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Abstract The fuzzy c-means (FCM) algorithm is widely
used image segmentation but, has several limitations. It
is sensitive to noise, demonstrates variable convergence
rate depending on data distribution, and its reliance on
Euclidean distance fails to account for intra-cluster varia-
tions, particularly in complex and color images. Furthermore,
FCM’s non-adaptive distance metric struggles with diverse
cluster shapes, and most FCM-based approaches face diffi-
culties in color image segmentation due to the challenges
in spatial information acquisition. To address these limi-
tations, we propose an Improved Gustafson-Kessel (IGK)
algorithm that offers superior robustness compared to both
FCM and traditional Gustafson-Kessel (GK) clustering. Our
approachfirst appliesmorphological reconstruction (MR) for
grayscale images andmultivariatemorphological reconstruc-
tion (MMR) for color images to ensure noise immunity while
preservation image details. We then replace the Euclidean
distance metric with Mahalanobis distance to adapt to vary-
ing cluster shapes. The algorithm iteratively updates cluster
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centers, membership matrix, and positive definite symmetric
matrices, followed by a median filter refinement of the mem-
bership partition matrix. Unlike previous approaches, IGK
eliminates the need for computing distances within local spa-
tial neighbors during clustering. Experimental results on both
grayscale and color images demonstrate that the proposed
IGK algorithm achieves superior segmentation performance
compared to existing FCM-based methods.

Keywords Fuzzy c-means (FCM) clustering · Gustafson-
Kessel (GK) clustering · Image segmentation · Mahalanobis
distance · Morphological reconstruction (MR)

1 Introduction

Image segmentation divides an image into meaningful
regions based on features such as grayscale values, color, spa-
tial texture, and geometry [1,2]. This fundamental process
in image processing and computer vision can be catego-
rized into four primary approaches: threshold-basedmethods
[3,4], which classify pixels by setting single or multiple
grayscale thresholds; contour-based methods [5,6], which
use energy functions for segmentation; training-based meth-
ods [7,8], which apply supervised learning for segmentation;
and clustering-based methods [9,10]. Among these, cluster-
ing approaches have gained particular prominence due to
their ability to group data into clusters where intra-cluster
similarity is minimized. Fuzzy c-means (FCM)-based tech-
niques, which focus on cost function minimization, have
becomeespecially popularwithin the clusteringdomain.This
paper focuses on these enhancing FCM-based methods.

Szilágyi et al. [11] proposed an enhanced FCM (EnFCM)
algorithm that uses grayscale histograms for MRI brain
image segmentation, achieving significant reduction in pro-
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cessing time. Cai et al. [12] introduced a fast generalized
FCM (FGFCM) algorithm to address EnFCM’s limitations
by incorporating a new local similarity index parameter, ζij,
which enhances noise robustness while preserving image
details. Krinidis and Chatzis [13] presented fuzzy local infor-
mation c-means (FLICM), which employs a novel fuzzy
factor, Gki , as a local similarity index to replace EnFCM’s α

parameter.However, FLICM’s fixed spatial distance limits its
adaptability to varying local image information. To overcome
this limitation, Gong et al. [14] developed KWFLICM, intro-
ducing a weighted fuzzy factor that balances image detail
and noise without requiring empirically tuned parameters.
Despotović et al. [15] suggested spatially coherent FCM
(SCFCM) to improve noise robustness by integrating neigh-
boring pixel information via phase congruency, anisotropic
neighborhoods, and adaptive weights.

Xiang et al. [16] proposed kernel-based FCM with inten-
sity and location information (ILKFCM) for SAR image
segmentation, involving wavelet decomposition, fuzzy fac-
tor computation, and iteration. Elazab et al. [17] introduced
adaptively regularized kernel-based FCM (ARKFCM) for
MRI segmentation, using Gaussian radial basis kernels in
place of Euclidean distance to handle grayscale inhomo-
geneity, though it struggles with unknown noise. Bakhshali
[18] introduced a robust FCM using information theory to
reduce MRI noise and correct bias fields. Chaomurilige et
al. [19] applied deterministic annealing to the Gustafson-
Kessel (GK) algorithm, minimizing the influence of clus-
tering parameters by incorporating Shannon’s entropy. Bai
et al. [20] presented intuitionistic center-free FCM (ICF-
FCM) for MRI segmentation, which uses pixel-to-pixel and
pixel-to-cluster similarities for noise reduction and vague-
ness handling, while Bai et al. [21] proposed possibilistic
FCM (PFCM) for MRI segmentation, leveraging intraclass
and interclass similarities to manage outliers and enhance
detail preservation.

Lei et al. [9] developed a fast and robust FCM (FRFCM),
integrating morphological reconstruction (MR) for pre-
processing and membership filtering for post-processing.
While effective for grayscale images, its performance on
complex images is sometimes limited. Hu et al. [22] sug-
gested intuitionistic kernel-based FCM (IFCM) for power
equipment segmentation, which, though effective, is com-
putationally intensive. Kumar et al. [23] developed a bias-
correctedFCMwith spatial neighborhood information (BCIF
CMSNI) to handle MRI noise and bias fields, employ-
ing Sugeno’s and Yager’s negation functions to convert
images into intuitionistic fuzzy sets (IFS). Zhang et al. [24]
introduced total generalized variation FCM (TGVFCM),
incorporating a regularization term to enhance quality. Wang
et al. [25] employed sparse regularization with MR and
wavelet frames in SRFCM for robust clustering. Finally,
Wang et al. [26] presented residual-driven FCM (RFCM),

incorporating weighted �2-norm regularization to improve
noise handling.

Based upon these prior studies, we propose a significantly
improved GK algorithm (IGK) for image segmentation that
achieves high accuracy across diverse image types. Our main
contributions are:

(1) Geometric Adaptability: Unlike FRFCM [9] and other
FCM-based algorithms [10–17,26], that employ spher-
ical clusters, IGK supports elliptical cluster shapes,
enhancing segmentation accuracy across different image
types.

(2) Noise Robustness: The proposed IGK applies Morpho-
logical Reconstruction (MR) [27,28] to preserve detail
and mitigate noise in both grayscale and color images,
achieving higher robustness than other FCM-based
methods.A simplifiedhistogramcalculationmethod also
enables fast segmentation.

(3) Enhanced Distance Metric: IGK replaces Euclidean
distance with Mahalanobis distance to adapt to cluster
shapes, improving segmentation performance, particu-
larly in color images.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work in fuzzy clustering. Section
3 describes the proposed methodology. Section 4 presents
experimental results with grayscale image segmentation dis-
cussed in Section 4.3 and color image segmentation in
Section 4.5. Finally, Section 5 provides conclusions and
directions for future research.

2 Related Works

The proposed algorithm’s performance will be compared
with several established clustering algorithms, including
FCM,GK,EnFCM,FGFCM,FLICM,ARKFCM,KWFLICM,
FRFCM, and RFCM. This section provides an overview of
each algorithm.

2.1 FCM

The FCM algorithm, introduced by Bezdek [29], enhances
the K-means algorithm using a membership matrix uij. The
cost function in FCM is defined as:

JFCM =
∑N

i=1

∑c

j=1
ui j

q (
xi − v j

)2 (1)

where v j and q represent the cluster center and fuzzy expo-
nent, respectively. In FCM, the membership function and
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cluster centers are iteratively updated as follows:

ui j = 1

∑c
j=1

(
‖xi−vk‖2
‖xi−vj‖2

) 2
q−1

(2)

v j =
∑N

i=1

(
ui j q xi

)
∑N

i=1

(
ui j q

) (3)

The membership matrix ui j quantifies the extent to which
the data point xi is associated with cluster j , based on its
relative distances to all cluster centers. As shown in Eq. (3),
the cluster centers are computed as weighted averages of the
data points, where theweights correspond to themembership
degrees raised to the power q.

