k1,

(25)

v̄01(
N∑
j=1

Rj) +
N∑
j=1
j ̸=k

v̄j1 ·
N−1∑
i̸=j

pj,i =
N∑
j=1
j ̸=k

Hj v̄j1. (26)

Moreover, the left part represents transitions from other 584

states to state 0 when q ̸= 0, that are transitions N + 1 to 585

2N as shown. The right part represents transitions from other 586

states to state k, i.e. 1 to N and from 2N + 1 to N2 + N 587

as shown in Table II. Therefore, based on Table II, we can 588

obtain: 589

v̄q0 ·Hq = π̄q+Rq · v̄00+
N−1∑
j ̸=q

pq,j v̄q0, for ∀q = {1, 2, ..., N}

(27)

v̄q1 ·Hq = Rq · v̄01 + v̄q1

N−1∑
j ̸=q

pq,j , for q ̸= k (28)

v̄k1 ·Hk = π̄k +Rk · v̄01 + v̄k1

N−1∑
j ̸=k

pk,j , for q = k (29)

Based on the formula derived above, we will next derive 590

v00 and vq0. According to Eq. (27), we can obtain v̄q0 when 591

q ̸= 0: 592

v̄q0 =
π̄q +Rq · v̄00

Hq −
N−1∑
j ̸=q

pq,j

. (30)

According to Eq. (19), to determine the AoI in the network, we 593

still need to obtain v00. From Eq. (25), obtaining v00 requires 594

determining vk1. Based on Eq. (28) and Eq. (29), we can 595

obtain: 596

v̄q1 =
Rq · v̄01

Hq −
N−1∑
j ̸=q

pq,j

, (31)

597

v̄k1 =
π̄k +Rk · v̄01

Hk −
N−1∑
j ̸=k

pk,j

. (32)
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By combining Eq. (31) with Eq. (26), we obtain:598

v̄01

N∑
j=1

Rj = v̄01·
N∑
q=1
q ̸=k

Rq. (33)

Therefore, v̄01 = 0. Combining Eq. (33) with Eq. (32), we599

can obtain:600

v̄k1 =
π̄k

Hk −
N−1∑
j ̸=k

pk,j

. (34)

Finally, by combining Eq. (34) and Eq. (30) with Eq. (25), we601

can obtain:602

v̄00 =

Hk −
N−1∑
j ̸=k

pk,j

Hk ·Rk
. (35)

At this point, we have derived v̄q0. Substituting it into Eq.603

(19), we derive the AoI for link k:604

∆̄k =
N∑
q=0

v̄q0,∀k ∈ {1, 2, . . . , N}

= v̄00 +

N∑
q=1

v̄q0

= v̄00

[
N∑
q=1

π̄q +Rq · v̄00
Hq −

∑N−1
j ̸=q pq,j

]

=
Hk −

∑N−1
j ̸=k pk,j

Hk ·Rk

[
1 +

N∑
q=1

Rq

Hq −
∑N−1

j ̸=q pq,j

]

+

N∑
q=1

π̄q

Hq −
∑N−1

j ̸=q pq,j

=
Hk −

∑N−1
j ̸=k pk,j

Hk ·Rk
· C(R) +

N∑
q=1

π̄q

Hq −
∑N−1

j ̸=q pq,j
.

(36)
Next, by summing the AoI for all links in the network and605

taking the average, we get the average AoI as:606

∆̄ =

N∑
k=1

∆̄k

N
. (37)

According to Eq. (36), the AoI in the network is determined607

by the transition rates of successful and failed vehicle trans-608

missions, as well as the preemption process, i.e. Hi, Ri, pi,j .609

Therefore, the next step is to further derive Hi, Ri, and pi,j .610

1) Average Service Rate: Based on [51], the average service611

rate is given by:612

Hi =
1

Ts
, for ∀i ∈ {1, 2, ....N}, (38)

where Ts denotes the average successful transmission time.613

According to [57], it can be expressed as:614

T i
s = T i

ini + n · T i
r , (39)

where T i
ini represents the total transmission time, and tr615

denotes the time required for retransmission. Due to successful616

tx

pt
rx

ptfat
wt

... ...

