

Simulating Visual Impairments in XR: Toward Virtual Player Models for Inclusive Design

Yuliya Chystaya
Brunel University of London
Kingston Ln, Uxbridge
UB8 3PH UK
Yuliya.Chystaya@brunel.ac.uk

Fotios Spyridonis
Brunel University of London
Kingston Ln, Uxbridge
UB8 3PH UK
Fotios.Spyridonis@brunel.ac.uk

Gheorghita Ghinea
Brunel University of London
Kingston Ln, Uxbridge
UB8 3PH UK
George.Ghinea@brunel.ac.uk

This work presents a novel approach to assessing accessibility in Extended Reality (XR) through the development of Virtual Player Models (VPMs) for simulating visual impairments. Grounded in qualitative insights from visually impaired users and informed by clinical vision parameters, each VPM encodes visual perceptual traits and adaptive strategies using a structured, JSON-based approach. These models can be integrated into XR design workflows to simulate user experiences in real time, supporting early-stage identification of accessibility barriers. We demonstrate the concept through a prototype VPM schema and outline its potential for extending accessible design practices in XR development.

Visual impairment, Extended Reality, User Modelling, Accessibility

1. INTRODUCTION

XR technologies - encompassing Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) - offer immersive, spatial experiences that are increasingly adopted in education, healthcare, cultural heritage, and gaming (Dudley et al. 2023; Pladere et al. 2022). However, these technologies are predominantly built for sighted users, marginalising people with visual impairments, who encounter barriers ranging from disorientation to inaccessible interaction mechanisms (Creed et al. 2023). While established guidelines and standards (W3C WCAG-EM 2020; WebAIM 2024; A11Y Project 2024; W3C ATAG 2023; W3C UAAG 2016; W3C ARIA 2024a; ISO 2019) help assess XR accessibility typically post-development, there is limited support for proactively designing XR experiences inclusively 'by-design' (Killough et al. 2024). Currently there are no fully-developed accessibility guidelines for XR, and those that currently exist tend to focus on the end user, lacking any meaningful technical guidance for XR developers (Killough et al. 2024).

In other fields, simulation tools have helped designers empathise with and accommodate different user needs (Lavoie and Clarke 2017; Krösl et al. 2020; Raviselvam et al. 2021; Barbieri et al. 2024). More relevant to this work, visual impairment simulators have been shown to be an invaluable tool (Krösl et al.

2020; Barbieri et al. 2024), however, these are often static and do not allow for adaptations in response to user behaviour and interactions. For instance, many simulators do not take into account natural gaze and head movement, or variations such as tunnel vision, central vision deficiencies, and changes in sight based on the external environment (Kasowski et al. 2023; Thevin and Machulla 2022) even though they can heavily influence user experience. As such, XR currently lacks standardised, dynamic approaches to simulate how vision impairments alter user perception and interaction in immersive environments. In addition, there is a reported lack in participation/inclusion of representative users in the design of immersive experiences (Schmidt et al. 2024), as most XR prototypes are tested in small groups, often with participants who have no visual impairments. This results in lack of feedback from the visually impaired community.

Accordingly, this work proposes the use of Virtual Player Models (VPMs) for XR, which are parametric user representations that encode visual impairment characteristics and behavioural traits to simulate user experience in real time. It must be noted that our proposed VPMs are not fictional personas, but structured data models that can be used to drive visual and interactional simulation in game engines such as Unity. Our framework draws on empirical insights from 42 visually impaired participants on their experiences of living with their condition, on

barriers and challenges they encounter in both physical and digital settings, and on how they mitigate them (see Section 3.1). It is also informed by clinical characteristics of visual impairments, and established accessibility parameters.

2. BACKGROUND AND MOTIVATION

This section discusses the background and motivation for this work focusing on an overview of accessibility efforts in XR, simulation and user modelling.

2.1. Accessibility in XR

XR technologies remain largely inaccessible to users with visual impairments due to their fundamentally visual nature (Ahmetovic et al. 2021; Cañellas-Mayor and Aymerich-Franch 2023). Despite growing interest in inclusive XR, accessibility for users with visual impairments is still treated as an optional enhancement, not a crucial design component (Kristensson 2024). Specifically, current XR experiences rely heavily on sight, with limited integration of alternative modalities such as haptics or audio (Wieland et al. 2022), which presents significant barriers, especially in navigation and interaction. For instance, common locomotion techniques in VR remain challenging or unusable for users with visual impairments unless enhanced with rich audio or haptic cues (Ribeiro et al. 2024). Moreover, XR hardware, such as headsets and hand controllers, is often uncomfortable or even completely unusable for people who wear glasses or have a physical impairment (Opoku-Baah et al. 2022).

Despite these challenges, research into multimodal interaction shows a lot of potential, as integrating sound, haptics, and speech has shown to improve user experience (Dang et al. 2023). For example, audio-based navigation tools, haptic music visualisation, and colour-to-sound mapping allowed to achieve more inclusive interaction (Robern et al. 2021). Yet, these adaptations rarely offer full equivalence to visual content and often struggle in noisy or complex environments (Xie et al. 2024).

While recent efforts have advanced accessibility in XR - such as introducing alternative input methods, spatial audio cues, and inclusive design guidelines - these approaches often assume a 'one-size-fits-all' approach that fails to reflect the diversity of user experiences, particularly among visually impaired individuals. Designing for this diversity requires more than universal features; it demands a deeper understanding of how different impairments affect perception and interaction. Simulation and user modelling offer a promising path forward by enabling designers to anticipate accessibility barriers through the lens of specific user profiles - bridging the gap

between abstract guidelines and embodied user experience.