2.2 GK

While FCMassumes clusters spherical,making it suitable for
data with uniformly sized and shaped clusters, the GK algo-
rithm extends FCM to detect ellipsoidal clusters of varying
sizes and orientations [30,31]. GK adapts distance calcula-
tions to cluster shapes by estimating the covariance matrix
[32]. Gustafson and Kessel [33] modified FCM using the
Mahalanobis distance for diverse geometrical shapes. The
GK cost function is:

JGK =
∑N

i=1

∑c

j=1
ui j

q .
(
xi − v j

)T
.Aj.

(
xi − v j

)
(4)

where Aj is a positive definite symmetric matrix. Using
the Lagrange multiplier technique, the equation (4) can be
converted to an unconstrained optimization problem that
minimizes the following cost function:

JGK =
∑N

i=1

∑c

j=1
ui j

q .
(
xi − v j

)T
.A j .

(
xi − v j

)

−
∑N

i=1
λi

(∑c

j=1
ui j − 1

)

+
∑c

j=1
β j .

(
det

(
A j

) − ρ j
)

(5)

where β j is a set of Lagrange multipliers, and ρ j , typically
set to 1, represents cluster volume. Themembership function,
cluster centers, and covariance matrix are updated as follows
[33]:

ui j =
⎛

⎝ (xi − vr )
T .Ar . (xi − vr )

∑c
j=1

(
xi − v j

)T
.A j .

(
xi − v j

)

⎞

⎠
1/q−1

(6)

v j =
∑k

i=1 ui j
q .xi∑k

i=1 ui j
q

(7)

Fi =
∑N

i=1 ui j
q .

(
xi − v j

)T
.
(
xi − v j

)
∑N

i=1 ui j
q

(8)

A j = λi . (det (Fi ))
1
n .F−1

i (9)

Equation (6) defines the updated membership matrix, which
incorporates an adaptive distancemetric specific to each clus-
ter. The cluster centers are updated in Eq. (7) as the weighted
mean of the data points, following a procedure similar to that
of the Fuzzy C-Means (FCM) algorithm. The fuzzy covari-
ance matrix, given in Eq. (8), characterizes the spread and
orientation of data within each cluster. Furthermore, Eq. (9)
defines thematrix A j , which adjusts the shape of each cluster
using the inverse of its covariance matrix, scaled appropri-
ately to satisfy the determinant constraint.

2.3 EnFCM

The EnFCM algorithm, an FCM improvement, speeds up
MRI brain image segmentation by working on the gray-level
histogramof a reconstructed image ξi (aweighted sum image
based on original image and its local neighbor average) [11].
Its objective function is:

JEnFCM =
∑N

i=1

∑c

j=1
γi ui j

q (
ξi − v j

)2 (10)

where γi denotes the number of pixels with a gray value i,
(i = 1, 2, . . . , k). Generally, we have:

∑N

i=1
γi = 1 (11)

ξr = 1

1 + α

(
xr + α

NL

∑
j∈Nr

x j

)
(12)

where NL represents the number of pixels in a window
around xr . The membership function and cluster centers are
updated as:

ui j =
[
∑c

j=1

(
ξi − vk

ξi − v j

) 2
q−1

]−1

(13)

v j =
∑N

i=1

(
γi ui j qξi

)
∑N

i=1

(
γi ui j q

) (14)

In the EnFCM algorithm, the membership matrix is updated
based on the distances between the reconstructed intensi-
ties and the cluster centers. The cluster centers are then
updated as the weighted average of gray levels ξi , incor-
porating both the membership values and the corresponding
frequency weights.

2.4 FGFCM

FGFCM combines local spatial and gray information to
enhance EnFCM by overcoming noise sensitivity using a
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local similarity index ζi j and removing the empirically-
adjusted parameter α in image segmentation process. This
algorithm improves the performance of EnFCM algorithm.
ζi j function is defined as follows [12]:

ξi j =
{

ξs_i j × ξg_i j , i �= j
0, i = j

(15)

where ξs_i j and ξg_i j represent local spatial and local gray-
level relationships, respectively. These functions can be
defined as [12]:

ξs_i j = exp

(
−max

(∣∣Li − Lj
∣∣ ,

∣∣Ki − Kj
∣∣)

λs

)
(16)

ξg_i j = exp

(
− ∥∥xi − xj

∥∥2

λg × σ 2
g_i

)
(17)

σg_i =
√∑

jε i

∥∥xi − xj
∥∥2

NL
(18)

where (Li , Ki ) is a spatial coordinate of the ith pixel. λs
represents the scale factor of the spread of ξs_i j . λg is the
global scale factor of the spread of ξg_i j . σg_i denotes the
local density surrounding the central pixel.

2.5 FLICM

Krinidis and Chatzis [13] introduced the FLICM algorithm,
which uses a fuzzy factor Gki that incorporates local spa-
tial and gray-level information without empirical parameter
adjustments, and overcomes the noise problems in image seg-
mentation. In this algorithm, Gki is introduced based on Eq.
(19) [13]:

Gki =
∑

j∈Ni

1

li j + 1

(
1 − ukj

)q
.
∥∥x j − vk

∥∥2, i �= j (19)

where li j is the spatial Euclidean distance between pixels i
and j . The cost function in FLICM is defined as [13]:

JFLICM =
∑N

i=1

∑c

j=1

(
ui j

q .
∥∥xi − v j

∥∥2 + Gi j

)
(20)

The membership function and cluster centers are updated as
[13]:

ui j = 1

∑c
j=1

(
‖xi−vk‖2+Gkj

‖xi−vj‖2+Gi j

) 1
m−1

(21)

v j =
∑N

i=1

(
ui j q xi

)
∑N

i=1

(
ui j q

) (22)

Equation (21) defines the updated membership function, in
which the effect of each cluster is modulated not only by the
feature-space distance but also by the local spatial informa-
tion through the term Gi j . Similarly, Eq. (22) specifies the
update rule for the cluster centers, which are computed as the
weighted average of the data points, following the conven-
tional approach used in FCM.

2.6 ARKFCM

ARKFCM enhances FCM with an adaptive regularization
term that controls pixel neighbor effects based on local
grayscale distribution. It applies a kernel function instead
of Euclidean distance. The cost function is defined as [17]:

JARKFCM = 2

[∑N

i=1

∑c

j=1
ui j

q .
(
1 − K

(
xi , v j

)) + ϕi .ui j
q

.
(
1 − K

(
x̄i , v j

))]
(23)

where ϕi denotes the assignedweight to every pixel and x̄i
is mean grayscale of image pixels. K

(
xi , v j

)
is a Gaussian

Radial-based Function (GRBF) and defined as follows with
a kernel width (σ) [17]:

K
(
xi , v j

) = exp

(
−

∥∥xi − v j
∥∥2

2σ 2

)
(24)

The membership function and cluster centers are updated by
[17]:

ui j = (1 − K (xi , vk) + ϕi (1 − K (x̄i , vk)))
−1/(q−1)

∑c
j=1

(
1 − K

(
xi , v j

) + ϕi
(
1 − K

(
x̄i , v j

)))−1/(q−1)
(25)

v j =
∑N

i=1 ui j
q .

(
K

(
xi , v j

)
xi + ϕi .K

(
x̄i , v j

)
x̄i

)
∑N

i=1 ui j
q .

(
K

(
xi , v j

)
xi + ϕi .K

(
x̄i , v j

)) (26)

As defined in Eq. (25), both the original intensity and the
local average intensity contribute to the membership assign-
ment, thereby introducing spatial regularization without the
need for explicit empirical parameters. The cluster centers,
updated according to Eq. (26), are computed as a weighted
average that integrates both the original and spatially regular-
ized terms, with the weights modulated by the corresponding
kernel values.

