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Abstract

Multi object tracking (MOT) is a crucial task in video analysis but is often hindered
by frequent identity (ID) switches, particularly in crowded or occluded scenarios. This
study explores the integration of a vision-language model, into two tracking by detection
frameworks DeepSORT and StrongSORT to enhance appearance-based re-identification.
YOLOv8x is employed as the base detector due to its robust localization performance,
while CLIP’s visual features replace the default appearance encoders, providing more
discriminative and semantically rich embeddings. We evaluated the CLIP enhanced Deep-
SORT and StrongSORT on sequences from two challenging real world benchmarks: MOT15
and MOT16. Furthermore, we analyze the generalizability of YOLOv8x when trained on
the MOT20 benchmark and applied to the chosen trackers on MOT15 and MOT16. Our
findings show that both CLIP enhanced trackers substantially reduce ID switches and
improve ID-based tracking metrics, with CLIP StrongSORT achieving the most consistent
gains. In addition, YOLOv8x demonstrates strong generalization capabilities for unseen
datasets. These results highlight the effectiveness of incorporating vision language models
into MOT frameworks, particularly under visually challenging conditions.

Keywords: YOLO; DeepSORT; StrongSORT; detection; tracking; autonomous driving;
CLIP; vision-language models

1. Introduction
Recent years have witnessed substantial advances in computer vision, particularly

in object detection, visual representation learning, and multi-object tracking (MOT) [1–3].
These advances have been largely driven by deep learning architecture and the availabil-
ity of large-scale datasets, enabling robust perception under increasingly complex and
dynamic environments. Among fundamental tasks in vision, MOT remains critical due
to the inherent difficulty of consistently associating object identities across video frames.
This capability is essential for real-world applications such as autonomous driving [4],
surveillance [5], robotics [6], and smart city infrastructure, where real-time decision making
under strict computational constraints is required.

The YOLO (You Only Look Once) family of models has consistently delivered high-
performance object detection with real-time inference speed. The release of YOLOv8 [7]
further improves detection accuracy and inference efficiency, making it attractive for deploy-
ment in resource-constrained environments. YOLOv8 introduces architectural refinements,
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anchor-free detection, and improved loss formulations that collectively enhance localiza-
tion accuracy and generalization performance. However, while YOLOv8 performs well in
per-frame detection, it lacks explicit mechanisms for maintaining identity associations over
time, a core requirement in MOT tasks.

YOLOv8 was selected for this study based on a prior comparative evaluation con-
ducted by the authors, which demonstrated that YOLOv8 provides a more stable and
well-balanced trade-off between accuracy, inference speed, and generalization compared to
newer YOLO variants [8]. Such stability is particularly important for MOT pipelines, where
detection noise can propagate and negatively affect downstream data association. In addi-
tion, recent studies have confirmed the effectiveness of YOLOv8 within MOT frameworks,
reporting strong performance across diverse benchmarks and scenarios [9–11].

To fully leverage YOLOv8’s strengths in object localization, robust appearance em-
bedding models are required to support reliable object re-identification. CLIP (Contrastive
Language–Image Pretraining) [12], a large-scale vision–language model, has demonstrated
a strong capability for producing semantically rich and highly discriminative visual em-
beddings. Unlike traditional ReID models that primarily rely on low-level appearance cues
such as color, texture, and shape, CLIP learns from large-scale image–text pairs, enabling it
to encode higher-level semantic attributes. These attributes include clothing style, semantic
context, and object–human relationships, which are difficult to capture using conventional
CNN-based ReID architectures. As a result, CLIP-based features exhibit improved robust-
ness to occlusion, illumination changes, and viewpoint variations, and maintain stronger
identity consistency across challenging frames. Although originally developed for zero-
shot classification and image–text retrieval, CLIP’s embeddings have recently demonstrated
strong potential for appearance modeling within tracking-by-detection frameworks [13].

Popular real-time MOT frameworks such as DeepSORT [14] and StrongSORT [15] in-
tegrate motion prediction with appearance cues to associate object identities across frames.
However, their appearance modules typically rely on lightweight CNN-based embeddings
trained on limited-scale pedestrian datasets, which predominantly capture low-level visual
cues. Consequently, these embeddings often fail under heavy occlusion, drastic illumi-
nation changes, viewpoint variations, or scenes containing visually similar individuals,
leading to increased identity switch (IDSW) errors. Recent studies [16–18] demonstrate that
replacing these shallow, domain-specific embeddings with more expressive models such as
CLIP yields substantial improvements in re-identification robustness. CLIP’s semantically
grounded and context-aware representations enable more reliable identity discrimination
in crowded and visually complex scenes, strengthening the appearance modeling backbone
of tracking-by-detection pipelines.

Despite the individual successes of YOLOv8 in object detection and CLIP in represen-
tation learning, a systematic investigation of their joint integration within state-of-the-art
MOT frameworks remains limited. This study aims to fill this gap by evaluating the impact
of combining YOLOv8 with CLIP-derived appearance embeddings in DeepSORT and
StrongSORT pipelines. Unlike prior works that modify multiple pipeline components
simultaneously, this study isolates the effect of appearance feature quality on identity
association stability, with a particular focus on reducing IDSW. The evaluation is conducted
on two widely used MOT benchmarks, MOT15 [19] and MOT16 [20], which feature dense
crowds, frequent occlusions, and complex scene dynamics.

1.1. Research Questions and Motivation

This study investigates the role of appearance representation quality in multi-object
tracking systems, particularly within tracking-by-detection pipelines operating in crowded
scenes. While prior approaches primarily rely on conventional ReID embeddings for appear-
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ance modeling, recent advances in large-scale vision–language models offer semantically
richer feature representations. However, the extent to which such high-capacity embed-
dings improve identity consistency independent of detector or motion model changes has
not been thoroughly quantified. Motivated by this gap, this work isolates the contribution
of CLIP-derived appearance features and evaluates their effectiveness in reducing identity
switches under challenging tracking conditions. Based on this motivation, we formulate
the following research questions:

1. How does replacing conventional ReID appearance embeddings with CLIP-derived
representations affect identity consistency in multi-object tracking pipelines?

2. To what extent do semantically rich, high-capacity appearance features contribute to re-
ducing identity switches (IDSW), particularly in crowded and occlusion-heavy scenes?

3. Can improvements in tracking performance be directly attributed to enhanced appear-
ance feature quality when other components of the tracking-by-detection framework
are held constant?

