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 A B S T R A C T

Epilepsy, a chronic noncommunicable brain disease affecting nearly 1% of the global population across all ages, 
manifests through seizures caused by abnormal electrical activity in the brain. Electroencephalogram (EEG) 
records the spontaneous electrical activity of the brain which is more suitable for analysing Epileptic Seizure 
(ES) than other modalities such as functional Near-Infrared Spectroscopy (fNIRS) and functional Magnetic 
Resonance Imaging (fMRI). ES prediction aims to provide advanced warning to patients, allowing timely 
intervention and preventing dangerous situations. Deep Learning (DL) has emerged as a promising approach 
for ES prediction due to its superior noise removal capabilities, nonlinear feature representation, and strong 
classification ability. This paper presents a comprehensive review of DL-based approaches for ES prediction 
in last 5 years, highlighting current research trends, identifying existing challenges, and suggesting potential 
future research directions.
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1. Introduction

Epilepsy is a chronic neurological disorder affecting individuals 
of all ages globally, with an estimated 50 million people affected 
worldwide according to the most recent data from the World Health 
Organization and the World Health Assembly for 2021 [1]. Epileptic 
Seizure (ES) is the clinical manifestation of an abnormal, excessive, 
hypersynchronous discharge of a population of cortical neurons [2]. 
ES can affect a person in different ways, depending on which part 
of the brain is affected. Symptoms may occur include uncontrollable 
convulsions and tremors, loss of consciousness, blank stares, fainting 
and so on [3,4].

The major danger of epilepsy is that it is lethal and can cause 
death in humans or animals. The mortality rate for epilepsy in adults 
is as high as 3.6%. Although anti-epileptic drugs provide sufficient 
control of seizures in approximately 70% of patients with epilepsy, the 
remaining 30% are resistant to monotherapy [5]. Therefore, there are 
about 20 million drug-resistant patients globally, which means they are 
exposed to severe life-long adverse outcomes, such as accidental death 
from seizures, increased risk of injury, and learning and developmental 
disabilities at school age.

Electroencephalogram (EEG) records brain activity using electro-
physiological indicators. It is closely associated with ES caused by 
abnormal brain discharges. In addition, as one of the brain wave 
activity measurements, EEG has attractive properties such as high tem-
poral resolution, relatively low cost, high portability, and less risks to 
users [7,8] in comparison with other modalities. In clinical recordings, 
clinician analysis EEG signals by two stages (ictal and inter-ictal) as 
shown in Fig.  1. The ictal state in EEG signal is the situation during an 
ES. The inter-ictal state is defined as the situation between one seizure 
and the next [9].

ES prediction refers to the use of advanced technologies to antici-
pate the onset when an ES occurs. After the onset is predicted before the 
ictal stage, an warning alert can be issued. Through this alert, patients 
can get timely treatment to avoid life-threatening conditions.

For the development of ES prediction algorithms, EEG recordings 
are segmented firstly in two ways. One commonly used way is to divide 
the raw EEG signals into Seizure Occurrence Period (SOP) and Seizure 
Prediction Horizon (SPH) as shown in Fig.  1. SOP is defined as a time 
period during which the seizure is to be expected. In addition, for ther-
apeutic intervention, there must be a minimum time window between 
when an alert is issued and when the SOP begins. This time window is 
referred to as the SPH. Considering the two time periods, SPH and SOP, 
the definition of a correct ES prediction is as follows: no seizure has 
occurred during the SPH after the alarm signal and a seizure during the 
SOP period [10]. Different ES prediction algorithms choose different 
2 
Table 1
List of abbreviations.
 Abbreviation Full form  
 AES American Epilepsy Society  
 AUC Area Under the Curve  
 Bi-LSTM Bi-directional Long Short-Term Memory  
 CHB-MIT Children’s Hospital Boston–MIT Database 
 CNN Convolutional Neural Network  
 CWT Continuous Wavelet Transform  
 DL Deep Learning  
 DWT Discrete Wavelet Transform  
 EEG Electroencephalography  
 EDF European Data Format  
 ES Epileptic Seizure  
 fMRI Functional Magnetic Resonance Imaging  
 fNIRS Functional Near-Infrared Spectroscopy  
 FPR False Prediction Rate  
 GAN Generative Adversarial Network  
 GCN Graph Convolutional Network  
 GNN Graph Neural Network  
 iEEG Intracranial Electroencephalography  
 LOPOCV Leave-One-Patient-Out Cross-Validation  
 LOSOCV Leave-One-Seizure-Out Cross-Validation  
 LSTM Long Short-Term Memory  
 ResNet Residual Neural Network  
 RNN Recurrent Neural Network  
 Siena Siena sEEG Database  
 sEEG Scalp Electroencephalography  
 SNN Spiking Neural Network  
 SOP Seizure Occurrence Period  
 SPH Seizure Prediction Horizon  
 STFT Short-Time Fourier Transform  
 SWEC-ETHZ SWEC-ETHZ iEEG Database  
 TUSZ TUH EEG Seizure Corpus  
 ViT Vision Transformer  

lengths of time for SPH and SOP. For clinical use, the SPH must be long 
enough to allow for appropriate interventions or preventive measures. 
On the contrary, the duration of SOP should not be too long to minimise 
patient anxiety. Another way is to define the pre-ictal and ictal states as 
well as an intervention period. The pre-ictal state is only apparent for 
a period of time prior to the onset. The duration of the pre-ictal state is 
usually an hour [11] or 30 min [12]. Also, an intervention time needs 
to be defined between the ictal and the pre-ictal state, often defined as 
1 min [12] or 5 min [11]. This enables the algorithm to predict seizures 
by analysing the different characteristics of the pre-ictal and inter-
ictal states and to treat the patient within the intervention time. As 
illustrated in Fig.  2, we present an close-loop flowchart spanning from 
EEG acquisition and preprocessing to the integration of deep learning 
models with predictive outputs, serving as an overview of the paper’s 
structure.
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Fig. 1. An EEG recording example from CHB-MIT database [6] (e.g. the second seizure of patient 1). The ictal stage is labelled from 12285 to 12312 s, and the 
inter-ictal stage is chosen from 25246 to 39680 s. The correct prediction represents a ES that did not occur in the SPH time period after the warning was issued, 
but was found in the subsequent SOP time period.
Fig. 2. Unified workflow diagram for ES prediction: From raw signal and preprocessing, the data inputted deep learning methods. This outputs risk within 
the specified SPH threshold, triggering a threshold-based alert. The controller then coordinates with external devices to record the event. Then, controller will 
interfere the brain back to the normal state.
Table 2
Comparison between this work and previous review articles on ES prediction across different years.
 Paper Year Focused area Database summary DL Future direction Period  
 Mormann et al. [13] 2007 ES Prediction 7 7 3 1975–2007 
 Kuhlmann et al. [14] 2018 ES Prediction 7 7 3 2013–2018 
 Rasheed et al. [15] 2020 ES Prediction 7 3 3 2018–2020 
 Baud et al. [16] 2022 ES Prediction 7 7 3 2018–2022 
 Shoeibi et al. [17] 2022 ES Prediction and Detection 3 3 3 2018–2021 
 This Work 2024 ES Prediction 3 3 3 2020–2024 
Structure: Section 2 provides an overview of EEG databases for ES 
prediction. Section 3 provides a comprehensive review of DL meth-
ods from supervised and unsupervised learning. Section 4 outlines 
prospects for future research in this area. Finally, Section 5 summarises 
the main contributions. Due to the frequent use of abbreviations in this 
work, a list of abbreviations is provided for clarity shown in Table  1.

Contribution: Previous reviews on ES prediction have focused on 
machine learning applications with a cut-off date of around 2020 on 
3 
generic databases separately [15–17]. Rasheed et al. [15] provided an 
overview of machine learning algorithms applied to ES prediction up 
to 2020, while Baud et al. [16] pointed out significant advances in 
ES prediction over the past decade as well as persistent challenges. 
Shoeibi et al. [17] summarised the DL algorithms but they did not 
categorise the algorithms related to ES prediction separately. This 
paper aims to provide a complete overview of the current state on ES 
prediction using DL algorithms. Specifically, We summarise detailed DL 



X. Huang et al. Biomedical Signal Processing and Control 117 (2026) 109518 
Table 3
Summary of publicly available iEEG and sEEG datasets used for ES prediction.
 Type Database No. of

Patients
No. of
Channels

Sampling 
Frequency (Hz)

No. of 
Seizures

Duration 
Average (hr)

Electrode 
Location Info

Algorithms  

 

iEEG

Freiburg 21 128 256 87 708 Yes GNN, CNN, GAN 
 AES Prediction Challenge 5 Dogs,

2 Patients
16 400, 5000 48 622 No CNN, RNN,

Self-supervised
 

 Epilepsy-ecosystem 
(Melbourne-Univ.
AES-MathWorks)

3 16 400 1139 10608 No GAN  

 Epilepsy-ecosystem 
(My Seizure Gauge)

10 – – – – No –  

 SWEC-ETHZ 
(Long-Term)

18 32–88 512/1024 116 – No CNN, RNN  

 SWEC-ETHZ 
(Short-Term)

16 36–100 512 100 – No CNN, RNN  

 Bonn Dataset 
(Epileptic Patients)

5 1 173.61 – – No CNN  

 
sEEG

CHB-MIT 22 23 256 182 844 Yes CNN, RNN, 
GNN, GAN, 
AutoEncoder

 

 TUSZ 10874 20–31 Minimum 250 – – Yes Self-Supervised  
 Siena 16 21/29 512 47 – Yes –  
 Bonn Dataset 

(Healthy People)
5 1 173.61 – – No CNN  
algorithms for ES prediction after 2020, widely used databases in the 
field, and explores potential future research directions. Table  2 shows 
the comparative analysis of this work with existing review publications.

2. Database

For DL algorithm development on ES prediction, high-quality data is 
very important [18] and there are a few datasets have been produced. 
EEG signals can be divided into two categories: one is intracranial EEG 
(iEEG) signals that is invasive with higher Signal-to-Noise Ratio (SNR) 
and fewer artefacts. However, it requires implantation of EEG sensors 
into the brain through a craniotomy or drilling through the skull, which 
may cause long-term inflammation of the patient’s brain [19]. Another 
one is a non-invasive method called scalp EEG (sEEG). Compared 
to iEEG signal, sEEG signal is collected through a wearable device 
mounted on the scalp with relatively simple and safe way for patients. 
Since sEEG capture leaky electricity from neurons and it is in a lower 
SNR and greater susceptibility to artefacts [20].

Starting with the first International Collaborative Workshop on ES 
Prediction in Bonn in 2002, which provided a set of five epilepsy-
related EEG recordings over multiple consecutive days [13], more 
and more data have been collected for analysing the problem of ES 
prediction. Both the acquisition and labelling of EEG signals need to 
be handled by medical specialists, especially when acquiring iEEG 
signals. Also, most EEG signals are collected by hospitals. The rea-
son is that the database related to ES requires the support of the 
patient. The existing databases such as Freiburg Hospital EEG Database 
(Freiburg) [21], CHB-MIT sEEG Database (CHB-MIT) [6], Epilepsy-
ecosystem [22], SWEC-ETHZ iEEG Database (SWEC-ETHZ) [23], Bonn 
Dataset [24], Siena sEEG Database (Siena) [25], American Epilepsy 
Society (AES) Prediction Challenge [26] and TUH EEG Seizure Corpus 
(TUSZ) [27] were proposed (see Table  3).

