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1 Introduction

Since the discovery of a Higgs boson by the ATLAS and CMS Collaborations at the CERN
LHC in 2012 [1-3], an extensive campaign of experimental investigations has been launched
to determine its properties. The latest results from these studies have been published by the
two collaborations in 2022 [4, 5]. The Higgs boson properties that have been measured with
the current data sets are compatible with the standard model (SM) prediction.

Despite the progress in studying the characteristics of the Higgs boson, there are still
some open questions related to its nature, e.g., the hierarchy problem — the question of why
the Higgs mass is so much smaller than the Planck scale. Also, the SM is not a complete
theory as it has no explanations for neutrino masses and the origin of dark matter. Such
shortcomings could be addressed by theoretical models beyond the SM (BSM).

One of these BSM theories is supersymmetry (SUSY) [6-13], which predicts the existence
of partners for each SM particle having the same properties as their SM counterparts but
differing in mass and spin. By extending the SM in this way, SUSY offers a solution to
the hierarchy problem, provides an explanation for the nature of dark matter, and modifies



the running of the coupling constants of the fundamental forces so that they approximately
converge to a common value at a very large energy scale, as predicted by grand unified theories.

In its simplest form, denoted as the minimal supersymmetric SM (MSSM) [14], SUSY
requires the introduction of one additional Higgs SU(2)-doublet, leading to the prediction of
five Higgs boson mass eigenstates, instead of only one as in the SM. The MSSM Lagrangian
contains a supersymmetric mass term for these Higgs doublets associated with a mass
parameter, ugugy, that has to be at the scale of the SUSY breaking, mgygy, to explain
the observed phenomenology. However, there is no strong theoretical reason in the MSSM
for pgygy and mgygy to be of the same order. This “necessary accident” of the MSSM
is called the “u-problem”, and can be resolved in further extensions of the model. More
specifically, the next-to-MSSM (NMSSM) [15] introduces an additional Higgs singlet field, S,
which provides an explanation for the origin and the scale of the ugygy term.

Because of the existence of the extra singlet field, the NMSSM Higgs sector ends up having
seven gauge eigenstates. The gauge eigenstates combine to form seven mass eigenstates: three
CP-even (Hy, Hy, Hj), two CP-odd (Ay, A,), and two charged (Hi), where the subscripts
indicate the mass ordering. In the so-called alignment limit, the heavier neutral eigenstates
only weakly couple to the 125 GeV Higgs boson (H) observed at the LHC, and, thus, their
decay to HH is suppressed. In this scenario, decays of the form X — YH, where X is one of the
heaviest neutral eigenstates (Hz or Ay) and Y is a lighter one, are preferred, and motivate the
search presented in this paper. A complete picture of the NMSSM theory is given in ref. [15].

Another category of BSM models with the potential to explain some of the SM shortcom-
ings is the two-real-scalar-singlet model (TRSM). More concretely, in the specific extension
of TRSM detailed in ref. [16], the asymmetric signature with one SM Higgs boson and one
new scalar resonance (Y) can occur. The main difference with the NMSSM is that, in the
TRSM, the additional scalars (X and Y') have SM Higgs boson branching fractions (8), which
implies a small B(Y — vy), while in the NMSSM there is more freedom for this branching
fraction to take a wide range of possible values. Further details and benchmarks for the
models discussed above are given in ref. [17].

We note that this search probes the X — Y H final state in a model-independent way.
The X and Y particles are taken to be scalar, and we further assume that the narrow-width
approximation is applicable. The connection to the aforementioned models can be recovered by
appropriately matching the X and Y particles to scalars in the mass hierarchy of each model.

Different combinations of X — YH final states have been studied by the CMS Col-
laboration: Y — bb and H — bb [18]; Y — bb and H — 1t [19]; Y — tt and H — vy,
and Y — yy and H — 1 [20]; as well as Y — bb and H — yy [21]. The search described
in this paper probes the so far unexplored Y — yy and H — bb final state (figure 1) for
masses of the X scalar between 240 and 1000 GeV and masses of the Y scalar satisfying the
condition myx > my + my, with my > 70 GeV. The mass range is chosen based on several
considerations, including detector sensitivity at low masses and the need for a different set of
reconstruction techniques at higher mass, adjusted for boosted topologies. Additionally, the
condition myx > my + my ensures that the decay X — Y H is kinematically allowed. This
final state is well motivated by the high B(H — bb) and the clean signature of the photon pair.
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Figure 1. Feynman diagram for the production of the BSM resonance X and its subsequent decay to
two scalars, one SM Higgs boson and one BSM scalar Y, with H — bb and Y — yy.

Apart from theoretical considerations, this search is also prompted by excesses observed
in similar analyses searching for new resonances in signatures with Higgs bosons. The search
for X — Y (bb)H(yy) (same final state as this analysis but with inverted decays modes for Y
and H) has observed a local (global) excess of 3.8 (2.8) standard deviations for myx = 650 GeV
and my = 90 GeV [21]. Under the assumption that the Y can also decay to a pair of photons
and that the branching fractions of Y — yy and Y — bb are the same as those of the Higgs
boson, as predicted in the TRSM, this excess can be probed by this search. Moreover, a
search for an additional, SM-like, low-mass Higgs boson in the H — ¥y channel found an
excess of local (global) significance of 2.9 (1.3) standard deviations at 95.4 GeV [22].

The paper is structured as follows: section 2 gives a description of the CMS detector
and the event reconstruction. The data sets and simulated samples used in the analysis are
detailed in section 3. Section 4 describes general analysis strategy, the event selection and
categorization, and section 5 outlines the modeling of the signal and the background. The
systematic uncertainties are discussed in section 6. Finally, results are presented in section 7,
and the analysis is summarized in section 8. The results of the analysis are provided in
tabulated form in the HEPData record [23].