1.2. List of Main Contributions

The main contributions of this work are summarized as follows:

1. An enhanced tracking-by-detection architecture is proposed in which CLIP-derived
visual embeddings are integrated into the DeepSORT and StrongSORT frameworks,
replacing conventional CNN-based ReID models with semantically rich appear-
ance representations.

2. A controlled and systematic analysis of appearance feature quality in multi-object
tracking is conducted by isolating the impact of CLIP-based embeddings on identity
association stability, with particular emphasis on identity switch (IDSW) reduction in
crowded and occluded environments.

3. A high-capacity object detector, YOLOv8x fine-tuned on the MOT20 dataset, is incor-
porated to examine how improvements in detection accuracy propagate through the
tracking pipeline and interact with enhanced appearance modeling.

4. Extensive experimental evaluations are performed on established multi-object tracking
benchmarks, including MOT15 and MOT16, assessing tracking performance under
challenging conditions characterized by dense crowds, severe occlusions, and complex
scene dynamics.

5. The selection of CLIP over alternative vision–language models, such as ALIGN [21], is
justified based on the availability of publicly released pretrained weights, large-scale
training data, strong cross-domain generalization capability, and reproducibility, estab-
lishing its suitability for practical deployment in modern multi-object tracking systems.

The remainder of the paper is organized as follows: Section 2 presents the YOLOv8 de-
tector, CLIP embedding model, and the DeepSORT and StrongSORT algorithms. Section 3
introduces the MOT datasets used. Section 4 defines the evaluation metrics. Section 5
details the experimental setup and discusses results. Section 6 concludes the paper and
outlines future research directions.

2. Background
This section provides a comprehensive overview of the key components forming

the foundation of the proposed multi-object tracking (MOT) system, including the object
detection model (YOLOv8), tracking algorithms (DeepSORT [14] and StrongSORT [15]),
and the CLIP model [12]. DeepSORT and StrongSORT are regarded as two of the most
influential and foundational association-based trackers in the MOT community.
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2.1. Object Detection Models (YOLOv8)

YOLOv8 [7], one of the latest evolutions of the YOLO series, introduces several
architectural enhancements. It adopts an anchor-free detection scheme, simplifying the
model while improving its generalization to various object sizes. Furthermore, it features a
decoupled detection head that separately addresses object classification and localization,
contributing to more stable training and improved performance. Additionally, the use
of dynamic label assignment during training enables the model to adapt to ambiguous
scenarios by adjusting the ground truth assignment strategy. The architecture of YOLOv8
comprises three main components: a backbone for feature extraction, a neck for multi-scale
feature aggregation, and a detection head that outputs class probabilities and bounding box
coordinates in a single forward pass. This streamlined design facilitates real-time inference
while maintaining high detection accuracy. Figure 1 illustrates the overall architecture
of YOLOv8, showing the processing flow from input image to final detections via the
backbone, neck, and detection head.

Figure 1. An overview of the YOLOv8 architecture, showing the backbone feature extraction, feature
fusion, and multi-scale detection heads (reproduced from [7]).

2.2. Feature Extraction Models for Re-Identification

In MOT, object detection alone is insufficient; the system must also consistently identify
and re-identify objects across video frames. This requires strong feature extraction models
capable of generating discriminative and robust embeddings for each detected object.

Recent works have increasingly explored vision–language models, particularly CLIP-
based representations,to enhance feature learning for tracking and re-identification. CLIP-
ReID [22] demonstrates the effectiveness of CLIP’s pretrained visual features for appearance
embedding in person Re-ID tasks, which are closely related to the appearance models used
in tracking association. n parallel, YOLO-World [23] introduces open-vocabulary object de-
tection using vision-language modeling as a detection backbone, enabling category-agnostic
detection. Furthermore, several MOT approaches such as VSE-MOT [16], ReTrackVLM [24],
and OVTrack [25] incorporate CLIP-based visual features or distillation strategies within
transformer-based tracking frameworks.

More recently, zero-shot tracking paradigms have emerged that rely heavily on vi-
sion–language models. Z-GMOT [26] proposes zero-shot generic multiple object tracking
by leveraging a vision language detector to track unseen object categories without any train-
ing, while maintaining a detection pipeline tracker distinct from traditional SORT-based
association. Similarly, ReferGPT [27] introduces a zero-shot referring multi-object tracking
framework that combines CLIP-based semantic representations with natural-language
queries to associate and track multiple targets. Despite their effectiveness, these approaches
employ custom association mechanisms rather than classical MOT pipelines.However,
none of these approaches explicitly integrate CLIP embeddings into traditional DeepSORT
or StrongSORT pipelines for appearance modeling and data association, which remains an
unexplored direction that our work addresses. Table 1 summarizes key features of these
vision–language MOT methods, including CLIP usage, detection, tracking paradigms,
purpose, and alternative tracking approaches.
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Table 1. Comparison of Vision–Language Based Methods for Multi-Object Tracking.

Year Method/Paper Uses CLIP Uses Object Detection Tracking Paradigm Main Purpose Tracking Method Used (Instead of
DeepSORT/StrongSORT)

2023 OVTrack: Open-Vocabulary
Multiple Object Tracking Yes (CLIP feature distillation) Yes Detection + tracking head Track seen and unseen categories

Open-vocabulary MOT framework:
learned tracking head (no Kalman
filter or Hungarian matching)

2023
CLIP-ReID: Exploiting
Vision-Language Model for
Image Re-Identification

Yes (CLIP visual features) No Feature learning (Re-ID only) Improve appearance embeddings
No tracking: Re-ID model only
(can be plugged into
DeepSORT/StrongSORT)

2024 YOLO-World: Real-Time
Open-Vocabulary Object Detection Yes (vision-language detector) No Object detection Open-vocabulary detection No tracking: detector only (can feed

DeepSORT/StrongSORT)

2024 Z-GMOT: Zero-shot Generic
Multiple Object Tracking

Yes (leverages a vision-language
detector iGLIP/GLIP) Yes Tracking-by-Detection

(zero-shot generic MOT)

Track multiple generic unseen
objects without
predefined categories

MA-SORT—motion & appearance
association specifically designed for
generic object association (replaces
typical SORT/DeepSORT)

2025

ReTrackVLM:
Transformer-Enhanced MOT with
Cross-Modal Embeddings and
Zero-Shot Re-ID Integration