2.1. iEEG

2.1.1. Freiburg hospital EEG dataset
The Freiburg contains iEEG signals from 21 patients with medically 

refractory focal epilepsy and records the location of epileptic focal 
in different patients. The database was collected by the Neurofile NT 
digital video EEG system with 128 channels and 256 Hz sampling rate. 
The total number of seizures was 87, with an average of 708 h of 
EEG signals recorded. This database is provided in European Data For-
mat (EDF). Preprocessing steps commonly include band-pass filtering 
4 
(e.g., 0.5–150 Hz) and notch filtering at 50 Hz to remove power-line 
interference. Additionally, artefact rejection may be required to handle 
artefacts caused by motion, electrode drift, or clinical procedures. Since 
the records were collected in a preoperative setting, patients may have 
been in a specific clinical state that may not reflect their daily seizure 
activity, which may affect the performance of the algorithm.

2.1.2. AES prediction challenge dataset
The AES Prediction Challenge was posted to Kaggle in 2014. Com-

pared to Freiburg Hospital, It recorded the iEEG signal from epileptic 
patients and dogs. This database used a dynamic monitoring system 
to record signals from dogs with epilepsy. Recorded iEEG signals were 
sampled at 400 Hz from 16 electrodes. The recorded voltages were 
referenced to the group average for dogs. The recordings were of 
long duration, ranging from a few months to a year, with some dogs 
recording up to hundreds of seizures. For iEEG signals from epileptic 
patients, electrodes with different patients were sampled at a frequency 
of 5000 Hz. The recorded voltages were referenced to electrodes out-
side the brain for patients. Although the dataset contains both dogs and 
human recordings, differences in acquisition settings (e.g., sampling 
frequency) raise concerns about the cross-species generalisability of 
models trained on mixed data.

2.1.3. Epilepsy-ecosystem dataset
The Epilepsy-ecosystem is a crowd-sourcing ecosystem for ES pre-

diction. There are two subsets in Epilepsy-ecosystem. The first subset 
contains inter-ictal and pre-ictal signals from the ’Melbourne-University 
AES-MathWorks-NIH Seizure Prediction Challenge’ that was hosted on 
Kaggle in 2016. The competition focuses on predicting seizures using 
long-term human EEG signals obtained from the world’s first clinical 
trial of the implantable NeuroVista Epilepsy Advisory System [19]. The 
iEEG signals were sampled from 16 electrodes at 400 Hz. These record-
ings range in duration from months to year. The recorded voltages are 
referenced to the average of the electrode. It contains 1139 seizures 
from three patients. This is currently the only database of continuous 
iEEG signals collected from a clinical situation.

The second subset in Epilepsy-ecosystem is ’My Seizure Gauge’ 
data which is a unique wearable device database that contains long-
term records of epileptic patients [28]. The data was collected with 
funding from the Epilepsy Foundation of America to develop ES pre-
diction algorithms for non-invasive wearable devices. The database 
provides continuous wearable device recordings from 10 patients, along 
with seizure duration and recording metadata (number of channels, 
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channel/biosignal type, sampling rate, total number of samples per 
recording, and timestamp). There are 3–5 days of data available for 
each patient. For the first time, this database collects biosignals other 
than EEG signals from patients with epilepsy.

2.1.4. SWEC-ETHZ dataset
In the SWEC-ETHZ, there are two subsets containing long-term and 

short-term iEEG signals. Both of them were recorded intracranially by 
strip, grid, and depth electrodes. All iEEG recordings were visually 
inspected by an experienced board-certified EEG epileptologist (K.S.) 
to determine seizure onset and end times and to exclude channels 
consistently interfered with by artefacts.

The long-term dataset included 116 seizures from 2656 h of
anonymised continuous iEEG signal in patients with pharmacologically 
resistant epilepsy. The sampling frequency is 512 or 1024 Hz and the 
number of electrodes ranged from 32 to 88. Each file holds one hour 
of continuous iEEG signals. The detailed information for every subject 
is contained defining the sampling frequency, and beginning and end 
of the seizures. As a dataset containing long-term and continuous iEEG 
signals, it fits well with the requirements proposed in the review [14].

The short-term dataset consisted of 100 anonymised iEEG from 16 
patients with drug-resistant epilepsy sampled at 512 Hz. Each recording 
consisted of a 3-minute pre-ictal segment, a ictal segment, and a 3-
minute post-ictal segment. The number of electrodes ranged from 36 
to 100.

The SWEC-ETHZ is a valuable resource for ES prediction research. 
However, it is important to be aware of its limitations. First, although 
the long-term subset contains 116 seizures over 2656 h, the relatively 
small number of patients limits the generalisability of models trained on 
this data. Second, electrode implantation varies widely across patients, 
and detailed electrode location metadata are not consistently standard-
ised. This can hinder the reproducibility of research and complicate 
comparisons across patients. Finally, the short-term dataset provides 
only fixed pre-ictal, ictal, and post-ictal segments, which may not ac-
curately reflect real-world continuous monitoring scenarios and could 
artificially simplify the prediction task.

In terms of preprocessing, SWEC-ETHZ recordings are distributed 
in EDF. Common steps reported in the literature include band-pass 
filtering (e.g., 0.5–150 Hz) and notch filtering at 50 or 60 Hz to 
remove power-line noise. For the long-term dataset, continuous iEEG 
is segmented into fixed-length epochs (typically 30 s or 60s), while 
the short-term dataset is already pre-segmented. After artefact removal, 
normalisation methods are applied to reduce inter-patient and inter-
channel variability. This is particularly important because the number 
of channels varies significantly among patients in this dataset.

2.2. sEEG

2.2.1. CHB-MIT dataset
The CHB-MIT is one of the most widely used public databases for 

ES prediction research. It is collected by Boston Children’s Hospital 
contained in the Massachusetts Institute of Technology. It provides 
recordings in EDF with a sampling rate of 256 Hz and 23 channels. 
The database consists of sEEG recordings from children with intractable 
seizures. A total of 23 recordings from 22 patients were included. 
Patients were monitored for up to several days after discontinuing anti-
epileptic drugs to characterise seizures and assess their suitability for 
surgical treatment. A total of 182 seizure onset and end times were 
recorded. The International 10–20 system [29] of EEG electrode posi-
tions and nomenclature was used for these recordings. Pre-processing 
steps include segmenting continuous EEG into fixed-length windows 
(e.g., 30 s or 60s), applying band-pass filtering (typically 0.5–70 Hz) 
to remove low-frequency drift and high-frequency noise, and using a 
60 Hz notch filter to eliminate power-line interference. Artefacts like 
eye blinks and muscle activity are usually removed either manually 
5 
or through Independent Component Analysis (ICA). Additionally, nor-
malisation techniques such as Z-score or min–max scaling are often 
applied to standardise the input data across patients. Although this 
dataset is widely used, several limitations should be noted. First, the 
dataset only includes paediatric patients, limiting its generalisability 
to adult and elderly populations. Second, the relatively small number 
of patients and seizures makes it difficult to train large-scale deep 
learning models, and for some patients, the number of seizure events 
is too limited to allow for reliable cross-patient evaluation. Third, 
the recording conditions are relatively homogeneous (23-channel EEG, 
sampling rate of 256 Hz), which may not reflect variability in other 
clinical settings, particularly those using iEEG or high-density sEEG. 
Additionally, although seizure onset and termination annotations are 
provided by clinical experts, inter-rater variability and the lack of a 
standardised definition of pre-ictal states may affect the consistency 
of model evaluations. Finally, while models trained on CHB-MIT often 
achieve high performance, their accuracy often decreases significantly 
when applied to other datasets, indicating limited external validity. 
These factors should be carefully considered when interpreting results 
from studies based on CHB-MIT.

2.2.2. TUSZ
The TUSZ consists of 16,986 records from 10,874 patients, each 

containing at least one EDF file. If the long-term monitoring record is 
divided into multiple files, more than one physician report is included. 
The EDF file usually contains EEG-specific channels and auxiliary chan-
nels. The number of specific channels ranges from 20 to 31. The 
auxiliary channels contain detected bursts, ECG, EMG and light stimuli. 
The EEG signals are mostly sampled at a frequency of 250 Hz. This 
database contains the largest number of patients and the largest number 
of records compared to other databases. It also includes recordings of 
biological signals other than EEG signals such as EMG, ECG.

2.2.3. Siena dataset
The Siena contains 14 patients with epilepsy. Subjects were mon-

itored using video-electroencephalography with a sampling rate of 
512 Hz, with electrode arrangements based on the International 10–20 
System [29]. In total, the database contains 47 seizures on about 128 
recording hours. In contrast to other databases, all recordings in Siena 
includes 1 or 2 EKG signals.

2.3. iEEG and sEEG

2.3.1. Bonn dataset
The Bonn dataset is composed of EEG data from five healthy in-

dividuals and five patients with epilepsy and contains a total of five 
data subsets which are A, B, C, D, and F. Single-channel EEG data 
were collected, where each subset dataset contained 100 data segments. 
Each data segment has a time length of 23.6 s, a sampling frequency 
of 173.61 Hz, a resolution of 12 bits, and 4096 data points.

Subsets A and B are sEEG signals collected from five healthy indi-
viduals, constituting the control group. The segment in A is the EEG 
when the subject’s eyes are open, and the EEG when the subject’s eyes 
are closed in B.

Subsets C, D, and E are iEEG taken from five patients with preop-
erative diagnosis. C and D were collected during the inter-ictal period, 
and E was collected during the ES period.

Unlike other datasets, the Bonn dataset includes sEEG recordings 
from healthy individuals. This enables more robust comparative anal-
yses of differences between healthy and epileptic patients across EEG 
segments.
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Fig. 3. The input to this convolutional network is in the form of an EEG of 60 consecutive frames (5 min) containing p features. The first and third layers of 
this network are convolutional layers with dimensions 1 ∗ 13 and 𝑝 ∗ 9, respectively. The second and fourth layers are sub-sampling layers that perform 1 ∗ 2
sub-sampling operations. The fifth layer is a fully connected layer. The output of this layer is the classification result of pre-ictal and inter-ictal periods [30].
3. Deep learning

Over several decades, Deep Learning (DL), which is a branch of 
Artificial intelligence (AI) and Machine Learning (ML) [31], has been 
applied to solve the ES prediction problem. DL algorithms can identify 
the current stage of the brain by analysing trends in EEG signals 
and the features of different stages. Thus, warning signals are sent 
before the ictal stage [14,32]. Also, previous research demonstrated 
that DL algorithms can significantly improve the accuracy and utility 
of biomedical signal analysis, especially in areas such as disease di-
agnosis and treatment [33]. Fig.  2 demonstrates the categorisation of 
DL algorithms for ES prediction. DL algorithms can be categorised into 
two types: supervised learning and unsupervised learning. Sections 3.1
and 3.2 respectively review the principal advances in supervised and 
unsupervised learning for ES prediction over the period 2020–2024.