2.7 KWFLICM

TheKWFLICMalgorithm introduces akernel-based approach
using a trade-off weighted fuzzy factor Ǵi j to improve
FLICM. This approach depends on the space distance of all
neighboring pixels and their gray-level difference simulta-
neously. The presented weighted fuzzy factor can accurately
estimate the damping extent of neighboring pixels. Also,
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a kernel distance is added to objective function, making it
robust to noise and outliers. The objective function is [14]:

JKWFLICM =
∑N

i=1

∑c

j=1
ui j

q

.
(
1 − K

(
xi , v j

)) + Ǵi j (27)

where Ǵi j is defined as [14]:

Ǵi j =
∑N

i=1

∑c

j=1
ui j

q .
∑

k∈Ni
wik

(
1 − ui j

)q

.
(
1 − K

(
xk, v j

))
, i �= k (28)

The membership function and cluster centers are updated by
[14]:

ui j

=
⎛

⎜⎝

(
1−K

(
xi , vl

)) +∑
k∈Ni wik

(
1−ui j

)q
.
(
1 − K

(
xk , vl

))
, i �= k

∑c
j=1

(
1−K

(
xi , v j

))
+ ∑

k∈Ni wik

(
1 − ui j

)q
.
(
1 − K

(
xk , v j

))
, i �= k

⎞

⎟⎠

1/(q−1)

(29)

v j =
∑N

i=1

(
ui j

q .K
(
xi , v j

)
.xi

)

∑N
i=1

(
ui j

q .K
(
xi , v j

)) (30)

Also, wik is defined as follows [14]:

wik = 1/ (dik + 1) (31)

where dik is the spatial Euclidean distance between the kth
pixel in neighbors and the central pixel.

Equation (29) presents the updated membership func-
tion, in which each cluster’s effect is modulated by both
the kernel-induced distance and the weighted fuzzy effect of
neighboring pixels. This formulation effectively incorporates
local spatial structure into the membership update process.
Furthermore, Eq. (30) defines the update rule for the clus-
ter centers, based on a kernel-weighted average of the data
points, thereby enhancing robustness to noise.

2.8 FRFCM

FRFCMutilizesMR to handle noise in gray-level histograms
without dependency on noise type. This algorithm operates
on the gray level histogramwith an objective function defined
[9]:

JFRFCM =
∑k

i=1

∑c

j=1
γi .ui j

q .
∥∥ξi − v j

∥∥2,
∑k

i=1
γi = N (32)

where ξi and q are gray level and the number of gray levels
contained in ξ (an image reconstructed byMR), respectively.

The membership function and cluster centers are updated by
[9]:

ui j = ‖ξi − vr‖ −2
m−1

∑c
j=1

∥∥ξi − v j
∥∥ −2

m−1

(33)

v j =
∑k

i=1 γi
(
ui j qξi

)
∑k

i=1 γi
(
ui j q

) (34)

Also, a median filter enhances the membership function to
speed up the convergence and obtain a better membership
matrix as follows [9]:

unewi j = med
{
ui j

}
(35)

The membership matrix is updated using inverse distance
weighting in the histogram domain, which reduces computa-
tional complexity while maintaining segmentation accuracy.
The cluster centers are subsequently updated as weighted
averages over the histogram bins, where the weights are
determined by both the number of pixels with a gray value
γi and the corresponding membership degrees.

2.9 RFCM

Wang et al. [26] developed RFCM by integrating a residual-
driven regularization term into FCM to account for noise
characteristics. The objective function is [26]:

JRFCM =
∑k

i=1

∑c

j=1
ui j

q .
∥∥xi − ri − v j

∥∥2 + β.Γ (R)

(36)

where Γ (R) is the regularization term controlled by β

(impact of regularization term). For further details on updat-
ing terms, such as the membership matrix, cluster centers,
and other defined terms in RFCM, refer to [26].

3 Methodology

Traditional FCM-based methods often fail to capture clus-
ter compactness effectively when using Euclidean distance
metric, which neglect intra-cluster variations. This limita-
tion presents challenges in image segmentation, particularly
for color images. To address these issues, we propose an
Improved Gustafson-Kessel (IGK) method. As shown in
Fig. 1, our approach first utilizes the gray-level histogram
of an image reconstructed through MR, inspired by EnFCM
and FRFCM. We replace the Euclidean distance with the
Mahalanobis distance and iteratively update cluster centers,
the membership matrix, and the positive definite symmetric
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matrix. Finally, we apply a median filter to refine the mem-
bership partition matrix, achieving effective segmentation in
both grayscale and color images with reduced processing
time.

3.1 Improved Gustafson-Kessel

Based on the gray-level histogram, we propose the cost func-
tion of IGK for image segmentation as follows:

JIGK =
∑k

i=1

∑c

j=1
γi .ui j

q .
(
ξi − v j

)T
.A j .

(
ξi − v j

)
,

∑k

i=1
γi = N (37)

Using theLagrangemultiplier technique, this equation can
be reformulated as an unconstrained optimization problem,
minimizing the cost function:

JIGK =
∑k

i=1

∑c

j=1
γi .ui j

q .
(
ξi − v j

)T
.A j .

(
ξi − v j

)

−
∑k

i=1
λi

(∑c

j=1
ui j − 1

)

+
∑c

j=1
β j .

(
det

(
A j

) − ρ j
)

(38)

where λ is the Lagrange multiplier. The partial derivative of
JIGK with respect to ui j , equated to zero, yields:

∂ JIGK

∂ui j
= q.γi .u

q−1
i j .

(
ξi − v j

)T
.A j .

(
ξi − v j

) − λi = 0

(39)

The membership matrix is updated using:

ui j =
⎛

⎝ (ξi − vr )
T .Ar . (ξi − vr )

∑c
j=1

(
ξi − v j

)T
.A j .

(
ξi − v j

)

⎞

⎠
1/q−1

(40)

Similarly, the cluster centers are derived by differentiating
JIGK with respect to v j :

∂ JIGK

∂v j
= −2

∑k

i=1
γi .ui j

q .
(
ξi − v j

)
.A j = 0 (41)

v j =
∑k

i=1 γi .ui j q .ξi∑k
i=1 γi .ui j q

(42)

Finally, the partial derivative with respect to A j gives:

∂ JIGK

∂A j
=

∑k

i=1
γi .ui j

q .
(
ξi − v j

)T
.
(
ξi − v j

)

−
∑k

i=1

(
λi .

∂

∂A j

(
det

(
A j

)))

=
∑k

i=1
γi .ui j

q .
(
ξi − v j

)T
.
(
ξi − v j

)

−
∑k

i=1

(
λi .ui j

q .A−1
j

)
= 0 (43)

Solving Eq. 43, we obtain:

Fi =
∑k

i=1 γi .ui j q .
(
ξi − v j

)T
.
(
ξi − v j

)
∑k

i=1 ui j
q

(44)

A j = λi . (det (Fi ))
1
n .F−1

i (45)

Based on the obtained equations, the pseudocode of proposed
IGK algorithm has been illustrated in Algorithm 1.

3.2 Morphological Reconstruction (MR)

The convergence rate of FCM and GK algorithms depends
on data distribution properties, making them susceptible to
noise and yielding suboptimal segmentation results in noisy
images [9]. MR serves as a robust tool for image processing
tasks including filtering, segmentation, and feature extraction
[34]. As illustrated in Fig. 2, MR improves data distribution
without prior knowledge of noise type and outperformsmean
and median filtering by preserving object contours while
reducing noise. In our approach (Fig. 1), MR optimizes data
distribution before clustering. We employ a 3 × 3 square
structuring element (SE) with the fast grayscale reconstruc-
tion (FGR) algorithm [35]. Dilation and erosion operations
are two basic morphological reconstruction operations [28].

Grayscale reconstruction by the dilation operator D(1)
I ( f )

with a flat SE K is defined as:

D(1)
I ( f ) = ( f ⊕ K ) ∧ I (46)

where I and f are original grayscale image andmarker image
( f ≤ I ), respectively. Also,∧ operation stands for the point-
wise minimum.

The grayscale reconstruction by erosion operator E (1)
I ( f )

with a flat SE K is defined as:

E (1)
I ( f ) = ( f � K ) ∨ I (47)

where I and f are original grayscale image andmarker image
( f ≥ I ), respectively. Also,∨ operation stands for the point-
wise maximum.