pktt

UL Frame

RSU

Vehicle
Data

PUCCH

PUSCH

Time

Fig. 4: Lantency Model

transmission, we consider the information is transmitted only 617

once, so the retransmission time is zero. T i
ini is given by: 618

T i
ini = tisch + tipkt, (40)

where tisch represents the time required for resource schedul- 619

ing, while tipkt denotes the actual transmission time. According 620

to Fig. 4, tisch can be expressed as: 621

tisch = tip + tifa + tiw, (41)

where tip represents the time required for the sender to process 622

the data, which, according to [15], depends on the vehicle’s 623

computational processing capability. Within the Uplink (UL), 624

the Physical UL Control Channel (PUCCH) transmission 625

always occurs in a slot’s last symbol, with the remaining 626

symbols allocated for the Physical Uplink Shared Channel 627

(PUSCH) to transmit. Therefore, tifa is constrained by the 628

time slot, which based on digital numerology, ranges from 629

1 ms to 0.0625 ms. tw refers to the time required for resource 630

scheduling, i.e. the size of the selection window. tipkt is the 631

time actually used for data transmission can be expressed as: 632

tipkt =
Bit

Ci
, (42)

where Bit denotes the packet size. 633

2) Average Failure Rate: Similarly, the average transition 634

rate when link i fails to transmit is given by: 635

Ri =
1

T i
f

, for ∀i ∈ {1, 2, ....N}, (43)

where Tf denotes the average transmission failure time: 636

T i
f = T i

ini + n · T i
r , (44)

where T i
ini is the same as for a successful transmission. Since 637

the SPS scheduling mechanism uses the HARQ retransmission 638

mechanism, and due to the inability to predict whether or when 639

the RSU may need a retransmission, dynamic scheduling is 640

employed. If the packet transmit fail, a retransmission occurs, 641

and the RSU transmit a negative acknowledgment (NACK). 642

Because of the additional transmission, a delay tNACK is 643

introduced. Therefore, T i
r can be expressed as: 644

T i
r = tiNACK + tisch + tipkt, (45)

tiNACK = tip + tifa + tipkt. (46)

3) Average preemption Rate: Next, we consider the average 645

transition rate during the preemption process. 646

According to [15], the preemption process occurs when the 647
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preempting side generates a data packet. Once the preempting648

side identifies its higher traffic priority, the preempted side649

releases the resources for the preempting side to choose.650

Therefore, the average transition time for the preemption651

process can be expressed as:652

Tp
i,j

= T i
sch + tjp, (47)

where T i
sch denote the time required for resource scheduling of653

link i. Therefore, the average transition rate of the preemption654

process can be expressed as:655

Pi,j =
1

Tpi,j

. (48)

VI. OPTIMIZATION PROBLEM AND SOLUTION656

This section, we presents the formulation of a joint opti-657

mization problem for fair access and AoI based on section658

IV and V. To solve this problem, we propose an enhanced659

MOEA/D algorithm integrated with LLMs [58]. The objective660

is to determine the optimal selection window size for each661

vehicle, thereby achieving equitable channel access across662

the vehicular network while jointly minimizing the network663

average AoI.664

A. Optimization Objective665

The optimization framework simultaneously addresses two666

critical objectives:667

(1) Fair access among vehicles.668

(2) Minimization of the network’s AoI.669

The decision variables are the selection window sizes of670

individual vehicles. A fairness index Ki
index is defined such671

that when Ki
index approximates the network’s average fairness672

index Kindex, equal channel access is considered achieved.673

The mathematical formulation of this optimization problem is674

expressed as:675

Objectives 1 to N : To reduce the difference between each676

vehicle’s fair index and the averaged index.677

FKi(w) =
∣∣Kindex(w)−Ki

index(w)
∣∣ , i ∈ [1, . . . , N ], (49)

w = {w1, w2, ..., wN}.678

Objective N+1: To minimize the averaged AoI in the679

network.680

681

Fage = min∆. (50)