3.1. Supervised learning

Supervised learning algorithms predict ES by distinguishing be-
tween pre-ictal and inter-ictal EEG signals. These algorithms are trained 
on labelled data where seizures are known to exist, allowing them to 
learn patterns that predict impending ES. From a comparative per-
spective, the supervised learning methods reviewed in Table  4 can 
be categorised into four major classes: (i) convolutional architectures, 
(ii) recurrent models, (iii) graph neural networks, and (iv) Trans-
formers and attention-based approaches. When classified by dataset, 
the commonly used datasets primarily comprise three: CHB-MIT, AES, 
and Freiburg. We have summarised statistics according to these two 
classification approaches, consolidating the results in Tables  5 and 6. 
The following presents a statistical analysis of these tables.

The average sensitivity across all models was 93.75% (standard 
deviation = 6.19%, n = 43). However, a systematic comparison of 
deep learning models revealed significant trade-offs between different 
model families. Transformer and attention-based models exhibited the 
lowest average sensitivity (90.92%) and lowest average false positive 
rate (FPR = 0.033/h), indicating a more conservative alarm behaviour 
that suppresses false positives at the cost of missed pre-ictal events. 
The high standard deviation suggests poorer stability across different 
experimental settings. In contrast, the CNN architecture exhibits robust 
statistical stability with a lower standard deviation (SD = 4.41), yet a 
relatively high average false positive rate (FPR = 0.167/h), potentially 
highlighting a trade-off between robust feature extraction and potential 
sensitivity to non-epileptiform artefacts. Furthermore, the GNN ap-
proach maintained a favourable equilibrium, achieving high sensitivity 
(94.05%) and low false positive rates (0.075/h), with minimal variance 
in false positives (SD = 0.022/h), thereby underscoring its potential for 
effectively modelling stable epileptic network dynamics.

Furthermore, performance analysis by dataset revealed critical is-
sues concerning generalisation capability. Although studies based on 
6 
CHB-MIT reported high average sensitivities (94.16%), methods eval-
uated using more stringent, heterogeneous datasets (such as AES) re-
ported significantly lower average FPR. This substantial disparity in 
FPR confirms that dataset homogeneity and cross-validation protocols 
critically influence the generalisability of reported results.

In summary, supervised deep learning approaches demonstrate con-
siderable potential for ES prediction, yet their apparent high perfor-
mance must be interpreted in light of the architecture’s inductive bias, 
dataset homogeneity, and the critical balance between sensitivity, false 
positive rate, and clinical generalisability. The clinical viability of a 
model hinges not only on its high average sensitivity but also on 
the critical balance between stability (low standard deviation) and 
false positive rate (FPR < 0.05/h). Furthermore, regarding FPR robust-
ness, architectures utilising GNNs or Transformers inherently exhibit 
superior FPR suppression (FPR < 0.08/h) and lower FPR variance, 
indicating their inductive biases are more adept at filtering clinical 
noise. However, due to the limited statistical data available, further 
work is required to validate this finding. Crucially, despite CNNs ex-
hibiting higher FPR, they demonstrate the highest statistical robustness 
(lowest sensitivity standard deviation, approximately 4.41). This anal-
ysis thus provides a viable approach for future hybrid architecture 
deep learning models. Such models could combine CNNs’ reliable local 
feature extraction capabilities with GNNs’ or Transformers’ global low-
FPR contextual modelling abilities, thereby achieving high stability and 
clinical utility.

3.1.1. Convolutional Neural Networks (CNNs)
From a neurophysiological perspective, the inherent inductive bi-

ases of CNNs towards locality and translation invariance render them 
exceptionally well-suited to capturing the spatio-temporal patterns 
characteristic of events such as inter-ictal spikes and sharp waves, 
as well as pre-ictal rhythmic discharges. The core of this approach 
lies in treating convolutional filters as learnable feature detectors. As 
filters scan the raw EEG or its spectrograms along both the temporal 
and channel dimensions, they effectively identify and encode recurring 
waveform features in a manner analogous to visual inspection by 
clinicians. This efficient extraction of local, context-dependent features 
constitutes the key physiological basis enabling relatively shallow 
CNN models to achieve high performance across numerous epilepsy 
prediction benchmarks.

The earliest CNN was proposed by Lecun et al. [34] in 1998. As a DL 
algorithm inspired by the visual working mechanism of biology, CNN 
is widely used in the field of computer vision [35]. As early as 2009, 
Mirowski et al. applied CNNs to the problem of ES prediction [30]. 
They compared the performance of CNNs, logistic regression and SVM 
in ES prediction from iEEG signals. The features used were manually 
designed inter-channel bi-variate features (cross-correlation, nonlinear 
interdependence, dynamical entrainment or wavelet synchrony) that 
encoded relationships between pairs of EEG channels. Then, the CNN 
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is applied to extract the features to classify the pre-ictal and inter-ictal 
periods. The detailed network architecture is illustrated in Fig.  3.

Then, Khan et al. [36] applied CNN into sEEG signals. They per-
formed a continuous wavelet transform (CWT) on each channel of the 
EEG to obtain a tensor of wavelet coefficients with three modes: time, 
scale and channel. The CWT can use windows of different sizes. For 
example, a narrow window is used for high frequencies and a wide 
window is used for low frequencies. This approach allows for better 
analysis of time-frequency domain features. Then, the transformed 
signals are inputted into the CNN to extract the features. The CNN is 
trained using labelled data (i.e. inter-ictal, pre-ictal and ictal states). 
The output of the CNN is a probability distribution of these three 
categories, which is used to predict when a ES is likely to occur.

After that, Truong et al. [37] proposed firstly transformed the 
EEG signals to spectrograms by short-time Fourier transform (STFT). 
Then, they applied CNN in iEEG and sEEG databases. In 2020, Xu 
et al. [38] proposed not to process and transform EEG signals and used 
the original EEG signal as input. An end-to-end CNN was constructed 
to ES prediction. This method was applied in the AES Prediction 
Challenge and CHB-MIT as the datasets. This end-to-end CNN network 
is also applied in subsequent papers [12]. After 2020, researchers have 
attempted to solve the ES prediction problem using CNNs of different 
dimensions.

Using 2D-CNNs for processing biological signals offers advantages. 
Firstly, due to the time-frequency technology, the original EEG signals 
can be transformed into spectrograms which are 2D images. 2D-CNNs 
can efficiently handle these kinds of 2D images, allowing for the use of 
image-based DL models [39].  In order to better extract the features of 
the EEG signal after CWT, Hussein et al. [40] proposed an efficient data 
preprocessing method to convert time-series EEG signals into an image-
like form (‘‘scalogram’’) using the CWT. Then, a convolution module 
called ‘‘semi-expansive convolution’’ is developed to better utilise the 
wavelet spectrogram and the geometric properties of non-square im-
ages. Some other studies [41,42] have similarly applied time-frequency 
transformation with 2D-CNN networks to improve the performance of 
ES prediction.

How to generate 2D images from 1D EEG signals and how to 
evaluate the quality of 2D images remain a key issue. In addition, brain 
rhythms suitable for ES analysis have not been fully explored. Shankar 
et al. [43] used 2D Recursive Picture (RP) images to generate EEG 
signals for specific brain rhythms and analysed them using 2D-CNN 
to address these issues. Ibrahim et al. [44] proposed the 2D-CNN with 
combining phase space reconstruction (PSR). The advantage of PSR is 
the direct projection from the time domain, thus preserving the main 
trends of the different signalling activities. Mu et al. [45] conducted 
by calculating the transfer entropy and phase transfer entropy of EEG 
signals and slicing them into features. These features are then classified 
pre-ictal or inter-ictal period using a deeply separable CNN with low 
parameters and computational.

Compared to higher dimensional CNNs, 1D-CNNs have fewer pa-
rameters, so the processing speed is faster in a single epoch [46]. 
They operate directly on multi-channel EEG time series [47,48] or 
time–frequency methods to extract the features such as STFT, DWT, 
SET/SVD [49–51] (see Fig.  4). These features distributed in different 
channels are used as inputs to the 1D CNN. Then, 1D convolutional 
kernel extracts features for multiple channels by stride. The features 
are classified after pooling and fully connected layers. Owing to their 
compactness, hardware-friendly 1D-CNN implementations with very 
low parameter counts have also been demonstrated [52].

Unlike 2D CNNs, 3D CNNs add correlations between images as 
features [53]. Qi et al. [54] presented a patient-specific approach based 
on EEG data to predict ES using spatial depth features of the 3D–2D 
Hybrid CNN (3D–2D HyCNN) model. This approach contributes to the 
acquisition of abundant and reliable depth features from multichannel 
EEG signals. The authors firstly reconstructed time-series EEG signals 
into 3D feature images. Then, correlation features between multichan-
nel EEG signals are extracted using a 3D-2D HyCNN, and these features 
are automatically utilised by the network to improve ES prediction.
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Fig. 4. The EEG signals were fed into a tiny CNN [49] after passing through 
the STFT for 20 s. The 1D-CNN consists of six convolutional layers, the first 
two of which are of size 1 × 5 and stride 1 × 3, and the last four are of size 
1 × 3 and stride 12. The features are then passed through a fully connected 
layer and classified by the model into pre-ictal and inter-ictal periods.

3.1.2. Graph Neural Networks (GNNs)
Network-based methods for predicting ES have recently been recog-

nised as a promising research direction [14]. These methods treat 
the brain as a dynamic network, in which ES activity is reflected 
in the constantly evolving connection patterns between different re-
gions. Graph neural networks (GNNs) were firstly proposed in 2009 
as a supervised learning framework [55] and are well-suited to this 
paradigm due to their ability to model dependencies between graph 
nodes through iterative information exchange. In the context of ES 
prediction, EEG channels can be viewed as nodes, while functional 
or structural connections between channels can be modelled as edges. 
This representation enables GNNs to capture spatial dependencies that 
traditional temporal models may overlook.

GNN-based approaches are motivated by the growing view of
epilepsy as a network disorder rather than a purely focal phenomenon. 
iEEG and high-density sEEG studies consistently show that seizures 
emerge from and propagate through distributed cortico–subcortical net-
works, with abnormal patterns of functional connectivity long before 
clinical onset. By representing channels or cortical regions as nodes 
and their functional or structural connections as edges, GNNs encode 
this network structure directly into the model architecture. Message-
passing operations in GNNs can be interpreted as modelling the spread 
of pathological activity along these connections, enabling the network 
to learn which subnetworks or hubs are most predictive of impending 
seizures. This inductive bias towards graph-structured interactions may 
partly explain why GNNs tend to be more robust than purely grid-based 
CNNs on heterogeneous, multi-centre datasets.

Building on the success of CNNs, graph convolutional networks 
(GCNs) further extend convolutional operations to irregular graph do-
mains [56]. By aggregating node features and their neighbours’ fea-
tures, GCNs can learn high-level representations of brain networks 
and have been applied to distinguish pre-ictal and inter-ictal states. 
However, several challenges remain. Firstly, the construction of graph 
structures (e.g., based on electrode placement, coherence, or correla-
tion measurements) lacks standardisation, and different choices may 
lead to significantly different results. Secondly, most available datasets 
have limited spatial coverage and small patient sample sizes, which 
may affect the robustness and generalisation ability of GNN/GCN-based 
models. Third, patient-specific variability (e.g., electrode implantation 
location or signal quality differences) poses additional challenges for 
cross-patient evaluation.