Closing C (1)
I ( f ) and opening O(1)

I ( f ) operations based
on dilation and erosion provide enhanced filtering capa-
bilities compared to basic morphological operations [34].
The closing operation effectively smooths texture details [9].
These morphological reconstructions are defined as follows:

C (1)
I ( f ) = E (1)

I

(
D(1)

I ( f )
)

(48)

O(1)
I ( f ) = D(1)

I

(
E (1)
I ( f )

)
(49)
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Fig. 1 Block-diagram of the proposed algorithm for image segmentation

Fig. 2 Comparison of MR method in noise removal: (a) Images with Gaussian noise (the mean value is zeros and the variance is 5%), Speckle
noise with density 5%, and Salt & Pepper noise with density 5%. (b) Data distribution of noisy images. (c) MR-filtered images. (d) Data distribution
post-MR
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Algorithm 1 Improved Gustafson-Kessel Algorithm for Image Segmentation

4 Experimental Results

This section presents experimental results for grayscale and
color image segmentation using the proposed IGKalgorithm.
We compare IGKwith established FCM-basedmethods such
as FCM [29], GK [33], ENFCM [11], FGFCM [12], FLICM
[13], ARKFCM [17], FRFCM [9], and RFCM [26], provid-
ing both visual and quantitative analyses. Experiments were

conducted on anACER desktop with an Intel Core i7–9750H
CPU at 2.60 GHz and 16 GB RAM.

To evaluate segmentation performance, we employed four
metrics: Segmentation Accuracy (SA) [36], Dice Similarity
(DS), Jaccard Similarity (JS), and Contour Matching Score
(CS) [37]. SA is defined as the proportion of correctly seg-
mented pixels:
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Fig. 3 Ablation study results demonstrating IGK performance under
different preprocessing conditions. (a) Original image. (b) Gaussian
noise-corrupted image. (c) Result after applying MR. (d) Segmentation
result using IGK without MR and without median filtering. (e) Seg-

mentation result using IGK with median filtering but without MR. (f)
Segmentation result using IGK with MR but without median filtering.
(g) Segmentation result using IGK with both MR and median filtering

SA =
∑c

k=1

Ak ∩ Bk

Ak ∪ Bk
(50)

where Ak and Bk are the set of pixels belonging to the kth
cluster segmented by the proposed algorithm and the set of
pixels belonging to the cluster in the Ground Truth (GT).

DS index is used to assess the overlap degree between
two images, including segmented image and GT. JS index is
used tomeasure the similarity between two images.CS index
is used to evaluate the contour matching score between the
segmented image and GT. This index is in the range of [0,1],
where a score of 1 indicates a perfect match.

DS (A, B) = 2 |A ∩ B|
|A| + |B| (51)

JS (A, B) = |A ∩ B|
|A ∪ B| (52)

CS = 2.Pc.Rc

Pc + Rc
(53)

where Pc and Rc are precision and recall, respectively.

4.1 Data Description

Weevaluated the performanceof the proposed IGKalgorithm
on both grayscale and color images. For grayscale evaluation,

we first used two synthetic 256×256 images are (see Fig. 3
and 4). The first image contains three intensity values (0,
85, and 170), while the second image has four intensity val-
ues (0, 85, 170, and 255). Subsequently, we used three MRI
images highlighting multiple sclerosis (MS) lesions (Fig. 5)
to demonstrate IGK’s effectiveness in medical applications.

For color image segmentation, we utilized images from
four datasets : BSDS500 (Berkeley Segmentation Dataset)
[38], MSRC (Microsoft Research Cambridge) [39], SUT
(orthogonal facial color images for facial reconstruction)
[40], and fused MRI images from the BrainWeb dataset (a
simulated brain database) [41] with dimensions of 181×217
(see Fig. 7–12).

4.2 Parameter Setting

The numerical implementation of IGK and the other algo-
rithms requires the setting of several constant parameters.
Three essential parameters were used across all algorithms:
fuzzy exponent q=2, minimal error threshold η = 10−5,
and maximal number of iterations 50. For IGK and other
applicable algorithms, we used a 3×3 square SE for MR
and a window 3× 3 for membership matrix filtering. For the
EnFCM, we experimentally set α = 4.2, to control the influ-
ence of neighboring terms. In FGFCM, spatial scale factor

123



International Journal of Fuzzy Systems,

Fig. 4 Comparison of segmentation results on thefirst synthetic image.
(a) Original image. (b) Noisy image (Gaussian noise with zero mean
and 10% variance). (c) Segmentation result using FCM algorithm. (d)
Segmentation result using GK algorithm. (e) Segmentation result using
EnFCMalgorithm. (f) Segmentation result usingFGFCMalgorithm. (g)

Segmentation result using FLICM algorithm. (h) Segmentation result
using ARKFCM algorithm. (i) Segmentation result using KWFLICM
algorithm. (j) Segmentation result using RFCM algorithm. (k) Segmen-
tation result using FRFCM algorithm. (l) Segmentation result using
IGK algorithm

and grayscale factor were λs = 3 and λg = 6, respec-
tively. Except the mentioned indispensable parameters and
the number of cluster center, there is no other parameters for
FLICM,ARKFCM, andKWFLICM. For RFCM, the param-
eter controlling the decreasing rate of weighting matrix, the
ξ parameter, was set to ξ=0.0008. The standard deviation of
image data is related to noise levels in RFCM. Therefore, the
β parameter is set in virtue of the standard deviation of each
channel. A constant 3 × 3 window size was used across all
the algorithms except FCM and GK for fair comparison.

4.3 Results on Synthetic Images

Synthetic images offer advantages for algorithm evalua-
tion through prior knowledge of image types and control
over parameters like modality and noise, making it eas-
ier to evaluate algorithm performance objectively reason,
synthetic images were chosen to initially validate the pro-
posed IGK algorithm [24]. We used the grayscale synthetic
images shown in Fig. 3(a) and 5(b), corrupted with differ-

ent noise types: Gaussian noise (GN), salt and pepper noise
(SPN), and speckle noise (SN). These noisy versions were
used to assess and compare segmentation performance across
various algorithms. Fig. 3(c-l) and 4(c-l) display the seg-
mentation outcomes for IGK and the compared algorithms.
Each algorithm was run ten times, with the best performance
selected for comparison.

As illustrated in Algorithm 1, the proposed IGK algorithm
applies MR operation as a preprocessing step and median
filtering after updating themembershipmatrix. Fig. 3 demon-
startes the performance of IGKunder different configurations
to evaluate the individual contributions of these compo-
nents.WithoutMRoperation andmedian filtering (Fig. 3(d)),
segmentation lacks spatial consistency as noise and irregu-
lar intensity variations mislead the clustering process. MR
operation enhances robustness in low-contrast regions and
improves edge preservation Fig. 3(c), while median filtering
eliminates scattered noise in the membership function and
improves spatial coherence. Together, these components sig-
nificantly the robustness of the proposed IGK algorithm by
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Fig. 5 Comparison of segmentation results on the second synthetic
image. (a) Original image. (b) Noisy image (Speckle noise with 10%
variance). (c) Segmentation result using FCM algorithm. (d) Segmenta-
tion result using GK algorithm. (e) Segmentation result using EnFCM
algorithm. (f) Segmentation result using FGFCM algorithm. (g) Seg-

mentation result using FLICM algorithm. (h) Segmentation result using
ARKFCM algorithm. (i) Segmentation result using KWFLICM algo-
rithm. (j) Segmentation result usingRFCMalgorithm. (k) Segmentation
result using FRFCMalgorithm. (l) Segmentation result using IGK algo-
rithm

addressing structural guidance and local consistency require-
ments.