2.2. User modelling and simulation for visual impairments

User modelling, which is the abstract representation of user needs and characteristics, can be highly effective for improving general accessibility for users with impairments (Mohamad and Kouroupetroglou 2014), especially alongside simulations. The W3C's XR Accessibility User Requirements (W3C XAUR 2021) outline diverse user needs (e.g. immersive personalization, alternative inputs, magnification) to guide inclusive XR design, so it is not surprising that recent efforts in both academia and industry are advancing XR accessibility through user modelling and impairment simulation approaches. Specifically, developer toolkits have emerged to operationalise these guidelines – for example, Unity's XR Interaction Toolkit (XR Interaction Toolkit 2025) and the SeeingVR plugin (Zhao et al. 2019) provide pre-built components (like magnifiers, high-contrast filters, and edge highlights) to improve virtual experiences for low-vision users. Researchers have also proposed comprehensive frameworks that integrate such features at the system level, offering customizable text, alternative image descriptions, multimodal controls, and scene adjustments (brightness, re-colouring, etc.) to accommodate visually impaired users (Valakou et al. 2023).

In parallel, simulation tools now enable designers to experience XR through the eyes of people with visual impairments. Systems like XREye (Krösl et al. 2023) combine eye-tracking with real-time post-processing to mimic conditions such as refractive errors, cataracts, and macular degeneration within VR/AR environments. Such simulators help uncover accessibility barriers and foster empathy, which helps participants to show significantly greater understanding and awareness of visually impaired users' challenges.

However, to ensure the usefulness of these approaches, it is important to keep in mind the wide spectrum of characteristics, such as visual acuity, central and peripheral vision loss, field of view, etc. (Krösl et al. 2020), as well as the variety of coping strategies and approaches. Modelling and simulation approaches of visual impairments for XR need to therefore move past static and overly simplistic representations towards making them more dynamic, where effects are able to adapt based on user interaction and on environmental changes, as well as ensuring that they are developed based on visually impaired people's characteristics and realistic expectations, making them compatible

with principles of user-centred design (Krösl et al. 2020; Barbieri et al. 2023).

To address this need, we propose the development of Virtual Player Models - structured, data-driven representations of users with visual impairments that can be used to simulate perceptual and behavioural characteristics within XR environments. Unlike generic simulation tools or static personas, our VPM approach encodes measurable parameters such as visual acuity, field of view, and contrast sensitivity, alongside spatial parameters, and typical navigation strategies derived from empirical research. This enables designers to explore how specific user profiles experience virtual spaces, and to iteratively test accessibility during development. Our work presents an early-stage framework for defining and implementing VPMs in XR, grounded in qualitative insights.

3. VIRTUAL PLAYER MODELS FOR XR

This section presents our proposed VPM framework alongside its empirical foundation, structure, and an example use case to inform further work.

3.1. Empirical foundation

The development of our Virtual Player Models is grounded in relevant literature and qualitative research involving 42 visually impaired participants who were interviewed following a semi-structured approach between February and May 2025 to explore their perceptions, challenges, and adaptive strategies. The participants varied in age (24-86), gender identity (26 female, 16 male), and severity level of the impairment (9 - mild, 18 - moderate, 15 - severe). The inclusion criteria were broad: (1) being partially sighted, (2) being over 18 years old at the time of the interview, (3) being able to speak and understand English, and (4) being able to give consent. The sample included individuals who used screen readers, magnifiers, and other assistive technologies. While some participants reported having experience with XR, it was not a requirement for this study. Ten participants had limited experience, but shown interest in XR. Twelve had no experience with XR (in many cases due to accessibility barriers), but were interested in it and would like to be able to use it. The rest of the interviewees had no experience in XR. The recruitment was done through relevant organisations such as Macular Society and Visionary, social media, and via snowballing approach. The study was closed once the point of saturation was reached.

The participants were asked to describe their experiences and their insights were used to inform the design of the proposed framework. The

participants were encouraged to share their thoughts on accessibility features in technology they use or would like to have.

The interviews were carried out online or on the phone, depending on participants' preferences and accessibility needs. Each interview lasted between 40 min to 1.5 hrs. The participants were asked to sign a consent form, or to give their consent verbally if text format was inaccessible. The interviews were recorded and transcribed with all identifying information removed to ensure confidentiality. Ethical approval for this study was gained via the institutional Ethics Committee.

A reflexive thematic analysis (Braun and Clarke 2019, 2021) was chosen due to its data-driven nature: there were no pre-imposed pre-existing categories. A number of challenges and barriers were revealed, which are not reported here as they are not in the scope of this paper. Beyond these challenges, the analysis also uncovered a range of coping strategies, including use of magnification, alternative colour schemes, and custom contrast and brightness levels. The detailed analytical process followed cannot be discussed due to the limited nature of this paper. Using these findings, we designed our proposed VPM framework which consists of two main components. Specifically, the identified coping strategies were used to inform the design of the second component of our VPMs - Adaptive Strategies - which can include information on how visually impaired users might behave under certain conditions. Similarly, the first component of our VPMs - Visual Characteristics - was designed based on findings from relevant literature and can include certain visual parameters that should be simulated, including visual acuity, field of view, and contrast sensitivity, as well as characteristics related to the spatial distribution of visual perception. We then embedded these empirically derived findings into a VPM schema (see also next section), which helped to move beyond perceptual simulation alone and offer a more holistic model of visually impaired user experience in XR. This foundation ensures that our VPM approach is not just clinically plausible, but also behaviourally realistic - capturing how real users may navigate immersive spaces despite visual limitations. These insights provide a critical bridge between lived experience and simulation-based accessibility evaluation in XR design workflows.