Lian et al. [57] found that the effectiveness of GCNs is highly 
dependent on a priori maps describing the intrinsic relationships of 
EEG regions. However, due to the complex mechanisms of seizure 
evolution, the underlying relationships may vary from patient to patient 
before the seizure, making it nearly impossible to build appropriate 
a priori maps in general. To address this problem, they proposed the 
Joint Graph Structure and Representation Learning Network (JGRN) 
to automatically learn patient-specific graphs in a data-driven manner. 
The architecture of JGRN is shown in Fig.  5. Then, in order to explore 
the spatial and temporal dependencies in patient brains, Li et al. [58] 



X. Huang et al. Biomedical Signal Processing and Control 117 (2026) 109518 
Fig. 5. The iteration process of JGRN Structure [57]. Firstly, the result after 
subgraph clustering is divided into two structures, global and local. After that, 
the obtained graph structure is subjected into graph convolution to get a graph 
representation. Finally a fully connected layer is added to classify the features.

proposed the spatio-temporal-spectral hierarchical GCN with a active 
pre-ictal interval learning scheme (STS-HGCN-AL). They first extracted 
the features of the different rhythms. After that, a residual GCN was 
used to capture the local and global dependencies within each rhythm 
for classification.

In 2022, Jia et al. [11] have attempted to apply a low-power 
implementable GCN on wearable devices. They reduced the compu-
tational effort of the model by extracting the necessary node and 
edge features. After that, Wang et al. [59] pointed out that most of 
the existing methods for ES prediction based on GCN focus only on 
the construction of static graphs. They first extracted the temporal, 
spatial and spectral features of the EEG signal. Then, they designed a 
point-wise Dynamic Multi-Graph Convolutional Network (dMGCN) to 
dynamically learn the graph structure to efficiently extract high-level 
features from multi-domain maps.

GCN is also widely used to solve the problems of data scarcity, diver-
sity and privacy face by ES prediction systems. Dissanayake et al. [60] 
proposed a subject-independent seizure predictor using geometric deep 
learning (GDL) to address the problem of limited training data for the 
target patients. Saemaldahr et al. [61] proposed a Spiking Encoder 
(SE) integrated with GCNN (Spiking-GCNN). The network is able to 
utilise a large number of seizure patterns from a globally distributed 
patient population through federated learning (FL) while maintaining 
data privacy.

3.1.3. Recurrent neural networks (RNNs)
Recurrent Neural Networks (RNNs) [62] is a neural network suitable 

for processing sequence data, which can effectively capture the tempo-
ral information in the sequence. Therefore, as a dynamic time series 
signal, the feature of EEG signals can be analysed by RNN through its 
cyclically connected structure.

The clinical rationale for using recurrent and attention-based archi-
tectures lies in the inherently temporal nature of pre-ictal dynamics. 
Prior to an ES, gradual changes occur in synchronisation, spectral 
content, and network state, evolving over tens of seconds to several 
minutes. This enables RNNs to discern the precise moment of change 
by observing features of long-term information. When combined with 
temporal attention mechanisms, these models can further highlight spe-
cific time points within the pre-ictal window that are most informative 
for prediction. This approach facilitates the forecasting of ES.

Long Short-Term Memory (LSTM). One of the problem with origi-
nal RNN is mainly short-term memory. LSTM can mitigate the gradient 
vanishing problem when dealing with sequential data through a gating 
mechanism [63]. Meanwhile, LSTM can also capture long-term depen-
dencies through cell state and gating mechanism, which can retain 
the farther context information when processing sequential data [64]. 
LSTM has a sensitivity to time and can learn patterns and features in 
temporal data, which is well suited for temporal signal processing such 
as EEG. LSTM contains three different gates. The forget gate determines 
how much information stored in the previous cell state needs to be 
deleted. The input gate determines what new information is stored in 
the current cell state. The output gate determines what information is 
output from the cell state [65]. Therefore, the features of the EEG signal 
8 
Fig. 6. The model first extracts four different types of features from the 
EEG signals of each segment of 5s: time domain, frequency domain, cross-
correlation and graph theory. Later, after normalisation, it ends up in a 
two-layer LSTM network in which 128 memory units per layer are combined 
with a fully connected layer for classification [66].

can be processed sequentially by these three gate structures according 
to different time steps.

In 2018, LSTM was first applied to address ES prediction using EEG 
signals. Tsiouris et al. [66] proposed an LSTM-based classifier to label 
sEEG segments as pre-ictal or inter-ictal. The model utilises a variety of 
features extracted prior to classification, including time and frequency 
domain features, cross-correlation between EEG channels, and graph 
theoretic features. The detailed structure is shown in Fig.  6

Ryu et al. [67] demonstrated a hybrid DL model with LSTM and 
Dense Convolutional Network (DenseNet). The model utilises the dis-
crete wavelet transformed EEG signal as input and combines it with 
a DenseNet to extract features. LSTM applied to analysis the feature 
by every time step in order to classify the pre-ictal and inter-ictal 
states which detailed construction is shown in Fig.  8. Usman et al. 
also attempted to combine LSTM networks with other networks in 
an ensemble learning approach to predict ES [68]. The authors first 
generated pre-ictal segments using a GAN after pre-processing the 
signal through empirical pattern decomposition. A three-layer CNN 
was then used to automatically extract signal features and combine 
them with artificial features. Finally, model-independent meta-learning 
is utilised to combine the outputs of SVMs, CNNs and LSTMs. After that, 
Wu et al. [65] proposed a different idea by applying only the Gamma 
bands of the raw EEG signals as the input of an end-to-end LSTM 
model. The end-to-end LSTM network can directly utilise the input 
data without pre-processing. Such a network simplifies the process of 
designing and training DL models, while being able to improve the 
performance and generalisation of the models.  Recently, Abdulwahhab 
et al. [69] proposed a parallel CNN–LSTM architecture. They fed the 
time–frequency map obtained from EEG via CWT/STFT into a CNN, 
while simultaneously processing the original time series using LSTM, 
and fused the output in a fully connected layer. This method achieved 
99.75% accuracy on the Bonn dataset and approximately 97% on 
CHB-MIT.

Compared to LSTM, Bi-directional LSTM (Bi-LSTM) can compute 
both forward and backward at the same time and can better capture the 
information in the sequence. This also helps to extract better feature 
representations, which improves the robustness and generalisation of 
the model [70]. However, since Bi-LSTM requires simultaneous forward 
and backward computation, it requires a larger amount of computation 
and longer training time.

In 2018, Daoud et al. [71] used Bi-LSTM for processing the features 
through the pre-trained encoder. The detailed model structure is illus-
trated in Fig.  7. After that, Yan et al. [72] also applied Bi-LSTM to 
process the features from DenseNet based on the pre-processing method 
STFT.  Then, Zhang et al. [73] presented that Bi-LSTM can learn multi-
dimensional sample entropy (M-SampEn) features to achieve ES predic-
tion. Also, some innovative LSTM networks have also been proposed 
such as multiplicative long short-term memory (MLSTM) [74].

Transformer. The attention mechanism was first proposed in Trans-
former [75]. As the core of Transformer, the logic of the attention 
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Fig. 7. The input to the model is a multichannel EEG signal. The EEG signal 
is formatted as a matrix where one dimension represents the EEG channel and 
the other dimension represents the time step. The extracted features are fed 
into the Bi-LSTM model for training by using a pre-trained encoder as a feature 
extractor. Finally the features are classified by the Bi-LSTM model [71].

Fig. 8. The raw EEG signals are transformed to time–frequency images by 
DWT every 10 s. The multichannel time–frequency images are fed into 
DenseNet-LSTM [67]. The model has 2D convolutional layer of size is 7 × 7 
with a stride size of 2. The model then processes the feature map using two 
dense blocks containing 6 sub-layers and 12 sub-layers (each sub-layer consists 
of a convolution of size 1 × 1 and a convolution of size 3 × 3). An average 
pooling layer containing convolution of size 1 × 1 and 2 × 2 is added after 
each dense layer with a stride size of 2. After that, the feature maps were 
transformed into 1D vectors after passing through the global average pooling 
layer and fed into the LSTM.

mechanism is from focusing on the whole sequence to focusing on 
the key points. Therefore, compared to other RNNs, Transformer saves 
more computational resources and quickly obtains the most effective 
information [76].

Some researchers combined the attention mechanism with the
ResNet model. These algorithms first converted the raw EEG signal into 
a spectrogram by STFT by every channel. Combining the spectrogram 
of multiple channels results in an input format with three dimensions: 
frequency, time, and channel. Yang et al. [77] developed a generalised 
method for predicting ES in specific patients. They proposed a dual self-
attention residual network (RDANet) that combines a spectral attention 
module with global features and a channel attention module that 
mines interdependence between channel mappings. After that, A model 
called TASM ResNet was proposed [78] based on a Temporal Attention 
Simulation Module and a pre-trained ResNet with iEEG signals which is 
shown in Fig.  9.  In addition, a DL framework called Channel Attention 
Dual-Input CNN (CADCNN) was proposed by Sun et al. [79].

The Attention mechanism is also used in the gated recurrent unit 
(GRU) network. GRU has one less gate inside GRU compared to LSTM. 
So GRU has fewer parameters than LSTM, but it can also realise the 
function of LSTM [80]. To address the effective properties of EEG 
that may not be adequately evaluated, Wang et al. [81] proposed 
a synchronisation-based spatiotemporal graphical attention network 
(STGAT). The spatial and functional connectivity information between 
EEG channels is first extracted using phase-locked values (PLVs), thus 
modelling multichannel EEG signals as graph signals. The STGAT model 
then utilises GAT and GRU to dynamically learn the temporal correla-
tion of EEG sequences and explore the spatial topological information 
of multiple channels. Ji et al. [82] proposed GAMRNN which com-
bines a two-layer GRU model with a convolutional attention module. 
GAMRNN aims to capture intricate spatiotemporal features by high-
lighting informative feature channels and spatial pattern dynamics. 
They employed Lion optimisation algorithms to enhance the model’s 
generalisation capability and prediction accuracy. The GAMRNN can 
achieve ES prediction within a lead time of 5 to 35 min.
9 
Fig. 9. Architecture of the TASM ResNet model. The input data shape of this 
model is (C,T,B) where C is the number of channels, 𝑇  is the number of time 
samples and B is the number of bands. TASM is used to convert the input EEG 
data into image like data and extract the temporal features [78].

Not only can the Attention mechanism be applied to other networks, 
but the Transformer can be used to extract features from EEG signals. 
Transformer’s outstanding ability to capture long-term dependencies 
and interactions is particularly attractive for time series modelling [83]. 
Yan et al. [84] proposed a transformer model applied in ES prediction. 
By transforming the EEG signals in the CHB-MIT Scalp EEG Database 
to spectrogram using the STFT, the features of the spectrogram are 
fused and classified using a three-transformer tower model. Then, the 
model combined the Transformer with graph attention network (GAT) 
called Gatformer was proposed by Wang et al. [85]. Temporal and 
spatial attention are combined to extract EEG information from the 
perspective of spatio-temporal interactions.  Cseker et al. compared 
Transformers and CNNs for classifying mild cognitive impairment on 
resting-state EEG spectrograms, reporting significantly superior perfor-
mance to CNNs [86]. Although not an early-stage scenario, the results 
suggest that Transformers based on spectrograms can better capture 
complex spatiotemporal dynamics, thus holding potential value for 
future ES prediction.

Vision Transformer (ViT) is a model proposed by the Google team 
in 2020 to apply Transformer to image classification. ViT divides 
the image into a series of patches and converts each patch into a 
vector representations as an input sequence. These vectors are then 
processed through multiple layers of Transformer encoders. The model 
can capture the contextual dependencies at different locations in the 
image [87]. Since EEG signals can be converted into the spectrograms 
by time-frequency conversion techniques, ViT has also been attempted 
to be applied in ES prediction tasks.