Thus, the joint multi-objective optimization problem is682

given by:683

min
w

F (w) = [FK1(w), FK2(w), . . . , FKN
(w), Fage(w)]T

s.t

w = {w1, w2, ..., wN},
wLB ≤ wi ≤ wUB , i ∈ [1, . . . , N ],

(51)
where wLB and wUB represent the lower and upper limit of684

the selection window sizes, according to the 3GPP standard685

[59].686

To solve Eq. (51), we can get a Pareto optimal solution set, 687

and in order to have an exact window size for each vehicle, 688

we need to filter out an optimal solution. We formulate the 689

filtering rules as follows: under the condition that all FKi
(w) 690

are within the bounds, the group of solutions with the smallest 691

AoI is selected. Therefore, we can define the optimization goal 692

as: 693

min
w

Fage(w)

s.t FKi(w) ≤ Kbound, i ∈ [1, 2, . . . , N ],

w ∈ P.
(52)

where P is the Pareto optimal solution set which is solved 694

by Eq. (51).To adaptively determine Kbound, we first sort all 695

fairness deviations in ascending order, and then select the 696

minimal deviation among the largest 10% of them. Thus, 697

Kbound can be described as: 698

Kbound = min
{
F

(j)
K

∣∣∣ j = ⌈0.9P⌉ , . . . ,P} , (53)

where F
(j)
K represents the j-th smallest value in the ascend- 699

ingly ordered sequence of all fairness deviations FKi . 700

Then, after solving the optimization objective, we can adjust 701

the window size of the vehicle adaptively according to the 702

speed of the vehicle, so as to minimize the AoI of the network 703

under the condition of ensuring that all vehicles are close to 704

fair access. 705

B. Optimization Solution 706

In this section, we employ a MOEA/D algorithm based 707

on a LLM to solve the optimization problem defined in 708

Eq. (51) [58]. The algorithm inputs consist of the number 709

of objectives, maximum iteration count, reference direction 710

partitioning number, vehicle speed, and neighborhood size. 711

The detailed workflow is presented in Algorithm 1. 712

First, weight vectors W = {w1, . . . ,wH} are generated 713

by the Das-Dennis uniform sampling scheme to decompose 714

the multi-objective problem into H subproblems, each cor- 715

responding to an optimization direction. Cosine similarity 716

between weight vectors is computed to select K nearest 717

neighbors as: 718

cos(wi,wj) =
wi ·wj

∥wi∥∥wj∥
. (54)

Population initialization is performed by assigning ran- 719

domly generated initial solutions to each weight vector. The 720

ideal point is initialized to record current optimal values 721

of each objective function, guiding subsequent optimization 722

directions (This completes Steps 1-9 of the algorithm.). 723

In each iteration cycle: For each subproblem, parent solu- 724

tions are selected with probability pnei based on neighborhood 725

relationships; otherwise, random selection is performed. Next, 726

we will perform LLM-guided crossover operations. Here, 727

the LLM serves as a black-box operator used to generate a 728

new set of offspring solutions based on the parent solutions 729

and their objective values. To reduce the input complexity 730

of the LLM and mitigate the impact of numerical range 731

on inference stability, we first normalize the inputs to the 732
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Algorithm 1: LLM-Based MOEA/D Algorithm
Input: objectives N + 1, generations Gmax, Partition

Number np, speed v, neighbor size K
Output: w∗

1 Initialization Phase:
2 for i← 1 to H do
3 wi ←

(
k1

np
, k2

np
, . . . , kH

np

)
4 where k1 + k2 + · · ·+ kH = np

5 W← {w1, . . . ,wH}
6 foreach wi ∈W do
7 Ni ← arg TopK

j∈[H]

cos(wi,wj)

8 P ← {w1, . . . ,wH}
9 z∗ ←

(
minFK1(P), . . . ,minFKN+1

(P)
)