3.2. Model structure

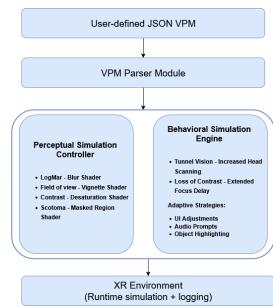
The VPM framework is built around a structured, JSON-based schema designed to flexibly represent key visual and behavioural characteristics of visually impaired users, as discussed in the previous section. This format was chosen for its readability,

interoperability, and ease of integration with XR development environments, such as Unity. The VPM includes fields for clinical visual parameters (e.g. logMAR, fieldOfView, contrast), spatial characteristics (e.g. scotomaData), and adaptive strategies (e.g. outlineThickness, textScalingFactor). This is shown in Fig. 1 below along with relevant pseudocode for simulation logic.

This structure enables two important functions. First, it supports modular simulation, as individual parameters can be mapped to specific visual effects (e.g., tunnel vision to a vignette shader). Second, it encodes user adaptive strategies, derived from our empirical study, allowing simulation of not just what a user perceives but how they can behave in response to their impairment.

```

  1  # Load JSON VPM profile
  2  vpm_profile = load_json("user_vpm.json")
  3
  4  # Shader application logic
  5  for vis_char in vpm_profile["spatial/visualCharacteristics"]:
  6      if vis_char["isInfluenced"] == 1:
  7          if vis_char["tunnelMode"] == 1:
  8              set_shader_param("tunnelMode", vis_char["tunnelMode"])
  9              set_shader_param("FieldOfView", vis_char["FieldOfView"])
 10
 11      if vis_char["isSimulated"] == 1:
 12          if vis_char["degrees"] == 0:
 13              set_shader_param("perspective", 0)
 14          else:
 15              set_shader_param("perspective", 1)
 16
 17          if vis_char["contrast"] == 1:
 18              if vis_char["simulatedValue"] == 0:
 19                  set_shader_param("contrast", 0)
 20              else:
 21                  set_shader_param("contrast", vis_char["contrastValue"])
 22
 23      if vis_char["visualCharacteristics"] == 1:
 24          if vis_char["shadows"] == 1:
 25              if vis_char["strength"] == 0:
 26                  set_shader_param("shadows", 0)
 27              else:
 28                  set_shader_param("shadows", 1)
 29
 30          if vis_char["tunnelMode"] == 1:
 31              if vis_char["tunnelModeValue"] == 0:
 32                  set_shader_param("tunnelMode", 0)
 33
 34          if vis_char["crosshairs"] == 1:
 35              if vis_char["crosshairSupport"] == 1:
 36                  if vis_char["crosshairStrength"] == 0:
 37                      set_shader_param("crosshairs", 0)
 38                  else:
 39                      set_shader_param("crosshairs", 1)
 40
 41          if vis_char["adaptiveStrategies"] == 1:
 42              if vis_char["proximityAlertDistance"] == 0:
 43                  set_shader_param("adaptiveStrength", 0)
 44
 45              if vis_char["proximityAlertDistance"] < threshold:
 46                  trigger_audio_feedback("proximityAlert")
 47
 48          if vpm_profile["visualCharacteristics"] == 1:
 49              if FieldOfView["degrees"] < 30:
 50                  simulate_head_scanning(pattern = "zigzag", frequency = "high")
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 829
 830
 831
 832
 833
 834
 835
 836
 837
 837
 838
 839
 839
 840
 841
 842
 843
 843
 844
 845
 845
 846
 847
 847
 848
 848
 849
 849
 850
 851
 851
 852
 852
 853
 853
 854
 854
 855
 855
 856
 856
 857
 857
 858
 858
 859
 859
 860
 860
 861
 861
 862
 862
 863
 863
 864
 864
 865
 865
 866
 866
 867
 867
 868
 868
 869
 869
 870
 870
 871
 871
 872
 872
 873
 873
 874
 874
 875
 875
 876
 876
 877
 877
 878
 878
 879
 879
 880