Yes (VLM/CLIP-style embeddings) Yes Transformer-based MOT Enhance identity association
Transformer encoder–decoder
tracking: end-to-end
learned association

2025
VSE-MOT: Multi-Object Tracking in
Low-Quality Video Scenes Guided
by Visual Semantic Enhancement

Yes (CLIP image encoder) Yes Tracking-by-detection Improve robustness in
low-quality videos

Transformer-based MOT,
query-based tracking with
learned association

2025 ReferGPT: Towards Zero-Shot
Referring Multi-Object Tracking

Yes—uses CLIP-based semantic
encoding for matching generated
captions with queries

Yes Tracking-by-Detection
(with Kalman filter association)

Track objects specified by natural
language queries in a
zero-shot manner

Kalman filter + fuzzy query
matching within a
tracking-by-detection pipeline
(not DeepSORT/StrongSORT)
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In this study, we explore the use of the CLIP model as a novel feature extractor. CLIP,
developed by OpenAI [12], for its widespread applications in many vision problems [28–30],
learns aligned image-text representations using contrastive learning on a large-scale dataset.
Unlike traditional models trained on labeled images alone, CLIP leverages natural language
supervision to learn semantically rich and generalizable visual embeddings. This char-
acteristic makes CLIP particularly suitable for re-identification tasks, where subtle visual
differences between similar-looking objects are important. CLIP employs two separate
encoders: a visual encoder for processing images and a text encoder for language inputs.
These encoders are jointly trained to project inputs into a shared latent space where paired
image text embeddings are close in cosine similarity. For MOT applications, only the visual
encoder is used to produce object embeddings for tracking. Figure 2 illustrates the CLIP
model architecture, showing the dual encoder design and contrastive learning objective.

Figure 2. Overview of CLIP approach: CLIP is different from traditional image models because it
learns from both images and text at the same time. It trains an image encoder and a text encoder to
match images with their related text descriptions. Instead of using a fixed classifier, CLIP uses the
text encoder during testing to create a zero-shot classifier by embedding the names or descriptions of
the target classes. [12].

In addition, we consider baseline feature extractors commonly used in MOT literature.
DeepSORT employs the MARS CNN [31], originally designed for person re-identification,
as its default appearance model. StrongSORT integrates the OSNet [32], which introduces
omni-scale feature learning through specialized residual blocks capable of capturing multi-
scale representations. These baselines provide meaningful comparisons against the CLIP-
based embedding pipeline in terms of both accuracy and computational efficiency.

2.3. Tracking Models: DeepSORT and StrongSORT

Following the introduction of object detection and feature extraction modules, this
section presents the multi-object tracking frameworks employed in this study, namely,
DeepSORT [14] and StrongSORT [15].

2.3.1. DeepSORT

DeepSORT [14] is an enhanced tracking by detection framework that extends the
original SORT algorithm [14]. It incorporates deep appearance feature embeddings to
establish robust associations between object detections across frames, enabling accurate
tracking even under challenging conditions such as occlusion, re-identification, and partial
visibility. The architecture of DeepSORT comprises three primary components, as illustrated
in Figure 3. First, a deep appearance descriptor is extracted for each detected object,
providing a robust representation that facilitates re-identification across frames. These
descriptors are crucial for distinguishing between visually similar objects and maintaining
consistent identities over time. Second, a Kalman filter is used to estimate the state (position
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and velocity) of each tracked object, predicting its location in subsequent frames. This is
particularly effective when detections are noisy or intermittent due to occlusion. Third,
the Hungarian algorithm is employed for data association, solving the assignment problem
between new detections and existing tracks based on a combination of motion (from
the Kalman filter) and appearance similarity. If a detection cannot be matched to any
existing track, a new track is initialized. Conversely, tracks that remain unmatched for
a predefined number of frames are terminated. DeepSORT’s balance of efficiency and
accuracy has led to its widespread use in applications such as surveillance, autonomous
vehicles, and crowd analytics.

Figure 3. DeepSORT architecture [8].

2.3.2. StrongSORT

StrongSORT [15] is an efficient algorithm for multi-object tracking, designed to over-
come the limitations observed in earlier tracking methods. A key distinguishing feature of
StrongSORT is its integration of deep neural networks for extracting appearance-robust
features that remain consistent under significant visual variations. As illustrated in Figure 4,
StrongSORT extends the DeepSORT framework by incorporating additional modules for
more reliable tracking. It introduces two core innovations: the Appearance Free Link
(AFLink) module and the Gaussian Smoothed Interpolation (GSI) technique. AFLink
facilitates matching between fragmented object trajectories without relying entirely on ap-
pearance features, thereby reducing computational dependency and improving robustness
against occlusions. Meanwhile, GSI estimates the position of missing detections through
interpolation, enhancing continuity in object trajectories. StrongSORT also leverages high-
performance object detectors and advanced feature extractors (such as OSNet) to maintain
trajectory consistency across frames.

Figure 4. StrongSORT architecture [8].

3. Benchmark Datasets
To evaluate the effectiveness of our proposed tracking methods, we utilize three

widely adopted multi-object tracking benchmark datasets: MOT15 [19], MOT16 [20],
and MOT20 [33]. These datasets provide varying degrees of complexity in terms of crowd
density, occlusion, lighting, and camera motion. Figure 5 illustrates sample frames from
the three datasets: Figure 5a shows scenes from MOT15, Figure 5b presents MOT16 scenes,
and Figure 5c displays MOT20 scenes [19,20,33].
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(a) (b) (c)

Figure 5. Example frames from the MOT15, MOT16, and MOT20 datasets [19,20,33]. (a) MOT15
sample scenes. (b) MOT16 sample scenes. (c) MOT20 sample scenes.

3.1. MOT15 Dataset

The MOT15 [19] dataset contains 22 video sequences recorded in both indoor and
outdoor environments, totaling 11,297 annotated detections. This dataset presents several
key challenges, including frequent occlusions, varying camera viewpoints, and complex
crowd motion, making it suitable for evaluating the robustness of tracking algorithms.
MOT15 includes bounding box annotations, object IDs, and visibility ratios, enabling
comprehensive performance evaluation under various difficulty levels.