2 The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the
barrel and endcap detectors. Muons are reconstructed in gas-ionization detectors embedded
in the steel flux-return yoke outside the solenoid. More detailed descriptions of the CMS
detector, together with a definition of the coordinate system used and the relevant kinematic
variables, can be found in refs. [24, 25].

Events of interest are selected using a two-tiered trigger system. The first level (L1),
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a fixed latency of about 4 us [26].
The second level, known as the high-level trigger (HLT), consists of a farm of processors



running a version of the full event reconstruction software optimized for fast processing, and
reduces the event rate to around 1kHz before data storage [27, 28].

The primary vertex (PV) is taken to be the vertex corresponding to the hardest scattering
in the event, evaluated using tracking information alone, as described in section 9.4.1 of
ref. [29]. As a consequence of the presence of jets from the H — bb decay, this approach
provides a similar or better m., resolution to that obtained in H — yYy analyses using a
customized vertex finding method. A particle-flow (PF) algorithm [30] aims to reconstruct and
identify each individual particle in the event, with an optimized combination of information
from the various elements of the CMS detector in the following paragraphs.

The energy of photons is obtained from the ECAL measurement. In the barrel section of
the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting
photons in the tens of GeV energy range. The energy resolution of the remaining barrel photons
is about 1.3% up to absolute pseudorapidity |n| = 1, changing to about 2.5% at |n| = 1.4. In
the endcaps, the energy resolution is about 2.5% for unconverted or late-converting photons,
and between 3 and 4% for the other ones [31]. The diphoton mass resolution, as measured in
H — vy decays, is typically in the 1-2% range, depending on the measurement of the photon
energies in the ECAL and the topology of the photons in the event [32].

The energy of electrons is determined from a combination of the electron momentum
at the PV, as determined by the tracker, the energy of the corresponding ECAL cluster,
and the energy sum of all bremsstrahlung photons spatially compatible with originating
from the electron track. The momentum resolution for electrons with transverse momentum
pr ~ 45GeV from Z — eTe” decays ranges from 2 to 5%. It is generally better in the barrel
region than in the endcaps, and also depends on the bremsstrahlung energy emitted by the
electron as it traverses the material in front of the ECAL [33, 34].

The energy of muons is obtained from the curvature of the corresponding track. Muons
are measured in the pseudorapidity range |n| < 2.4, with detection planes made using three
technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching
muons to tracks measured in the silicon tracker results in a relative transverse momentum
resolution, for muons with 20 < pp < 100 GeV, of 1.3-2.0% in the barrel and better than 6%
in the endcaps. Measurements made with cosmic ray muons show that, in the central region
of the detector, the pt resolution is better than 10% for muons with pt up to 1 TeV [35].

The energy of charged hadrons is determined from a combination of their momentum
measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for
the response function of the calorimeters to hadronic showers. The energy of neutral hadrons
is obtained from the corresponding corrected ECAL and HCAL energies.

Jets are reconstructed offline using the anti-kr algorithm [36, 37] with a distance parameter
of 0.4. Jet momentum is determined as the vectorial sum of all PF object momenta in the jet,
and is found from simulation to be, on average, within 5 to 10% of the true momentum over
the entire pr spectrum and detector acceptance. Pileup, referring to additional proton-proton
(pp) interactions within the same or nearby bunch crossings (pileup), can contribute additional
tracks and calorimetric energy depositions, thereby increasing the apparent jet momentum.
To mitigate this effect, tracks identified to be originating from pileup vertices are discarded
and an offset correction is applied to correct for remaining contributions [38]. Jet energy



corrections are derived from simulation studies so that the average measured energy of jets
becomes identical to that of particle-level jets. In situ measurements of the momentum
balance in dijet, photon + jet, Z + jet, and multijet events are used to determine any residual
differences between the jet energy scale in data and in simulation, and appropriate corrections
are made [39]. Additional selection criteria are applied to each jet to remove jets potentially
dominated by instrumental effects or reconstruction failures [38]. The identification of b
quark jets uses the DEEPJET algorithm [40, 41]. In this analysis, no explicit requirement
is placed on the DEEPJET score; instead the continuous distribution of the DEEPJET score
is used as an input to the multivariate discriminator used for the final event selection, as
discussed in sections 4.1 and 4.3.

The PF isolation of an object is quantified by the pp sum of other PF objects within
a cone AR = V(An)? + (A¢)? around its direction, where ¢ is the azimuthal angle. The
cut-off value chosen for AR depends on the type of object.

3 Data and simulated samples

This search uses pp collision data recorded in 2016-2018 by the CMS experiment at the LHC.
The data are collected by L1 and HLT algorithms that require at least two photons satisfying
pr > 30 GeV for the leading- and pp > 18 GeV for the subleading-p1 photon, respectively,
and a diphoton invariant mass my, > 55GeV. Additional criteria are applied by the trigger
algorithms on the photons based on the shower profiles in the calorimeter, the ratio of the
energy deposition in the HCAL to that in the ECAL, and the isolation of the photons from
PF objects in the same event. Details will be further discussed in section 4.1. The integrated
luminosity associated with the data set is 132 fh L.

In all simulated samples discussed below, parton showering, fragmentation with the
standard pp-ordered parton shower scheme, as well as the underlying event description,
are modeled using PYTHIA 8.240 with the CP5 tune [42, 43]. The NNPDF 3.1 set [44] is
used to describe the parton distribution functions, and the GEANT4 package [45] is used
to model the detector response.