 880
 881
 881
 882
 882
 883
 883
 884
 884
 885
 885
 886
 886
 887
 887
 888
 888
 889
 889
 890
 890
 891
 891
 892
 892
 893
 893
 894
 894
 895
 895
 896
 896
 897
 897
 898
 898
 899
 899
 900
 900
 901
 901
 902
 902
 903
 903
 904
 904
 905
 905
 906
 906
 907
 907
 908
 908
 909
 909
 910
 910
 911
 911
 912
 912
 913
 913
 914
 914
 915
 915
 916
 916
 917
 917
 918
 918
 919
 919
 920
 920
 921
 921
 922
 922
 923
 923
 924
 924
 925
 925
 926
 926
 927
 927
 928
 928
 929
 929
 930
 930
 931
 931
 932
 932
 933
 933
 934
 934
 935
 935
 936
 936
 937
 937
 938
 938
 939
 939
 940
 940
 941
 941
 942
 942
 943
 943
 944
 944
 945
 945
 946
 946
 947
 947
 948
 948
 949
 949
 950
 950
 951
 951
 952
 952
 953
 953
 954
 954
 955
 955
 956
 956
 957
 957
 958
 958
 959
 959
 960
 960
 961
 961
 962
 962
 963
 963
 964
 964
 965
 965
 966
 966
 967
 967
 968
 968
 969
 969
 970
 970
 971
 971
 972
 972
 973
 973
 974
 974
 975
 975
 976
 976
 977
 977
 978
 978
 979
 979
 980
 980
 981
 981
 982
 982
 983
 983
 984
 984
 985
 985
 986
 986
 987
 987
 988
 988
 989
 989
 990
 990
 991
 991
 992
 992
 993
 993
 994
 994
 995
 995
 996
 996
 997
 997
 998
 998
 999
 999
 1000
 1000
 1001
 1001
 1002
 1002
 1003
 1003
 1004
 1004
 1005
 1005
 1006
 1006
 1007
 1007
 1008
 1008
 1009
 1009
 1010
 1010
 1011
 1011
 1012
 1012
 1013
 1013
 1014
 1014
 1015
 1015
 1016
 1016
 1017
 1017
 1018
 1018
 1019
 1019
 1020
 1020
 1021
 1021
 1022
 1022
 1023
 1023
 1024
 1024
 1025
 1025
 1026
 1026
 1027
 1027
 1028
 1028
 1029
 1029
 1030
 1030
 1031
 1031
 1032
 1032
 1033
 1033
 1034
 1034
 1035
 1035
 1036
 1036
 1037
 1037
 1038
 1038
 1039
 1039
 1040
 1040
 1041
 1041
 1042
 1042
 1043
 1043
 1044
 1044
 1045
 1045
 1046
 1046
 1047
 1047
 1048
 1048
 1049
 1049
 1050
 1050
 1051
 1051
 1052
 1052
 1053
 1053
 1054
 1054
 1055
 1055
 1056
 1056
 1057
 1057
 1058
 1058
 1059
 1059
 1060
 1060
 1061
 1061
 1062
 1062
 1063
 1063
 1064
 1064
 1065
 1065
 1066
 1066
 1067
 1067
 1068
 1068
 1069
 1069
 1070
 1070
 1071
 1071
 1072
 1072
 1073
 1073
 1074
 1074
 1075
 1075
 1076
 1076
 1077
 1077
 1078
 1078
 1079
 1079
 1080
 1080
 1081
 1081
 1082
 1082
 1083
 1083
 1084
 1084
 1085
 1085
 1086
 1086
 1087
 1087
 1088
 1088
 1089
 1089
 1090
 1090
 1091
 1091
 1092
 1092
 1093
 1093
 1094
 1094
 1095
 1095
 1096
 1096
 1097
 1097
 1098
 1098
 1099
 1099
 1100
 1100
 1101
 1101
 1102
 1102
 1103
 1103
 1104
 1104
 1105
 1105
 1106
 1106
 1107
 1107
 1108
 1108
 1109
 1109
 1110
 1110
 1111
 1111
 1112
 1112
 1113
 1113
 1114
 1114
 1115
 1115
 1116
 1116
 1117
 1117
 1118
 1118
 1119
 1119
 1120
 1120
 1121
 1121
 1122
 1122
 1123
 1123
 1124
 1124
 1125
 1125
 1126
 1126
 1127
 1127
 1128
 1128
 1129
 1129
 1130
 1130
 1131
 1131
 1132
 1132
 1133
 1133
 1134
 1134
 1135
 1135
 1136
 1136
 1137
 1137
 1138
 1138
 1139
 1139
 1140
 1140
 1141
 1141
 1142
 1142
 1143
 1143
 1144
 1144
 1145
 1145
 1146
 1146
 1147
 1147
 1148
 1148
 1149
 1149
 1150
 1150
 1151
 1151
 1152
 1152
 1153
 1153
 1154
 1154
 1155
 1155
 1156
 1156
 1157
 1157
 1158
 1158
 1159
 1159
 1160
 1160
 1161
 1161
 1162
 1162
 1163
 1163
 1164
 1164
 1165
 1165
 1166
 1166
 1167
 1167
 1168
 1168
 1169
 1169
 1170
 1170
 1171
 1171
 1172
 1172
 1173
 1173
 1174
 1174
 1175
 1175
 1176
 1176
 1177
 1177
 1178
 1178
 1179
 1179
 1180
 1180
 1181
 1181
 1182
 1182
 1183
 1183
 1184
 1184
 1185
 1185
 1186
 1186
 1187
 1187
 1188
 1188
 1189
 1189
 1190
 1190
 1191
 1191
 1192
 1192
 1193
 1193
 1194
 1194
 1195
 1195
 1196
 1196
 1197
 1197
 1198
 1198
 1199
 1199
 1200
 1200
 1201
 1201
 1202
 1202
 1203
 1203
 1204
 1204
 1205
 1205
 1206
 1206
 1207
 1207
 1208
 1208