10 Main Optimization Loop:
11 for g = 1 to Gmax do
12 foreach subproblem i ∈ [H] do

13 Pparents ←

{
Select from Ni with pnei

Random selection with 1− pnei

14 LLM-guided Crossover:
15 offspring o← LLM-Mate(Pparents)
16 z∗ ← min(z∗,F (o))
17 foreach j ∈ Ni do
18 if g(o|wj , z

∗) < g(wj |wj , z
∗) then

19 wj ← o

20 initialize ∆ = +∞
21 foreach p ∈ P do
22 if for each p ∈ [1, ..., N ], FKi

≤ Kbound then
23 if Fage ≤ ∆ then
24 ∆ = Fage, w∗ = wp

25 return w∗

26 Procedure LLM Crossover(Pparents)

27 w̃ ← w−wLB
wUB−wLB

, ∀w ∈ Pparents

28 T ← Prompt Construction: (w̃, f(w))
29 repeat
30 onorm ← LLM with(T )
31 if Validate(onorm) then
32 break
33 until 3 times
34 o← onorm · (wU − wL) + wL

35 return o

LLM. The inputs here are the parent solution set obtained733

in the previous step and their corresponding objective values,734

i.e., w and their corresponding f(w). Subsequently, prompt735

engineering is carried out. The prompt needs to be divided736

into several parts: 1. A detailed description of the task; 2.737

The input data to be processed; 3. The expected output data738

format. For example, for the optimization task in this paper,739

we can describe it as follows: You need to help me optimize740

a multi-objective optimization problem. I will provide you741

with multiple optimization variables and their corresponding 742

objective values. Based on these variables and their objective 743

values, you need to generate new offspring solutions, while 744

ensuring that the objective values corresponding to the off- 745

spring solutions are all less than or equal to those of the 746

parent solutions. Next, I will provide you with the input data: 747

[w1, w2, ...wH ], [f(w1), f(w2), ...f(wH)]. Note that the output 748

should include only the offspring solutions. Each offspring 749

solution should start with <start> and end with <end>. 750

No additional explanations are needed. With this, the prompt 751

engineering is completed. At this point, the LLM, as a black- 752

box operator, can generate a new round of offspring solutions. 753

Here is an example of prompt engineering:

Example Prompt

You will assist me in minimizing a four objective task.
The number of optimization variable is vector. The
dimension of each variable is three. I have a set of
variables along with their function values. The vector
start with <start> and end with <end>.
vector: <start>0.137,0.572,0.671<end>
value: <start>0.025,0.034,0.041,64<end>
...
vector: <start>0.147,0.255,0.615<end>
value: <start>0.017,0.022,0.047,85<end>
Provide a new vector that different from all the vectors
listed above and function values smaller than the
smallest value among them. Avoid writing any code or
providing explanations. Each output new vector need
to begin with <start> and end with <end>.

754

Denormalized solutions update the ideal point and optimize 755

neighboring subproblems, the j th Subproblem can be formu- 756

lated as: 757

min
w

g(wj |wj,i, z) = max
1≤i≤N+1

{wj,i · |fi(wj)− zi|} , (55)

where z denotes the ideal point, wj,i is the ith weight in wj. 758

Neighborhood solutions are replaced if offspring solutions 759

exhibit superior performance on corresponding subproblems. 760

The Pareto solution set P = {w1, . . . ,wH} is obtained 761

upon reaching maximum iterations. Optimal solution w∗ is 762

selected through: 763

(1) Filtering solutions with all objective values below prede- 764

fined thresholds; 765

(2) Selecting the solution with minimal Fage from threshold- 766

satisfying candidates. 767

Now, we obtain the optimal selection window size w∗. 768

C. Computational Complexity Analysis 769

In this section, we will analyze the computational complex- 770

ity of our approach. Our computational complexity analysis 771

refers to the standard MOEA/D. The complexity analysis can 772

be divided into two parts: the initialization phase and the 773

iterative phase. Since the initialization phase is executed only 774

once, its complexity is much smaller than that of the iterative 775

phase. 776
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First, analyzing the initialization phase: generating H777