3.2. MOT16 Dataset

MOT16 [20] is an enhanced and standardized extension of MOT15. It consists of
14 video sequences and over 1100 annotated object trajectories. The dataset adheres to
consistent annotation guidelines and spans a wide range of environments, such as urban
streets, pedestrian zones, and shopping malls. MOT16 introduces more complex challenges
like dense occlusions, motion camouflage, and variable lighting. Performance evaluation
is conducted using metrics including Multiple Object Tracking Accuracy (MOTA), Mul-
tiple Object Tracking Precision (MOTP), and the Identity F1 Score (IDF1), providing a
comprehensive assessment of accuracy, precision, and identity consistency.

3.3. MOT20 Dataset

The MOT20 [33] dataset introduces a higher level of complexity, featuring 8 ultra-dense
video sequences with 1564 unique identities and over 4 million bounding box annotations.
This dataset focuses on extremely crowded scenes with severe occlusions and intricate
interactions among pedestrians. It includes detailed annotations for bounding boxes,
object IDs, occlusion levels, and visibility, offering a rigorous benchmark for evaluating the
robustness of tracking systems in real-world congested environments.

4. Evaluation Metrics
In the domain of MOT, several evaluation metrics are widely used to assess different

aspects of a tracking system’s performance. In this study, we utilize five core metrics:
Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP),
Identity Switches (IDSW), Precision, and Recall. Each of these metrics is detailed below.

4.1. Multiple Object Tracking Accuracy (MOTA)

MOTA evaluates the overall tracking accuracy by considering false positives, false
negatives, and identity switches during tracking [34–36]. A higher MOTA value indicates
better performance in minimizing detection and identification errors.

MOTA = 1 − FN + FP + IDSW
GT

(1)

where FN represents the false negatives, FP represents the false positives, IDSW represents
the identity switches, and GT represents the ground truth objects.
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4.2. Multiple Object Tracking Precision (MOTP)

MOTP measures the accuracy of object localization by evaluating how well the pre-
dicted positions align with the ground truth locations [34–36]. A higher MOTP score reflects
better localization precision.

MOTP =
1

|TP|

|TP|

∑
i=1

Si (2)

where Si is the similarity score (typically IoU) for each true-positive match.

4.3. Identity Switches (IDSW)

The IDSW metric quantifies the number of times a tracked object’s identity is incor-
rectly reassigned during the tracking process [15,35–37,37]. Fewer identity switches indicate
a better ability to maintain object identity continuity, which is critical for applications like
surveillance or autonomous systems.

IDSW =
T

∑
t=1

IDSWt (3)

where IDSWt is the number of identity switches that occur at frame t. A switch happens
when the tracker changes the ID assigned to the same ground-truth object from one frame
to the next.

4.4. Precision

Precision evaluates the proportion of correctly predicted positive instances among all
positive predictions made by the model. It is calculated as:

Precision =
TP

TP + FP
(4)

where TP is the number of true positives and FP is the number of false positives.

4.5. Recall

Recall measures the proportion of correctly predicted positive instances among all
actual positive instances in the dataset:

Recall =
TP

TP + FN
(5)

where TP is the number of true positives and FN is the number of false negatives.

5. Experiments and Results
5.1. Proposed Architectures

This work proposes an enhanced tracking-by-detection architecture based on the
DeepSORT and StrongSORT frameworks, in which both the object detector and the appear-
ance embedding modules are explicitly upgraded. The primary objective of the proposed
architecture is to improve identity association robustness by strengthening appearance
feature quality while preserving the original motion and association mechanisms of the
baseline trackers. Specifically, the CLIP vision encoder is integrated into the appearance
extraction stage of both trackers to replace the default CNN-based ReID models, and the
YOLOv8 detector is adopted in place of the original detection backbones.

Figure 6 illustrates the overall processing pipeline. Given an input video sequence,
each frame is first passed to the YOLOv8 detector, which outputs bounding boxes, confi-
dence scores, and class labels for detected objects. These detections are then forwarded to
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the tracking stage for identity association across frames. For each detected bounding box,
the corresponding image crop is extracted and resized to match the input resolution re-
quired by the CLIP vision encoder. The CLIP model is used in inference mode only, and no
fine-tuning is performed during tracking. The resulting high-dimensional embeddings are
L2-normalized before being used in the data association process.

In the DeepSORT-based architecture, the CLIP-derived appearance embeddings are
stored in a feature gallery (feature bank) associated with each active track. During data
association, cosine distance is computed between the current detections and existing track
features, and this appearance cost is combined with motion-based gating derived from the
Kalman filter. This design preserves the original DeepSORT matching strategy while explic-
itly isolating the impact of enhanced appearance features on identity association stability.

(a)

(b)

Figure 6. The integration of the CLIP model into the two trackers: DeepSORT (a) and Strong-
SORT (b). (a) CLIP model integrated in the DeepSORT pipeline. (b) CLIP model integrated in the
StrongSORT pipeline.

In the StrongSORT-based architecture, the CLIP embeddings are incorporated into
the exponential moving average (EMA) module, which maintains a temporally smoothed
representation of each track’s appearance. These EMA-updated features are used to com-
pute the appearance affinity matrix, which is subsequently combined with motion and
geometric constraints during the Hungarian matching stage. By integrating CLIP features
into the EMA mechanism, StrongSORT benefits from both semantically rich embeddings
and temporal appearance smoothing.

Importantly, aside from the detector and appearance embedding modules, all other
components of the DeepSORT and StrongSORT pipelines—including Kalman filtering,
motion prediction, gating thresholds, and matching logic—are kept identical to their official
implementations. This design choice ensures that any observed performance differences can
be attributed directly to improvements in appearance representation and detection quality.

Three publicly available MOT benchmarks were used for evaluation: MOT15, MOT16,
and MOT20. The YOLOv8 detector was employed under two experimental settings. In
the first setting, YOLOv8 with official pretrained weights was directly integrated into
both tracking pipelines and evaluated on MOT15 and MOT16. In the second setting,
YOLOv8 was fine-tuned on MOT20 to enhance detection performance in crowded scenes
and subsequently cross-evaluated on MOT15 and MOT16 to assess generalization. Across
all experiments, the effect of replacing conventional ReID embeddings with CLIP-derived
features was systematically analyzed, with a particular focus on identity switch reduction
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and tracking stability. The quantitative results and ablation analyses are presented in the
subsequent sections.