As shown in Fig. 4, algorithms like FCM, GK, EnFCM,
FGFCM, and ARKFCM showed limited noise immunity,
leading to suboptimal segmentation under GN. These algo-
rithms are notably sensitive to GN. However, FLICM and
KWFLICM, which incorporate criterion-free local informa-
tion and kernel coefficients, exhibited better noise immunity
and outperformed the aforementioned algorithms in seg-
menting GN-corrupted images. RFCM, FRFCM, and IGK
also showed strong performance under GN. Fig. 4(j-l) illus-
trate that IGK, in particular, demonstrated high noise removal
effectiveness and preserved image edges better than RFCM
and FRFCM.

Similarly, in Fig. 5, FLICM, RFCM, FRFCM, and
IGK performed well under SN, whereas other algorithms
remained sensitive to SN. In the second synthetic image,
IGK outperformed FLICM, RFCM, and FRFCM, attributed
to its new similarity measure supporting more compact clus-
ters. As shown in Fig. 5, increasing the number of cluster

centers diminished segmentation efficiency in FCM-based
algorithms, but IGK addressed this issue by applying Maha-
lanobis distance instead of Euclidean distance, effectively
preserving edges across different noise types.

Tables 1 and 2 show that IGK’s SA criterion surpasses
that of other algorithms across different noise types, indicat-
ing effective noise immunity and detail preservation. This
improvement stems from IGK’s use of membership matrix
filtering and MR. KWFLICM employs a kernel metric to
address FLICM’s detail preservation challenges, yielding
good segmentation under GN and SPN, but struggling with
SN. Both IGK and FRFCM enhance noise immunity through
MR and membership matrix filtering. However, FRFCM’s
reliance on Euclidean distance weakens its performance as
cluster centers increase, especially under varied noise. IGK,
utilizing Mahalanobis distance, maintains effective edge
preservation and segmentation performance under diverse
noise conditions.While GK and FGFCMperformwell under
SPN and ENFCM under SN, FLICM shows efficiency with a
low number of clusters for SN and for GN with higher clus-
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Table 1 Segmentation accuracy (↑SA%) of different algorithms on the first synthetic image with different noises

Noise FCM GK EnFCM FGFCM FLICM ARKFCM KWFLICM RFCM FRFCM IGK

Gaussian 5% 66.25 78.52 91.10 95.75 98.01 72.23 99.55 99.02 99.36 99.57

Gaussian 10% 65.32 76.61 86.53 85.12 91.43 67.42 94.14 85.83 98.24 98.92

Gaussian 15% 64.56 72.81 82.36 80.20 79.53 62.12 84.21 80.12 85.74 87.38

Salt & Pepper 10% 94.21 96.15 92.31 96.39 93.41 79.23 99.98 99.33 99.48 99.93

Salt & Pepper 20% 86.24 88.61 86.53 92.82 82.18 75.17 99.84 99.31 99.83 99.86

Salt & Pepper 30% 80.36 82.95 79.82 86.65 76.24 72.53 99.62 99.29 99.70 99.77

Speckle 10% 75.16 81.08 94.86 97.57 98.13 78.20 99.55 99.11 99.44 99.64

Speckle 20% 72.81 78.16 90.21 91.83 95.83 69.18 92.13 83.94 91.44 95.54

Speckle 30% 70.14 73.82 84.45 84.32 90.70 72.41 80.88 81.25 82.84 81.23

Table 2 Segmentation accuracy (↑SA%) of different algorithms on the second synthetic image with different noises

Noise FCM GK EnFCM FGFCM FLICM ARKFCM KWFLICM RFCM FRFCM IGK

Gaussian 5% 40.67 44.22 88.24 93.84 97.64 84.23 95.67 98.69 99.21 99.51

Gaussian 10% 33.56 35.80 81.68 83.25 90.39 78.76 84.62 82.41 97.73 98.16

Gaussian 15% 30.72 33.61 74.65 77.21 78.60 68.97 80.23 79.12 95.23 97.53

Salt & Pepper 10% 81.39 84.71 87.43 94.22 91.78 84.17 99.68 99.15 99.90 99.91

Salt & Pepper 20% 75.42 78.48 76.36 88.47 81.06 82.78 99.52 99.12 99.80 99.77

Salt & Pepper 30% 64.19 68.05 68.71 80.38 72.41 75.92 99.04 99.02 98.73 99.65

Speckle 10% 50.81 55.12 83.92 91.68 96.15 66.43 96.54 97.01 97.85 98.28

Speckle 20% 42.67 46.39 77.84 81.68 81.45 63.21 80.42 80.13 84.82 85.19

Speckle 30% 34.48 36.61 71.85 75.27 78.74 59.81 72.26 79.19 79.45 80.43

Table 3 Comparison of clustering centers produced by different algorithms

Methods The First Synthesis Image The Second Synthesis Image
(Gaussian noise with zero mean and 10% variance) (Speckle noise with 10% variance)
Values of cluster centers RMSE↓ Values of cluster centers RMSE↓

FCM (12.7, 118.63, 224.76) 37.78 (3.47, 100.39, 171.72, 247.02) 8.89

GK (6.63, 103.73, 218.69) 30.36 (0.02, 92.86, 175.48, 249.75) 5.46

EnFCM (34.61, 111.69, 169.35) 25.23 (19.87, 99.83, 167.07, 215.26) 23.46

FGFCM (28.36, 111.32, 175.67) 22.58 (0.20, 88.29, 167.42, 223.76) 15.76

FLICM (8.89, 94.26, 183.85) 10.90 (0.38, 85.73, 165.97, 232.85) 11.26

ARKFCM (12.00, 37.89, 167.12) 28.12 (0.41, 86.30, 171.08, 228.49) 13.28

KWFLICM (7.31, 93.78, 181.42) 9.33 (0.71, 86.63, 176.02, 245.87) 5.54

RFCM (29.21, 112.58, 176.17) 23.47 (0.64, 88.79, 173.65, 243.15) 6.49

FRFCM (9.40, 96.78, 173.77) 8.97 (0.14, 86.60, 171.35, 244.85) 5.18

IGK (8.42, 85.29, 168.27) 4.97 (1.36e-29, 85.78, 169.57, 248.48) 3.29

ter counts. ARKFCMdemonstrates poor performance across
noise types. In summary, RFCM, FRFCM, and IGK show
the best overall efficiency in noisy image segmentation, with
IGK being notably robust even as cluster centers increase.

Table 3 provides a detailed comparison of clustering cen-
ter values across different algorithms using the Root Mean
Square Error (RMSE) of clustering centers to assess perfor-
mance.

In the first synthetic image, IGK achieves notable clus-
tering accuracy, with the lowest RMSE values for key
clustering centers, indicating closer approximation to true
values. Specifically, IGK achieves a value of 8.42 for the first
clustering center, with the best values for the second (85.29,
closest to 85) and third clustering centers (168.27) as well. In
the second synthetic image, IGK also demonstrates superior
performance, achieving the lowest RMSE for clustering cen-
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Fig. 6 Comparison of segmentation results on MS defect images
(c=4). (a) Original MS MRI images. (b) Ground truth images, man-
ually segmented by a radiologist. (c) GK algorithm results. (d) EnFCM
algorithm results. (e) FGFCM algorithm results. (f) FLICM algorithm

results. (g) ARKFCM algorithm results. (h) KWFLICM algorithm
results. (i) RFCM algorithm results. (j) FRFCM algorithm results. (k)
IGK algorithm results

Table 4 Segmentation performance (%) of different algorithms on MS defect images

Algorithm Fig. 6, Row 1 Fig. 6, Row 2 Fig. 6, Row 3
SA↑ Dice↑ Jaccard↑ SA↑ Dice↑ Jaccard↑ SA↑ Dice↑ Jaccard↑