weight vectors, the complexity can be expressed as O(H).778

Next, constructing neighborhoods: For each weight vector,779

compute cosine similarity with all others and retrieve top N ,780

the cosine similarity complexity is O(H), and the top K781

sorting is with O(H logK). Therefore, the total complexity782

at this point can be expressed as: O(H(H + H logK)) =783

O(H2 +H2 logK).784

Next, generating the initial solution set is with O(H),785

computing the minimum value of each objective function over786

H solutions is with O(H · (N + 1)). Therefore, the total787

complexity of the initialization phase can be expressed as:788

O(H2 logK +H(N + 1)).789

Then entering the iterative phase: first the outer loop790

with Gmax generations, followed by the inner loop with791

H subproblems. For each subproblem, randomly selecting792

neighbors or global individuals is with O(K), normalizing793

input for Pparents (assumed size M ), constructing prompts794

is withO(M). Calling the LLM for inference: assumed to795

be O(CLLM ). At most 3 attempts, so the total complexity796

at this step is: O(M + CLLM ). Next, updating the reference797

point: O(N+1), iterating over K neighbors: O(K), computing798

g(o|wj , z
∗) each time is with O(1). Therefore, the per-799

subproblem complexity per generation is given by: O(K) +800

O(M+CLLM )+O(N+1)+O(K) = O(M+CLLM+K+N).801

Per-generation complexity (H subproblems): H · O(M +802

CLLM + K + N). Complexity over Gmax generations:803

GmaxH ·O(M +CLLM +K+N). Finally, archive updating804

(lines 20–24): iterating over H individuals: O(H).805

So far, the initialization Phase complexity can be described806

as: O(H2 logK +H(N + 1)). The main Optimization Loop807

complexity can be described as: O(GmaxH(M+CLLM+K+808

N). However, in practice, since the number of iterations Gmax809

is large, the computational complexity of the initialization810

phase can be ignored. Therefore, the overall algorithm com-811

plexity can be expressed as: O(GmaxH(M+CLLM+K+N).812

VII. NUMERICAL SIMULATION RESULTS AND ANALYSIS813

This section we validate the effectiveness of the proposed814

framework through extensive numerical experiments. The815

LLM adopted in the simulations is the DeepSeek V3 model.816

Our baseline comparison algorithms include classical multi-817

objective algorithms such as NSGA-II, MEOA/D, NSGA-III,818

and SPEA2, as well as a deep reinforcement learning-based819

multi-objective algorithm (PPO-MO). Multi-objective opti-820

mization algorithms, including MOEA/D ,NSGA-II, NSGA-821

III, and SPEA2 were implemented using the pymoo framework822

under Python 3.9. All experimental results were obtained from823

more than 30 trials in order to eliminate occasional errors,824

and Kbound was determined based on statistical results after825

extensive experiments.826

A three-lane highway model was constructed, where vehicle827

speeds range between 20 m/s and 30 m/s. Speed differences828

across lanes are maintained at 4 m/s to simulate realistic traffic829

dynamics. The default selection window size and its bounds830

align with the 5G NR specifications.Table III presents the831

average running time to converge of each algorithm. Although832

TABLE III: Comparison of convergence speed for Different
Algorithms

Algorithm Running Time to Converge (s)
LLM-MOEA/D 51.41
NSGA-III 56.22
NSGA-II 44.35
MOEAD 95.45
SPEA2 121.32
PPO-MO 3492.79

TABLE IV: Simulation parameters

Parameters Value Parameters Value
N 3 α 3
B 20MHZ σ2 9dB
v′0 20m/s v0 30m/s
µ 0 RRI 100ms

NSC 10 Nr 100
R 200m NCA 10
Bit 500bit tfa 0.468ms
pnei 0.8 np 7
K 20 H 120

wL 20ms wU 150ms

LLM has slightly longer inference time, its total runtime to 833

reach convergence is only slightly behind NSGA-II, due to 834

the fewer iterations required compared to other algorithms. 835

Additional parameter configurations are summarized in Table 836

IV. 837

Fig. 5 illustrates the correlation between vehicle speed 838

and selection window size, indicating a general trend of 839

decreasing window size as average speed increases among 840

different vehicles. This occurs because higher vehicle speeds 841

reduce the communication duration within the RSU coverage, 842

thereby decreasing the achievable data volume. To enhance 843

data throughput and ensure fairness, the selection window size 844

is dynamically reduced to minimize communication latency. 845

Notably, faster vehicles adopt smaller windows to balance 846

fairness across the network. We also found that sometimes 847
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when the average speed increased, the window of some848

