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Abstract

A system dynamics approach is described to explore the path of Carbon Capture diffusion.
The proposed model, in principle, follows the Bass diffusion of innovation theory and
includes all major influencing factors. The primary contribution of this paper is the modifi-
cation of Bass’s model to reflect parameters affecting the adoption of Carbon capture and
storage technology. Consequently, it differs from other extensions to Bass’s model. The un-
derpinning of this work is the system dynamics (SD) approach, which can open a pathway
for further research into CCS acceptance. The proposed model’s behaviour is illustrated
for various transition pathways of the technology, for different regimes. By modifying the
proposed model, the paper also allows consideration of various capturing technologies on
their merit. The proposed framework enables the examination of the impact of intervention
policies on the adoption of CCS by individual investors. The purpose is to identify the
parameters of these policies to support the under-resourced CCS technology and reduce the
need for government participation. It is worth noting that the SD is primarily a descriptive
method used for scenario analysis to illustrate what the future would look like.

Keywords: carbon capture chain (CCS); technology diffusion; system dynamics; system
thinking; innovation acceptance; innovation adoption

1. Introduction
Technology diffusion has been examined through various interconnected perspectives,

including public acceptance, product lifespan, and organisational effectiveness. This
suggests that every facet of technology plays a critical role in its overall impact. Diffusion
refers to the transmission of innovation over time through specific communication channels
among members of a social system. The phenomenon of technology diffusion has been
examined through a diversity of interconnected viewpoints, including [1]:

1. Communication feature: It assumes that for potential adopters, the novelty of innova-
tion is uncertain, and aside from a few early adopters, most tend to avoid risks.

2. Economic feature: It looks at how suppliers cut innovation costs and make it more
valuable for users.

3. Market and regional features: This relates to regional geography and emphasises that
limited product availability can restrict market penetration and innovation.

4. Affordability feature: While people in rich countries often have easier access to
resources, developing countries face bigger issues with income and wealth inequality.
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5. Investment culture feature: In some societies, all resources are used to meet daily
needs, leaving no surplus for future growth.

Considering these perspectives helps us better understand the diffusion of technology
and its outcomes. This paper presents individuals with surplus assets to invest and their
views on CCS technology.

Technology diffusion is the process of spread and adoption by users, sectors, and
regions that can help policymakers decide on effective strategies to foster innovation.
The objective of the diffusion model is to identify the factors that influence adoption,
such as performance, profitability, suitability, learning effects, and social norms. Re-
searchers have employed a range of tools to understand the reasons behind the adoption of
innovative technologies.

In this article, technology acceptance and adoption are not the same. In other words,
they are not impossible. Acceptance is a mental or emotional state of coming to terms
with something, while adoption is an action of taking on or using something as one’s own.
Acceptance is the first step towards adoption; you must first accept certain factors (such as
a new technology or idea) before you can choose to adopt them.

Technology diffusion is a dynamic and time-bound process that involves the exchange
of information, knowledge, and innovations. It shows the steady, gradual spread of new
ideas across vast and diverse societies [2]. Efficiency and techno-economic feasibility
govern the diffusion of technology [3]. Models of technology diffusion describe the drivers,
patterns, barriers, and pathways to adoption. Depending on the context and the level of
effort, these models employ various assumptions and data. A fundamental assumption
in all innovation adoption is that adoption growth follows an S-shaped curve: it starts
gradually, accelerates, and levels off. Epidemic models inspire technology diffusion models,
as they are driven by social interactions and learning (or contagion) among potential
adopters. The spread of rumours, infectious diseases (like COVID-19), knowledge, and so
forth follows the same path as the adoption of innovation.

Such models can aid in evaluating the path to technology diffusion, including return
on investment, health concerns, and environmental impact. The efficacy, cogency, and
cost-effectiveness of various strategies and intervention policies to promote technology can
also be assessed.

Data quality and availability are significant issues, as reliable, comprehensive data
are often unavailable. Assumptions made to simplify the model can impact the validity
and robustness of the results, potentially underestimating the complexity of technology
diffusion or rendering the model irrelevant for specific policies or objectives. Nevertheless,
System dynamics models are continually evolving and improving.

The Global CCS Institute currently monitors 50 operational projects and 628 projects in
various stages of development worldwide. However, to make a significant impact on carbon
emissions, approximately 75–100 facilities need to be built per year [4,5]. The installation of
several CCS plants over the past decade is a significant step towards adoption, but until a
cost is associated with pollution, no technology will take off. However, most of these plants
have considerable government backing. Potential investors are hesitant to adopt such
technology due to uncertain returns on their investment and regulatory uncertainties. To
mitigate CO2-driven environmental degradation, some national governments introduced
regulations for the power generation industry. Policy instruments are mostly various forms
of economic incentives or standards that impact electricity prices [6].

Scholars of diffusion theory have developed several analytical models to explain and
predict the dynamics of technology adoption among potential users. The diffusion of CCS
technology is a closed system in which output influences input; namely, the acceptance of
CCS is influenced by its past performance. Considering these, the System Dynamics (SD)
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approach is an appropriate tool for studying such closed systems [7]. The starting point in
building a system dynamics model is identifying the system’s variables, their relationships,
and the strengths that influence the system’s behaviour through feedback. The positive
or negative relationships are referred to as causal or feedback loops [8]. The Dynamic
interaction between two or more system parameters can cause distinct behaviours, such as
lockout or bridging, phasing out, and the diffusion of one or more alternatives [8].

Additional complexity arises from the international nature of CO2 emissions, as each
nation has its own policy for reducing them. CO2 emissions affect countries differently,
leading to diverse preferences, priorities, and environmental policies. These influencing fac-
tors contribute to uncertainty in determining whether and how a national government will
adopt CCS. Since nation-states have different priorities, understanding them is significant.

Bass’s diffusion model of innovations has been used to study innovative technolo-
gies [8,9]. Bass’ model utilizes a few variables, and sales data are used for parameter
estimation. However, such data for CCS (or even for an analogous technology) are nonex-
istent. Some national governments do not consider climate change an urgent issue or
believe it is someone else’s problem. Bass’s model has been extended since his original
work, and this research is another contribution to this body of work. Diffusion theory is
widely applied across various domains [10,11]. The current model-based approach seeks to
gain insight into ways of maximising investor acceptance under resource constraints. The
term “investors” in CCS refers to those who are willing to invest in CCS as part of their
investment portfolio.

The diffusion of innovations over time is a highly dynamic and complex problem.
Traditional models of innovation overlook several key influencing factors; as a result, they
fail to adequately represent all relevant issues. Milling and Maier provided an overview of
extensions to the rational models and their performance [12]. They also note that the use of
the system dynamics methodology allows the development of more complex models to
investigate the process of innovation diffusion. However, Milling and Mair [12] extended
Bass’s model to incorporate competition and to map the process of substitution among
successive product generations, which are not issues concerning CCS.

System dynamics (SD) is a helpful tool for modelling the diffusion of Carbon Capture
and Storage (CCS) technology because it can simulate the complex, non-linear interrela-
tionships, feedback loops, and time delays that influence technology adoption.