Zhang et al. first applied ViT in ES prediction [88]. In this paper, 
the raw EEG signals of each patient in CHB-MIT were filtered, and 
the pre-ictal and inter-ictal periods were extracted and labelled which 
were converted into 2D spectrograms by STFT. Then, the spectrogram 
was input into the ViT model to complete the feature extraction and 
ES prediction.  Subsequently, Hussein et al. [89] proposed the Multi-
channel Vision Transformer (MViT). They enhanced this approach 
by automatically learning the spatio-temporal and spectral features 
of multi-channel EEG signals. The methodology involves first con-
verting the EEG into a scalogram using the CWT, then segmenting 
it into fixed-size, non-overlapping patches. These patches are subse-
quently concatenated across channels before being fed into the MViT 
for classification (see Fig.  10).

3.1.4. Spike neural networks (SNNs)
SNNs use models that fit biological neuronal mechanisms to perform 

computation. By constructing impulse transfer information between dif-
ferent neurons, SNNs are able to learn features similarly to Multilayer 
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Table 4
Summary of ES prediction performance using supervised learning methods. Accuracy represents the proportion of seizures correctly classified as either predicted 
or non-predicted. Sensitivity corresponds to the true positive rate, i.e., the proportion of seizures correctly predicted before their onset. Specificity denotes the 
true negative rate, i.e., the proportion of inter-ictal periods correctly identified as non-seizure. The false prediction rate (FPR) refers to the average number of 
false alarms per hour. The area under the ROC curve (AUC) quantifies the overall discriminative ability of the model. The seizure prediction horizon (SPH) is 
the time window between the prediction alarm and the actual seizure onset.
 Ref Year Database Method Evaluation Cases Accuracy Sensitivity Specificity FPR AUC SPH  
 [90] 2020 CHB-MIT 2D-CNN LOSOCV 23 90.00% 92.00% – 0.120/h 0.9200 30 min  
 [91] 2020 CHB-MIT Transfer learning – 11 92.60% 92.30% 97.00% – – 10 min  
 [38] 2020 CHB-MIT

AES
2D-CNN – 7

5
– 98.80%

93.50%
– 0.074/h

0.063/h
0.9880
0.9810

5 min  

 [57] 2020 Freiburg GNN 5-F CV 9 95.67% 83.68% – – – 10 min  
 [60] 2021 CHB-MIT GNN 10-F CV 6 95.38% 94.47% 94.16% – 0.9878 60 min  
 [73] 2021 CHB-MIT LSTM – – 80.09% 86.67% – 0.260/h – 5 min  
 [79] 2021 CHB-MIT Attention – 17 97.10% 95.60% – 0.029/h 0.9170 3 min  
 [67] 2021 CHB-MIT LSTM K-F CV 24 93.28% 92.92% 93.65% 0.063/h – –  
 [77] 2021 CHB-MIT Attention 5-F CV 13 92.07% 89.33% 93.02% – 0.9126 –  
 [68] 2021 CHB-MIT

AES
LSTM K-F CV 24

5D, 2P
– 96.28%

94.20%
95.65%
95.80%

– – 33 min  

 [40] 2021 CHB-MIT
AES

2D-CNN LOPOCV – 98.82% 98.90%
88.45%

98.75% 0.060/h –
0.9280

–  

 [92] 2021 CHB-MIT SNN – 7 95.10% – – 0.080/h 0.9140 –  
 [42] 2021 CHB-MIT

Freiburg
2D-CNN LOSOCV 20

16
– 85.00%

91.00%
– 0.14/h

0.06/h
– 30 min  

 [47] 2022 Freiburg 1D-CNN K-F CV 16 95.13% 98.65% – 0.080/h – 5 min  
 [88] 2022 AES 1D-CNN 5-F CV 5D, 2P 94.44% – – 0.011/h 0.9790 –  
 [44] 2022 CHB-MIT 2D-CNN – – 99.89% 99.89% 99.95% – – –  
 [12] 2022 CHB-MIT end-to-end CNN LOSOCV

5-F CV
16 93.30% – – 0.007/h – 30 min  

 [74] 2022 CHB-MIT
SWEC-ETHZ

LSTM – – – 89.47%
95.56%

– 0.340/h
0.270/h

 

 [88] 2022 CHB-MIT Transformer – 14 81.20% 75.59% 81.78% – 0.8570 –  
 [47] 2022 CHB-MIT Attention – 24 98.74% 98.87% 99.21% – – –  
 [89] 2022 CHB-MIT Transformer – – 99.80% 99.80% 99.70% 0.004/h – –  
 [78] 2022 AES Attention 5-F CV 7 80.50% 76.10% 81.00% – 0.8980 –  
 [84] 2022 CHB-MIT Transformer – 23 – 96.01% 96.23% 0.047/h – 3 min  
 [45] 2022 CHB-MIT 2D-CNN – – 98.87% 98.45% 99.26% – – 15 min  
 [52] 2022 CHB-MIT

SWEC-ETHZ
1D-CNN 5F-CV 5

5
99.01%
97.54%

99.24%
98.22%

98.68%
97.02%

0.470/h
0.990/h

– 5 min
5 min

 

 [11] 2022 CHB-MIT GNN LOSOCV 18 – 96.51% – – 0.9200 60 min  
 [58] 2022 CHB-MIT GNN LOSOCV 19 – 95.50% – – 0.9380 15–90 min  
 [93] 2022 CHB-MIT Transfer learning – 20 93.80% 91.20% 93.80% – – 5 min  
 [41] 2022 CHB-MIT 2D-CNN 5-F CV 23 96.99% 96.48% 97.46% – – –  
 [48] 2023 CHB-MIT 1D-CNN – 23 96.55% 96.47% – – – –  
 [51] 2023 CHB-MIT

Bonn
1D-CNN – 23

8
99.71%
99.97%

99.75%
100.00%

99.56%
99.95%

– – –  

 [50] 2023 CHB-MIT 1D-CNN – – 98.09% 99.04% – – – –  
 [65] 2023 CHB-MIT LSTM 10-F CV 13 – 91.76% – 0.290/h – 60 min  
 [85] 2023 CHB-MIT Transformer 5-F CV 24 98.74% 98.87% 99.21% – – –  
 [82] 2023 CHB-MIT Attention LOSOCV – 91.73% 88.09% 92.09% 0.053/h – 5–35 min  
 [72] 2023 CHB-MIT LSTM LOSOCV 24 92.45% 92.66% – 0.066/h 0.9360 –  
 [94] 2023 CHB-MIT LSTM LOSOCV 13 – 82.84% 85.97% – 0.9080 –  
 [59] 2023 CHB-MIT GNN LOSOCV 23 – 97.81% – 0.059/h – –  
 [61] 2023 CHB-MIT GNN LOSOCV

k-F CV
24 96.28% 96.33% 96.14% 0.090/h 0.8960 –  

 [95] 2023 EPILEPSIA Transfer learning – 10 98.47% – – 0.031/h – 40 min  
 [54] 2023 CHB-MIT 3D-CNN LOSOCV 13 98.43% 98.58% 96.86% – – –  
Table 5
Quantitative synthesis of DL architectures for ES prediction. For each architecture, we report the unweighted mean ± SD of Sensitivity, FPR (/h), and AUC 
across the reviewed studies. ‘‘Best paper (by AUC)’’ lists the study with the highest reported AUC within that family. Parentheses indicate the number of studies 
contributing to a given metric.
 DL architecture Papers (𝑁) Avg. Sensitivity (%) (Mean ± SD) Avg. FPR (/h) (Mean ± SD) Avg. AUC (Mean ± SD) Best paper  
 CNNs (1D/2D/3D) 19 96.25 ± 4.41 0.167 ± 0.274 0.9670 ± 0.0316 Xu et al. [96]  
 RNN/LSTMs 9 91.37 ± 4.36 0.215 ± 0.120 0.9220 ± 0.0198 (𝑁 = 2) Yan et al. [72]  
 GNNs 6 94.05 ± 5.20 0.075 ± 0.022 (𝑁 = 2) 0.9355 ± 0.0389 Dissanayake et al. [60] 
 Transformer/Attention 9 90.92 ± 9.48 0.033 ± 0.022 (𝑁 = 4) 0.8962 ± 0.0273 (𝑁 = 4) Sun et al. [79]  
 Overall Aggregate 43 93.75 ± 6.19 0.149 ± 0.211 0.9313 ± 0.0397 Xu et al. [96]  
10 
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Table 6
Quantitative synthesis by database for ES prediction. Values are unweighted mean ± SD across included studies. ‘‘Best model (by AUC)’’ denotes the highest 
reported AUC on that dataset. If the AUC is not reported, then the highest sensitivity should be used as the evaluation metric. ‘‘N/A’’ = not reported.
 Database Studies (𝑁) Avg. Sensitivity (%) (Mean ± SD) Avg. FPR (/h) (Mean ± SD) Avg. AUC (Mean ± SD) Best model  
 CHB-MIT 36 94.16 ± 5.61 0.125 ± 0.129 0.9255 ± 0.0377 Xu et al. [96]  
 AES 5 88.06 ± 8.38 0.047 ± 0.029 0.9465 ± 0.0406 Xu et al. [96]  
 Freiburg 3 91.11 ± 7.49 0.070 ± 0.014 N/A Wang et al. [47] 
Fig. 10. Framework of MViT for multi-channel EEG feature learning [89] The 
EEG signal was first transformed to Scalograms by CWT. Then, the different 
patches in the scalogram are combined with the corresponding position codes 
and fed into the encoder of the transformer. Different channels are labelled as 
different branches. After passing through the features aggregation layer, these 
features are classified by Multi-Layer Perception.

Perceptron (MLP) [97]. Therefore, SNN is called the third-generation 
neural network. Since the concept of SNN is closely related to neurons 
in the brain, it is applied to the ES prediction problem. The EEG signal 
is first passed through a pulse encoder that converts the continuous EEG 
signal into a time-dependent pulse sequence. SNNs make ES prediction 
by learning different [92]. The computational effort is greatly reduced 
due to the encoding of raw signals into pulse features. So SNN is an 
energy efficiency and hardware friendly network.

3.1.5. Transfer learning
Due to the low data amount of publicly available EEG databases for 

ES prediction, the researchers applied deep transfer learning algorithms 
to solve the issue. The advantage of deep transfer learning algorithms 
is that only a small amount of data is fed into the DL network, and the 
input data is classified using the network parameters that have already 
been learned from the large database [98].

Residual Neural Network (ResNet). ResNet was proposed by He 
et al. [99] won the champion of ImageNet Large Scale Visual Recog-
nition Challenge in 2015. The main contribution of ResNet is the 
discovery of ‘‘Degradation’’ and the invention of ‘‘Shortcut connection’’ 
to address the degradation phenomenon, which greatly eliminates the 
problem of training neural networks with too much depth [100]. For 
the first time, the depth of neural networks exceeded 100 layers, and 
the largest neural networks even exceeded 1000 layers.

Mohammad et al. [93] applied ResNet and transfer learning
(SPERTL) for a patient-specific ES prediction model using EEG data. 
The model used is trained on a dataset of >2.5 million patients [101]. 
The EEG signals are fed into the pre-trained ResNet. The convolutional, 
residual blocks and fully connected layers in the model are fine-tuned 
through training. On the CHB-MIT Scalp EEG Database, 20 patients 
with a SPH of 5 min were trained in this model.