5.2. Experimental Setups

All experiments were conducted in Python 3.11 and executed in Google Colab, utiliz-
ing a single NVIDIA RTX A100 GPU. The object detection module employed the YOLOv8
architecture [7], which was selected for its proven accuracy and continued open-source avail-
ability. Specifically, YOLOv8x (non-tuned) and YOLOv8x (tuned) were chosen. For non-tuned
YOLOv8x, weights from the COCO dataset [37] were used, while for the tuned version,
YOLOv8x was trained on the MOT20 [33] benchmark for 100 epochs, learning rate 0.01, image
size 640 × 640. The obtained weights were evaluated on the MOT15 [19] and MOT16 [20]
benchmarks to test the generalization capabilities, considering the crowded and challenging
scenes present in the MOT20 benchmark. For tracking, both DeepSORT [14] and Strong-
SORT [15] were utilized with settings similar to their main repositories. The baseline ex-
periment contains the official codes that were utilized directly. The proposed experiment
integrated the official CLIP model [12] as the feature extractor model to replace the default
one in the DeepSORT and StrongSORT models. For consistency and reproducibility, default
hyperparameters were retained for both DeepSORT and StrongSORT across all experiments.

5.3. Quantitative Results

In this section, the quantitative results are presented in a clear and systematic manner
to highlight the impact of the proposed improvements. Specifically, three sets of exper-
iments were conducted to evaluate the contributions of the CLIP model and YOLOv8x
detector in enhancing identity consistency and tracking performance for DeepSORT and
StrongSORT. Each experiment is designed to isolate the effect of feature embeddings,
detector replacement, and generalization across datasets.

The first experiment evaluates the effect of integrating CLIP embeddings into both
trackers to enhance identity preservation. The second experiment examines the impact of
replacing the default detector with the official YOLOv8x model, assessing improvements
in detection quality. The third experiment investigates the generalization capability of
YOLOv8x, trained on the MOT20 benchmark and tested on MOT15 and MOT16, to evaluate
cross-dataset performance.

5.3.1. DeepSORT-Experiment: Impact of CLIP

To clearly demonstrate the generalization of these findings, DeepSORT [14] was
evaluated on the MOT15 benchmark. Table 2 summarizes the results for three key scenarios:
(1) adding CLIP embeddings, (2) replacing the detector with the official YOLOv8x, and
(3) using fine-tuned YOLOv8x weights from MOT20.

Key observations from the results include:

1. On PETS09-S2L1, integrating CLIP reduced ID switches from 19 to 17, demonstrating
improved identity tracking.

2. On ETH-Sunnyday, using fine-tuned YOLOv8x weights improved both MOTP and
Precision, indicating better localization and detection quality.

These results clearly demonstrate that integrating CLIP embeddings enhances identity
consistency, while high-capacity detectors such as YOLOv8x further boost overall tracking
performance. The combination of robust embeddings and accurate detection consistently
improves tracking metrics across sequences.
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Table 2. DeepSORT results on the MOT15 benchmark. With and without CLIP on sequence PETS09-
S2L1, addition of official YOLO on sequence ETH-Sunnyday, and ⋆ represents using the finetuned
weights of YOLOv8 on the MOT20 benchmark.

Seq. ID Exp. Recall ↑ Prec. ↑ IDSW ↓ MOTA ↑ MOTP ↑

PETS09-S2L1
NO CLIP 94.00 92.50 19.00 86.00 23.30

With CLIP 93.70 92.30 17.00 85.60 23.80

ETH-Sunnyday
No CLIP 94.10 74.30 2.00 61.40 17.40

With CLIP 93.90 74.30 2.00 61.30 17.80

ETH-Sunnyday ⋆
No CLIP 93.20 86.80 1.00 79.00 15.20

With CLIP 93.10 86.90 1.00 79.00 15.60

5.3.2. StrongSORT-Experiment 1: Impact of CLIP

In the first experiment, StrongSORT [15] was benchmarked on the MOT16 [20] dataset
to systematically evaluate the impact of integrating the CLIP model into the appearance
feature extractor. Table 3 presents a clear comparison of the evaluation metrics Recall,
Precision, IDSW, MOTA, and MOTP between the original StrongSORT and the CLIP-
enhanced version across three sequences.

The results demonstrate consistent improvements across one or more metrics. Notably,
in Sequence 02, the IDSW decreased from 479 to 318, corresponding to a reduction of
approximately 33.6%, while Precision, Recall, MOTA, and MOTP also showed measurable
gains. For Sequences 09 and 11, reductions in IDSW and increases in MOTA indicate that
integrating CLIP significantly improves identity stability in crowded or challenging frames.

These results clearly highlight that the CLIP-enhanced StrongSORT model achieves
more stable and accurate tracking performance, particularly in sequences with high
identity ambiguity, demonstrating the effectiveness of CLIP embeddings in maintaining
identity consistency.

Table 3. StrongSORT: With and without CLIP. Results on the MOT16 benchmark.

Seq. ID Exp. Recall ↑ Prec. ↑ IDSW ↓ MOTA ↑ MOTP ↑

02
No CLIP 97.30 85.30 479.00 77.90 91.30

With CLIP 97.50 85.60 318.00 79.30 91.80

09
No CLIP 92.30 80.10 45.00 68.50 96.40

With CLIP 93.50 80.00 42.00 69.30 96.30

11
No CLIP 91.70 92.20 50.00 83.30 96.40

With CLIP 92.00 92.00 49.00 83.50 96.30

5.3.3. StrongSORT-Experiment 2: Cross-Dataset Generalization of YOLO

The second experiment evaluates the effect of replacing the default StrongSORT
detector (YOLOX [38]) with YOLOv8x, and studies its generalization when trained on
MOT20 [33] but evaluated on MOT15 [19]. Table 4 presents three key scenarios: (1) the
impact of CLIP on MOT15 sequence PETS09-S2L1, (2) the effect of YOLOv8x integration on
sequence TUD-Stadmittee, and (3) cross-dataset evaluation of fine-tuned YOLOv8x weights.

The main findings from these experiments are summarized as follows:

1. CLIP integration on PETS09-S2L1 reduced IDSW by approximately 60%, demonstrat-
ing significant improvements in identity consistency.
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2. Replacing the default detector with YOLOv8x on TUD-Stadmittee reduced IDSW by
44%, confirming the benefits of high-capacity detection for tracking performance.

3. Fine-tuned YOLOv8x generalized well to MOT15, improving MOTA (78.70 → 82.79)
and MOTP (22.40 → 26.70). Adding CLIP further reduced IDSW from 15 to 10
(33% improvement), illustrating the complementary effect of robust embeddings
combined with accurate detection.