 1209
 1209
 1210
 1210
 1211
 1211
 1212
 1212
 1213
 1213
 1214
 1214
 1215
 1215
 1216
 1216
 1217
 1217
 1218
 1218
 1219
 1219
 1220
 1220
 1221
 1221
 1222
 1222
 1223
 1223
 1224
 1224
 1225
 1225
 1226
 1226
 1227
 1227
 1228
 1228
 1229
 1229
 1230
 1230
 1231
 1231
 1232
 1232
 1233
 1233
 1234
 1234
 1235
 1235
 1236
 1236
 1237
 1237
 1238
 1238
 1239
 1239
 1240
 1240
 1241
 1241
 1242
 1242
 1243
 1243
 1244
 1244
 1245
 1245
 1246
 1246
 1247
 1247
 1248
 1248
 1249
 1249
 1250
 1250
 1251
 1251
 1252
 1252
 1253
 1253
 1254
 1254
 1255
 1255
 1256
 1256
 1257
 1257
 1258
 1258
 1259
 1259
 1260
 1260
 1261
 1261
 1262
 1262
 1263
 1263
 1264
 1264
 1265
 1265
 1266
 1266
 1267
 1267
 1268
 1268
 1269
 1269
 1270
 1270
 1271
 1271
 1272
 1272
 1273
 1273
 1274
 1274
 1275
 1275
 1276
 1276
 1277
 1277
 1278
 1278
 1279
 1279
 1280
 1280
 1281
 1281
 1282
 1282
 1283
 1283
 1284
 1284
 1285
 1285
 1286
 1286
 1287
 1287
 1288
 1288
 1289
 1289
 1290
 1290
 1291
 1291
 1292
 1292
 1293
 1293
 1294
 1294
 1295
 1295
 1296
 1296
 1297
 1297
 1298
 1298
 1299
 1299
 1300
 1300
 1301
 1301
 1302
 1302
 1303
 1303
 1304
 1304
 1305
 1305
 1306
 1306
 1307
 1307
 1308
 1308
 1309
 1309
 1310
 1310
 1311
 1311
 1312
 1312
 1313
 1313
 1314
 1314
 1315
 1315
 1316
 1316
 1317
 1317
 1318
 1318
 1319
 1319
 1320
 1320
 1321
 1321
 1322
 1322
 1323
 1323
 1324
 1324
 1325
 1325
 1326
 1326
 1327
 1327
 1328
 1328
 1329
 1329
 1330
 1330
 1331
 1331
 1332
 1332
 1333
 1333
 1334
 1334
 1335
 1335
 1336
 1336
 1337
 1337
 1338
 1338
 1339
 1339
 1340
 1340
 1341
 1341
 1342
 1342
 1343
 1343
 1344
 1344
 1345
 1345
 1346
 1346
 1347
 1347
 1348
 1348
 1349
 1349
 1350
 1350
 1351
 1351
 1352
 1352
 1353
 1353
 1354
 1354
 1355
 1355
 1356
 1356
 1357
 1357
 1358
 1358
 1359
 1359
 1360
 1360
 1361
 1361
 1362
 1362
 1363
 1363
 1364
 1364
 1365
 1365
 1366
 1366
 1367
 1367
 1368
 1368
 1369
 1369
 1370
 1370
 1371
 1371
 1372
 1372
 1373
 1373
 1374
 1374
 1375
 1375
 1376
 1376
 1377
 1377
 1378
 1378
 1379
 1379
 1380
 1380
 1381
 1381
 1382
 1382
 1383
 1383
 1384
 1384
 1385
 1385
 1386
 1386
 1387
 1387
 1388
 1388
 1389
 1389
 1390
 1390
 1391
 1391
 1392
 1392
 1393
 1393
 1394
 1394
 1395
 1395
 1396
 1396
 1397
 1397
 1398
 1398
 1399
 1399
 1400
 1400
 1401
 1401
 1402
 1402
 1403
 1403
 1404
 1404
 1405
 1405
 1406
 1406
 1407
 1407
 1408
 1408
 1409
 1409
 1410
 1410
 1411
 1411
 1412
 1412
 1413
 1413
 1414
 1414
 1415
 1415
 1416
 1416
 1417
 1417
 1418
 1418
 1419
 1419
 1420
 1420
 1421
 1421
 1422
 1422
 1423
 1423
 1424
 1424
 1425
 1425
 1426
 1426
 1427
 1427
 1428
 1428
 1429
 1429
 1430
 1430
 1431
 1431
 1432
 1432
 1433
 1433
 1434
 1434
 1435
 1435
 1436
 1436
 1437
 1437
 1438
 1438
 1439
 1439
 1440
 1440
 1441
 1441
 1442
 1442
 1443
 1443
 1444
 1444
 1445
 1445
 1446
 1446
 1447
 1447
 1448
 1448
 1449
 1449
 1450
 1450
 1451
 1451
 1452
 1452
 1453
 1453
 1454
 1454
 1455
 1455
 1456
 1456
 1457
 1457
 1458
 1458
 1459
 1459
 1460
 1460
 1461
 1461
 1462
 1462
 1463
 1463
 1464
 1464
 1465
 1465
 1466
 1466
 1467
 1467
 1468
 1468
 1469
 1469
 1470
 1470
 1471
 1471
 1472
 1472
 1473
 1473
 1474
 1474
 1475
 1475
 1476
 1476
 1477
 1477
 1478
 1478
 1479
 1479
 1480
 1480
 1481
 1481
 1482
 1482
 1483
 1483
 1484
 1484
 1485
 1485
 1486
 1486
 1487
 1487
 1488
 1488
 1489
 1489
 1490
 1490
 1491
 1491
 1492
 1492
 1493
 1493
 1494
 1494
 1495
 1495
 1496
 1496
 1497
 1497
 1498
 1498
 1499
 1499
 1500
 1500
 1501
 1501
 1502
 1502
 1503
 1503
 1504
 1504
 1505
 1505
 1506
 1506
 1507
 1507
 1508
 1508
 1509
 1509
 1510
 1510
 1511
 1511
 1512
 1512
 1513
 1513
 1514
 1514
 1515
 1515
 1516
 1516
 15
```