• SD models integrate all the components of the CCS value chain (capture, transport,
and storage) as an integrated system, allowing for a comprehensive understanding of
the entire process.

• It is suited to identifying feedback loops, such as how a promotion leads to “learning
effects”, which in turn accelerate further adoption.

• It can be used to examine the influence of various policies, such as tax credits, carbon
prices, subsidies, or emission performance standards, on the adoption rate of technology.

• Decision-makers can examine various scenarios to gain insight into long-term out-
comes of different decisions, thus identifying possible risks and how to mitigate them.

• SD can include many influencing factors, such as the behaviour of socio-technical
systems, as well as the public perception, regulatory regimes, and business concerns.

System dynamics was used to understand long-term interactions between technical,
economic, societal, and political factors that influence the transition from fossil fuels to
clean energy. This approach uses feedback loops, time delays, and other tools to create
simulations that test different policies, assess the impacts of strategies such as renewable
energy integration and energy efficiency, and understand how systems evolve. It facilitates
the comparison of different transition pathways and identifies key leverage points to
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accelerate the transition to a sustainable energy system. A few of such contributions are
shown in Table 1. See also references therein.

Table 1. Some recent applications of the System Dynamics method to the transition from fossil fuels
to clean energy.

Reference Contribution

[13]

The paper explains how adding ideas from social and technical studies can make
quantitative energy transition models more realistic. They also explore how
system dynamics can be used to study energy transitions and highlight how it
differs from traditional econometric and linear programming models.

[14]
The study developed a system dynamics model and tested major policy scenarios
to explore how Singapore’s electricity sector could achieve better outcomes
by 2100.

[15]

The research examines whether integrating CCS technology into a traditional
power company’s long-term strategy is reasonable. Using a system dynamics
model, the paper assesses how CCS could affect environmental and economic
outcomes in carbon-trading and renewable-energy contexts.

[16]

The study establishes a system dynamics model of the energy transition that
captures interactions among political, social, energy, emission, and improvement
elements using feedback loops. It concludes that achieving the UK’s net-zero goal
may face greater social and political challenges than those suggested by traditional
techno-economic energy models.

[17]

The paper investigates how expanding the share of renewable energy affects the
overall energy mix for both primary energy supply and electricity generation. A
system dynamics model is used to examine its quantitative influence on key
energy security indicators.

[18]

The authors highlight that most sustainability transition research depends on
qualitative socio-technical transition (STT) contexts, yet modelling can serve as a
helpful supplement. The paper reviews five system dynamics (SD) energy models
to assess how well they capture major descriptions of STT.

[19]

The study examines how safety culture, as part of an organisation’s overall culture,
affects safety performance in a post-combustion carbon capture plant. A system
dynamics model was developed using key safety culture variables to explore their
impact on overall safety results.

[20]

The research analysed the safety approach for hydrogen transport infrastructure.
Using a system dynamics model, it considered technical aspects such as material
degradation, pressure changes, and the effectiveness of monitoring systems, all of
which impact hydrogen transportation safety.

[21]

The research examines the role of safety culture in shaping the safety performance
of blue hydrogen projects. Key elements affecting safety culture are identified, and
a system dynamics model is created to assess their influence on overall facility
safety. The findings emphasise that prioritising safety culture is crucial to an
organisation’s long-term sustainability.

Specific issues associated with the CCS adoption process make SD a suitable tool for
studying this process. SD’s focus is on relationships between the system’s variables, in
which causal relationships are established and followed over time as attitudes change and
the public becomes aware of the impact of CO2. SD modelling strips away complexity by
focusing on key variables, thereby making the system’s behaviour comprehensible and
within reach. Thus, it enables testing of probable consequences of various strategies [8].
As such, it is a descriptive, rather than a predictive, tool [8]. The objective of SD is to gain
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insight into the influence of various variables, understand change patterns, and identify
gaps in understanding.

The objective of this paper is to lay a foundation for extending Bass’s diffusion theory
to simulate the adoption of CCS using systems thinking and the SD method [22]. The
process of implementing CCS technology consists of a sequence of steps designed to reduce
CO2 emissions from industrial sources. The focus is on capturing the dynamics of CCS
technology adoption and identifying gaps that require further research.

Technology acceptance follows technology adoption in an innovation decision process.
Rogers and Ward have identified “five phases” [10,23]:

• Knowledge base: learning about the use and function of innovation.
• Perception: favourable or unfavourable.
• Decision: An investor who chooses to adopt or reject the innovation.
• Pilots: making use of innovation.
• Endorsement: The final acceptance or rejection of the innovation.

The innovation decision-making process begins with modelling the technology adop-
tion. The next phase is the acceptance of technology, followed by a decision on whether to
invest (adopt) or reject it. The actual use of technology is referred to as technology accep-
tance, implying that adopting a technology does not necessarily mean ultimate acceptance.

The usability of a system is defined as the ‘system’s suitability and usefulness.’ This,
in turn, is “influenced by the end-user’s behaviour as well as the characteristics of the envi-
ronments in which it will operate [24].” According to Jordan et al., the usability measures
must be [24]:

• The ability to deliver sound, actionable results.
• Efficient use of resources.
• Users’ satisfaction.

This study aims to understand the factors influencing the sustainable adoption of CCS
and the behaviour of investors as they navigate the complexity of CCS implementation.
This paper develops an SD model of CCS implementation, which is subsequently verified,
validated, and finally tested. The objective is to explore ways and means of diffusing carbon
capture technology for long-term emission control based on insights from the SD into the
nature of innovation diffusion. Without a better understanding, stricter emission-reduction
targets may be necessary, which could prove impossible for nations to meet and therefore
have little chance of success. It is believed to keep the option of removing carbon alongside
the use of wind and solar energy. However, policies needed to make advanced technologies
accessible and affordable require increased research and development, demonstration of
their operation, and support for new installations, standardisation, and infrastructure. The
pursuit of economically viable methods to achieve near-term emissions targets overlooks
the long-term solution, such as carbon capture and storage.

Finally, this paper focuses on the acceptance of CCS by small investors rather than its
adoption by governments. There are several limitations in developing this mode. The main
limitation is a lack of reliable data, both primary and secondary.

2. Materials and Methods
2.1. The Bass’s Diffusion Model and Its System Dynamic Representation

The concept of diffusion is frequently invoked in social contexts (e.g., the spread
of rumours), epidemiology (the spread of contagion), and marketing (the adoption of
innovative technology), among others [25]. A product may experience rapid sales through
word of mouth (W-o-M), but eventually the growth curve flattens as the pool of potential
adopters gradually diminishes. The Bass model attempts to capture this dynamic behaviour.
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The model assumes that the new adoptions (purchases) are related to the number of prior
users (buyers) [9]. However, it provides a reasonable fit for the sales peak, and it aligns
with historical data. The ability to estimate the sales peak and its timing could assist with
capacity planning and distribution strategies. Figure 1 “shows an SD representation of the
Bass model, which shows that novel technologies require the passage of time to be adopted
by all potential users and the diffusion process to take hold [26].” “This form of the model
is like the basic epidemiological model [27,28].” A sizable number of research papers utilise
the Bass diffusion model [29–35].