Overall, these results clearly demonstrate that integrating high-capacity detection with
CLIP embeddings significantly enhances both identity preservation and overall tracking
performance across sequences and generalizes effectively to cross-dataset evaluation.

Table 4. StrongSORT with YOLOv8: With and without CLIP. Results on the MOT15 benchmark.
⋆ represents using the finetuned weights of YOLOv8 on the MOT20 benchmark.

Seq. ID Exp. Recall ↑ Prec. ↑ IDSW ↓ MOTA ↑ MOTP ↑

PETS09-S2L1
NO CLIP 94.60 89.30 100.00 81.10 24.30

With CLIP 92.70 92.20 42.00 84.00 24.20

TUD-Stadmittee
No CLIP 82.40 92.60 9.00 78.70 22.40

With CLIP 82.80 96.50 5.00 79.30 22.90

TUD-Stadmittee ⋆
No CLIP 86.20 97.60 15.00 82.70 26.70

With CLIP 88.20 96.20 10.00 83.90 26.80

5.4. Qualitative Results

This section presents qualitative results that visually support and clarify the quan-
titative improvements discussed earlier. In particular, the figures provide an intuitive
comparison of tracking behavior with and without CLIP integration, allowing the reader to
directly observe reductions in identity switches (IDSW) across challenging scenarios.

Figure 7 illustrates representative frames from different MOT16 sequences under
crowded and dynamic conditions, highlighting how CLIP-enhanced appearance features
lead to more consistent identity assignment over time. These visual examples are intended
to complement numerical metrics by demonstrating practical tracking improvements in
real-world scenes.

Seq-02 Seq-09 Seq-11
MOT16 Sequences

0

100

200

300

400

500

ID
 S

w
itc

he
s

Configuration
Without CLIP
With CLIP

Figure 7. StrongSORT without integrating YOLOv8: Impact of CLIP on IDSW on MOT16 Benchmark.
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5.4.1. Graphical Analysis of Results

Figure 7 (shown above) compares StrongSORT performance on MOT16 sequences
with and without CLIP. The bar chart clearly shows a substantial reduction in ID switches
when CLIP is enabled, most notably in Sequence 02, which contains heavy occlusions
and dense interactions. More moderate but consistent improvements are also observed in
Sequences 09 and 11, reinforcing the robustness of CLIP integration across varying levels
of scene complexity.

Figure 8 provides a clear visual comparison of DeepSORT and StrongSORT on the
MOT15 PETS09-S2L1 sequence, illustrating the impact of CLIP integration on identity
switches (IDSW). The bar chart contrasts each tracker’s performance with and without
CLIP, enabling a direct and intuitive assessment of identity consistency.

StrongSORT DeepSORT
MOT15 Sequence: PETS09-S2L1

0

20

40

60

80

100

ID
 S

w
itc

he
s

Configuration
Without  CLIP
With CLIP

Figure 8. StrongSORT & DeepSORT with the integration of YOLOv8: Impact of CLIP on IDSW on
MOT15 Benchmark.

The results demonstrate that integrating CLIP reduces ID switches for both trackers,
confirming its effectiveness in enhancing appearance-based association. Notably, the im-
provement is substantially more pronounced for StrongSORT, where IDSW is reduced by
more than half, indicating that CLIP features strongly complement StrongSORT’s asso-
ciation mechanism. In contrast, DeepSORT exhibits a smaller but consistent reduction,
reflecting its more limited reliance on appearance embeddings.

Overall, this figure clearly highlights how CLIP integration improves tracking robust-
ness, particularly for StrongSORT, and reinforces the conclusion that richer visual represen-
tations are especially beneficial in crowded and visually ambiguous tracking scenarios.

5.4.2. Visual Results on MOT15 and MOT16

This section presents qualitative visual results on the MOT15 and MOT16 benchmarks
to clearly illustrate the impact of integrating the CLIP model into the StrongSORT tracker.
Specifically, the PETS09-S2L1 sequence from MOT15 and Sequence 02 from MOT16 are se-
lected due to their dense interactions and frequent occlusions, making them representative
and challenging test cases for identity association. The effect of CLIP integration is analyzed
by visually comparing identity switch (IDSW) behavior before and after its introduction.

Figures 9 and 10 provide frame-by-frame visual comparisons that allow direct observa-
tion of tracking behavior over time. When CLIP is integrated, object identities are preserved
consistently across frames, even under occlusion and close interactions. In contrast, the con-
figurations without CLIP exhibit frequent identity fragmentation and multiple ID switches,
which are highlighted in the visual examples. These qualitative results clearly demonstrate
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how CLIP-based embeddings improve appearance discrimination and temporal identity
consistency in crowded environments.

(a) (b)

(c) (d)

Figure 9. Impact of integrating the CLIP model into the StrongSORT tracker in terms of IDSW on
the MOT15 benchmark sequence PETS09-S2L1. The red arrow indicates the ID of a tracked person,
which switches from 3 to 2 without the CLIP model, but remains consistent when the CLIP model
is applied. (a) No-CLIP before ID 3 switches. (b) No-CLIP after ID 3 switches. (c) With-CLIP before:
ID 3. (d) With-CLIP after: ID 3.

(a) (b)

(c) (d)

Figure 10. Impact of integrating the CLIP model into the StrongSORT tracker in terms of IDSW on the
MOT16 benchmark sequence 02. The red arrow indicates the ID of a tracked person, which switches
from 27 to 47 without the CLIP model, but remains consistent when the CLIP model is applied.
(a) No-CLIP before ID 27 switches. (b) No-CLIP after ID 27 switches. (c) With-CLIP before: ID 27.
(d) With-CLIP after: ID 27.

In summary, both the qualitative visual evidence and the quantitative metrics con-
sistently confirm that CLIP integration significantly enhances identity association, sub-
stantially reduces ID switches, and effectively complements the high-capacity detection
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provided by YOLOv8x. Together, these improvements lead to more robust and reliable
multi-object tracking performance across diverse and challenging scenarios.

6. Conclusions
This work investigated a systematic integration of CLIP-based appearance embed-

dings and a fine-tuned YOLOv8x detector into the DeepSORT and StrongSORT frameworks,
introducing two methodological contributions to multi-object tracking. First, we replaced
traditional CNN-based ReID descriptors with CLIP’s semantically enriched visual em-
beddings, enabling a substantially more discriminative appearance model that directly
targets one of the fundamental weaknesses of real-time trackers—identity switches in
crowded scenes. Second, we incorporated a high-capacity detector (YOLOv8x), fine-tuned
on MOT20 to improve detection quality while evaluating its cross-dataset generalization
on MOT15 and MOT16. Together, these innovations provide a principled analysis of how
upgrading both the detection and appearance modules impacts the stability and robustness
of MOT systems.