Only the gluon-gluon fusion process is considered for the production of X in the simulated
signal samples. These samples are generated with MADGRAPH5_aMC@NLO v2.6.5 at leading
order (LO) precision [46, 47]. The new scalar bosons in the signal are simulated as C P-even,
and the product of the signal production cross section and its branching fraction to the
Y — vy and H — bb final state is normalized to 1fb. As already mentioned, we assume that
the narrow-width approximation holds, i.e., the particle decay width is small compared to its
mass. As a consequence, possible interference with any type of background process is ignored.

The SM production of single Higgs bosons decaying to a pair of photons constitutes a
resonant background for this search. To model this background we utilize simulated samples
for the production of Higgs bosons via gluon-gluon and vector boson fusion, as well as
associated production of Higgs bosons with vector bosons or with a top quark-antiquark
pair (ttH). In all of these samples the Higgs boson is forced to decay into two photons.
These Monte Carlo samples are generated with MADGRAPH5__aMC@NLO v2.6.5 at NLO in
quantum chromodynamics (QCD), with cross sections and decay branching fraction taken
from ref. [48]. Contributions from other single H production modes are negligible and,



therefore, omitted. Although less important, we also consider the contribution of gluon-
gluon fusion Higgs pair production. It is generated with the POWHEG 2 [49-52] program
at next-to-leading order (NLO) precision in perturbative QCD [53-57], including the full
top quark mass dependence [58].

The rest of the resonant (Drell-Yan and dibosons) and all the nonresonant background
processes are estimated from data. However, simulated samples are used for the optimization
of the analysis strategy. The Drell-Yan (DY) simulated sample is generated using POWHEG 2
at NLO in perturbative QCD, and the diboson VV, where V. = W, Z, samples are generated
using either MADGRAPH5__aMC@NLO v2.6.5 or POWHEG 2 at NLO in QCD. The irreducible
nonresonant prompt diphoton process (yy + jets) is modeled with SHERPA v.2.2.1 [59] at
LO including the box processes, with up to three additional jets in the final state. The
reducible nonresonant background from y + jets events is modeled with PYTHIA 8 [60] at
LO. Less important nonresonant backgrounds include V + v, tt + v, tt + vy, ttV, and tZq
and are simulated at NLO in QCD using MADGRAPH5_aMC@NLO v2.6.5, except for tt,
which uses MADGRAPHS5 aMC@NLO v2.6.1.

Pileup interactions are taken into account by adding simulated minimum bias interactions
to all the generated event samples. The pileup distribution is weighted to match that observed
in the data. The mean value of pileup multiplicity ranges from 23 to 32, depending on the
year of data taking.

4 Analysis strategy and event categorization

The analysis probes a wide range of signal hypotheses (mass points), and its strategy is
built around the necessity to be sensitive for all of them. The baseline selection, denoted as
“preselection” below, applies to all of the mass points. It relies on a series of selection criteria
on individual photons and photon pairs, and on loose requirements on individual jets and
dijet pairs. The preselected events are then given as input to a parametric neural network
(PNN), described in detail in section 4.3. The PNN is able to produce a separate output
score optimized for each mass point it has been trained on, as well as for intermediate mass
points. This dedicated output score is then used to split events in different signal regions
(SRs), in order to create categories with high sensitivity for each mass point. In these SRs,
the signal manifests as a mass peak in the my, spectrum, at different values depending on
the value of m+ for each mass point. The signal and background models are fitted together
and compared to the data. In the absence of significant deviations from the SM prediction,
we set an upper limit on the product of the cross section and branching fraction at a wide
range of mass points, exploiting the interpolating capabilities of the PNN.

4.1 Event preselection

The analysis preselection largely follows the trigger selection. The first step consists of selecting
events with at least two photon candidates each with pp > 18 GeV and with calorimeter
superclusters within the ECAL barrel or endcap acceptance. To reduce backgrounds, we
impose additional requirements on these photon candidates. The ratio of the energy deposited
in the HCAL to that in the ECAL must satisfy H/E < 0.08, effectively suppressing the
contribution from QCD processes. To reduce backgrounds from DY and V'V processes, with



W R9 Oinin Iph [GQV] Itk [GGV]

[0.50,0.85] <0.015 <4.0+0.17p <6.0
>0.85 — — —

Barrel

[0.80,0.90] <0.035 <4.0+ 0.13p <6.0

Endcap
>0.90 — — —

Table 1. Additional photon requirements, as functions of |n| and Ry. The variable p is the median of
the transverse energy density per unit area in the event.

electrons mimicking the photon signature, we apply a requirement that there cannot be a
charged track reconstructed in the silicon pixel tracker that points to the photon cluster. A
photon candidate for which the associated supercluster is close to a track that is compatible
with an electron is also rejected. This further reduces the contamination from misidentified
electron backgrounds.

Isolation requirements on photons are applied separately to the charged hadron (1),
photon (/,,), and the track (Iy,) components of the photon PF isolation, calculated within
a cone of AR = 0.3 centered around the photon. Two other variables, Ry and 0;,,,, are
commonly used when photons are present in the final state. The variable Rg is defined as the
energy sum of the 3 x 3 crystals centered around the most energetic crystal, divided by the

energy of the photon. The variable o;,,, is the energy-weighted spread in the 7 direction of

(3
the 5 x 5 crystals centered around thg 7171108‘5 energetic crystal. A series of requirements are
applied on the above variables to identify the photon candidates in this analysis, matching
the online selection. Every photon is required to fulfill I < 20 GeV, or Iy /pr < 0.3, or
Ry > 0.8. Additional requirements are applied with different values based on the photon
candidate |n| and Rg variables, as summarized in table 1. These requirements provide
approximately 60% rejection for backgrounds with misidentified photons, with approximately
2% loss of signal efficiency.