Inception. The Inception network is an milestone in the history of 
CNN classifiers. Before Inception, most popular CNNs simply stacked 
more and more convolutional layers to make them deeper and deeper in 
the hope of getting better performance. The feature of GoogLeNet [102] 
is the use of the Inception module, which aims at designing a network 
with an excellent local topology, i.e., performing multiple convolution 
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operations or pooling operations on the input image in parallel and 
stitching all the outputs into a very deep feature map [103].

Gao et al. [91] proposed method of Epileptic EEG Signal Classifi-
cation. This method firstly converts epileptic EEG signals into power 
spectral density energy maps (PSDED). Then, the PSDED are fed into 
the pre-trained Inception-v3 [100], ResNet152 and Inception-ResNet-
v2 [99]. EESC learns PSDED features by fine-tuning the entire model. 
Sarvi Zargar et al. [95] applied three different models for transfer 
learning, namely Xception [104], EfficientNet-B0 [105] and MobileNet-
V2 [106]. These models learn from features by freezing the convolu-
tional layer weights and adding new classification layers.

Yang et al. [107] demonstrates a new application of Inception-V3 
in ES prediction, using a transformed network-based data augmenta-
tion approach together with multi-weighted fuzzy-granular recurrence 
graphs. This method generates synthetic pre-ictal signals via random 
walks and converts EEG data into non-linear recurrent images, enabling 
robust modelling of noise. On the CHB-MIT and AES datasets, the 
method achieved average sensitivity, specificity, and accuracy exceed-
ing 96%. These results indicate that Inception-V3 is not only effective 
in transfer learning tasks but can also be combined with novel feature 
representations to explore more complex ES prediction scenarios. How-
ever, the method relies on synthetic data and complex preprocessing, 
and its clinical feasibility requires further validation.

3.2. Unsupervised learning

Unsupervised learning algorithms have different learning methods 
in ES prediction. Some unsupervised learning algorithms augment the 
original dataset by generating signals similar to the original dataset 
by studying the distribution of the data, thus improving the prediction 
performance of the dataset. The other unsupervised learning algorithms 
learn the original features of the data before classifying the signals. 
They do not require labels when learning the features of the data.

A statistical overview of the unsupervised learning studies (Table  7) 
reveals that this research direction is still in its early stages but demon-
strates significant potential. These unsupervised learning approaches 
have been primarily applied to the CHB-MIT and AES datasets. Re-
ported sensitivities are often above 90%, and in some cases approach 
97%, indicating strong predictive ability.

However, accuracies are less consistently reported, and AUC values 
range widely from 0.83 to 0.98, reflecting less stable performance 
compared with supervised approaches. FPR also show large variation, 
with some methods achieving very low rates (0.009/h) while others re-
main substantially higher (0.7/h). Furthermore, the limited number of 
studies and datasets employed makes it difficult to draw firm statistical 
conclusions.

These results suggest that unsupervised learning holds significant 
promise, particularly in reducing dependence on labelled data. Nev-
ertheless, further systematic evaluations on larger and more diverse 
datasets are required to validate its clinical potential.

3.2.1. Generative Adversarial Networks (GANs)
GAN is one of the unsupervised DL algorithms proposed by Good-

fellow et al. [108] in 2014. It consists of two parts: generator and 
discriminator. The distribution of real datasets can be captured by the 
unsupervised learning procedure of the generator. Then, the generator 
can forge the data according to the learned distribution by inputting 
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the random noise. The discriminator corrects the generated data based 
on the difference between the generated data and the real data.

Since 2018, scholars have consecutively proposed the use of GANs 
in EEG signals. Hartmann et al. [109] described a framework called 
EEG-GAN to generate the EEG signals. The construction of the proposed 
GAN model used the DCGAN [110]. They compared the performance 
with several upsampling methods within the CNN-based generator 
in different metrics such as Inception Score (IS), Frechet Inception 
Distance (FID) and sliced Wasserstein Distance (WD). These evaluation 
indicators demonstrates were used as an assessment of the differences 
between the generated model and the real data distribution.

In 2019, Truong et al. [111] first applied GAN to predict ES from 
EEG signals. They proposed a method which was utilised by three 
public EEG datasets including CHB-MIT, Freiburg, and EPILEPSIAE 
respectively. The data was divided into two stages, inter-ictal and pre-
ictal. Then, they defined SOP as 30 min and SPH as 5 min. To analyse 
the data, Spectrograms were generated using the STFT on the original 
datasets. The GAN was trained through unsupervised learning on EEG 
signal. The trained discriminator of the GAN is then used as a feature 
extractor. The features generated by the feature extractor are classified 
by two fully connected layers on the labelled EEG signals. The results 
of the studies have shown that the GAN-based approach outperforms 
previous CNN [112] in predicting ES. The detailed structure of GAN is 
shown in Fig.  11.

After that, Pascual et al. [113] proposed EpilepsyGAN as a synthetic 
brain activity generator for epileptic patients to preserve privacy. This 
is the first time that GAN has been used as a synthetic EEG signal 
for epileptic patients. Then, Rasheed et al. [114] used the CHB-MIT 
and Epilepsy-ecosystem to synthesise the EEG signals for ES prediction. 
They used STFT to process EEG signals in 30-second segments. These 
spectrograms were fed into the DCGAN for learning. The trained gen-
erator produced spectrograms that were used for data augmentation. 
They used a CNN as a classifier for ES prediction.

Xu et al. [96] proposed a pre-ictal signal synthesis algorithm based 
on GANs to generate muti-channel EEG pre-ictal samples. They fed 
the temporal signals into four GANs with different structures. The 
performance of the GAN was evaluated by comparing the difference 
between the samples generated by the trained generator and the orginal 
samples using FDRMSE (Frequency domain root mean square error), 
FID and WD. They found that Deep Convolutional Wasserstein Gen-
erative Adversarial Network (DCWGAN) outperformed the rest of the 
models. Subsequently, they expanded the DCWGAN-generated samples 
to the original dataset. Compared to the original dataset, the expanded 
dataset improved both the accuracy of ES prediction and the area under 
the receiver operating characteristic curve (AUC-ROC). Yu et al. [115] 
synthesised EEG signals by Conditional GAN (CGAN) for data augmen-
tation. Compared to other GAN models, they added refiner to CGAN to 
solve the problem of data scarcity and imbalance. The refiner further 
reduced the difference between the generated data and the real data 
by learning the data generated by CGAN. After that, Yang et al. [94] 
first utilised unsupervised learning to train the discriminators in the 
Wasserstein GAN as feature extractor. Then, they applied Bi-LSTM to 
predict the ES by incorporating the features of EEG signals.

3.2.2. AutoEncoder
AutoEncoder as an unsupervised learning model is mainly trained 

based on a back propagation algorithm with optimisation methods
[121]. The model can be divided into two main parts: an encoder and 
a decoder. The role of the encoder is to encode the high-dimensional 
input vector into a low-dimensional hidden variable thus forcing the 
neural network to learn the most informative features. The role of 
the decoder is to reduce the hidden variables of the hidden layer to 
their initial dimensions, ideally in a state where the output of the 
decoder perfectly or approximately recovers the original input. The 
advantage of the AutoEncoder is that it is highly generalisable and does 
not require data annotation. Abdelhameed et al. [122] proposed an 
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Fig. 11. The GAN structure [111]. The generator takes 100 data points 
randomly drawn from a uniform distribution from −1 to 1 as input. The 
input is fully connected to a hidden layer with an output size of 6272, 
which is then reshaped to 64 × 7 × 14. The number of filters in the three 
deconvolution layers is 32, 16, and n, respectively. The discriminator consists 
of three convolutional layers with a filter size of 5 × 5 and a stride of 2 × 2. 
The number of filters in the three convolutional layers is 16, 32, and 64, 
respectively.

ES prediction system. The system combines a 2D deep convolutional 
AutoEncoder and Bi-LSTM. First, they used the AutoEncoder as a 
feature extractor. Then the extracted features are fed into Bi-LSTM. 
Bi-LSTM performs ES prediction based on temporal information. After 
that, a network was proposed by Gözütok et al. [116]. The authors used 
convolutional AutoEncoder for feature extraction. LSTM was then used 
for ES prediction.

As one of the AutoEncoder, Variational AutoEncoder (VAE) is also a 
generative network structure based on Variational Bayes (VB) inference 
proposed by Kingma et al. [123]. It introduces random variables and 
probabilistic models on top of the AutoEncoder, enabling the model to 
learn the probability distribution of the data. Therefore, the model has 
great application in data generation. He et al. [119] proposed a data 
augmentation method based on a stochastic transformation strategy 
to solve the problem of insufficient datasets in EEG signals without 
adding additional noise. They proposed an improved unsupervised 
feature learning method, Residual Convolutional VAE with Randomised 
Translation Strategy (RTS-RCVAE). Residual learning is embedded into 
the VAE model, which improves the model’s convergence ability in the 
unsupervised learning phase and reduces the loss of useful information. 
The proposed model is validated by training and simulation using the 
CHB-MIT.

3.2.3. Self-supervised learning
The supervised information of self-supervised learning is not manu-

ally labelled, but automatically constructed by the algorithm in large-
scale unsupervised data. Therefore, self-supervised learning is also 
a kind of unsupervised learning. Since Self-supervised Learning uses 
unlabelled datasets in the pre-training phase, this greatly reduces the 
time doctors have to spend labelling EEG data [124]. This has led to the 
application of self-supervised learning in the field of ES prediction. In 
2022, Yang et al. [118] proposed a system for continuously improving 
ES prediction through self-supervised learning using auto-correlation 
of time-series EEG signals. The system reduces the burden of manual 
labelling by generating weak labels and training them as targets. The 
method allows the development of personalised prediction models 
while eliminating the need to label long sequences of physiological 
signals.

Contrastive learning (CL) is a part of self-supervised learning. It 
makes similar samples close together in space and then makes different 
samples as far away from each other as possible [125]. Zhao et al. [117] 
proposed a method called adder net work and supervised CL (AddNet-
SCL) that reduces computational cost by using addition instead of 
multiplication in the network (see Fig.  12). In addition, the method uses 
CL to efficiently utilise label information to cluster data points of the 
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Table 7
Summary of ES prediction performance using unsupervised learning methods. Accuracy represents the proportion of seizures correctly classified as 
either predicted or non-predicted. Sensitivity corresponds to the true positive rate, i.e., the proportion of seizures correctly predicted before their 
onset. Specificity denotes the true negative rate, i.e., the proportion of inter-ictal periods correctly identified as non-seizure. The false prediction 
rate (FPR) refers to the average number of false alarms per hour. The area under the ROC curve (AUC) quantifies the overall discriminative 
ability of the model. The seizure prediction horizon (SPH) is the time window between the prediction alarm and the actual seizure onset.
 Paper Year Database Method Evaluation Cases Accuracy Sensitivity FPR AUC SPH  
 
[114]

2021 CHB-MIT
Epilepsy-ecosystem

GAN 10-F CV 13
3

– 96.00%
92.87%

0.050/h
0.150/h

– 5 min  

 [116] 2021 CHB-MIT AutoEncoder LOSOCV 5 92.20% – – – –  
 [117] 2022 CHB-MIT

AES
Self-supervised LOSOCV 19

5D
– 93.00%

89.10%
0.094/h
0.120/h

0.929
0.831

1 min
5 min

 

 [118] 2022 TUSZ
EPILEPSIAE

Self-supervised – -
30

– 63.16% 6.6/24h – –  

 [96] 2022 CHB-MIT GAN LOSOCV 7 78.00% – 0.704/h – 5 min  
 [119] 2023 CHB-MIT VAE – 12 98.43% 97.32% 0.009/h 0.984 –  
 [120] 2023 CHB-MIT Self-supervised LOSOCV 19 – 96.70% 0.072/h 0.918 –  
 [115] 2023 CHB-MIT GAN – 22 – – – 0.610 5 min  
Fig. 12. The Self-supervised Learning Structure [117]. Firstly, the model 
extracts features in the temporal dimension of the data by one-dimensional 
convolution. Then, the input features are learnt using additive convolution 
and combined with residual concatenation. A 64-dimensional features vector 
is obtained after processing by CNN. Finally, the obtained vector is updated 
and classified by contrast loss and cross entropy loss.

same category together and separate data points of different categories. 
After that, Guo et al. [120] presented a CL method for ES prediction 
using Spatio-Temporal-Spectral Network (STS-Net).