Figure 1: Virtual Player Model JSON schema and pseudocode

Finally, the JSON-based VPM model is both extensible and configurable, enabling developers and researchers to define new profiles or dynamically adjust parameters during runtime (Fig.1). This offers a pathway toward adaptive XR systems that tailor content based on user characteristics, and lays the groundwork for standardised virtual user testing across accessibility-focused XR design tools.

3.3. Use case: Evaluating XR accessibility through VPM-based simulation

To demonstrate the potential of our VPM framework, we next present an example use case involving the hypothetical design of a virtual museum experience intended for a diverse public audience. As Fig. 2 demonstrates, using our VPM framework, XR designers can load a selection of JSON-defined VPMs representing common visual impairment profiles, for example, a model simulating severe tunnel vision can trigger a circular vignette shader in Unity, restricting peripheral field of view, and simulating

increased head movement during navigation to reflect compensatory behaviours. Another model representing low contrast sensitivity could apply global desaturation and increase reliance on audio landmarks, emulating a visually impaired user's coping strategy of auditory landmarking. The XR designers can toggle between different VPMs to assess how various users perceive and interact with the virtual space. Designers can identify problematic areas - such as unreadable signage, overly dark corridors, or visually indistinct objects - and iterate based on these insights. Whilst a detailed walkthrough cannot be provided due to the limited nature of this paper, this use case illustrates how VPMs can function as a bridge between abstract player personas and concrete, testable design decisions, supporting early-stage, simulation-based accessibility evaluation in XR workflows.

Figure 2: VPM Workflow Architecture

4. CONCLUDING DISCUSSION

This work introduces a novel approach to accessibility evaluation in XR through Virtual Player Models, which combine relevant clinical and spatial visual parameters and empirically grounded user adaptive strategies in a structured, simulation-ready format. We propose that by encoding visual impairments and adaptive behaviours in a JSON-based schema, VPMs can enable designers to simulate diverse user experiences and identify accessibility barriers early in the XR development process, ensuring therefore that XR experiences are 'accessible by-design'. Unlike traditional personas or static simulations, our VPM models integrate both perceptual and behavioural realism, offering a more holistic view of interaction. As immersive technologies become more prevalent, tools like VPMs are essential for embedding inclusive design practices at the core of XR workflows. Overall, this paper builds the groundwork for developing evaluation frameworks and tools that are tailored to people with visual impairments. Future work will focus on validating the simulation outputs with visually impaired users and experts, as well as on expanding the framework to encompass other impairments and adaptive profiles.