Finally, a multivariate algorithm (“photon MVA ID”) is used to further select photon
candidates. The photon MVA ID is a general-purpose identification variable designed to
distinguish photons from jets. It is computed based on multiple photon characteristics that
describe the properties of the photon electromagnetic shower and isolation [33]. We impose
a photon MVA ID requirement (working point, WP) that has a 90% efficiency for isolated
photons relevant for this analysis.

All of the photon candidates in a given event are paired up in all possible combinations.
In each diphoton pair, the photon with the highest (lowest) pr is referred to as the “leading”
(“subleading”) photon. The leading photon is required to have pp > 30 GeV, and the invariant
mass of the pair must be larger than 55 GeV. After these selections, the diphoton pair with
the highest sum pr is selected as the diphoton pair to be used in the analysis. In the signal,
the selected diphoton pair is treated as the Y resonance candidate.

The final state for the signal of interest does not include isolated leptons. To suppress
backgrounds with leptons in the final state, we reject events with at least one electron of



pr > 10 GeV or muon of pp > 15 GeV satisfying the criteria described below. Electrons and
muons must be within detector acceptance, fulfill tight impact parameter criteria, and be
separated from any photon candidate by a distance of AR > 0.2. Electrons must also satisfy
a requirement on an MVA ID variable, which includes isolation information [33]. The WP of
the electron MVA ID is chosen to correspond to the 90% efficiency point. Tight identification
criteria are also imposed on muons [61]. Additionally, muon candidates must be reconstructed
as “global muons” [61], meaning that tracks associated with them must be found both in
the tracker and the muon detectors. Finally, the PF relative isolation for muons is required
to be < 0.3, which corresponds to ~ 98% efficiency.

Events are required to have at least two jets with || < 2.4 and pp > 25GeV, each
separated from any photon candidate by a distance AR > 0.4. No selection on the DEEPJET
b tagging score is applied at the preselection stage, to allow the PNN to make a b-jet
selection that relies on additional event variables and that can be optimized for each signal
mass hypothesis. Instead, jets are sorted according to this score, and the two leading
ones based on this sorting are preselected. A tighter jet selection, including additional
kinematic requirements, for example on the dijet mass, is performed by the PNN classifier, as
discussed in section 4.3. A correction is applied to the entirety of the b tagging discriminant
distribution in the simulation to match the one in data. To reject events with severe jet-
related mismeasurements due to the presence of cosmic ray muons, beam-gas interactions,
or beam halo or calorimetric noise, events in both data and simulation are required to pass
dedicated noise-rejecting filters [62].

4.2 Estimation of backgrounds with misidentified photons from data

Typically, simulated samples have difficulties reproducing the behavior and the distributions
of events with misidentified photons in data. Moreover, given the large phase space covered
by this analysis, the statistical power of samples simulating QCD and Y + jets processes is
not always sufficient to provide a representative background sample for the training of the
MVA methods at the core of the signal versus background classification used in this analysis.

For these reasons, we implemented an estimation of processes with one or two misidentified
photons from control samples in data [63]. This can be accomplished using data events in a
misidentified-photon-enriched region, independent of the preselection described in section 4.1,
as a proxy for the QCD and 7y + jets events passing the preselection. The proxy data
set is constructed by selecting events that pass all the preselection requirements, but fail
the minimum photon MVA ID score criterion. The event properties used as input to the
final MVA-based selection are found to be uncorrelated with the minimum photon MVA
ID variable. This proxy data set can then be used, with the small modification described
below, in the training of the MVA discriminator described in section 4.3 (the list of training
variables is summarized in table 2).

In the proxy data set we replace the photon MVA ID score for the photon failing the
photon MVA ID requirement with a new value. This new value is randomly chosen in the
range from the lower photon MVA ID score threshold to the photon MVA ID score of the
other photon in the event, according to the probability distribution function (PDF) that
describes the photon MVA ID scores of misidentified photons, as determined from MC 7y + jets



events. Finally, to properly inject the data-driven description of the misidentified photons
into the preselection, the sample normalization has to be adjusted. This is done by applying
an individual weight to each of the events in the proxy dataset to match the photon MVA
ID distribution for events in the preselection.

This technique improves the overall agreement between simulated samples and data
preselection yields, as well as the description of the individual kinematic distributions, resulting
in a better background description for training of the MVA described in the following section.
The final estimation and modeling of the backgrounds from processes with misidentified
photons is performed directly on the data from sideband regions, as discussed in section 5.2,
and hence it is independent of the method described in this section.

4.3 Parametric neural network selection

The signal for this search involves two new resonances with unknown masses that are probed
in the mass range of 240-1000 GeV. This creates the necessity to derive optimal discriminators
for the vastly different mass points being considered. Given that it is not realistic to train a
single NN for each mass point because of the large number of such points, a mass-point-aware
NN that can generalize the selection optimally to all of the mass points is preferred. This
can be achieved with a PNN [64], as described below.

An NN is a function, f(Z), that outputs a score reflecting the similarity of an event,
described by the set of input features &, to signal-like characteristics. A set of such func-
tions {fl, 12 .}, where f'is an NN trained on (m%,m@), may be assembled to create

f(@mx,my):
X
f(Fmxomy) = 2@ it (mk,md), (4.1)

When training a PNN, the target function is f(&; mx,my), i.e., a single function, which,
given a value for the myx-m~ pair, will provide an optimal discriminator for the chosen mass
points. When using this function, picking a value of mx and m~ is equivalent to picking a
particular NN to use. This is achieved in practice by including mx and m~y as additional
input features. The training of the PNN uses 50% of the available events in each sample and
is performed simultaneously on the 224 simulated signal samples corresponding to different
my and my hypotheses. All simulated background samples mentioned in section 3 as well
as the backgrounds with misidentified photons, estimated as described in section 4.2, are
included in the training. Each signal sample consists of (’)(105) events, and the number of
total background events used in the training is O(107). Different my and my values are
randomly assigned to the background events to match the signal points included in training.
This procedure ensures that mx and m~ features have no discriminating power between
signal and background. Instead, the performance of the PNN per mass point is optimized
through the correlation between mass values and the training variables.

