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Abstract

The natural frequencies and damping characterisation of a new aerospace grade composite
material were investigated using a modified impulse method combined with the half
power bandwidth method, which is applicable to the structures with a low damping. The
composite material of interest was unidirectional carbon fibre reinforced plastic. The tests
were carried out with three identical square 4.6 mm thick plates consisting of 24 plies. The
composite plates were clamped along one edge in a SignalForce shaker, which applied a
sinusoidal signal generated by the signal conditioner exiting the bending modes of the
plates. Laser vibrometer measurements were taken at three points on the free end so
that different vibrational modes could be obtained: one measurement was taken on the
longitudinal symmetry plane with the other two 35 mm on either side of the symmetry
plane. The acceleration of the clamp was also recorded and integrated twice to calculate its
displacement, which was then subtracted from the free end displacement. Two material
orientations were tested, and the first four natural frequencies were obtained in the test.
Damping was determined by the half-power bandwidth method. A linear relationship
between the loss factors and frequency was observed for the first two modes but not for
the other two modes, which may be related to the coupling of the modes of the plate and
the shaker. The experiment was also modelled by using the Finite Element Method (FEM)
and implicit solver of LS Dyna, where the simulation results for the first two modes were
within 15% of the experimental results. The novelty of this paper lies in the presentation
of new experimental data for the natural frequencies and damping coefficients of a newly
developed composite material intended for the vibration analysis of rotating components.

Keywords: vibration analysis; natural frequencies; implicit analysis; finite element methods

1. Introduction
The use of advanced composite material in aerospace structures has been steadily

increasing due to the high strength to weight and stiffness to weight ratios, allowing for up
to 80% lighter design solutions compared to the metallic equivalents. However, their com-
plex anisotropic and heterogeneous behaviour requires thorough characterisation to ensure
safe and efficient design. Damping is a critical property in dynamic analysis, especially
for rotating machinery operating near resonance. One of these important properties is
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damping, which is significant for the dynamic analysis, particularly for rotating machines,
which may often operate near the resonant frequencies.

Adams and Bacon in [1] theoretically predicted the damping properties of orthotropic
beams as a function of material orientation, followed by the analysis of the transverse shear
effects and different types of composites.

The vibration of the composite plates has been widely studied, including the applications
of numerical methods and finite element methods (FEM) [2]. The analysis also included
non-linear vibrations in initially stressed hybrid composited plates [3,4]. L. Kherredine and
co-authors investigated natural modes and the damping of anisotropic free–free laminated
plates using FEM and experiments and studied how the aspect ratio affects these parameters.
However, they did not consider the effects of the ply orientation [2]. Analysis of the effects
of the ply orientations can be found in [5–7]. D.J. Gorman and co-authors derived analytical
solutions for the dynamic equilibrium for a range of boundary conditions [8]. Based on the
work published in [2,9,10], a damped element model was developed for narrow angle, ply
laminated composite beams by using the energy method. Different shape functions have been
used for a range of specific boundary conditions. The numerical results were experimentally
validated in [11].

Two noncontact real-time optical methods have been developed and used for the
characterisation of the natural frequencies and the vibration modes in [12]. These are the
full-field electronic speckle pattern interferometer (ESPI) and the point-wise Laser Doppler
Vibrometer (LDV) technique. The former is a stable, noncontact method, based on the
full-field measurement in real-time. The image of a non-excited reference plate is compared
to the excited plate, and the resultant correlation patterns in the ESPI represent contours
of the vibration amplitude or surface displacement. These images are digitalised and
processed providing the fringe patterns at resonant frequencies so that both the resonant
frequencies and vibration mode shapes can be obtained. The challenges of this procedure
are poor image quality, decreased image quality with the vibration amplitude, and the lack
of information about the vibration phase. Consequently, Wang and co-workers proposed
the ‘amplitude-fluctuation’ ESPE (AF-ESPI) technique based on video-signal subtraction,
but instead of taking the reference image from a free state, the image was taken in a
vibration state [12]. This approach enhanced the image quality and reduced noise in the
fringe patterns.