REFERENCES

- The A11Y Project (2024) *The A11Y Project*. Available at: <https://www.a11yproject.com/>
- Ahmetovic, D., Bernareggi, C., Keller, K. and Mascetti, S. (2021) *MusA: artwork accessibility through augmented reality for people with low vision*. In: *Proceedings of the 18th International Web for All Conference*, pp. 1–9.
- Alrashidi, M. (2023) *Synergistic integration between internet of things and augmented reality technologies for deaf persons in e-learning platform*. *The Journal of Supercomputing*, **79**(10), 10747–10773. Springer.
- Barbieri, M., Albanese, G. A., Capris, E., Canessa, A., Sabatini, S. P. and Sandini, G. (2023) *Realter: An Immersive Simulator to Support Low-Vision Rehabilitation*. In: *International Conference on Extended Reality*, pp. 405–416. Springer.
- Barbieri, M., Albanese, G. A., Merello, A., Crepaldi, M., Setti, W., Gori, M., Canessa, A., Sabatini, S. P., Facchini, V., and Sandini, G. (2024) *Assessing REALTER simulator: analysis of ocular movements in simulated low-vision conditions with extended reality technology*. *Frontiers in Bioengineering and Biotechnology*, **12**, 1285107. Frontiers Media SA.
- Bisio, A., Yeguas-Bolívar, E., Aparicio-Martínez, P., Redel-Macías, M. D., Pinzi, S., Rossi, S., and Taborri, J. (2023) *Training Program on Sign Language: Social Inclusion through Virtual Reality in ISENSE Project*. In: *Proceedings of the 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRANE)*, pp. 104–109. IEEE.
- Cañellas-Mayor, A. and Aymerich-Franch, L. (2023) *Accessibility and Positive Applied Uses of Extended Reality for Users With Reduced Mobility*. *IEEE Revista Iberoamericana de Tecnologías del Aprendizaje*, **18**(1), pp. 100–106.
- Creed, C., Al-Kalbani, M., Theil, A., Sarcar, S., and Williams, I. (2023) *Inclusive Augmented and Virtual Reality: A Research Agenda*. *International Journal of Human–Computer Interaction*, **40**(20), 6200–6219. doi:10.1080/10447318.2023.2247614.
- Dang, K., Korreshi, H., Iqbal, Y. and Lee, S. (2023) *Opportunities for Accessible Virtual Reality Design for Immersive Musical Performances for Blind and Low-Vision People*. In: *Proceedings of the 2023 ACM Symposium on Spatial User Interaction*, pp. 1–21.
- Dudley, J., Yin, L., Garaj, V., and Kristensson, P. O. (2023) *Inclusive Immersion: a review of efforts to improve accessibility in virtual reality, augmented reality and the metaverse*. *Virtual Reality*, **27**(4), 2989–3020. Springer.
- Ferri, D. and Favalli, S. (2018) *Web accessibility for people with disabilities in the European Union: Paving the road to social inclusion*. *Societies*, **8**(2), 40. MDPI.
- Guarese, R., Pretty, E. and Zambetta, F. (2023) *XR Towards Tele-Guidance: Mixing Realities in Assistive Technologies for Blind and Visually Impaired People*. In: *2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)*, pp. 324–329. IEEE Computer Society.
- Hatzigiannakoglou, P.D. and Okalidou, A. (2019) *Development of an Auditory Rehabilitation Tool for children with Cochlear Implants through a Mobile-Based VR and AR serious game*. *International Journal of Online & Biomedical Engineering*, **15**(2).
- International Organization for Standardization (2019) *ISO/IEC 40500:2012*. Available at: <https://www.iso.org/standard/58625.html>
- Kasowski, J., Johnson, B. A., Neydavood, R., Akkaraju, A., and Beyeler, M. (2023) *A systematic review of extended reality (XR) for understanding and augmenting vision loss*. *Journal of Vision*, **23**(5), 5. doi:10.1167/jov.23.5.5. PMID: 37140911; PMCID: PMC10166121.
- Killough, D., Ji, T. F., Zhang, K., Hu, Y., Huang, Y., Du, R., and Zhao, Y. (2024) *XR for All: Understanding Developer Perspectives on Accessibility Integration in Extended Reality*. arXiv preprint arXiv:2412.16321.
- Kristensson, P. O. (2024) *Five Ways Function Models Enable Accessible Mixed Reality Interfaces*. In: *2024 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)*, pp. 223–227. IEEE.
- Krösl, K., Elvezio, C., Hürbe, M., Karst, S., Feiner, S., and Wimmer, M. (2020) *XREye: Simulating visual impairments in eye-tracked XR*. In: *Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)*, pp. 830–831. IEEE.
- Krösl, K., Medeiros, M. L., Huber, M., Feiner, S. and Elvezio, C. (2023) *Exploring the Educational Value and Impact of Vision-Impairment Simulations on Sympathy and Empathy with XREye*. *Multimodal Technologies and Interaction*, **7**(7), 70. MDPI.

- Lavoie, P. and Clarke, S. P. (2017) *Simulation in nursing education. Nursing*, **47**(7), 18–20. doi: 10.1097/01.NURSE.0000520520.99696.9a.
- Mazhari, A., Esfandiari, P., and Taheri, A. (2022) *Teaching Iranian Sign Language via a Virtual Reality-Based Game*. In: *Proceedings of the 2022 10th RSI International Conference on Robotics and Mechatronics (ICRoM)*, pp. 146–151. IEEE.
- Mohamad, Y. and Kouroupetroglou, C. (2014) *Research Report on User Modeling for Accessibility. W3C WAI Research and Development Working Group (RDWG) Notes*.
- Montagud, M., Hurtado, C., De Rus, J. A. and Fernández, S. (2021) *Subtitling 3D VR Content with Limited 6DoF: Presentation Modes and Guiding Methods*. *Applied Sciences*, **11**(16), 7472. MDPI.
- Mott, M., Tang, J., Kane, S., Cutrell, E. and Ringel Morris, M. (2020) “I Just Went into It Assuming That I Wouldn’t Be Able to Have the Full Experience”: Understanding the Accessibility of Virtual Reality for People with Limited Mobility. In: *Proceedings of the 22nd International ACM SIGACCESS Conference on Computers and Accessibility*, pp. 1–13.
- Opoku-Baah, C., Erkelens, I., Qian, R. and Sharma, R. (2022) *A Binocular Model to Evaluate User Experience in Ophthalmic and AR Prescription Lens Designs*. In: *2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)*, pp. 628–633. IEEE.
- Paciulli, G. H., de Lima, Y. C., Faccin, M. T. and Eliseo, M. A. (2020) *Accessible Augmented Reality to Support Chemistry Teaching*. In: *2020 XV Conferencia Latinoamericana de Tecnologías de Aprendizaje (LACLO)*, pp. 1–9. IEEE.
- Paudyal, P., Banerjee, A., Hu, Y., and Gupta, S. (2019) *Davee: A Deaf Accessible Virtual Environment for Education*. In: *Proceedings of the 2019 Conference on Creativity and Cognition*, pp. 522–526.
- Persson, H., Åhman, H., Yngling, A. A. and Gulliksen, J. (2015) *Universal Design, Inclusive Design, Accessible Design, Design for All: Different Concepts—One Goal? On the Concept of Accessibility—Historical, Methodological and Philosophical Aspects*. *Universal Access in the Information Society*, **14**, pp. 505–526. Springer.
- Pladere, T., Svarverud, E., Krumina, G., Gilson, S. J., and Baraas, R. C. (2022) *Inclusivity in stereoscopic XR: Human vision first*. *Frontiers in Virtual Reality*, **3**, 1006021. Frontiers Media SA.
- Raviselvam, S., Al-Megren, S., Keane, K., Hölttä-Otto, K., Wood, K. L., and Yang, M. C. (2021) *Simulation Tools for Inclusive Design Solutions. Studies in Health Technology and Informatics*, **282**, 210–218. doi: 10.3233/SHTI210398, PMID: 34085970.
- Ribeiro, R. A., Gonçalves, I., Piçarra, M., Seixas Pereira, L., Duarte, C., Rodrigues, A. and Guerreiro, J. (2024) *Investigating Virtual Reality Locomotion Techniques with Blind People*. In: *Proceedings of the CHI Conference on Human Factors in Computing Systems*, pp. 1–17.
- Robern, G., Uribe-Quevedo, A., Sukhai, M., Coppin, P., Lee, T. and Ingino, R. (2021) *Work-in-Progress: Exploring VR Conference Navigation Employing Audio Cues*. In: *2021 7th International Conference of the Immersive Learning Research Network (iLRN)*, pp. 1–3. IEEE.
- Schmidt, M., Lu, J., Huang, R., François, M.-S., Lee, M., Wang, X. and Feijóo-García, P. G. (2024) *Participatory, Human-Centered, Equitable, Neurodiverse, and Inclusive XR. Educational Technology & Society*, **27**(4), pp. 283–301. JSTOR.
- Story, M. F., Mueller, J. L. and Mace, R. L. (1998) *The Universal Design File: Designing for People of All Ages and Abilities*. ERIC.
- Teófilo, M., Lucena, V. F., Nascimento, J., Miyagawa, T. and Maciel, F. (2018) *Evaluating Accessibility Features Designed for Virtual Reality Context*. In: *2018 IEEE International Conference on Consumer Electronics (ICCE)*, pp. 1–6. IEEE.
- Thevin, L. and Machulla, T. (2022) *Visual Impairment Sensitization: Co-Designing a Virtual Reality Tool with Sensitization Instructors*. In: *Proceedings of the International Conference on Computers Helping People with Special Needs*, pp. 237–246. Springer.
- UI Accessibility Plugin (UAP) (2021) *UAP*. Available at: <https://assetstore.unity.com/packages/tools/gui/ui-accessibility-plugin-uap-87935>
- Valakou, A., Margetis, G., Ntoa, S. and Stephanidis, C. (2023) *A Framework for Accessibility in XR Environments*. In: *International Conference on Human-Computer Interaction*, pp. 252–263. Springer.
- Valzolgher, C., Capra, S., Sum, K., Finos, L., Pavani, F., and Picinali, L. (2024) *Spatial hearing training in virtual reality with simulated asymmetric hearing loss*. *Scientific Reports*, **14**(1), 2469. Nature Publishing Group UK.