Experimental results confirm that CLIP embeddings significantly reduce IDSW across
benchmarks, and that YOLOv8x retains strong performance even when transferred across
datasets with varying crowd densities. These findings establish a clear link between
enhanced feature quality, stronger detections, and improved tracking continuity. Future
extensions will focus on fine-tuning CLIP for MOT-specific domains and incorporating
temporal/contextual cues to further address remaining identity inconsistencies in highly
congested environments.

Author Contributions: Conceptualization, K.A., A.S.Y. and H.M.; methodology, K.A. and A.S.Y.;
software, K.A. and A.S.Y.; formal analysis, K.A.; investigation, K.A. and A.S.Y.; resources, K.A. and
A.S.Y.; data curation, K.A.; writing—original draft preparation, K.A. and A.S.Y.; writing—review and
editing, K.A., A.S.Y. and H.M.; visualization, K.A.; supervision, H.M.; project administration, K.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in https://motc
hallenge.net (accessed on 1 September 2025), and reference [14].

Acknowledgments: Khadijah Alkandary and Ahmet Serhat Yildiz express their heartfelt gratitude to
their family for their endless support, patience, and encouragement throughout this research journey.
Also, Ahmet Serhat Yildiz’s Ph.D. is sponsored by the Ministry of National Education of Türkiye.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
2. Yeung, S.; Downing, N.L.; Fei-Fei, L.; Milstein, A. Bedside computer vision—moving artificial intelligence from driver assistance

to patient safety. N. Engl. J. Med. 2018, 378, 1271–1273. [CrossRef] [PubMed]
3. Li, J.; Wang, B.; Ma, H.; Gao, L.; Fu, H. Visual feature extraction and tracking method based on corner flow detection. ICCK Trans.

Intell. Syst. 2024, 1, 3–9. [CrossRef]
4. Ravindran, R.; Santora, M.; Jamali, M. Multi object detection and tracking, based on DNN, for autonomous vehicles: A review.

IEEE Sens. J. 2020, 21, 5668–5677. [CrossRef]
5. Coifman, B.; Beymer, D.; McLauchlan, P.; Malik, J. A real-time computer vision system for vehicle tracking and traffic surveillance.

Transp. Res. Part C Emerg. Technol. 1998, 6, 271–288. [CrossRef]
6. Sophokleous, A.; Christodoulou, P.; Doitsidis, L.; Chatzichristofis, S.A. Computer vision meets educational robotics. Electronics

2021, 10, 730. [CrossRef]
7. Reis, D.; Kupec, J.; Hong, J.; Daoudi, A. Real-time flying object detection with YOLOv8. arXiv 2023, arXiv:2305.09972. [CrossRef]

https://doi.org/10.3390/electronics15020265

https:// motchallenge.net
https:// motchallenge.net
http://doi.org/10.1056/NEJMp1716891
http://www.ncbi.nlm.nih.gov/pubmed/29617592
http://dx.doi.org/10.62762/TIS.2024.136895
http://dx.doi.org/10.1109/JSEN.2020.3041615
http://dx.doi.org/10.1016/S0968-090X(98)00019-9
http://dx.doi.org/10.3390/electronics10060730
http://dx.doi.org/10.48550/arXiv.2305.09972
https://doi.org/10.3390/electronics15020265


Electronics 2026, 15, 265 17 of 18

8. Alkandary, K.; Yildiz, A.S.; Meng, H. A Comparative Study of YOLO Series (v3–v10) with DeepSORT and StrongSORT: A Real-
Time Tracking Performance Study; Technical Report; Department of Electronic and Electrical Engineering, Brunel University:
London, UK, 2025.

9. Danilowicz, M.; Kryjak, T. Real-Time Multi-object Tracking Using YOLOv8 and SORT on a SoC FPGA. In Proceedings of the
International Symposium on Applied Reconfigurable Computing, Seville, Spain, 9–11 April 2025; Springer: Berlin/Heidelberg,
Germany, 2025; pp. 214–230.

10. Yu, X.; Liu, X.; Liang, G. YOLOv8-SMOT: An Efficient and Robust Framework for Real-Time Small Object Tracking via
Slice-Assisted Training and Adaptive Association. arXiv 2025, arXiv:2507.12087.

11. Liu, Y.; Shen, S. Vehicle Detection and Tracking Based on Improved YOLOv8. IEEE Access 2025, 13, 24793–24803. [CrossRef]
12. Radford, A.; Kim, J.W.; Hallacy, J.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning

transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine
Learning, PMLR, Virtual, 18–24 July 2021; pp. 8748–8763.

13. Zhu, H.; Lu, Q.; Xue, L.; Zhang, P.; Yuan, G. Vision-language tracking with CLIP and interactive prompt learning. IEEE Trans.
Intell. Transp. Syst. 2024, 26, 3659–3670. [CrossRef]

14. Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric. In Proceedings of the
2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: New York, NY, USA,
2017; pp. 3645–3649. [CrossRef]

15. Du, Y.; Zhao, Z.; Song, Y.; Zhao, Y.; Su, F.; Gong, T.; Meng, H. StrongSORT: Make DeepSORT Great Again. IEEE Trans. Multimed.
2023, 25, 8725–8737. [CrossRef]

16. Du, J.; Xing, W.; Li, M.; Yu, F.R. VSE-MOT: Multi-Object Tracking in Low-Quality Video Scenes Guided by Visual Semantic
Enhancement. arXiv 2025, arXiv:2509.14060.

17. Asperti, A.; Naldi, L.; Fiorilla, S. An Investigation of the Domain Gap in CLIP-Based Person Re-Identification. Sensors 2025,
25, 363. [CrossRef] [PubMed]

18. Yang, X.; Gao, X.; Niu, S.; Zhu, F.; Feng, G.; Qu, X.; Camacho, D. CLIP4VI-ReID: Learning Modality-shared Representations via
CLIP Semantic Bridge for Visible-Infrared Person Re-identification. arXiv 2025, arXiv:2511.10309.