 
Figure 1. An SD representation of the Bass diffusion model (based on Sterman, 2000) [8].

The SD model of Bass’s diffusion theory consists of (Figure 1):

1. Stocks—indicate the system’s state and provide data for decision-making.
2. Flows—influence the level of stock.
3. Auxiliary variables—link each other and hence could influence each other, allowing

for the identification of the cause-and-effect direction in the model.

The model in Figure 1 shows two stocks: Potential Adopters (P) and Adopters (A) of
the Technology. The increase in the Potential adopter (P) increases the Adoption rate (AR),
which is also influenced by other auxiliary variables, namely, Adoption from advertising
and adoption from Word-of-mouth (W-o-M). Potential adopters and advertising effective-
ness also impact adoption through advertising. The buying due to the W-O-M consists
of the purchaser variable and the Total population (N), the contact rate, and the purchase
fraction, which are constants. Figure 1 shows one reinforcing feedback loop (R) and two
balancing loops (B1 and B2).

Many papers describe several reasons for adopting a novel technology using a va-
riety of tools. In the 1960s, Bass developed a mathematical model known as Bass theory.
However, Bass used a few variables in constructing his model, and various researchers
have since extended it. “Sale data is required for estimating Bass’s model parameters [36].”
However, the required data on CCS technology (or an analogous technology) are not
available, as some national governments do not collect or publish data on the urgency of
climate change.

In the absence of real data, simulation is a good alternative for studying complex
systems, such as the acceptance of CCS over time. The adoption can be investigated by
the system dynamics (SD) version of the Bass model. The system dynamics version of
the Bass model can be used to study adoption. SD’s focus is on relationships between the
system’s variables, in which causal relationships are examined and, over time, may lead to
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changes in behaviour. SD modelling is a way to strip away complexity by focusing on the
important variables, thereby making the behaviour more comprehensible. This, in turn,
enables testing the probable consequences of various strategies. SD is not a predictive tool,
but it is a descriptive one. The objective is to gain insight into the change pattern and to
identify gaps in understanding.

System dynamics (SD) can be used to model the diffusion of Carbon Capture and
Storage (CCS) technology by accounting for feedback loops that influence its adoption.
These models use a range of variables, including policy incentives, economic factors
such as costs and learning effects, technical feasibility, public acceptance, and stakeholder
interactions, to analyse the long-term, nonlinear impacts of large-scale CCS implementation.
SD models can help identify key drivers, such as the effectiveness of subsidies or the effects
of learning-by-doing on costs, and explore different scenarios to inform strategic decision-
making for policymakers and businesses aiming to achieve decarbonisation goals.

This paper extends the existing SD version of the Bass model for simulating the CCS
path to adoption. The focus of this paper is to capture the dynamics of CCS acceptance and
identify gaps in existing knowledge.

There are four components in Bass’s diffusion model:

1. An innovative idea,
2. Letting interested people know via accessible communication channels,
3. An elapsed time giving people time to become aware, and
4. A social system that permits the diffusion to take place.

The characteristic of an innovation is its novelty to individuals (investors in this case),
rather than its novelty to the world. Information regarding Innovation is communicated
through specific channels by individuals who are aware of it to those who are unaware.
These groups of scientists advocate for the adoption of CCS through publications, seminars,
and interviews. A specific elapsed time is required to convey knowledge effectively through
these channels. All these individuals belong to a social network with defined boundaries.
The perceived usefulness of technology influences the time that it takes to adopt novel
technology, suitable means of communication (e.g., advocacy groups’ activities, popular
media reporting, communal interactions, and so on), the internal rules governing the
social network, the stretch and strength of promotional works, as well as the nature of
innovative technology.

In a CCS chain, multiple interested parties must collaborate to facilitate technology
adoption. The multinational nature of CO2 pollution makes it difficult to force polluters and
free riders to share the burden. Countries with varying levels of CO2 emissions, which affect
nations differently, lead to numerous environmental policies. These influencing factors do
not reduce uncertainty about whether a nation would adopt CCS. Since nation-states have
the final vote, understanding their concerns and priorities must be the first step.

Many CCS projects undertaken over the past decade are expected to have a ben-
eficial effect on adoption. However, all these plants have large government subsidies.
Private investors are not yet ready to adopt CCS technology due to the uncertain return
on investment.

The system dynamics methods are a valuable tool for studying the diffusion of a
carbon capture facility as a complex system. The system dynamics approach enables
feedback among variables and time delays, characteristics that are also present in several
economic issues and management systems, as well as in CCS systems.

SD methods can combine the effects of system behaviour (physical, technical, and
combined), human, psychological, and financial factors in the study of technology manage-
ment and innovation. Maier has applied SD to study problems associated with technical
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change and the diffusion of innovation. Various factors, including price, advertising, and
product capabilities, influence the diffusion of innovation [37].

“The adoption of novel technologies often obeys an S-shaped or logistic growth
curve. The observed S-shaped behaviour is believed to be driven by a reinforcing feedback
loop that causes initial exponential growth, followed by a balancing feedback loop that
limits that growth. Reinforcing and balancing feedback loops are the result of uncertainty
associated with innovation {8].” A more complex SD model of innovation diffusion should
provide insights into the effects of advertising, mass media reports, lobbying efforts, and
other factors.

2.2. CCS Diffusion Model

A technology-led approach to mitigating CO2 emissions is discussed by Galiana,
Green, and Neij, among others [38,39].

The primary factors influencing CCS technology acceptance are:

• The CCS technology readiness must be at TRL 7, or at least TRL6 [40–42]. Technology
has been employed somewhere in the world (pilot or commercial scale), or the concept
has been proven by prototyping.

• Promotion by advocacy groups so that investors become aware of it.
• Enablers, such as regulations and cross-border treaties for conveying the captured

CO2 to a suitable storage facility, which require cross-border cooperation, and the time
horizon over which this could happen.

• The public acceptance, i.e., a social system that makes the acceptance of technology
possible.

• Profitability for investors or direct investment by the government as a societal service.

CCS technology is a novelty to an individual (investors for this paper), but it is not
novel to the world at large. Different nations have varying levels of technological awareness.
Ways to exchange information and impart knowledge to individuals or organisations are
referred to as communication channels here [43]. The diffusion of new ideas takes time, as
individuals need to become comfortable with a new concept.

The time that an investor requires to adopt a new technology depends on the time
needed for perception of profitability and attributes through communication channels
(e.g., through social interactions, popular media, and seminars), the regulatory regime, the
intensity of promotion efforts by the advocacy groups (researchers and learned societies),
national and international laws and treaties, and the extent of willingness to commit capital.

Modelling of technological innovation has attracted the attention of several re-
searchers [44–47]. We have conducted a literature survey to identify the barriers to CCS
technology adoption identified by researchers. The purpose was to determine the key
variables and their causal relationships [48].

Four stocks and four flows are shown in Figure 2. Stocks represent the total number
of all possible investors at various stages of adoption. Flows refer to the rate at which
investors move from one stage to another. One of the following four primary variables
controls flows:

1. Innovation’s perceived attributes
2. Means of communication
3. Promotion by advocacy groups. and
4. The social system.
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Figure 2. These figures present the model concept and illustrate the boundaries of the framework
used to analyse CCS adoption. Four stocks represent the total number of possible investors at various
adoption stages. Four flows represent the rate at which investors move from one stage to another.