The method understands the inherent epileptic EEG patterns of dif-
ferent patients through comparative learning and extracts multi-scale 
temporal and spectral representations of different rhythms from the raw 
EEG signals. Then, these features are fed into the triple attention layer 
(TAL) for processing. Finally, ES prediction was performed by spatial 
dynamic Graph Convolutional Network (sdGCM)

It is worth noting that self-supervised learning has also achieved 
significant success in other areas of medical image analysis. Addulaa 
et al. [126] employed a hierarchical self-learning framework combined 
with transfer learning on a convolutional neural network-based model 
on the classification of breast cancer histopathology images, achieving 
an accuracy rate of 99.1% after iterative label correction. This evidence 
suggests that self-supervised techniques cannot only reduce the burden 
of manual labelling but also significantly improve the robustness and 
generalisation capabilities of models. Therefore, applying such methods 
to ES prediction may be a promising future direction.

3.3. Comparison with traditional machine learning approaches

Compared to deep learning, traditional machine learning methods 
were applied earlier in epileptic seizure prediction systems. These 
primarily employed a workflow combining handcrafted features with 
shallow classifiers. This included extracting temporal features (line 
length, variance), frequency-band power and ratios, time-frequency do-
main representations, and non-linear dynamical metrics or connectivity 
features such as Lyapunov exponents. Subsequently, seizure detection 
was performed by training support vector machines (SVM), random 
forests (RF), k-nearest neighbours, logistic regression, or shallow multi-
layer perceptrons [127–129]. Thereafter, machine learning approaches 
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advanced further in feature engineering and optimisation. For instance, 
Wang et al. [130] combined multiple time-frequency domain trans-
formations with principal component analysis in an RF classifier for 
seizure detection. Truong et al. [131] proposed integrating automatic 
channel selection with RF classification for efficient iEEG detection. 
Concurrently, Burrello et al. introduced hyperdimensional computation 
of Local Binary Patterns (LBP) and one-shot learning [132,133], the 
energy-efficient Laelaps algorithm for long-term iEEG with near ‘zero 
false alarms’ [23], and related hyperdimensional classifier ensemble 
methods [134]. These algorithms offer sound approaches for hard-
ware integration. It is worth emphasising that the pioneering work by 
Mirowski [30] and Shoeb [6], which distinguished pre-ictal from inter-
ictal states through engineered EEG features and supervised learning, 
established methodological precedents for subsequent deep learning 
workflows.

Whilst deep learning models often achieve higher metrics when 
compared against machine learning on identical datasets, these ad-
vantages are modest—typically yielding accuracy or sensitivity gains 
of approximately 5–10 percentage points. This is particularly evident 
on large, homogeneous datasets such as the CHB-MIT corpus. Con-
versely, on smaller datasets, machine learning remains competitive 
when combined with carefully designed feature extraction approaches. 
For instance, within the SWEC-ETHZ iEEG short-term dataset, hy-
perdimensional algorithms demonstrate comparatively favourable per-
formance in interpreting iEEG signals [23,133]. These observations 
suggest that deep learning models generally exhibit superior advan-
tages and performance when sufficient data is available. Nevertheless, 
traditional machine learning models may prove more suitable under 
conditions of sparse data and resource constraints.

Concurrently, considering clinical requirements, we wish to discuss 
the computational burden differences between these two approaches. 
Deep learning networks, particularly 2D/3D CNNs or Transformer-
based architectures, frequently require millions of parameters. In con-
trast, traditional classifiers operating on low-dimensional feature vec-
tors can be implemented on low-power microcontrollers or custom 
neuromorphic hardware, rendering them more suitable for fully im-
plantable or long-term wearable devices. Within closed-loop ES predic-
tion systems, latency and battery life are critical considerations.

Differences also exist in interpretability and validation approaches. 
Traditional workflows centre on feature constructs with explicit neu-
rophysiological significance, while simple classifiers like linear SVMs 
or logistic regression provide directly inspectable weights. This fa-
cilitates clinical interpretation, hypothesis generation, and regulatory 
scrutiny. In contrast, deep models learn more distributional repre-
sentations that often resist direct mapping to established biomarkers, 
though post-hoc explanation techniques partially bridge this gap. Over-
all, both deep learning and traditional machine learning possess distinct 
advantages for seizure prediction tasks. Future work may explore archi-
tectures combining deep feature extractors with lightweight classifiers, 
as discussed in Sections 4.2.3 and 4.2.5 of this paper. 
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4. Current challenges and future directions

This section mainly focus on the current challenges and future 
directions in ES prediction which are divided into two parts. One is the 
clinical medicine and the other is the DL algorithms, corresponding to 
what clinicians and researchers of DL algorithms can contribute to the 
future development of ES prediction.

4.1. Clinical medicine

4.1.1. Next clinical trial
Since the first ES prediction clinical trial was initiated in 2013, 

a decade has passed. Although the trial was terminated prematurely 
due to technical and economic constraints, the data collected remains 
invaluable to the scientific community, as it includes long-term continu-
ous iEEG recordings. Over the past decade, numerous high-performance 
deep learning algorithms have been developed using publicly available 
datasets, making it both feasible and timely to initiate new clinical 
trials. However, several challenges must be addressed before the next 
trial can be successful. These challenges include the lack of large-scale, 
demographically diverse data required to ensure model generalisation, 
the need for strict pseudo-prospective evaluation protocols, and the 
necessity of integrating multimodal signals into clinically deployable 
systems.

As suggested by previous research [14], developing a feasible closed-
loop ES prediction system represents a critical next step. Such systems 
require close collaboration between artificial intelligence researchers, 
clinicians, and biomedical engineers to ensure technical robustness and 
clinical relevance. Conducting new clinical trials under these principles 
will mark the next milestone application in the field of ES prediction.

4.1.2. Ethical considerations
In future clinical trial designs, ethical considerations must be a 

core component. This includes ensuring patient privacy and data se-
curity, obtaining informed consent from participants, and carefully 
managing the clinical risks posed by both false positives (unnecessary 
interventions) and false negatives (missed seizures).

From an ethical and patient-centred perspective, ES prediction sys-
tems must not only achieve high accuracy but also behave consistently 
across different patient groups and provide well-calibrated risk esti-
mates. Overconfident false alarms or systematically poorer performance 
in under-represented populations can undermine trust and exacerbate 
existing inequities in clinical care. These issues of algorithmic bias, 
predictive uncertainty and model calibration are examined in more 
detail in Section 4.2.2.

Another critical aspect is transparency and interpretability. Clin-
icians and patients should be able to at least partially understand 
how prediction outcomes are generated, how uncertainty is quantified, 
and what the main limitations of the system are, thereby building 
realistic expectations and trust. Furthermore, sharing clinical EEG data 
across institutions requires a balance between open scientific collabo-
ration and strict patient privacy protection, necessitating robust data 
governance, de-identification and anonymisation protocols.

Finally, widespread clinical adoption of ES prediction systems will 
likely require regulatory approval. Therefore, future trials must not 
only demonstrate technical efficacy but also provide strong evidence 
of clinical safety, ethical compliance, fairness across patient subgroups, 
and patient-centred value. Integrating these ethical safeguards will 
be crucial for the safe, equitable and responsible application of ES 
prediction systems in clinical practice. 
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4.1.3. Challenges on data scarcity and patient heterogeneity
One of the biggest challenges facing ES prediction is the lack 

of large-scale, diverse datasets. Limited data availability hinders the 
generalisation ability of DL models, often leading to over-fitting in 
small patient populations and reduced robustness when applied to un-
seen data. Additionally, the high variability among patients—including 
differences in epilepsy type, electrode placement, brain anatomy, med-
ication, and comorbidities further complicates model development. 
Models trained on small, homogeneous patient populations may per-
form well within that population but may fail to maintain accuracy 
when tested on data from different patients or clinical settings. Such 
variability undermines the effectiveness and reliability of predictive 
models, highlighting the urgent need for larger, more representative 
datasets with diverse demographic characteristics.

Although researchers have emphasised the importance of prospec-
tive or pseudo-prospective evaluation of algorithms [14], so far the 
only large-scale dataset that allows for such evaluation is the one 
collected in the first clinical trial in 2013 [135]. The partially avail-
able version of this dataset (Melbourne-University AES-MathWorks-NIH 
Seizure Prediction Challenge) provides continuous iEEG recordings, but 
the relatively small number of patients makes it difficult to reliably 
assess cross-patient generalisation. As a result, this dataset has not been 
widely adopted for the evaluation of ES algorithms. To address this 
limitation, future research should prioritise the collection of larger, 
more representative datasets. Several directions can be highlighted:

• Long-term clinical monitoring data: Continuous recordings 
from patients in real-world clinical environments are essential for 
capturing the variability of seizure dynamics over time.

• Cross-species biological data: Data from animal models of 
epilepsy can provide valuable insights into similarities and dif-
ferences with human seizure mechanisms, thereby improving 
translational validity.

• Multimodal datasets: Combining EEG with other physiological 
signals such as ECG, EMG, and NIRS can enable more accu-
rate and reliable prediction through complementary information 
sources.

• Multi-patient demographic diversity: Datasets should include 
comprehensive demographic and clinical metadata (e.g., age, gen-
der, seizure type, disease duration, comorbidities) to improve 
model generalisability, fairness, and personalisation.

• More detailed recorded information: In addition to pre-ictal, 
ictal, and inter-ictal periods, future datasets should record infor-
mation such as electrode channel locations in intracranial EEG. 
Such details are crucial for analysing the spatiotemporal nature of 
seizures and can inspire the design of new network architectures.

Expanding data collection along these lines will not only improve 
the robustness of DL-based ES prediction models but also enhance their 
clinical applicability and ethical soundness.

4.2. DL algorithm

4.2.1. Reproducibility and data leakage risks
Although numerous ES prediction algorithms report highly promis-

ing performance, our review indicates that the field remains subject to 
significant data leakage risks. This severely compromises the feasibility 
and reproducibility of research findings. Specifically, when pre-ictal 
and inter-ictal segments from the same patient appear concurrently in 
both training and testing sets, patient independence is compromised. 
This may cause the model to memorise patient-specific patterns rather 
than genuinely learning seizure-related features.