19. Leal-Taix’e, L.; Milan, A.; Reid, I.; Roth, S.; Schindler, K. MOTChallenge 2015: Towards a benchmark for multi-target tracking.
arXiv 2015, arXiv:1504.01942. [CrossRef]

20. Milan, A.; Leal-Taix’e, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A benchmark for multi object tracking. arXiv
2016, arXiv:1603.00831. [CrossRef]

21. Jia, C.; Yang, Y.; Xia, Y.; Chen, Y.T.; Parekh, Z.; Pham, H.; Le, Q.; Sung, Y.H.; Li, Z.; Duerig, T. Scaling up visual and vision-language
representation learning with noisy text supervision. In Proceedings of the International Conference on machine Learning, PMLR,
Virtual, 18–24 July 2021; pp. 4904–4916.

22. Li, S.; Sun, L.; Li, Q. Clip-ReID: Exploiting Vision–Language Model for Image Re-Identification Without Concrete Text Labels.
Proc. Aaai Conf. Artif. Intell. 2023, 37, 1405–1413. [CrossRef]

23. Cheng, T.; Luo, X.; Zhao, H.; Zhou, Y.; Yan, S. YOLO-World: Real-Time Open-Vocabulary Object Detection. arXiv
2024, arXiv:2401.17270.

24. Bayraktar, E. ReTrackVLM: Transformer-Enhanced Multi-Object Tracking with Cross-Modal Embeddings and Zero-Shot Re-
Identification Integration. Appl. Sci. 2025, 15, 1907. [CrossRef]

25. Wu, Y.; Li, Y.; Sheng, H.; Zhang, Z. OVTrack: Open-Vocabulary Multiple Object Tracking. arXiv 2023, arXiv:2304.08963. [CrossRef]
26. Huang, L.; Wu, Y.; Li, Y.; Sheng, H.; Zhang, Z. Z-GMOT: Zero-Shot Generic Multiple Object Tracking. arXiv 2023, arXiv:2305.17648.
27. Chen, Y.; Sheng, H.; Li, Y.; Zhang, J.; Zhang, Z. ReferGPT: Towards Zero-Shot Referring Multi-Object Tracking. arXiv

2025, arXiv:2504.09195.
28. Li, H.; Zhao, F.; Xue, F.; Wang, J.; Liu, Y.; Chen, Y.; Wu, Q.; Tao, J.; Zhang, G.; Xi, D.; et al. Succulent-YOLO: Smart UAV-Assisted

Succulent Farmland Monitoring with CLIP-Based YOLOv10 and Mamba Computer Vision. Remote Sens. 2025, 17, 2219. [CrossRef]
29. Lin, J.; Gong, S. Gridclip: One-stage object detection by grid-level clip representation learning. arXiv 2023, arXiv:2303.09252.

[CrossRef]
30. Vidit, V.; Engilberge, M.; Salzmann, M. Clip the gap: A single domain generalization approach for object detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023;
pp. 3219–3229.

31. Zheng, L.; Bie, Z.; Sun, Y.; Wang, J.; Su, C.; Wang, S.; Tian, Q. MARS: A video benchmark for large-scale person re-identification.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 868–884.

32. Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Omni-scale feature learning for person re-identification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3702–3712.

https://doi.org/10.3390/electronics15020265

http://dx.doi.org/10.1109/ACCESS.2025.3538556
http://dx.doi.org/10.1109/TITS.2024.3520103
http://dx.doi.org/10.1109/ICIP.2017.8296962
http://dx.doi.org/10.1109/TMM.2023.3240881
http://dx.doi.org/10.3390/s25020363
http://www.ncbi.nlm.nih.gov/pubmed/39860732
http://dx.doi.org/10.48550/arXiv.1504.01942
http://dx.doi.org/10.48550/arXiv.1603.00831
http://dx.doi.org/10.1609/aaai.v37i1.25225
http://dx.doi.org/10.3390/app15041907
http://dx.doi.org/10.48550/arXiv.2304.08408
http://dx.doi.org/10.3390/rs17132219
http://dx.doi.org/10.1016/j.patcog.2025.112187
https://doi.org/10.3390/electronics15020265


Electronics 2026, 15, 265 18 of 18

33. Dendorfer, P.; Rezatofighi, H.; Milan, A.; Shi, J.; Cremers, D.; Reid, I.; Roth, S.; Schindler, K.; Leal-Taix’e, L. MOT20: A benchmark
for multi object tracking in crowded scenes. arXiv 2020, arXiv:2003.09003. [CrossRef]

34. Bernardin, K.; Stiefelhagen, R. Evaluating multiple object tracking performance: The CLEAR MOT metrics. EURASIP J. Image
Video Process. 2008, 2008, 246309. [CrossRef]

35. Ristani, E.; Solera, F.; Zou, R.; Cucchiara, R.; Tomasi, C. Performance measures and a data set for multi-target, multi-camera
tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 17–35.

36. Luiten, J.; Osep, A.; Dendorfer, P.; Torr, P.H.; Geiger, A.; Leal-Taix’e, L.; Leibe, B. HOTA: A higher order metric for evaluating
multi-object tracking. Int. J. Comput. Vis. 2021, 129, 548–578. [CrossRef] [PubMed]

37. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Doll’ar, P.; Zitnick, C.L. Microsoft COCO: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 740–755.

38. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics15020265

http://dx.doi.org/10.48550/arXiv.2003.09003
http://dx.doi.org/10.1155/2008/246309
http://dx.doi.org/10.1007/s11263-020-01375-2
http://www.ncbi.nlm.nih.gov/pubmed/33642696
http://dx.doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.3390/electronics15020265

	Introduction
	Research Questions and Motivation
	List of Main Contributions

	Background
	Object Detection Models (YOLOv8)
	Feature Extraction Models for Re-Identification
	Tracking Models: DeepSORT and StrongSORT
	DeepSORT 
	StrongSORT


	Benchmark Datasets
	MOT15 Dataset
	MOT16 Dataset
	MOT20 Dataset

	Evaluation Metrics
	Multiple Object Tracking Accuracy (MOTA)
	Multiple Object Tracking Precision (MOTP)
	Identity Switches (IDSW)
	Precision
	Recall

	Experiments and Results
	Proposed Architectures
	Experimental Setups
	Quantitative Results
	DeepSORT-Experiment: Impact of CLIP
	StrongSORT-Experiment 1: Impact of CLIP
	StrongSORT-Experiment 2: Cross-Dataset Generalization of YOLO

	Qualitative Results
	Graphical Analysis of Results
	Visual Results on MOT15 and MOT16


	Conclusions
	References