The framework in Figure 2 is viewed from the investor’s perspective, meaning that
decisions are neither made individually nor collectively. There are more stocks and flows
in the representation than in the basic Bass model. Additionally, it assumes that investors
become adopters, as well as active rejecters, after they have had the opportunity to be
exposed to technology.

Figure 3 shows that two additional stocks are used to differentiate between investors
who are merely tempted to invest and those who have made up their minds to adopt or
reject the technology, following specific considerations. The stock of “Investing population”
represents the investors who are actively considering it. The “Potential investors” stock
represents investors who are likely to adopt the product or service after becoming aware
of it.

“Two feedback loops of B1 and B2 are the market adoption or adoption through ad-
vocacy groups (known also as external influencing factors), and word-of-mouth (known
also as internal influencing factors) [8,49]”. These are two separate information channels.
“The external influence starts the process of adoption by early adopters, who then initiate
W-O-M in the population (individual investors for CCS) among potential adopters [50,51].
A fundamental assumption of Bass’s model is a perfect mix of a collection of individuals
whose behaviour is similar and can be aggregated. As a result, the variables’ numerical val-
ues are the group average. A primary assumption of the Bass theory is that the cumulative
growth of adopters over time resembles an S-shaped curve.

Multiple verification and validation tests were undertaken to ensure the right question
was answered and the answer was also correct [52,53]. These validations included pushing
the model to the extreme and obtaining Bass’s results. The model’s validity and applicability
were assessed by whether the results were consistent with knowledge of the CCS and
analogous systems. Information from the literature is used to verify consistency checks,
ensuring that variables and the causal relationships identified in the literature are accurately
presented in the model.

The model produces the expected S-shaped characteristics while approaching approxi-
mately 20% of the average of the “Average investors’ familiarity” variable for the year 2020,
as shown in Figure 4, which shows Bass’s classical shape of innovation acceptance.
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Figure 3. This is the software output from the proposed model, a modification of the Bass diffusion
SD model. It shows the four subsystems in the model, each dedicated to a group of variables.

Figure 4. Average investors’ familiarity from 2000 to 2080. This figure indicates the classic shape
of the innovation acceptance curve. Changing the variable’s value (for example, the timing of the
government subsidy) creates a bump in the curve, as expected.

The model is composed of the following four subsystems:

1. The decision-making subsystem, which is the backbone of the whole system.
2. A subsystem that represents the external influencing factors, which are researchers,

learned societies (advocacy groups), learned journals, and, to some extent, the
news media.

3. A subsystem that represents the internal influencing factors (primarily W-o-M).
4. Awareness subsystem, which represents the passage of time that causes investors

to know more about a novel idea and become comfortable with it as the technology
is improved.
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The decision-making subsystem maps the path by which “Potential investors” become
“Investors,” possibly decide to invest in the technology as a first step, and are willing to
participate in financing a CCS project.

The external influence subsystem—also referred to as external factors in the literature—
encompasses promotional activities from educational campaigns, supplemented by media
(mass and academic) promotional efforts. These communication channels can transform
“potential investors” into actual investors, who then spread beliefs by Word of Mouth about
the technology, and hence activate the internal factors.

Internal influence subsystem—The more investors learn about the new technology
through internal factors, the more they spread W-o-M, which enhances the “attitude in
favour”. For internal factors to be effective, potential adopters must have access to readily
available, comprehensible information. Not every exposure to scientific and economic
facts by “Potential investors” will be adequate. Thus, the number of potential investors
from W-O-M is a function of the “Attitude in favour,” i.e., convincing arguments soundly
support it.

Awareness subsystem—Exposing the public and investors to technology would not
necessarily reduce their reluctance to accept it. The public is concerned about safety and
effectiveness, while investors consider returns on their investments and the impact of public
protests. However, remaining vocal sceptics is a primary predictor of lack of willingness to
accept, which represents the main “adoption barrier” for the first time in the model.

Internal and external are not taken as synonyms for intrinsic and extrinsic in this paper.
The word intrinsic means a ‘fundamental or inseparable property of’, whereas internal
in this sense means ‘emanating from within’. So, an intrinsic influence is an inseparable
property of the activity itself, such as ‘learning’ or the product of that activity, such as
model building. In contrast, an internal is the feeling of insight that arises in the person
who completes or engages in the activity.

The model distinguishes between investors who are willing to accept the technology
in principle (“Investors”) and those who are likely to adopt CCS when it establishes itself
(“Potential investors”).

To adopt a specific technology, investors must become aware of it and be comfortable
with it, thereby reducing uncertainty. Learning can influence adoption. Awareness would
influence motivation and put fear barriers into perspective. Increasing the awareness of the
entire investing population, “average investors’ familiarity,” would somewhat overcome
the adoption barrier. Making investors aware of the technology through education enables
a realistic understanding of their perceived risks, which could reduce the likelihood of
reaching incorrect conclusions, such as the “average expectation of profitability”. On
the other hand, exposure could increase “average learning”, facilitating the mitigation of
reluctance about the technology’s suitability. For adoption to occur, there must be evidence
that technology delivers its promises. This requires objective technical experts. Therefore,
the “average confidence in technology” directly affects the adoption rate.

For adoption to be possible, it is necessary that appropriate technology is available
and that there are no obstacles to its transfer. The variable “Availability of state support”
assumes that it is adopted from the beginning of 2000. It is a step function that requires a
start date for the state support to take effect.

It is worth noting that certain underlying assumptions can impact the model in Figure 3.
These assumptions are:

• It is assumed that investors who have gained knowledge about the suitability and
profitability of the technology either embrace or reject it. Some investors only touch
well-established (blue chip) industries and never consider CCS,
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• The “average confidence in technology is the average penetration of the technology
estimated based on published papers.

• Factors, such as the effect of the investor’s brand (player behind the brand), type
of technology, alternatives, image, and price, are omitted from consideration. This
separates the adoption from the investment flows.

• Some variables have not been included in the model because their influence is not
significant, and ignoring them makes the model less crowded. For example, eco-
protesters frequently put themselves in harm’s way to convey the urgency of address-
ing carbon emissions, a strategy that has proven ineffective. The strongest predictor
of willingness to pay the cost is the perceived immediacy of danger. Nevertheless,
the concept of eco-consciousness is indirectly present, as the model includes data on
public awareness and acceptance.

A brief qualitative sensitivity analysis was conducted to examine the influence of the
assumed behavioural parameters, including positive word of mouth (W-o-M), the Fraction
of potential investors encouraged by advocacy group activities, Average confidence in
technology, and the likelihood to invest. These variables were initially assigned assumed
values based on logical reasoning and the behavioural diffusion literature, given the
insufficient real-world data currently available for the CCS context.