In order not to bias the training towards a specific signal mass hypothesis, the signal
samples are normalized such that the sum of weights is the same for all mass points. All
of the signal mass hypotheses are collectively normalized so that their sum of weights is



Category Variables

Photon-related  pr ('Y'Y)/myya bt (Yl)/myw pbr (72)/myya
AR(yy), An(yy)

Jet-related pr(ir), pr(is), m(ij), AR(jj), m(j1),
b tagging score(j;), b tagging score(j,),

AR(Yl?.jl)? AR(thZ)v AR(YZ?jl)? AR(Y27.72)

Photon—jet AR(Yl?]])a AR(YQ?]])? AR(YY?]I)’ AR(YY7]2)7 AR(YYa]j))
combinations AT,(YYL?]% An(’Y’Yajl)a An(’YlajZ)a
Ap(YY,77), Ad(YY, 1), Ad(YY, Ja)

Table 2. The training variables included as input to the PNN used for the final selection of this
search. The symbols v,, Y, denote the leading and subleading photons, while j; and j, denote the
leading and subleading jets.

the same as the one for the background samples, to enhance the discrimination based on
shape differences between signal and background.

The PNN used in this analysis is a feedforward network with 3 layers of 50 nodes.
The intermediate layers are activated by exponential linear unit (ELU) functions with a
dropout probability of 0.05, while the last layer is activated by a sigmoid function. The
learning rate is set to 0.01.

The set of training variables given as input to the PNN consists of the most discriminating
variables, identified from studies of separate boosted decision trees (BDTs) trained with a
much larger set of variables on a representative subset of signal mass points. The correlation
of some of the kinematic variables, such as photon pp, with the diphoton mass is minimized
by dividing them by my,. Any variable that is still correlated with the diphoton mass is
removed from the set of training variables. This prevents the introduction of peaky features
to the otherwise smoothly falling my, distribution of the nonresonant backgrounds. These
features would invalidate the background modeling procedure described in section 5.2. The
final list of training variables is shown in table 2.

Before defining the SRs of the search, the PNN output score is transformed for each mass
point such that the score distribution of the background from the test data set is constant,
i.e., “flat”. The new score that results from this procedure is referred to as the “transformed
score” and is used for the event categorization below. Placing a threshold on the transformed
score is equivalent to placing a threshold on the background efficiency.

We note that simpler classification methods, such as BDTs, were used for a small set of
representative mass points to understand the performance gains from using a PNN. BDTs
based on a few of the most discriminating variables, effectively emulating a cutoff-based
analysis, showed a much worse performance for the majority of the mass points. The BDTs
using as input the full list of variables mentioned in table 2 improved the performance for all
mass points, making it comparable to the one provided by the PNN up to around 5%, but

,10,



132 ! (13 TeV) 132 fo~! (13 TeV)
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Figure 2. Distributions of the transformed PNN score for the signal hypotheses of myx = 280 GeV,
my = 90GeV (left) and myx = 600 GeV, my = 70 GeV (right) in their corresponding SRs. The bin
boundaries correspond to the SR boundaries of each mass point, and the evolution of significance
with transformed PNN score is shown: for bins with approximately the same background, the signal
yield decreases towards the left (less sensitive categories), while the signal yield increases only when
the background yield increases as well. The distributions are inclusive in the my, distribution. The
gray bands in the lower panels show the statistical uncertainty in the background estimation.

still slightly worse. In summary, the PNN brings a small performance gain to the analysis
with respect to a simpler BDT classification while also providing the unique feature of using a
single training to optimally probe multiple mass points, including those never used in training.

4.4 Event categorization

The PNN transformed score is used in the final event selection to define the SRs of the
search. The SR boundaries are chosen to optimize the expected upper limit on the X —
Y (yy)H(bb) cross section based on a simplified signal and background modeling. For
illustration, the transformed score distributions in the SRs of the signal hypotheses of
(mx,my) = (280,90) GeV and (mx,my) = (600, 70) GeV are shown in figure 2. The details
of the optimization procedure are given below. This method of optimization produced similar
results to that of a method based on optimization of the significance.

First, the signal yields are extracted from the simulation in a +1 standard deviation
window around the signal my, peak, and the expected background yields within the same
window are extracted from an exponential fit to data in a sideband region, i.e., the m.,
distribution excluding a region +£10 GeVmy /my around the signal peak, corresponding to
the m,y resolution. Next, a constraint is placed on the minimum number of events required
in the myy sidebands in an SR. Initially, a minimum number of N,,;, = 20 events is required,
ensuring enough statistical power to perform the m,, sideband fits. The SR boundaries
are defined as follows:

1. The first boundary is set at the value of the PNN transformed score which yields
N = N, events with scores higher than the boundary. We then compute for this
SR the simplified expected upper limit, defined above, on the X — Y (yy)H(bb) cross

section.
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2. Next, a new SR with the next NV highest scoring events is considered, and the simplified
expected limit is recomputed, based on the combination of the SRs.

3. If the addition of a new SR improves the simplified expected limit by at least 5%, then the
new SR is incorporated and Step 2 is repeated for the next SR. Otherwise, this SR is not
added and a new SR is formed with twice the number of highest scoring events (N — 2N),
and step 2 is repeated. The new value of N holds for all subsequent SRs as well.