The LDV optical technique incorporated with the advanced vibrometer/interferometer
device (the AVID) was used in [12], which is based on detection of the Doppler shift in
coherent laser light aimed at a particular point on the surface of interest. This method has
a high resolution (nano order) and a broad dynamic range. However, the 3D measuring
response is more time consuming compared to the ESPI, as a test has to be conducted
for each point of interest. The AVID system utilises circular polarisation interference
configuration, significantly reducing the vibrometer size and avoiding the interference of
radio frequencies. This method could be applied to measure the dynamic displacement
and responses of almost every object. A dynamic signal analyser (DSA) integrated into the
LDS system is also referred to as the LDV-DSA system.

The experimental results of AF-ESPI and LDV methods and the theoretical results
achieved by means of FEM were compared in [12], and it was found that the experimental
results were consistently greater than the numerical results at the lower frequencies, likely
due to the soft sponge used in supporting the sample.

Kherrendine et al. in [2] presented a complete analysis of the damping properties of
laminated composite plates relative to the plate aspect ratio. They also studied the case
for two different plates with different ply orientations, number of layers, and fibre volume
fractions. To achieve the first and second vibrational modes for each plate, Kherrendine sup-
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ported the plates with the soft sponge blocks placed at the nodes to provide the minimum
constraints and damping and assume free–free boundary conditions. The electrodynamic
shaker was used for excitation, with a condenser microphone positioned over an antinode
so that the frequency of the signal generator was adjusted until resonance was obtained.
With the aim of determining the damping, the plate was suspended at two nodal points
by means of a nylon thread. The single pulse excitation was processed by the zoom FFT
analyser, and the frequency spectrum was obtained for each natural frequency [2]. Kher-
rendine [2] observed that the predictions of the nodal lines were accurate with respect to
the FEM, except where there were close natural frequencies, in which the result is strongly
dependent on the excitation position.

Three different numerical formulations were used to evaluate the vibration character-
istic of the piezolaminated plates by Hsien-Yang Lin et al. in [12]. The commercial software
ABAQUS ver. 5.8. was used in their study and obtained a good agreement between the
numerical prediction and the experimental tests. Some vibration modes predicted for the
FEM were neither observed in the AF-ESPI nor in the LDV method [12]. This could be due
to the sensitivity of the equipment or the fact that the modes are not easily excitable. Two ex-
perimental methods for measuring the resonant frequencies and mode shapes of vibrating
piezolaminated plates were used in [12], where the vibrations were induced by a current in
the piezoelectric lamina. These methods have the advantage of noncontact, real-time, and
high-resolution measurement. It was shown that, for low frequencies, the results achieved
by AF-ESPI or LDV are considerably higher than in the FEM. This could be a consequence
of the supporting sponge that represented a free support condition, which has a significant
influence at the low frequencies. This could also be a consequence of the mode vicinity to
the equipment sensitivity. Nevertheless, the errors for the measurable natural frequencies
were below 10%. Berthelot, J-M, and Sefrani Y. proposed the impulse method in [6], which
consists of the impact by an electromagnetic hammer onto the specimen supported as a
cantilever beam in a clamp block.

The aim of the work presented here was to experimentally obtain the natural fre-
quencies, mode shapes, and damping coefficients for a new composite plate used in the
aerospace applications to support the design of rotating components such as composite
blades. These data had not been available for the new composite material. More specifically,
the unidirectional carbon fibre reinforced epoxy plates were designed and provided by
the Impact Group of Rolls-Royce plc. To account for the effects of the stack sequence, two
plate orientations were tested and the first four natural frequencies were obtained. The
experiment was also modelled using FEM with the experimentally determined dynamic
parameters. The numerical results were verified against the experimental results for the
first four frequencies, allowing for the calculation of the natural frequencies beyond the
range of the experimental results. The damping coefficients obtained in the experiments
and the numerical models were provided to Rolls-Royce plc to be used in the FEM-based
vibration analysis of the jet engine composite blades.