Due to the scarcity of quantitative data, this paper employs linguistic variables. Lin-
guistic Variables are terms or concepts whose values are not numerical but are expressed
in words or phrases from a natural language. A linguistic variable is either a language
variation that involves “two or more ways of saying the same thing” as employed in fuzzy
logic systems whose values are words or sentences, not numbers. Linguistic variables are
used to represent imprecise or human-like concepts, such as speed being “slow,” “medium,”
or “fast,” where each term corresponds to a range (See Table A1 in the Appendix A). In
computational and social sciences, these variables allow for the modelling of systems where
precise numerical measurement is difficult. They are crucial for representing subjective or
qualitative data.

We examined three distinct scenarios to investigate how different factors would
influence the technology penetration. All factors are normalised to a 0–1 scale, facilitating
easier comparisons, improved model stability, and more straightforward interpretation.
Appendix A shows the scaling method used. Each case study shows how behavioural
and perceptual variables influence the technology adoption process. Examining different
conditions reveals the behavioural factors most critical to successful technology adoption,
offering guidance to improve reliability and acceptance.

3. Results
3.1. The SD Model of CCS

The proposed framework (Figure 2) was employed to identify relevant variables and
their causal relationships. The system boundary, as shown in Figure 2, is used as the
backbone of the proposed SD model. Figure 3 shows an SD model of Figure 2 in Vensim
PLE, which is an extended version of Figure 1, in turn based on Bass’ idea [54]. Tables 2–6
presents the expressions for all stocks, flows, and auxiliary variables, along with their
definitions, units, and estimated values.
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Table 2. Stocks.

Stock Description Equation Unit

Investing population Investors who finance
enterprises

=INTEG (−potential investor rate) +
[Total possible investors] People

Potential Investors Investors who are likely to
consider CCS technology

=INTERG (Potential investors
rate-Investors rate-Rejections rate, 0) People

Investors Investors worldwide are likely
to invest in CCS technology.

=INTEG (Investors rate − Rate of
market leavers, 150) People

Rejectors
Investors in the world who are
likely to invest in CCS after
becoming aware of it

=INTEG (Rejection rate + Rate of
market leavers,0) People

Table 3. Flows.

Flows Description Equation Unit

potential investment rate Number of first-time investors
in CCS/near

=Attitude in favour + Potential
investors from advocacy group
activities

people/Year

Investor rate
The likely number of people
who would invest in CCS per
year

=(Potential Investors × likelihood to
invest) × Availability of state
support × Fraction of confidence in
adoption × Productivity

people/Year

rejection rate
investors who are likely to
reject the CCS
technology/year

(1 − Likelihood to invest) × Potential
Investors × (1-Fraction of confidence
in adoption) × Availability of state
support × Productivity.

people/Year

Rate of market leavers
Number of investors who are
likely to withdraw from the
CCS market per year

=1 − Likelihood of a reasonable rate
of return on investment people/Year

Table 4. Auxiliary variables with lookups.

Auxiliary Variables Description Equation Description

Average investors
familiarity

Average awareness of the total
investing population in CCS
technology as a percentage of
investors who considered
investing

((Total possible
investors-Investing
population)/Total possible
investors)

Dmnl

Adoption barrier

Average learning + average
profitability expectation.
0 for the total barrier, and 1 for no
barrier at all.

1 − (Average expectation of
profitability/2 + Average
learning/2)

Dmnl

Potential investors from
advocacy group activities

The number of potential investors
who are likely to invest as
encouraged by promotional
activities

=Investing population ×
Investors’ hesitation × Fraction of
potential investors encouraged by
advocacy group activities

people/Year

Attitude in favour
The number of potential investors
who are likely to invest as
encouraged by word-of-mouth

(Investing population × Positive
W-O-M × Average investors
familiarity) × Investors hesitation
× Technology Performance

people/Year
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Table 5. Look-up table for some auxiliary variables.

Auxiliary Variables Description Equation Description

Average expectation of
profitability

Average profitability expectation
of the population regarding CCS
profitability

=WITH LOOKUP (Average investors’
familiarity, ([(0, 0)–(1, 1)],(0, 0.2),(0.5,
0.43),(1, 0.55))

Dmnl

Average learning Average learning of investors
regarding technology.

=WITH LOOKUP (Average investors
familiarity, ([(0, 0)–(1, 1)],(0, 0.01),(0.25,
0.33),(0.5, 0.57),(1, 0.7))

Dmnl

Investors hesitation

Hesitation to invest is assumed to
be a function of investors’
average hesitation.
0 for the full barrier, and 1 for no
barrier

=WITH LOOKUP (average hesitation
level, ([(0, 0)–(1, 1)],(0, 1),(0.3, 0.9),(0.6,
0.56),(1, 0)))

Dmnl

Likelihood to invest

Likelihood to invest in CCS,
because of the barrier to adoption.
0 for no barrier, and 1 for the total
barrier.

=WITH LOOKUP (Adoption barrier,
([(0, 0)–(1, 1)], (0, 1), (0.55, 0.12), (1, 0)) Dmnl

Fraction of confidence in
adoption

A fraction of investors adopt CCS
because they like its goals.
0 for no adoption, and 1 for full
adoption.

=WITH LOOKUP (Average confidence
in technology, ([(0, 0)–(1, 1)],(0,
0),(0.125, 0),
((0.4, 0.24),(0.6, 0.5),(0.74, 0.7),(0.875,
0.95),
(1, 1))

1/Year

Not all the data required for this model are readily available; thus, we made some
assumptions. For example, the “Positive W-o-M”, the “fraction of potential investors from
advocacy group activities”, and “Attitude in favour” are assumed values and hence should
be understood in this context. These variables influence the value of the “average investors
familiarity”. They determine the number of individuals in the investing population who
had the opportunity to participate in the investment. The numerical values of these
variables have been adjusted so that the system reached an average investor familiarity level
of approximately 20% in 2020. Values of both variables were adjusted for the cumulative
internal influence (number of “Potential investors” at the end of the simulation, because
of internal influence) to be approximately ten times bigger than the cumulative external
influence (number of “Investing population” at the end of the simulation, because of
external influence)

Several tests were conducted to investigate the system’s structural and behavioural
characteristics.

• Variables were set at their extreme values to study the consistency and significance of
their behaviour.

• Correct choice of the model boundaries was confirmed by discussion with the subject
experts.

• Logical consistency
• Dimensions Consistency:
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Table 6. Constants.

Constants Description Equation Unit

Availability of state support

The variable that represents the
availability of subsidies in CCS
0 before the year 2000, and 1 from the
year 2000

=STEP (1, 2000) Dmnl

Average hesitation
The average level of hesitation among
investors when considering investing
in CCS is. On a scale of 0 to 1.

0.32 Dmnl

Average confidence in technology The process of “Average confidence in
technology” was normalised to 0–1.0. 0.35 Dmnl

Likelihood of a good rate of
return on investment 0.7 Dmnl

Technology Performance 0.8 Dmnl

Fraction of potential investors
encouraged by advocacy group
activities.