GK 85.39 28.06 16.32 91.61 51.91 35.05 87.53 29.36 17.21

EnFCM 81.00 23.07 13.04 86.96 40.98 25.77 81.01 21.42 12.00

FGFCM 98.73 81.74 69.12 99.53 94.87 90.24 98.26 74.83 59.79

FLICM 99.28 88.74 79.76 99.47 94.34 89.29 97.52 77.73 63.58

ARKFCM 99.28 88.66 79.67 99.44 93.54 87.88 98.83 81.47 68.73

KWFLICM 99.10 86.26 75.85 99.38 93.50 87.80 98.40 76.37 61.77

RFCM 86.20 29.22 17.11 99.24 92.12 85.39 98.06 72.75 57.17

FRFCM 98.50 79.08 65.40 99.42 93.84 88.39 98.02 72.33 56.65

IGK 99.59 91.76 85.78 99.48 94.39 89.37 99.34 88.52 81.49

Fig. 7 Block-diagram of MMR for color image reconstruction

Table 5 Segmentation performance (%) of various algorithms on BSDS500 images

Algorithm Fig. 7, Row 1 Fig. 7, Row 2 Fig. 7, Row 3 Fig. 7, Row 4 Fig. 7, Row 5
CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑

RFCM 18.33 39.55 24.65 31.65 52.67 39.84 45.16 64.83 47.96 92.67 94.40 89.40 97.79 98.20 96.46

FRFCM 16.80 39.40 24.54 28.25 52.19 35.40 44.36 65.65 48.87 87.77 93.35 87.53 59.87 95.14 90.73

IGK 98.79 97.93 95.95 50.72 78.77 64.76 70.20 73.21 57.74 91.72 94.77 90.07 98.69 98.24 96.64
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Fig. 8 Comparison of segmentation results on color images from BSDS500 (c=2). (a) Original images. (b) Ground truth. (c) FRFCM results. (d)
RFCM results. (e) IGK results

Table 6 Segmentation performance (%) of various algorithms on MSRC images

Algorithm Fig. 8, Row 1 Fig. 8, Row 2 Fig. 8, Row 3 Fig. 8, Row 4 Fig. 8, Row 5
CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑

RFCM 50.25 88.99 80.17 23.22 75.05 60.07 79.57 96.75 93.71 68.07 91.08 83.62 12.25 34.04 20.51

FRFCM 50.90 89.11 80.36 28.44 75.20 60.26 73.14 96.05 92.40 66.11 91.62 84.53 11.45 33.56 20.16

IGK 78.49 96.77 93.74 71.01 94.38 89.36 84.55 96.95 94.09 94.90 97.84 95.78 16.60 62.43 45.38

Table 7 Segmentation performance (%) of various algorithms on SUT images for facial skin segmentation

Algorithm Fig. 9, Col 1 Fig. 9, Col 2 Fig. 9, Col 3 Fig. 9, Col 4 Fig. 9, Col 5
CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑

FRFCM 55.95 85.93 75.33 52.17 88.08 78.71 26.21 73.39 57.97 16.83 64.05 47.11 73.46 95.82 91.98

RFCM 59.07 86.46 76.14 53.90 88.52 79.40 24.52 74.07 58.82 17.75 65.84 49.08 72.26 95.85 92.04

IGK 75.10 95.31 91.02 72.90 95.97 92.25 77.07 96.88 93.95 84.94 97.56 95.23 73.03 95.78 91.91
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Fig. 9 Comparison of segmentation results on color images from MSRC (c=2). (a) Original images. (b) Ground truth. (c) FRFCM results. (d)
RFCM results. (e) IGK results

Table 8 Segmentation performance (%) of various algorithms on fused MRI images

Algorithm Fig. 10, Row 1 Fig. 10, Row 2 Fig. 10, Row 3 Fig. 10, Row 4 Fig. 10, Row 5
(WM) CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑
FRFCM 91.20 89.93 81.70 95.48 94.53 89.64 95.86 96.13 92.70 97.97 96.77 93.73 96.11 95.12 90.70

RFCM 80.03 84.33 72.91 93.54 95.03 90.53 95.30 95.93 92.17 84.63 93.84 88.40 87.95 94.69 89.92

IGK 86.38 87.36 77.56 97.34 96.65 93.52 96.19 96.42 92.86 98.89 97.13 94.43 94.68 95.28 90.98

Algorithm Fig. 10, Row 1 Fig. 10, Row 2 Fig. 10, Row 3 Fig. 10, Row 4 Fig. 10, Row 5
(GM) CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑
FRFCM 83.14 72.85 52.79 81.13 72.94 57.40 90.98 86.66 78.04 88.78 87.19 77.28 88.29 86.13 75.63

RFCM 73.39 63.36 46.37 79.36 74.37 59.19 86.75 83.62 71.85 77.56 82.19 69.76 90.39 84.36 72.95

IGK 83.29 69.56 53.32 91.17 86.66 76.45 91.03 87.13 75.64 90.10 88.33 79.10 91.77 86.45 75.81

Algorithm Fig. 10, Row 1 Fig. 10, Row 2 Fig. 10, Row 3 Fig. 10, Row 4 Fig. 10, Row 5
(CSF) CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑ CS↑ DS↑ JS↑
FRFCM 62.35 62.23 45.17 29.11 46.42 30.22 78.36 81.45 68.71 68.99 76.27 61.64 73.23 70.83 54.83

RFCM 19.58 32.83 19.64 30.26 46.89 30.63 30.35 56.83 39.70 19.32 43.78 28.03 92.53 75.81 61.05

IGK 62.89 62.31 45.24 84.32 83.46 71.62 79.53 79.91 66.54 75.24 79.79 66.37 87.28 79.10 65.43
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Fig. 10 Comparison of segmentation results on color images from SUT (c=3). (Row 1) Original images. (Row 2) Ground truth. (Row 3) FRFCM
results. (Row 3) RFCM results. (Row 4) IGK results
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Fig. 11 Comparison of segmentation results on fused MRI images (c=4). (a) Original images. (b) Ground truth. (c) FRFCM results. (d) RFCM
results. (e) IGK results

ters across different noise types. For instance, IGK obtains
1.36e-29 for the first clustering center, among the best values
for the second (85.78), third (169.57), and fourth clustering
centers (248.48). Overall, IGK’s RMSE (3.29) is the low-
est among all compared algorithms for the second synthetic
image, indicating precise clustering. These results suggest
that IGK’s use of MR, membership matrix filtering, and
Mahalanobis distance significantly enhances clustering accu-
racy, particularly under noisy conditions, making it effective
for accurate image segmentation.

4.4 Results on Medical Images

Multiple sclerosis (MS) is a chronic neurodegenerative
disorder affecting the central nervous system, marked by
progressive myelin damage around neurons. MRI plays a
crucial role in MS diagnosis by revealing MS lesions and
assessing brain component volumes such as white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF).
Effective segmentation of these lesions is vital for both diag-
nosis and disease monitoring over time [42–44]. To evaluate
IGK’s performance on medical images, three representative
T2-weighted MRI scans fromMS patients, sourced from the
Golgasht Medical Imaging Center (GMIT) in Tabriz, Iran,
were analyzed. Standardized protocols for MRI scanning

123



International Journal of Fuzzy Systems,

Fig. 12 Comparison of segmentation results on color images from BSDS500. (a) Original images. (b) FRFCM results (c=2). (c) RFCM results
(c=2). (d) IGK results (c=2). (e) FRFCM results (c=3). (f) RFCM results (c=3). (g) IGK results (c=3)

Table 9 Execution times of various algorithms on grayscale images (seconds)

Image FCM GK EnFCM FGFCM FLICM ARKFCM KWFLICM RFCM FRFCM IGK

Fig. 3 0.63 0.16 0.14 0.46 128.46 2.43 51.10 3.8 0.06 0.07

Fig. 4 1.24 0.22 0.13 0.46 151.23 3.01 50.14 3.21 0.05 0.06

Fig. 5, Row 1 5.22 0.98 0.95 2.22 952.12 17.08 241.02 46.54 0.14 0.15

Fig. 5, Row 2 6.38 1.34 0.98 2.20 918.90 16.98 600.10 16.06 0.12 0.13

Fig. 5, Row 3 5.08 1.08 0.98 2.22 926.13 16.87 240.21 11.34 0.12 0.13
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Fig. 13 Comparison of segmentation results on color images from BSDS500 (c=4). (Row 1) Original images. (Row 2) FRFCM results. (Row 3)
RFCM results. (Row 4) IGK results