- Vredenberg, K., Isensee, S. and Righi, C. (2001) *User-Centred Design: An Integrated Approach with CD-ROM*. Prentice Hall PTR.
- W3C (2024) *ARIA Authoring Practices Guide — APG — WAI — W3C*. Available at: <https://www.w3.org/WAI/ARIA/apg/>
- W3C (2023) *Authoring Tool Accessibility Guidelines (ATAG)*. Available at: <https://www.w3.org/WAI/standards-guidelines/atag/>
- W3C (2016) *User Agent Accessibility Guidelines (UAAG)*. Available at: <https://www.w3.org/WAI/standards-guidelines/uaag/>
- W3C (2020) *WCAG-EM Overview: Website Accessibility Conformance Evaluation Methodology* — Web Accessibility Initiative (WAI) — W3C. Available at: <https://www.w3.org/WAI/test-evaluate/conformance/wcag-em/>
- W3C (2021) *XR Accessibility User Requirements (XAUR)*. Available at: <https://www.w3.org/TR/xaur/>
- WebAIM (2024) *WebAIM*. Available at: <https://webaim.org/>
- Wieland, M., Thevin, L., Schmidt, A. and Machulla, T. (2022) *Non-Verbal Communication and Joint Attention Between People with and Without Visual Impairments: Deriving Guidelines for Inclusive Conversations in Virtual Realities*. In: *International Conference on Computers Helping People with Special Needs*, pp. 295–304. Springer.
- XR Interaction Toolkit (2025) *XRtoolkit*. Available at: <https://docs.unity3d.com/Packages/com.unity.xr.interaction/toolkit@3.0/manual/index.html>
- Xie, Y., Little, L., Lewis, M. R., Wu, W. and Kish, D. (2024) *Acoustic Garden: Exploring Accessibility and Interactive Music with Distance-Related Audio Effect Modulation in XR*. In: *ACM SIGGRAPH 2024 Immersive Pavilion*, Article 1, 2 pp. Association for Computing Machinery, New York, NY, USA. <https://doi.org/10.1145/3641521.3664402>
- Zhao, Y., Cutrell, E., Holz, C., Ringel Morris, M., Ofek, E. and Wilson, A. D. (2019) *SeeingVR: A Set of Tools to Make Virtual Reality More Accessible to People with Low Vision*. In: *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, pp. 1–14.
- Braun, V., and Clarke, V. (2019). *Reflecting on reflexive thematic analysis*. *Qualitative Research in Sport, Exercise and Health*, **11**(4), 589–597. Taylor & Francis.
- Braun, V., and Clarke, V. (2021). *One size fits all? What counts as quality practice in (reflexive) thematic analysis?* *Qualitative Research in Psychology*, **18**(3), 328–352. Taylor & Francis.