Analysis of previous literature in our review reveals only a few stud-
ies explicitly implementing patient-independent segmentation. Many 
rely on conventional k-fold cross-validation without clarifying whether 
patient identifiers were used for separation. Some studies entirely ig-
nore segmentation strategy details. For ES prediction datasets, multiple 
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usable segments are typically available per patient. Consequently, k-
fold cross-validation based on EEG signals almost inevitably mixes 
data from the same patient across training and testing sets. While this 
approach often yields high accuracy, it fails to reflect the clinically 
relevant scenario of predicting ES in previously unseen patients. In-
deed, studies evaluating models under strictly patient-based protocols 
frequently observe diminished performance. This suggests that some 
reported improvements may stem from data leakage artefacts rather 
than genuine gains in generalisation capability.

To obtain more clinically meaningful estimates of generalisation 
performance, models should be evaluated under patient-independent 
validation schemes. Two approaches are particularly suitable: the first 
is Leave-One-Patient-Out Cross-Validation (LOPOCV), wherein all data 
from a single patient are reserved as the test set in each iteration, while 
data from all other patients are used for training and validation. This 
strategy ensures patient independence and is well-suited for datasets 
with a small number of patients and lengthy records per patient. The 
second approach is Leave-One-Seizure-Out Cross-Validation (LOSOCV). 
This evaluates each patient individually, using one ES for testing while 
employing the remaining ES for training and validation. This method 
estimates model performance for individual patients but suffers from 
inadequate estimation of the model’s generalisation capability across 
all patients.

Beyond the selection of evaluation schemes, we contend that ES pre-
diction research would benefit from a more standardised benchmarking 
framework. Current studies have already endeavoured to construct 
comprehensive benchmarks for ES detection [136]. For predictive algo-
rithms, we recommend considering the following points. Firstly, tempo-
ral independence: for any given patient, distinct EEG signal recordings 
within the training and test sets should not overlap. Moreover, fu-
ture data must not be employed to predict past events. Secondly, 
concerning preprocessing, all normalisation parameters and feature 
selection steps should be fitted solely on the training set, then directly 
applied to validation and test set data. For small datasets, LOPOCV 
or LOSOCV is recommended, reporting the mean performance and 
standard deviation across each fold. For larger patient datasets, patient 
partitioning is advised, with repeated experiments conducted across 
multiple random divisions. This evaluation methodology not only en-
ables other researchers to replicate results under explicitly defined 
splits and preprocessing schemes, thereby enhancing reproducibility. 
Simultaneously, as models are assessed under comparable and leak-free 
conditions rather than specialised or opaque data divisions, it im-
proves the fairness of method comparisons. Considering clinical appli-
cations, models evaluated through this approach also closely resemble 
real-world deployment scenarios.

4.2.2. Algorithmic bias, uncertainty and model calibration
Beyond issues with evaluation methods, deep learning-based ES pre-

diction systems also raise concerns regarding algorithmic bias, uncer-
tainty, and model calibration. Most studies reviewed in this paper pri-
marily report threshold-related metrics such as sensitivity, specificity, 
and accuracy. However, scant attention is paid to whether predicted 
probabilities are well-calibrated or whether performance remains con-
sistent across different patient cohorts and recording locations. In 
ES prediction, excessively high false positives may induce unneces-
sary anxiety, inappropriate behavioural restrictions, and alert fatigue. 
Conversely, excessively low false negatives could foster a false sense 
of security and delay appropriate interventions. These risks are par-
ticularly pronounced for wearable devices and closed-loop systems 
providing frequent real-time predictions.

Furthermore, distinctions in model testing across datasets must 
be considered. Most ES prediction studies suffer from training and 
evaluation datasets exhibiting demographic imbalances, hardware het-
erogeneity, and centre-specific acquisition protocols, posing signifi-
cant risks of algorithmic bias. A specific example is the widely used 
CHB-MIT dataset, which predominantly contains paediatric data. Many 
15 
approaches achieve excellent overall performance on the CHB-MIT 
dataset. However, these results do not guarantee good predictive per-
formance in adult populations or patients with different electrode con-
figurations. Also, certain algorithms have demonstrated favourable per-
formance on datasets such as the SWEC-ETHZ iEEG and AES. However, 
due to differences between iEEG and sEEG in signal amplitude, acqui-
sition methods, and recording duration, their efficacy cannot be guar-
anteed across other datasets. To address this, we recommend that ES 
prediction algorithms should be tested across multiple datasets where 
feasible. Furthermore, performance reporting should account for vari-
ations across patient cohorts, electrode placements, and epileptogenic 
regions.

Beyond potential issues during algorithm training, the datasets 
themselves present ethical and fairness concerns. Due to considera-
tions of data privacy and de-identification policies by patients and 
hospitals during data collection, public datasets tend to be biased 
towards specific demographic characteristics and EEG recording con-
figurations. Therefore, we recommend that public datasets provide 
more detailed information. This may include demographic details (age 
distribution, gender, seizure types), acquisition specifics (electrode con-
figurations, sampling rates, hardware), and inclusion/exclusion criteria. 
This ensures that trained models are more equitable. 

4.2.3. Lightweight model
In recent years, EEG collection systems have evolved rapidly in 

terms of removable devices, especially for scalp EEG signals. Commer-
cially available mobile devices for EEG collection already exist [16]. 
So how to integrate AI algorithms on these removable or wearable 
devices is the current problem. For cheaper chips, today’s models tend 
to be more computationally intensive and algorithmically complex. It 
becomes especially important to develop a lightweight network making 
it possible for current chips to quickly make predictions about seizures.

One of the future research direction is SNNs. Since the principle of 
SNN is by converting the input signal into pulses [92,137], such an 
approach can greatly reduce the computation of the network. Mean-
while, in terms of hardware implementation, SNN only requires the 
use of adders to build the hardware. These advantages make SNN be 
used frequently in the future in daily life. However, again due to the 
presence of only impulse computation among the network, SNN is not 
able to back propagate the gradient like traditional neural networks. 
This also requires more thinking from the researchers to solve this 
problem.

Another idea is to lighten the model by using transfer learning. 
One of the major advantages of transfer learning is the ability to 
reduce the amount of computation in the model by applying one-shot 
or few-shot learning. However, most DL algorithms currently achieve 
the effect of prediction ES by transferring large models trained on 
non-EEG datasets [91,95]. Current large models are often based on 
natural language or images as training data. These types of models 
have prior knowledge that is different from the signal as a feature. The 
performance when dealing with EEG data problem is often sub-optimal. 
Integrating existing EEG databases and training a large network for 
transfer learning may be one of the directions for future research.

4.2.4. Graph-based model
Future research on ES prediction based on GNN/GCN should go 

beyond general improvements and focus on customised methods tai-
lored to network modelling. First, brain graph construction requires 
standardisation: current studies rely on metrics such as electrode dis-
tance or functional connectivity, while future research could explore 
learnable graph structures where edge weights are optimised in tandem 
with model training. Second, the dynamic evolution of ES necessitates 
the use of temporal graph models to capture connection patterns that 
change over time. Third, hierarchical GNNs can be employed to model 
both local electrode-level interactions and higher-level brain region 
modules within a unified framework. Fourth, integrating heterogeneous 
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graphs from EEG and auxiliary signals (e.g., ECG or EMG) enables 
multimodal expansion. Finally, incorporating interpretability methods 
(e.g., graph attention networks, GNNExplainer) is crucial for identifying 
key nodes and connections, thereby linking algorithmic predictions to 
clinically interpretable biomarkers.

4.2.5. Generalised prediction model
Building models for general or specific patients has been an un-

resolved disagreement in the field of ES prediction [16]. Due to the 
specificity of EEG across patients, many current seizure algorithms are 
still stuck on training algorithm weights for each patient. Some methods 
are now able to convert patient-specific models into models that work 
for different patients [138].

In the future, it is more productive to train a generalised pre-
diction model. When ES prediction algorithms are used in the clinic 
and a new patient arises, the generalised model tends to predict bet-
ter with a small amount of data. Patient-specific algorithms often 
struggle to achieve good results using a small training set.  A novel 
research direction involves applying multimodal approaches to de-
velop generalised seizure prediction algorithms. Multimodal fusion 
provides complementary physiological information sources that re-
duce false positives and enhance generalisation. Recent works such as 
DistilCLIP-EEG [139] and EFRM [140] provide concrete methodologies 
for applying multimodality to ES prediction. Building upon these ap-
proaches, future research may focus on cross-modal pre-training and 
domain-robust calibration across large-scale heterogeneous datasets, 
followed by patient-independent fine-tuning and evaluation, thereby 
establishing a generalised model workflow for clinical deployment.

4.2.6. Unsupervised learning
The above literature review on DL algorithms shows that the num-

ber of unsupervised learning algorithms is relatively small. However, 
this does not mean that the future of unsupervised learning is slim. 
Data labelling is often a tricky issue for ES prediction algorithms [118]. 
There are many epileptic patients whose EEG signals are currently 
recorded, but manually labelling these EEG signals is a time-consuming 
and labour-intensive task if done through a doctor [124]. Unsupervised 
learning has the unique advantage of requiring little or no labelling 
of data to construct the model. Thus, building a ES prediction algo-
rithm based on unsupervised learning can greatly save doctors’ labour, 
enabling them to do other work.

Also, generative networks like GAN can address the problem of 
a small amount of data for ES prediction. With the development of 
generative models, the generated data is getting closer and closer to 
the real data. This can dramatically reduce the time it takes for a 
DL model to collect data on a different patient when applied to that 
patient. For example, a generative algorithm is utilised to first generate 
the collected data for a patient, and then other algorithms are utilised 
to predict it [111].

4.2.7. Interpretability
As a biological signal, EEG often needs to consider the interpretabil-

ity of the algorithm when constructing the algorithm, especially the 
biological aspect. Meanwhile, as DL algorithms in the medical field, 
which is closely related to patients’ health, higher interpretability can 
better quantify the uncertainty in predicting ES. In the past few years, 
some researchers have tried to improve the interpretability of DL 
through EEG rhythms [16,141,142]. With more and more of these types 
of analyses being incorporated into DL algorithms, the interpretability 
of DL could be improved in the future.  However, current review [143] 
indicate that existing explainability approaches lack assessments of the 
trade-offs between interpretability and performance. Examples include: 
elucidating the most interpretable AI applications, describing the most 
useful waveforms learned within XAI models, documenting domains 
of interest, and identifying correlations between frequency bands and 
epilepsy.
16 
4.2.8. Assessment of indicators
Currently, there is no complete system for evaluating algorithms for 

ES prediction. The evaluation metric should based on the algorithms 
currently available, or researchers should write down the specific set-
tings in each method, as in Table  4 to compare their work with others. 
Some specific evaluation metrics can also be introduced for different 
networks. For example, WD, FID and MSE are metrics that can compare 
the performance of different GANs [96]. So these metrics can also be 
added when evaluating the performance of different GANs for the ES 
prediction task. At the moment, e.g. ecosystem.org [22] has started to 
build a complete evaluation system to compare algorithms using this 
database.

5. Conclusion

In conclusion, we comprehensively summarise articles on the ap-
plication of DL algorithms to the ES prediction problem, highlighting 
current research trends, pointing out existing challenges, and suggest-
ing potential future research directions. Also we review data that are 
widely used in ES prediction.
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