Table 10 Execution times of various algorithms on color images (seconds)

Image Fig. 7, Fig. 7, Fig. 7, Fig. 7, Fig. 7, Fig. 8, Fig. 8, Fig. 8, Fig. 8, Fig. 8,
Row 1 Row 2 Row 3 Row 4 Row 5 Row 1 Row 2 Row 3 Row 4 Row 5

RFCM 1.30 2.64 1.56 1.28 1.11 3.86 2.16 1.40 2.52 4.58

FRFCM 0.98 1.57 0.98 0.90 0.91 1.44 1.42 1.13 1.54 2.16

IGK 1.30 1.86 1.76 1.36 1.45 4.49 2.40 1.70 2.10 3.85

were followed, which included the use of various sequences
such as (repetition time (TR) = 4800 ms, echo time (TE)
=105 ms, flip angle (FA) = 90º, field of view (FOV) = 230
× 230 mm2, number of slices = 20, acquisition matrix = [0,
352, 256, 0], voxel size = 0.33 × 0.33, slice thickness = 5
mm). Labelling process of used images were carried out by
a radiologist with over 20 years of experience in assessing
MRI scans. Here, we set c=4 for all cases.

The images were preprocessed to remove skull and scalp
areas before segmentation. Fig. 6 and Table 4 illustrate IGK’s
capability to preserve lesion edges and capture compact clus-
ters within MS-affected brain areas. Comparatively, FCM,
GK, and ARKFCM algorithms were less effective at dis-
tinguishing MS lesions. The Jaccard criterion highlights
IGK’s edge-preservation ability, surpassing other methods
like EnFCM,RFCM, and FRFCM,which struggledwith spa-
tial information acquisition critical for representing compact

MS clusters accurately. Overall, IGK demonstrated potential
as a segmentation tool in medical image analysis, offering
valuable support for specialists in diagnosing and assessing
neurodegenerative diseases such as MS.

4.5 Results of Color Images

Segmenting color images with different cluster shapes chal-
lenges most FCM-based methods, largely due to difficulties
in capturing spatial information. In IGK, color image seg-
mentation clusters individual pixels rather than relying on
grayscale histograms, as color image histograms are more
complex to obtain. To optimize data distribution, multivari-
ate morphological reconstruction (MMR) [45] is applied,
with the remaining steps similar to grayscale segmentation.
The block diagram of this method is presented in Fig. 7.
The first step involves data transformation where the RGB
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Table 11 Computational complexity of different fuzzy-based algo-
rithms

Algorithms Computational Complexity

FCM O(N × C × T )

GK O(N × C × T )

EnFCM O(T × q × C)

FGFCM O(N × W 2 + q × C × T )

FLICM O(N × C × T × W 2)

ARKFCM O(N × C × T )

KWFLICM O(N × C × T × W )

RFCM O(T × q × C)

FRFCM O(N × W 2 + q × C × T )

IGK O(N × W 2 + q × C × T + N × C)

image is projected into a decorrelated color space using Prin-
cipal Component Analysis (PCA), enhancing the separation
of chromatic and luminance information. To encode spatial
and spectral characteristics, synthetic grayscale represen-
tations are constructed through a nonlinear transformation
combining PCA components and RGB channels with care-
fully designed scalar weightings. Grayscale morphological

reconstruction is then independently applied to each trans-
formed representation, suppressing noise and enhancing
homogeneous regions while maintaining edge integrity. The
reconstructed outputs are decoded through inverse trans-
formation, generating a refined RGB image with enhanced
spatial coherence and contrast stability. MMR operation
reserves color structure through PCA-based multichannel
encoding and enhances robustness in low-contrast and noisy
regions. For additional methodological details, refer to [45].

Previous studies [9,26] have shown that FRFCM and
RFCM outperform FCM, EnFCM, FGFCM, FLICM, ARK-
FCM, and KWFLICM in color image segmentation. Conse-
quently, we compare IGK with FRFCM and RFCM, using
different cluster centers (c=2, c=3, and c=4).

Fig. 8 and Table 5 present visual and quantitative compar-
isons onBSDS500 images, respectively. Results indicate that
IGK achieves better segmentation than FRFCM and RFCM,
preserving more edges and detailed features. IGK attains the
highest values in CS, DS, and JS criteria, while FRFCM
and RFCM show similar values. This suggests that using
Euclidean distance in FCM-based methods neglects distance
variations within data points in similar clusters.

A second set of images from the MSRC dataset was
analyzed (Fig. 9, Table 6). FRFCM and RFCM incorrectly

Table 12 Comparison of convergence and stability in different algorithms

Aspect IGK ARKFCM RFCM FRFCM FLICM

Cost Function Robust to noise
and outliers with
Mahalanobis dis-
tance

Kernelized FCM
and adaptive
scale tuning

FCM with robust
cost functions to
reduce sensitivity
to outliers

Modified FCM
using spatial fil-
tering and robust
cost function

FCM with local
spatial regular-
ization term

Distance Criterion Mahalanobis Kernel-based Euclidean Euclidean Euclidean

Adaptive Distance Yes Yes No No No

Spatial Model MR+median fil-
ter (modular)

Adaptive kernel
influence

Histogram-based
with adaptive
feature

Using window-
based filtering

Local similarity
(on pixels)

Histogram-Based Yes No Yes Yes No

Noise Robustness Very High Moderate High Very High Moderate

Convergence It depends on
covariance
matrix; may
suffer from sin-
gularity

It depends on
proper kernel and
tuning conditions

Monotonic con-
vergence under
appropriate
optimization
framework

monotonic con-
vergence in
practical settings

Monotonic con-
vergence; slow
convergence
under local
update

Stability High It depends on
kernel and scale
parameters

Improved stabil-
ity due to reduced
sensitivity to
extreme values

High Moderate; scalar
local fuzzy terms
used

Computational
Complexity

Moderate High; due to ker-
nel evaluations
and adaptations

Low-Moderate;
avoids high-order
matrix operations

Low to moderate;
optimized for fast
execution

High; local terms
require neighbor
analysis

Recommended
Application
Scenario

Clusters with
ellipsoidal shapes
or varying orien-
tations

Nonlinear and
noisy data with
complex decision
boundaries

Scenarios with
significant noise
or outliers

High-speed seg-
mentation in
noisy image
settings

Edge-preserving
clustering in
highly corrupted
data
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Table 13 Advantages and disadvantages of different algorithms

Algorithm Advantages Disadvantages

IGK - Adapts to different cluster shapes via an adap-
tive metric- Suitable for elliptical or anisotropic
distributions- Better than FCM-based approaches for
shaped clusters- Robust to different noises due to
adaptive distance criterion- Appropriate for ellip-
soidal distribution in color images- Robust to varying
illumination- Strong structure preservation

- High computational complexity due to Sensitivity to
covariance matrix singularity– Not spatial

ARKFCM - Robust to noise via adaptive kernel functions- Cap-
tures nonlinear cluster boundaries-Good performance
in nonlinear spaces and medical images

- Computationally heavy due to kernel calculations-
Sensitive to kernel and parameter choice- Requires
fine-tuning to guarantee convergence- Not suitable
for anisotropic distributions- High Execution times-
Require to fine-tuning for different datasets

RFCM - Uses robust loss functions for noise resistance-
No matrix regularization required- Increased stabil-
ity over classic FCM

- Lacks spatial noise modeling- It depends on cost
function-Not appropriate for spatially structured data-
Lack a locally adaptive distance metric on color
images- Accuracy decreases as the number of clus-
ter centers increases- Not suitable to model non-linear
color spaces

FRFCM - Very fast and efficient- Effective for different noise
in images- Simpler implementation

- Lower accuracy in textured or structured data-
Limited shape flexibility- Not suited for nonlinear
distributions- Accuracy decreases as the number of
cluster centers increases- May over-smooth regions
in detailed textures- Not suitable to model non-linear
color spaces- Lack a locally adaptive distance metric
on color images

FLICM - Edge structure preservation - Slower due to local term computation- Higher com-
putational cost- Less optimal for time-constrained
applications- High Execution times- Not appropriate
for color images

labeled parts of an object as background in several cases,
resulting in lower CS indices. In the fifth image, leaves are
misclassified as part of the object class, indicating that dis-
tance metrics in FRFCM and RFCM may not adapt well
to complex cluster shapes. These findings highlight IGK’s
advantage in accommodating diverse cluster shapes through
elliptical modeling.