Percentage of potential adopters
exposed to the CCS advocacy group
promotional activities

0.0036 1/year

Positive W-O-M
The likelihood that word-of-mouth by
other adopters would result in
adoption

0.151 Dmnl

Total possible investors
The total population in the model
indicates the total number of investing
individuals

1 × 106 − (106 × 0.04) people

Productivity

This variable indicates if the
technology is mature for deployment.
1 if the answer is yes.
0 is not productivity at all, and 1 is
maximum productivity

0.75 Dmnl

3.2. Base Case

Figure 5 presents variations in the values of stocks from the year 2000 to 2080. Advo-
cacy groups started promoting CCS in the early 2000s [55]. However, the start date cannot
be precisely pinpointed; hence, 2000 is assumed to be the starting point. Earlier, a group of
oil companies chose to explore injecting CO2 into an active oil field as a complementary
approach to enhance production. Their objective was to extract a higher proportion of
the oil reserves in the reservoir [56]. Approximately 80 years of CCS adoption have been
conducted. Simulation reaches a steady state at the end of this period. Following the
original Bass theory, Changes in the investors’ population in this period were ignored [9].
This simplifying assumption removes unnecessary complications from the simulation,
focusing on replicating the adoption curve’s shape rather than its final values.

As seen in Figure 5, the diffusion process of CCS technology begins slowly, with the
stock of “Potential Investors” gradually decreasing. At the beginning of the simulation,
external influences and advocacy groups’ activities are the primary mechanism that reduces
the stock of “Potential investors”. Through these activities, a certain number of investors
become aware of CCS technology each year, gradually increasing the “Investing popula-
tion”. In turn, the “Investing population” increases the likelihood of adoption through
word of mouth, thereby positively affecting “Average investors’ familiarity.”

The impact of W-o-M (i.e., internal influences) intensifies over time, eventually be-
coming the primary adoption mechanism and accelerating the decline of the “Investing
population” stock from about 2020. By the depletion of the “Investing population” stock
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around 2070, the effectiveness of both mechanisms fades as the fresh “Investing population”
is depleted. Everyone is aware of the goal to achieve CCS by 2080.

Figure 5. Base case—changes in the stocks during the 80-year simulation. It can be seen that the
diffusion process of CCS technology begins slowly, with the stock of “Potential Investors” gradually
decreasing. Variables without (*) means they are plotted on the primary Y-axis (left-hand side) and
variables with (*) indicates that the variable is plotted on the secondary Y-axis (right-hand axis). The
variables have very different scale.

As technology becomes commonplace, the “Potential investors” and “Rejecters” stocks
start to fill with individuals aware of CCS technology. The end of the simulation shows
many people in the “Rejecters’” stock, and correspondingly fewer people in the “Potential
investors’” stock, indicating that the total adoption is not soaring. Adoption is, to some
extent, affected by the “likelihood to invest” due to the “Average expectation of profitability”
and “Average learning” of the technology amongst investors exposed to it. As average
investors become more familiar with technology, the likelihood of investing in it will also
rise. Despite the rise in average investors’ familiarity having a favourable impact on the
likelihood of adopting investing, its influence is not high in the simulation, indicating
entrenched barriers to accepting CCS.

In addition to the low likelihood of investing in adoption, the rejection process, which
is dependent on the “average learning,” is another challenge for the adoption process.
Currently, the likelihood of a good return on investment in CCS projects is not attractive
to investors. The likelihood of a reasonable rate of return on investment, availability of
state support, and a stable regulatory regime are primary factors in deciding to invest in
CCS. Positioning CCS among wind and solar energy encourages consumers to compare
them economically, expecting the unit price of electricity to be similar. Some “Investing
population” may leave the market if the initial experiences disappoint them.

The base case indicated that the diffusion of CCS technology requires substantial time
for the number of “Investors” to rise. The adoption of CCS has begun relatively recently,
and it will take many years for everyone to become aware of its benefits, assuming the
technology continues to improve and is promoted.

3.3. Cases

Table 7 presents three groups of cases to examine the impact of modifying specific
variables on the simulation results. Only one or two variables were changed in each sicario
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to avoid complexity and to understand the connections between the variables and the
model behaviour.

Table 7. The cases and scenario analysis.

Cases Description Value of Variable

Case 1

Case 1 examines the influence of advocacy
groups’ activities and the extent of W-O-M
relative to the base case.
(Case 1-1) The value of the “Positive W-o-M”
was increased by 10% from 2000 to 2080.
(Case 1-2) Both “Positive W-o-M” and
“Potential investors from advocacy group
activities” were increased by 10% and 100%
respectively, from the year 2000 to 2080 (when
the technology became widespread

(Case1-1) “Positive W-o-M” =
0.151 + STEP (0.151 × 1.1, 2000) (1/Year)
(Case 1-2) “Fraction of potential investors encouraged
by advocacy group activities” = 0.0036 + STEP (0.0036
× 2, 2000)
(1/Year).
“Positive W-o-M” = 0.151 + STEP (0.151 × 1.1, 2000)
(1/Year)

Case 2

S2 examines the impact of slow (Case2-1)
Moreover, a sudden increase in the learning
process is observed (Case2-2) compared to the
base case.
In Case 2-1, the value of the “average
learning” variable was increased linearly
from 2015 to 2080.
In Case 2-2, all increases are immediate.

(Case2-1) = “Average confidence in technology”. 0.35
until 2015, then linear growth from 0.35 in 2015 to 0.8
in the year 2080.
(Dmnl)
(Case2-2) 0.8 from the year 2020
(Dmnl)

Case 3

Case 3 examines the effect of changing the
“Likelihood to invest” in the rate of adoption.
The variable
In (Case 3-1), “Likelihood to invest” was
changed, and the results are compared with
the base case.
In (Case 3-2), the likelihood of investing and
learning processes was increased.

(Case 3-1) “likelihood to invest” = WITH
LOOKUP (adoption barrier, ([(0, 0)–(1, 1)], (0, 1), (0.55,
0.19), (1, 0))
(Dmnl)
(Case3-2) “Likelihood to invest” is the same as in Case
3-1, and “average confidence in technology” is the
same as in Case 2-2.
(Dmnl)

Case 1 aims to determine whether increasing internal and external influences impact
adoption compared to the base case. The “Fraction of potential investors encouraged by
advocacy group activities” variable is not very sensitive (see Case 1 in Figure 6); hence,
Case1-1 shows that only the “Positive W-O-M” was increased. Similarly, Case 1-2 examines
the effect of increasing both advocacy group promotions and positive Word-of-Mouth.
Increasing W-O-M (Case1-1) accelerates the rate of reduction in the “Investing population”
(a stock), compared to the base case, thereby increasing the adoption rate. The adoption
rates are low in both Case 1-1 and Case 1-2. This can be partially attributed to the low
familiarity with CCS technology and the high adoption barriers (“Average expectation
of profitability” and “Average learning”), which directly result in a low “likelihood to
invest”. When the internal and external influences were increased (Case1-2), no appreciable
change in adoption rate was observed, compared with Case 1-1. Possibly, the advocacy
group activities might have a favourable effect on the willingness to invest in technology,
although they may not be fully aware of it. Promotion is an effective lever to build
widespread familiarity at the start of the adoption process, thereby contributing to overall
technology acceptance.