vehicles increased, because the increase in the average speed849

was caused by other vehicles, whose speed remained the same850

or decreased slightly. This shows that our scheme adaptively851

adjusts the selection window size according to the vehicle852

speed.853

Fig. 6 compares the top-Nobjective values (representing854

the deviation between individual vehicle fairness indices and855

the network average) for vehicles using standard and adap-856

tive window strategies. As speed increases, standard-window857

vehicles exhibit significantly faster growth in objective values858

than adaptive-window vehicles. This divergence arises because859

fixed-window strategies fail to address the widening fairness860

gap between high- and low-speed vehicles. In contrast, the861

adaptive strategy mitigates this issue, limiting objective value862

growth through dynamic window adjustments.863

Fig. 7 analyzes the fairness index versus average speed.864

While higher network speeds degrade fairness across all865

vehicles, standard-window vehicles suffer severe fairness de-866

terioration, whereas adaptive-window vehicles maintain near-867
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stable fairness indices. The adaptive strategy compensates for 868

speed fluctuations by optimizing window sizes, whereas fixed 869

windows amplify speed-induced fairness variations. A more 870

stable equity index means that vehicles with different speeds 871

are accessing the channel and communicating with the RSU 872

in a more equitable way. 873

Fig. 8 evaluates the AoI under different strategies. Speed 874

variations minimally impact AoI, as AoI primarily depends on 875

window size optimization. Vehicles optimized via MOEA/D 876

with LLM achieve lower AoI than those using fixed windows, 877

proving the capability of the designed algorithm in minimizing 878

the AoI. 879

Fig. 9 to 11 present the comparison between our proposed 880

algorithm and other baseline algorithms. Fig. 9 illustrates the 881

Hypervolume (HV) comparison among different algorithms 882

which is a commonly used metric in multi-objective optimiza- 883

tion that evaluates the diversity, superiority, and convergence 884

of the solution set [60]. A higher HV value indicates better 885

diversity and performance of the solution set. As shown in Fig. 886

9, the HV of the LLM-MOEA/D algorithm is the highest and 887
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achieves convergence with the fewest iterations. This indicates888

that LLM-MOEA/D can quickly find the optimal solution in889

fewer iterations, and the quality of the solution outperforms890

those of the other algorithms. This is attributed to the LLM-891

guided crossover operator, which consistently generates better892

offspring solutions.893

Fig. 10 shows the top-N objective values of different894

algorithms as the average speed increases. From the figure,895

it can be observed that as the speed increases, the objective896

values of all algorithms rise, indicating that higher speeds897

lead to greater fairness deviations. However, although the898

objective values of our algorithm also increase, the growth is899

the smallest among them. This demonstrates that our algorithm900

can effectively achieve fair access under increasing speed by901

adjusting the selection window size.902

Fig. 11 presents the AoI performance of different algorithms903

as the average speed increases. As shown in the figure, the904

AoI of all algorithms increases slightly with speed. This is905

because higher speeds make it more difficult to ensure fair906

access, so in order to balance the joint optimization of fairness907

and AoI, the requirement on information freshness is relaxed.908

Compared with other algorithms, our algorithm achieves a909

lower AoI, indicating that the LLM-guided crossover operator910

is able to discover solution sets that Pareto-dominate those of911

other algorithms, thus delivering better performance in terms912

of AoI.913

Fig. 12 presents the HV convergence plot for various914

crossover operators within the MOEA/D algorithm framework.915

As shown in the figure, the crossover operator guided by LLM916

achieves convergence with the fewest iterations while also917

obtaining the highest HV value. This indicates that the LLM-918

guided crossover operator can provide the optimal solution919

in fewer iterations while maintaining solution diversity. Other920

crossover operators show significant fluctuations in HV values,921

and their HV values are consistently lower than those of the922

LLM-guided operator, demonstrating that LLM can deliver923

diverse and high-quality solutions in fewer iterations.924

Fig. 13 displays the optimization objectives of the top N925
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solutions for each crossover operator within the MOEA/D 926