This procedure continues until the number of events to be added in an SR is larger than
the number of preselected events available, i.e., not having been assigned to a previous SR yet.
A different number of SRs is created at different mass points: mass points with higher m-m~
differences tend to have only a few SRs, while mass points with smaller my-m~, differences
can have up to around 10 SRs. The last region defined in this procedure has only a small
contribution of potential signal and the highest background. As a result, it is considered as a
control region (CR) for the purposes of background estimation, as discussed in section 5.2.

5 Signal and background modeling

In this section we describe the signal and backgrounds PDFs in the extended maximum
likelihood fit of the m,, variable, used to extract the signal cross section, simultaneously
across all SRs of a given signal mass hypothesis. To allow for the different m+ hypotheses,
PDFs are defined in a range of 65GeV < m,, < 1000GeV. Depending on the value of
my, data sidebands for nonresonant background fits are constructed around a “blinding
region” defined as:

my

5.1 Signal modeling

The m,, PDF for signal is taken from simulated signal events after the PNN selection has
been applied, independently for each SR and for each year of data taking, since different
data-taking periods exhibit up to 10% difference in the m,, resolution. Selected MC signal
events consist predominantly of pairs of photons in the barrel part of the detector. As a
result, the resolution for the my, peak is driven by the photon resolution in the barrel, and
further splitting the events in detector regions does not have an impact on the final result.
For modeling the signal we use double Crystal-Ball (DCB) functions [65, 66]. Figure 3 shows
simulated data fitted with DCB functions for two different mass hypotheses.

5.2 Background modeling

Background events are subdivided according to their different m,, PDFs: the continuum
background arising from nonresonant diphoton events is described by a smoothly falling
distribution in m,,, while other background components peak in m,, (resonant backgrounds).

The H — 7y contribution, from both single H and double H production, is modeled
using the same procedure used for signal events. Hence, their parametric models are very
similar to the ones shown in figure 3 for the signal. The normalization of the different PDFs
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Figure 3. Parametric models of the signal process for my = 600 GeV, my = 70 GeV (left), and for
mx = 1000 GeV, my = 800 GeV (right) in their most sensitive SR. The histograms are normalized to
unity. The acronym “dof” stands for the number of degrees of freedom of the parametric model.

is constrained to the best available cross section and branching fraction recommendations
from the LHC Higgs Working Group [48].

A second resonant background contribution consists of DY events when the two electrons
from a Z boson decay are misidentified as photons, resulting in a peak in the my, spectrum
close to the Z boson mass. This background is especially important for my hypotheses
around the Z mass, since this contribution can be mistakenly ascribed to a signal, if not
properly accounted for.

We use a matrix (“ABCD”) method, similar to the one described in ref. [67], to model this
background. The procedure exploits the electron veto and the PNN output score variables,
which are uncorrelated, and is based on three independent CRs in data, as described below:

e Region A is defined by inverting both the electron veto and the minimum PNN selection;

¢ Regions B are defined by inverting the electron veto. Multiple regions are defined as
each one corresponds to one of the multiple signal regions of the analysis;

e Region C is defined by inverting the minimum PNN selection. This is the CR of the
analysis, as defined in section 4.4;

e Regions D are the signal regions of the analysis.

By inverting the electron veto, regions A and B are enriched in DY events, with Z — eTe ™.
Region B constrains the shape of the DY distribution in m,,. The DY yields are extracted
from regions A and C, thereby constraining the electron veto efficiency.

In all the regions, the target Z — e

e process is isolated by a fitting procedure, with
two components: one to model the peaking DY part, described in this paragraph, and one to
model the continuum contribution, described in the next paragraph. The DY m,, PDEFs are
assumed to be the same in regions with the same PNN selection (in A and C, and in B and

D). This assumption is justified by the fact that kinematic variables used by the PNN are
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not correlated with m,,. For regions A and C, the PDF is modeled by a Gaussian function,
except in cases where a poor goodness-of-fit is found and a DCB function is used instead. The
rates of DY in regions A, B and C are included as free parameters in the maximum likelihood
fit. The rate of the DY background in region D is given by the rate in region B, multiplied by
the electron veto efficiency (rate in region C divided by rate in region A). The ABCD method
is applied independently to each SR. Since the number of SRs depends on the my and my
hypothesis being considered, this implies the definition of a varying number of sub-regions B;
and D; for each tested hypothesis, while in all cases, regions A and C are uniquely defined.

The procedure for selecting the candidate functions for modeling the m,, distribution of
the continuum background is described below. The candidate PDFs, extracted separately
in each SR of the analysis, are chosen from a set of different analytic functions (Bernstein
polynomials, Laurent series, exponentials, and power laws). For each function type, we
determine the minimum and maximum order of parameters by imposing a threshold on
the goodness of fit to data and an F-test [68], respectively. In the F-test, each function is
fit to the my, distribution by minimizing the double negative logarithm of the likelihood
(—2In L). To avoid biasing the background model with the eventual signal, fits to the data are
performed in my, sidebands. The size of the my, SR depends on my following the relation
reported in eq. (5.1). In the fits, the normalization and the function parameters are included
as freely floating parameters. We add a penalty term to the —21In L which is proportional
to the number of function parameters, with the goal to give preference to simple functions
over more complex ones. Finally, we use the discrete profiling procedure [69] to take into
account the systematic uncertainty associated with the choice of the functional form. In
this procedure, a discrete nuisance parameter is associated with the choice of the function.
This nuisance parameter is then profiled in a manner similar to the profiling of the other,
continuous, nuisance parameters during the extended maximum likelihood fit of all regions
relevant to a specific mass hypothesis. The potential bias of the nonresonant background
estimation arising from a contribution from other signal mass hypotheses outside of the
blinding region has been quantified to be of order 1% and is covered by this uncertainty.