Case 2 examines the effect of state intervention on model behaviour (Case 2-1 and
Case 2-2) relative to the base case. Case 2-1 assumes that the increase in state support is
measured, and the level of the “average learning of the” variable will linearly increase
from 2000 to 2080. Case 2-2 examines the adoption of a mature technology from 2020. An
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increase in the total adoption rate was observed in two cases. Continued cost reduction in
the technology could accelerate adoption rates. This effect is more pronounced when pro-
ductivity improvement is immediate. Results in Case 2 show that improving technology’s
productivity is paramount. The longer the public is exposed to an emission problem that
does not feel urgent, the more cumulative the rejection becomes.

Case 3 examines how altering the “likelihood to invest” affects the results. The
likelihood of investing has been assessed through the willingness to invest in technology.
Case 3-1 uses high values to compare it with the base case. An immediate increase in
average confidence in the technology was implemented in Case 3-2. The value of the
“likelihood to invest” in Case 3-1 and Case 3-2 is larger than in the base case by a factor
of 1.6. Figure 6 demonstrates the effect of changing the value of “likelihood to invest”
(Case 3-1). This can increase investment outcomes, though not to the same extent. The
“Adoption barrier”, resulting from a lack of awareness, uncertainties, and unfavourable
feelings, can directly impact the “likelihood to invest”. To significantly improve the change
in investment rate, the combination of the “likelihood to invest” and average confidence
in the technology must be increased (Case 3-2). Case 3 examines how past experiences
influence investment in such technology. Experience forms perceptions that do not alter
quickly. However, incentives such as higher productivity, higher prices, and tax exemptions
can positively influence adoption.

Cases 2 and 3 illustrate the impact of the “Average confidence in the technology” on
behaviour, which remains unchanged at the “Investor population” level. The Bass model
ignores the impact of unfavourable W-o-M; even with this omission, the model captures
historical behaviour quite well.

Case 1 

  

Figure 6. Cont.
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Case 2 

  

  
Case 3 

  

Figure 6. Changes in the stock variable “Investors population”,” Potential investors”, “Investors”,
and “Rejecters” (three scenarios). (Case 1): Enhancement of internal and external influences. (Case 2):
Enhancement of average confidence in the technology. (Case 3): Increase in investment likelihood.

As shown in 6, the model results indicate measurable sensitivity to behavioural factors.
For instance, a 10% rise in “Positive Word of Mouth (W-o-M)” leads to approximately
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30 years earlier full investment, whereas if a 100% increase in “Potential investors from
advocacy group activities” at the same time, equivalent would lead to 35 years earlier full
investment of 1 million population. When it comes to potential investors, a 10% increase in
positive W-o-M leads to sharp rise to 98,000 in 2023 with a rapid decline. In contrast, if a
100% increase in “Potential investors from advocacy group activities” at the same time is
added then the potential investors peaks around 2017 at over 100,000 people compared to
the base case where there is a gradual increases from 2000, that peaks around 2040 at almost
50,000 people, and then slowly decreases which shows a slow and prolonged potential
investment. The number of investors would reach its maximum of 67,000 people earlier in
2035, with a 10% increase in positive W-o-M and a 100% increase in potential investors from
advocacy groups. This maximum can be reached in 2040 if there is only a 10% increase in
word of mouth. The base case here shows a maximum of 60,000 investors by 2075. Both
positive behavioural changes show that the rejectors rise fastest, reaching a maximum by
2035, while word of mouth increases peaks around 2040. The Base scenario grows slower,
reaching similar levels only by 2070.

As shown in Figure 6, a 129% rise in “Average confidence in technology,” whether
gradual from 2015 to 2080 or sudden beginning in 2020, results in no change from the
baseline outcome, where the total investing population remains fixed at one million. Across
all scenarios, the number of potential investors increases from 2000, peaks between 2035
and 2040, and then declines toward zero by 2080. In the base case, the peak is about 50,000;
with gradual increases in confidence, it rises to roughly 58,000; and with sudden increases,
it reaches around 130,000. Only the sudden increase scenario shows a notable deviation
around 2030, possibly because a sharp rise in confidence accelerates early adoption. After
2040, however, all curves decline, suggesting a stage of technological maturity. The number
of “Investors” also grows throughout the simulation period. All scenarios remain close
to zero until about 2030, after which they diverge. By 2080, the base case reaches about
65,000 investors, the gradual increase scenario about 220,000, and the sudden increase
scenario around 630,000. In the sudden increased case, investor growth is most rapid
between 2030 and 2060, stabilising thereafter. For “Rejectors,” all scenarios start near zero
and rise to approximately 350,000 people by 2030. Beyond this point, they diverge: the
sudden increase scenario levels off around 350,000 through 2080, the gradual increase
continues more moderately to about 700,000, and the base case grows the most, reaching
around 850,000 by 2080. Relative to the base case, the sudden increase leads to early
stabilisation near 2030 levels, while the gradual increase produces an intermediate trend.

This scenario-based analysis shows how group populations shift toward investors or
rejectors when there is a change in “likelihood to invest,” and another scenario in which this
change occurs simultaneously with a sudden increase in “average confidence in technology.”
In the Base case and the scenarios, the flows and outcomes differ. Two changes that occur
simultaneously drive many potential investors to convert, keeping rejectors flat. The other
two convert fewer and end with far more rejectors. Potential investors peak in the second
case, with approximately 110,000 people, versus approximately 43,000 people in the others,
aligning with investor counts growing to approximately 600,000 versus almost 85,000 by
2080. The two simultaneous changes also cap rejectors near 350,000 by 2030–2080, while
Base and change “likelihood to invest” changes to approximately 910,000. The investing
population shrinks from 1 million to near zero by 2080, while crossing 500,000 around 2030.
The second case shifts transitions toward investors and reduces the number of rejectors; the
base case and first scenario channel more people into rejectors. The 350,000 rejector plateau
suggests a ceiling in the second scenario, while the others follow an S-curve, accelerating at
the beginning and then slowing. By the end, second scenario yields almost 600,000 investors
versus 85,000 elsewhere, with 350,000 rejectors versus approximately 920,000. Differences
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begin to appear around 2030, when both scenarios diverge from the others, indicating a
possible turning point driven by behavioural and policy factors.

One should be aware that innovation acceptance models are not predictive tools, but
rather descriptive ones designed to give a sense of what the future for a product might be.
If reliable data are available (which is not for CCS), its depiction of the future would be
more accurate. The presented scenarios are just a demonstration of how the model works.

4. Discussion
The purpose is to extend the Bass diffusion model to explore pathways to CCS accep-

tance and, ultimately, adoption. The CCS diffusion is a complex, path-dependent dynamic
problem, in which several mutual feedback loops between primary variables may exist, as
technology diffusion requires an extended time horizon, and such relationships are subject
to change.

This proposed framework has some limitations because of a lack of reliable data.
Consequently, until better data become available, it is worth considering how the future
might unfold. It can help provide insight into trends in CCS adoption and identify areas
where to focus to accelerate CCS acceptance. The lack of data regarding the investor
population, the influence of advocacy efforts or W-O-M on investors and the public, and
the learning process over time are based on expert judges, along with a few other variables.
Experts bring their own experience and knowledge, but their judgment may be hype or
hope. Expert biases do not hinder the fundamental understanding of Carbon Capture
diffusion behaviour; however, for precise predictions of the system’s behaviour, these
data must be evaluated with greater accuracy. Because, under different circumstances, the
diffusion of CCS might take a different path.