framework. As shown in the figure, as the average speed 927

increases, the performance of the algorithms with all crossover 928

operators starts to decline, and the optimization objectives 929

gradually increase. This suggests that as speed increases, it be- 930

comes more difficult for multi-objective algorithms to balance 931

fair access and AoI. Moreover, higher speeds lead to greater 932

fairness disparities. However, the LLM-guided crossover oper- 933

ator shows the lowest optimization objective value. Although 934

fairness slightly decreases with increasing speed, the LLM- 935

guided operator still outperforms other crossover operators, 936

demonstrating its ability to provide the optimal solution for 937

fair access. 938

Fig. 14 illustrates the AoI performance of various crossover 939

operators within the MOEA/D framework. As the average 940

speed increases, the AoI of all algorithms tends to increase 941

slightly, due to the trade-off required for fair access. How- 942

ever, compared to other operators, the LLM-guided crossover 943

operator exhibits a smaller increase in AoI and its AoI value 944

is also lower than that of the other operators. This indicates 945

that LLM, when guiding the crossover operation, can provide 946

more diverse and better-performing solutions while selecting 947

those that most effectively balance fair access and AoI. 948

Fig. 15 shows the variation of fairness index with respect to 949

the number of vehicles under our scheme. As observed in Fig. 950

15, when the number of vehicles in the RSU increases, the 951

fairness index of the vehicles in our scheme remains almost 952

unchanged, whereas the fairness index of vehicles following 953

the standard protocol decreases as the number of vehicles 954

increases. This is because, as the number of vehicles increases, 955

the probability of resource conflicts also increases, leading to 956

larger differences in the amount of data transmitted by differ- 957

ent vehicles, which results in a decline in fairness. However, 958

our scheme can adaptively adjust the selection window size 959

to ensure that the amount of data transmitted by each vehicle 960

remains almost the same, thus maintaining a stable fairness 961

index. 962

Fig. 16 shows the variation of AoI with respect to the 963
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number of vehicles under our scheme. As shown in Fig. 16,964

since we measure the average AoI per vehicle, and our scheme965

minimizes AoI by adjusting the selection window size, the966

increase in the number of vehicles has minimal impact on967

our scheme. On the other hand, for vehicles following the968

standard 5G NR protocol, as the number of vehicles increases,969

the probability of resource conflicts also increases, leading to970

a significant increase in transmission time. From the figure,971

we can observe that the AoI of the vehicles increases, which972

reflects that our scheme effectively optimizes AoI even under973

high-pressure scenarios.974

VIII. CONCLUSION975

In this paper, we propose an enhanced SPS scheme under976

5G NR V2X Mode 2. This scheme adjusts the selection win-977

dow size of vehicles to eliminate unfair access issues caused978

by different vehicle speeds within the RSU coverage area979

while minimizing the average AoI, modeled using the SHS980

framework. We formulate a multi-objective optimization prob-981

lem that jointly considers fair access and AoI minimization.982

To solve this problem, we employ a LLM-Based MOEA/D983

algorithm and determine the optimal selection window through984

simulations. Based on the simulation, the following major985

conclusions can be drawn:986
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• The fairness of access is strongly affected by vehicles’ 987

velocity. Higher vehicle speeds make it more challenging 988

to achieve fairness. Therefore, a slight sacrifice in the 989

AoI metric is necessary to maintain fairness. Achieving 990

both optimal fairness and the lowest AoI simultaneously 991

remains difficult. 992

• AoI is a function of the selection window size, and each 993

adjustment of the selection window primarily aims to 994

optimize AoI. Consequently, changes in vehicle speed 995

alone have a relatively minor impact on AoI. 996

• The LLM-Based algorithm exhibits superior convergence 997

performance compared to other algorithms. This is be- 998

cause large models do not generate poor solutions, en- 999

suring that each offspring solution is Pareto-dominant. 1000

For future work, to further optimize fairness and AoI 1001

simultaneously, additional parameters in 5G NR V2X Mode 1002

2, such as RRI and RC size, can be explored to refine the 1003

optimization strategy. 1004
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