For facial reconstruction surgeries, skin segmentation is
crucial in both pre- and post-surgery assessments [46]. We
evaluated IGK’s effectiveness in facial skin segmentation
using five images from the SUT dataset. Figure. 10 and
Table 7 compare IGK with FRFCM and RFCM. FRFCM
and RFCM often failed in shadowed or inhomogeneous
areas,misclassifying non-skin pixels as skin. In contrast, IGK
demonstrated robustness to varying illumination and effec-
tively extracted facial contours, aiding in facial landmark
localization. Table 7 confirms IGK’s superior performance
in all criteria, especially in preserving edges, making it a
valuable tool in facial surgery applications.

MRI image segmentation is a crucial tool for assisting
neurosurgeons and radiologists in diagnosing various con-
ditions. This process involves dividing an image into three
distinct, non-overlapping classes: white matter (WM), gray

matter (GM), and cerebrospinal fluid (CSF) [47]. Different
MRI modalities are utilized to enhance clinical diagnoses
by capturing specific features that reveal unique soft tis-
sue contrasts. These modalities include T1-weighted MRI
(T1), T2-weightedMRI (T2), andFluid-Attenuated Inversion
Recovery (FLAIR). T1 images highlight healthy tissues with
high intensity and pathologies with low intensity, whereas T2
images depict pathologieswith high intensity. FLAIR images
are particularly useful for identifying edema regions by sup-
pressing signals from water molecules. Combining these
modalities is an effective approach for fusing complementary
information, thereby improving diagnostic accuracy. These
fused images are better suited to assist specialists in interpre-
tation and treatment planning [48–50].

We evaluated IGK’s performance in segmenting five fused
MRI images from different modalities. These images were
presented in the axial plane with 1 mm slice thickness, 3%
noise, and 20% intensity non-uniformity, using an anatomi-
cal model with 0% noise and 0% RF as ground truth. After
normalization and skull stripping, the fused modalities were
segmented. Visual and quantitative comparisons between
IGK and two benchmark algorithms are shown in Fig. 11
and Table 8, respectively. Experimental results for the seg-
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mentation of WM, GM, and CSF using IGK, FRFCM, and
RFCM are detailed in Table 8.

The high values of CS, DS, and JS criteria for WM tis-
sues indicate accurate segmentation by the IGK algorithm.
While three algorithms performed well in WM segmenta-
tion, RFCM performed suboptimally in GM segmentation as
shown by the JS index. Since GM forms a compact cluster,
FCM-based approaches using Euclidean distance struggled
with mislabeling CSF andGMpixels, as seen in Fig. 11. IGK
achieved the highest CS, DC, and JS values, highlighting
its robustness to noise and resistance to intensity inhomo-
geneity. Both FRFCM and RFCM were less effective for
CSF segmentation, with numerous misclassified CSF pix-
els (see Figure 10). The compact shape of the CSF region
suggests that FCM-based approaches struggle when clusters
have different shapes and sizes, supporting IGK’s suitabil-
ity for detecting ellipsoidal clusters with varying sizes and
orientations.

We further illustrated IGK’s performance in color image
segmentation by segmenting BSDS500 images with differ-
ent numbers of clusters. As seen in the first image of Fig. 12,
IGK accurately separated the object from backgrounds in
two-cluster segmentation, unlike FRFCM and RFCM. With
more clusters, IGK continued to outperform its peers. In the
third image of Fig. 12, FRFCM and RFCM incorrectly clas-
sified the basket region, while IGK successfully segmented
the background, object, and basket. In another case, where
the object cluster is smaller and more compact, FRFCM and
RFCM failed to segment it correctly in two-cluster segmen-
tation (c=2), but IGK overcame this challenge by adapting to
elliptical data distributions. With three clusters (c=3), IGK
outperformed its peers. In the fifth image of Fig. 12, FRFCM
and RFCM mislabeled skin pixels due to the compact clus-
ter shape, while IGK segmented them accurately. In the final
case, IGK again demonstrated superior performance.

In color image segmentation with four clusters (c=4),
FRFCM and RFCM lack locally adaptive distance metrics,
making them less effective. IGK addresses this limitation by
usingMahalanobis distance as a dissimilaritymeasure, offer-
ing greater robustness. This improvement is demonstrated
through segmentation of five BSDS500 images with four
clusters (c=4). For instance, as illustrated in Fig. 13, IGK
accurately segments the object in the first and third images,
while in the fourth image, FRFCM and RFCM misclassify
facial pixels due to inadequate distance variation handling
within clusters, underscoring IGK’s adaptability to data point
distributions.

We also compared the execution times for grayscale and
color images segmentation (Tables 9 and 10). Table 9 shows
that the computational cost for FLICM and KWFLICM
was substantially higher in grayscale image segmentation,
whereas FRFCM and IGK were considerably faster. How-

ever, in color image segmentation, IGK was not faster than
its peers.

Table 11 provides a comprehensive analysis of com-
putational complexity across fuzzy clustering algorithms.
IGK demonstrates fast and stable convergence due to its
histogram-based design and integration ofMR operation and
adaptive distancemetrics, which guide the clustering process
structurally. Both IGK and FRFCM utilize histogram-based
clustering rather than pixel-wise updates, unlike FLICM.
FLICM offers strong robustness to noise and outliers owing
to its local spatial information modeling; however, it often
suffers from slow convergence due to repetitive local con-
text evaluations at each iteration. RFCM, optimized for
residual modeling, demonstrates faster convergence, partic-
ularly in noisy or degraded imaging conditions. ARKFCM
and FRFCM achieve moderate convergence rates by balanc-
ing spatial regularization with kernel-based enhancements.
Notably, IGK offers superior convergence speed by avoiding
exhaustive pixel-level iterations, making it especially effec-
tive for processing large-scale images.

4.6 Advantage and Disadvantage Comparison

Based on the related literature reviews and obtained exper-
imental results, we conducted an extensive, comparative
analysis focusing on convergence and stability to highlight
the strengths and limitations of each algorithm. Table 12
compares the convergence behavior, stability properties,
and mathematical regularization strategies of IGK, FLICM,
ARKFCM, FRFCM, and RFCM algorithms. Table 13 sum-
marizes the advantages and disadvantages of these algo-
rithms.

5 Conclusion

Traditional FCM-based approaches using Euclidean distance
often inadequately capture the distance variation among data
points within clusters, particularly in color images or clus-
ters with diverse shapes and sizes. Most existing methods
struggle with efficient segmentation across varying cluster
geometries due to limited spatial information acquisition.
the proposed IGK algorithm addresses these limitations by
incorporating the Mahalanobis distance metric, which better
accommodates non-uniform cluster structures, and utilizing
MR operator-based reconstruction to preserve object edges
under noise. Unlike Euclidean distance, Mahalanobis dis-
tance captures data covariance structure, allowing clustering
to adapt to anisotropic and correlated feature distributions
critical for handling elliptical clusters and multivariate pixel
features in medical and natural color images.MR contributes
a topology-preserving spatial prior, enhancing the structural
consistency, while median filter on the membership matrix
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stabilizes the adaptive feature space, improving convergence
in degraded conditions. Experimental results indicate that
IGK performs well in segmenting both grayscale and color
images without requiring parameter tuning, a significant
advantage in practical applications. Future work could focus
on developing an enhanced version of the GK algorithm
that automatically determines the optimal number of clus-
ters, potentially improving adaptability and applicability in
diverse image segmentation tasks.
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