Researchers rarely address return on investment, and we were unable to fully incorpo-
rate it into this study due to a lack of applicable data and uncertainty about the price of
carbon pollution in the open market. Moreover, other knowledge gaps require the attention
of researchers.

The reasoning processes and psychology of investors influence their decisions, whereas
SD does not fully account for variations in individual investors’ decision-making outcomes.
The SD method is an aggregate approach in which investors are assumed to be a perfectly
mixed group of individuals with similar attitudes who exhibit average behaviour. However,
it is possible to divide investors into distinct groups with distinct behavioural characteristics,
which are not explored in this study.

The goal is to highlight the utilisation of the system dynamics approach for simulation
in studying broader dynamics of carbon capture in a free market. SD does not determine
the exact number of adopters, but it helps identify trends while accounting for underlying
mechanisms. The SD models can help policymakers develop effective policies by testing
the effectiveness and consequences of various strategies over time, informing future pol-
icy decisions. The SD approach can facilitate the development of potentially successful
emission control policies.

From a diffusion-of-technology perspective, the CCS is a closed system in which
output influences input. This means the system’s performance depends on its past per-
formance, as shown in causal loops in SD. The starting point for building an SD model
is identifying the system’s variables, their relationships, and their respective strengths.
These variables influence the system’s behaviour by creating a feedback loop. “Positive
or negative directions of feedback are indicated by a plus or minus sign, indicating the
influence direction [8].” The dynamic interaction between the parameters governing a
system can lead to different types of behaviour, such as lockout or bridging, phasing out,
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or the diffusion of one or more individual technologies. Alternatively, the coexistence of
two or more technologies may occur.

Opportunities and New Directions

The system dynamics approach is well-suited for addressing dynamically complex
issues, such as diffusion processes. SD has made significant contributions to understanding
the diffusion of innovations, infections, and error propagation, and to their management.
There is much more to explore in understanding the dynamics of individuals’ acceptance
of novel technologies. SD could also address multiple interacting influencing parameters,
leading to a better picture of the policy implications of adopting a suitable value for them.

The exploratory SD model described in this paper has shown that it can address
issues in diffusion processes. SD concept can assist government and private investors in
understanding the level of coordination required to implement climate change and CO2

reduction policies without overwhelming national governments’ resources. SD models
could also examine the potential contribution of all energy delivery methods, such as wind
or solar. The more comprehensive view of the entire energy system’s dynamics described
here could also facilitate the delivery of cleaner energy at an international level. Examples
include the large unreported polluters, high energy costs, and the scarcity of funds. System
dynamics can help identify the feedback loops responsible for such issues and illuminate
the path towards strategies that benefit the Earth’s inhabitants.

The proposed framework is descriptive, not predictive, primarily because the data are
descriptive. Although the model is complete and produces reasonable results for CCS in
different contexts, the lack of quantitative data for CCS impacts the ability to make sensible
predictions. One should not expect exquisite precision when using imprecise input.

5. Conclusions
A system dynamics model was developed using several variables selected from a

broad range of control variables, based on a literature review and interviews with field
experts. Models that replicate reality in its entirety require hundreds of variables and
their relationships, along with reliable numerical values. This process involves hypothesis
formulation, scope selection, causality identification, variable quantification, sense-making
(reality checks), testing, verification, validation, and what-if analysis. The refinement
continues until the model replicates reasonable historical patterns and provides usable
insights regarding future trends.

An SD approach is described to explore the path to carbon capture acceptance. The
primary objective was to identify and study the effects of various variables influencing
technology, while accounting for resource constraints, causal relationships, feedback, and
the delayed effects of chosen policies. The conclusion drawn from a limited scenario
analysis indicates that the model can help advocacy groups and governments analyse
their initiatives before implementation. This approach helps study the consequences of
various strategies to determine a workable policy. SD helps develop strategic thinking
for policy development and fosters a shared understanding and insights for collaboration
between advocacy groups and those responsible for developing emission control policies.
What-if analysis, which involves varying parameters, provides a straightforward way to
understand the implications of different policies. There are numerous policy decision
situations where the system dynamics approach could be used to explore the possible
impacts of different decisions. Future studies may reveal how this model can be refined to
enhance strategic decision-making.

A sensitivity check was performed on the model to ensure that its outcomes remain
unaffected by changes to the most uncertain data, thereby validating its usefulness. How-
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ever, some uncertainties could influence the result. The model enables policymakers to
identify key areas and focus their attention accordingly.

The primary aim was to present a framework for studying the impact of various
variables on the adoption of carbon technology. Based on an extensive literature review,
suitable parameters were selected to enhance the model output. All model equations are
provided in this paper for those who wish to replicate our results or apply them to their
own data. The main conclusions are:

• Realistic modelling of CCS adoption from endogenising political and social factors.
• A measure typology enables modelling how measures spread, considering various

influencing factors.
• Model feedback between CCS technology, public perception, market reaction, and

implementation.
• Concepts of political will and public willingness to participate are used in the model.

Further studies could examine several areas beyond the present work. This study
used only a single policy step introduced in 2000, but it would be beneficial to examine
different policy changes, such as gradual increases or on-and-off cycles. We also focused
only on positive word-of-mouth (W-o-M), which represents overall support, but including
negative W-o-M could help with public uncertainty and show how it might influence
the growth of the “Rejecters” group and overall adoption. Finally, the study considers
a single, standardised market, whereas further studies could examine multiple market
structures, including individual and institutional investors, to understand how institutional
participation might alter the market.
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Appendix A

Table A1. Linguistics definition of constants and their numerical values.

Variable Linguistic
Definition

Numerical
Definition

Reference
Condition

Availability of state
support
(on a scale of 0 to 1)

Low 0–0.25

0.32Medium 0.26–0.50

High 0.51–0.75

Very high 0.76–1.0

Average hesitation
(on a scale of 0 to 1)

Low 0–0.25

0.32Medium 0.26–0.50

High 0.51–0.75

Very high 0.76–1.0

Average confidence in
technology
(on a scale of 0 to 1)

Poor 0–0.25

0.35Average 0.26–0.50

Good 0.51–0.75

Excellent 0.76–1.00

Likelihood of a good
rate of return on
investment
(on a scale of 0 to 1)

Poor 0–0.25

0.7Average 0.26–0.50

Good 0.51–0.75

Excellent 0.76–1.00

Technology Performance
(on a scale of 0 to 1)

Weak 0.00–0.35
0.8Average 0.36–0.70

Excellent 0.71–1.00

Fraction of potential
investors encouraged by
advocacy group
activities.

From the consensus
of expert opinion 0.0036

Positive W-O-M
(on a scale of 0 to 1)

Poor 0.1–0.3

0.151Not bad 0.4–0.6

Good 0.7–0.8

Excellent 0.9–1

Productivity
(on a scale of 0 to 1)

Poor 0.1–0.3

0.75Not bad 0.4–0.6

Good 0.7–0.8

Excellent 0.9–1
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