As an illustration of the different components of our background estimation (continuum
background from nonresonant processes and the Z and H resonances), in figure 4 we show the
background-only fit and signal+background fit for myx = 280 GeV, my = 90 GeV hypotheses
in the two most sensitive SRs for this mass point.

6 Systematic uncertainties

The sensitivity of the search is driven by the integrated luminosity of the data set and the
small number of events in the SRs. We do, however, account for a comprehensive set of
systematic uncertainties, as described in this section.

The systematic uncertainties affecting the simulated samples used in the analysis (signal
and Higgs production) are incorporated into the final maximum likelihood fit as nuisance
parameters (NPs), and are described in detail below. The majority of these systematic
uncertainties affect the overall expected event yields for both the signal and the single
Higgs production. These uncertainties are modeled with log-normal probability distribution
functions. For these processes there are also uncertainties in the measurements of the photon
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Figure 4. Background-only fit (solid red line) and signal+background fit (dashed blue line) for the
mass point hypothesis of myx = 280 GeV, my = 90 GeV, shown for the most sensitive SR (left) and
the second most sensitive SR (right). The points in the lower panel show the difference between the
data and the background-only fit, divided by the average uncertainty in the data. The red line in the
lower panel shows the background-only fit, which is by definition zero, and it is added as a visual aid.
From left to right, the first and second most sensitive SRs are shown. The choice of the background
functional form is determined by the maximum likelihood fit.

energies. These uncertainties impact the shape of the corresponding my, distributions, and
they are incorporated as NPs on the mean and the width of the my, PDFs.

As discussed in section 5.2, the systematic uncertainty associated with the nonresonant
background modeling is taken into account using the discrete profiling method. Finally, we
use uniform priors for the transfer factors that determine the normalization of the resonant
DY background.

6.1 Theoretical uncertainties

A number of theoretical uncertainties affect the normalization of the single and pair SM
Higgs boson production processes:

e Theoretical uncertainties in the HH cross section:

— The parton distribution functions, and the value of the strong force coupling
constant («), are estimated within the Born-improved approximation based on
the PDF4ALHC15nnlome set [70]. They are found to be £3.0%.

— Uncertainties arising from the choice of the renormalization scheme and the scale
of the top quark mass, and their combination with renormalization, ug and

factorization, up, scale variations are based on ref. [71]. They are found to be

+6%
—23%"

¢ Theoretical uncertainties in the single H boson production cross section:
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— QCD pgr and pp scale variation values are taken following the recommendations
of ref. [48], and typically result in an uncertainty of the order of 5-10%.

— The «a, variations are handled following the recommendations of ref. [70] and result
in an up to 2% uncertainty in the cross section.

— The uncertainty associated with the parton distribution functions is computed
following the PDFALHC prescription [70, 72|, and is typically of the order of 1%.

Finally, we consider the uncertainties in the branching fraction B(H — yy) for both

the single and double SM H processes. These are taken from ref. [48] and are estimated
to be around 2%.

6.2 Experimental uncertainties

The experimental uncertainties that affect the normalization of the simulated signal and

Higgs production samples are:

Integrated luminosity: the integrated luminosities for the 2016, 2017, and 2018 data-
taking years have 1.2-2.5% individual uncertainties [73-75], while the overall uncertainty
for the 2016-2018 period is 1.6%. Since the signal and resonant H background fits
are performed separately for the three data-taking periods, we use the year-dependent
uncertainties and their correlations.

Pileup: the uncertainties derived from the reweighting procedure to match the simulated
pileup distribution to the one in the data, and originating from the variation of the
minimum bias cross section [76], lead to an impact on the final results of less than 1%.

Trigger: trigger efficiencies are measured with Z — ™

e data using the “tag-and-probe”
method [77]. Their uncertainties are propagated throughout the analysis, including
those associated with a small loss of efficiency due to a gradual shift in the ECAL trigger
timing during the 2016 and 2017 data-taking periods. The size of the trigger-related

uncertainties combined is less than 1%.

Photon and diphoton identification: these uncertainties affect the final result at the 2%
level.

Jet energy correction (JEC) and jet energy resolution (JER): eleven separate sources of
JEC uncertainties, as well as the uncertainty arising from the JERs, are propagated
separately to the properties of jets in simulation [39]. These result in 12 systematic
variations per year, which are propagated into the final result. The maximum impact of
these uncertainties ranges between 0.7% and 3.0%, depending on the signal mass point.

b tagging: the DEEPJET output score is reshaped to correct for the differences between
data and simulation [78]. The corresponding uncertainty sources involved in this
procedure are included in the analysis, taking into account the appropriate correlation
scheme. Nine separate sources of uncertainty are considered. We find the impact of
these uncertainties to be less than 1% for each uncertainty source.
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The experimental uncertainties, affecting the shape of the my, distribution, are evaluated
with the “tag-and-probe” method with Z — eTe™ data [77]. These uncertainties are:

e Photon energy scale and resolution: corrections are applied to simulation to match
its photon energy scale and resolution to that of data. The size of these uncertainties
combined is less than 1%.

e Tracker and ECAL material uncertainties: electrons showers tend to develop earlier
than those of photons in the material of the tracker. Light collection efficiency differs for
electrons and photons along the length of the ECAL crystals, and this leads to different
ECAL responses. The uncertainty in the responses arising from these two effects is
considered in the analysis, leading to an impact on the final results of approximately 1%.

As already mentioned at the beginning of the section, the sensitivity is dominated by
the statistical uncertainties. The statistical uncertainty ranges from 30-50%, depending
on the mass point, and the inclusion of all the systematic uncertainties increases the total
uncertainty by up to 2% in absolute terms.

7 Results

The data are found to be compatible with the background-only expectation for most
mass hypotheses probed in this search. We therefore extract upper limits on the pro-
cess X — Y (yy)H(bb). The most significant deviation from the background-only hypothesis
is discussed below.

The results quoted in this section have been determined using the CMS statistical analysis
tool COMBINE [79], which is based on the ROOFIT [80] and ROOSTATS [81] frameworks.
Figure 5 shows the summary of expected and observed upper limits on the product, o5, of
the signal cross section and the corresponding B to the final state particles for the different
myx and m~ values considered in the analysis. Figure 6 illustrates the same expected and
observed upper limits for the lowest and the highest sets of mx mass points. While extracting
results, both “nominal” mass points, i.e., the mass points on whose signal simulation the
PNN has been trained, and “interpolated” mass points, i.e., mass points for which there is no
simulation available, have been used. All of the results have been derived using the signal
and background modeling methods described in detail in section 5. Systematic uncertainties
are applied according to their description in section 6.

To achieve a sensitivity on the interpolated mass points comparable to that of the nominal
mass points, we have leveraged the interpolating capabilities of the PNN. A dedicated PNN
output is produced for each mass point that is used for the event categorization and the
extraction of the results for the different signal hypotheses. Selected according to the dedicated
PNN outputs, the data and the background simulation are used to extract the background
models for the interpolated mass points, as described in section 5.2, while, in the absence
of signal simulation for those mass points, the signal model parameters are interpolated
between nominal mass points using linear splines. The interpolated mass points have been
inserted at intervals corresponding to approximately twice the resolution at the given my,
range, i.e., ranging from 1 GeV up to 8 GeV.
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Figure 5. Observed (expected) upper limits on B for the X — Y (yy)H(bb) signal with the different
mass hypotheses are shown with solid (dashed) lines, for mass points with myx ranging from 600 to
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and +95% uncertainty bands, respectively. For visualization purposes, the upper limits for mass
points with different mx have been multiplied with a constant factor quoted on the right of each band.
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Figure 6. Observed (expected) upper limits on B for the X — Y (yy)H(bb) signal with the different
my hypotheses are shown with solid (dashed) lines, shown for the lowest myx = 240 GeV (left) and
for the highest myx = 1000 GeV (right). The inner (green) band and the outer (yellow) band indicate
the regions containing 68% and 95%, respectively, of the distribution of limits expected under the
background-only hypothesis.

For a fixed my value, the limits tend to be weaker for low my values (my < 200 GeV)
owing to the larger backgrounds in that phase space region, and the presence of SM resonances.
At higher m~ values, the limits increase for mass points with lower myx — my difference.
This is attributed to the lower efficiency in distinguishing signal from background events in
this phase space region. In contrast, for mass points with higher mx — my difference, the
observed limits are generally lower, reflecting the improved signal-to-background ratio. This
behavior is a direct consequence of the different kinematic regions explored.

This is the first time that the X — Y (yy)H(bb) process is probed, i.e., with the resonance
Y, which is of unknown mass, decaying to a photon pair. Given that the diphoton mass
peak is usually exploited to tag the signal in similar final states, a moving signal peak poses
additional experimental challenges. Despite these, the results of this analysis in terms of
upper limits are comparable with those reported in the search for X — Y (bb)H(yy) [21].

In a recent X — Y (bb)H(yy) search, there was a local (global) excess of significance of
3.8 (2.6) standard deviations at myx = 650 GeV and my = 90 GeV. However, in the current
analysis, the observed limit at myx = 650 GeV and my = 90 GeV is in agreement with the
SM, falling within 1 standard deviation of the median expected value. Under the assumption
that the branching fractions of the Y to photons and b quarks are the same as the ones of the
Higgs boson, as in the TRSM, the observed upper limit on o8 is 0.13 fb, which is compatible
within two standard deviations with the best fit value of the excess of the X — Y (bb)H(yy)
analysis at the same mass point, which was measured to be 0.35 183{3, fb. Thus the results
of this analysis do not confirm the excess.

In general, the data are found to be compatible with the SM expectation. A local
significance of 3.33 standard deviations has been observed for the most significant deviation
from the background-only hypothesis, at a mass point where the X and Y particles have a
mass of 300 GeV and 77 GeV, respectively. Taking into account the large number (1699) of
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interpolated mass points probed in estimating the look-elsewhere effect [82], which refers to
the probability of observing a fluctuation of equal or greater significance anywhere in the
scanned (myx,my ) mass plane, the global significance decreases to 0.65 standard deviations.

8 Summary

A search has been presented for the production of a new scalar resonance, X, decaying to a
standard model Higgs boson and a new scalar resonance, Y, with the final state including
a bb pair from the Higgs boson decay and a pair of photons from the Y particle decay.
This search is the first targeting this final state combination. The analysis probes the
mass range 240-1000 GeV for the resonance X and 70-800 GeV for the particle Y, and uses
proton-proton collision data collected by the CMS experiment at /s = 13 TeV, corresponding
to an integrated luminosity of 132 bt

In general, the data are found to be compatible with the background-only expectation. As
a result, upper limits on the product of the production cross section of X and the branching
fraction to the bbyy final state are derived at 95% confidence level as functions of the masses
of the X and the Y particles. The observed (expected) upper limits are found to be between
0.05-2.69 (0.08-1.94) tb, depending on the assumed specific signal masses. A local (global)
significance of 3.33 (0.65) standard deviations is observed for the most significant deviation

from the background-only hypothesis, corresponding to myx = 300 GeV and mv = 77 GeV.
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