The paper consists of four sections. Following the Introduction, the Methodology of
the experimental work and simulation programme are described in Section 2, whilst the
complete results of the tests and the simulations are given in Section 3. The concluding re-
marks are presented in Section 4, whilst the simulation results data are given in Appendix A
and Table A1.

2. Methodology
2.1. Experimental Work

The tests were conducted on 4.6 mm thick composite plates consisting of 24 plies with
the balanced asymmetric layup. The excitation was applied using a SignalForce shaker, by
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Data Physics Corporation (San Jose, CA, USA) rather than an impulse hammer for better
repeatability of the tests. The experiment set up is illustrated in Figure 1. The composite
sample was clamped in the shaker along one edge at the same clamping depth of 20 mm,
for repeatability reasons and to avoid any relative motion of the panel, see Figure 2. The
maximum screw torque applied was 40 N/m, so the panel was firmly clamped without
being squashed or being damaged.

Figure 1. Experimental set up for material characterisation. The arrows at the vibrometer illustrate
the signal motion, whilst the bold arrow near clamp illustrate the shaker motion.

   

(a)  (b) 

Figure 2. Composite panel sample clamped in the shaker: (a) top view; (b) side view.

The shaker could generate the excitation frequency up to 2500 Hz, but for safety
reasons, all the tests were performed up to 2000 Hz. The minimum tested frequency was
set to 300 Hz and 200 Hz for two sweep rates tested to avoid shaker resonance at low
frequencies. The tests were conducted with the applied sweep rate of 5 Hz/s, with one
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test run at the rate of 1 Hz/s to verify the influence of inertial and non-linear effects on
the test. The shaker input was in the form of the sinusoidal input signal created by the
signal conditioner. The signal setting for the test had a sensitivity of 10.83 and output of
100 without any filtering. The vibration amplitudes were measured at three points at the
plate free end at by using laser vibrometer OFV-505 by Polytec (Harpenden, Hertfordshire,
UK) [13]. The measurement points were covered with reflective stickers to improve the
signal quality during the entire vibration spectrum. Reflective stickers were placed precisely
at the identical location on all tested samples and were of sufficient size so that the laser
was always pointing on the surface, as significant change in the reflectivity would induce
false measurements.

The vibrometer controller OFV-5000 in Figure 1 was used to provide signal to the
sensor head, to power the laser vibrometer, and to process the vibration signal. Its digi-
tal/analogue decoder was used to transform the analogue electrical signal from the laser to
digital signal, which was subsequently filtered. The signals were converted by decoders
to obtain velocity and displacement readings from the tested structure [13]. Two filter
amplifiers were used to filter and amplify the laser vibrometer and shaker signals before
they were sent to the acquisition cards. The acquisition cards transformed the electrical
continuous signal from the different equipment to a digital signal for processing in the
Labview [14]. The response and excitation signals were digitalised and processed by the
dynamic analyser of signals. The analyser connected to the PC performed the acquisition
of signals, control of acquisitions conditions, including frequency range and sensibility,
and the analysis of the signals acquired, such as signal recording, Fourier transform, and
frequency response. This system configuration allows for a real-time Fourier transform.

The acquisition system performance was determined by the maximum sampling
frequency and the maximum number of samples that can be stored. The maximum
sampling frequency is defined by the equipment performance, specifically 36,036 Hz of
the laser vibrometer, meaning that the analysis was not limited by the laser. The velocity
and displacement decoders had a suitable response up to 50 kHz with 14 bits for each
channel. Consequently, the sampling number that could be acquired with calculation of
the Fourier transform in real time was limited to 214 = 16,384. This number, however,
could be increased up to 1.5 × 106 if the signal was stored and the Fourier transform was
applied offline.

Frequency range and the sweep rate of the shaker were defined in the SignalStart Vector
Vibration Controller application. The shaker could withstand the induced acceleration
of up to 120 g, but it was limited to a maximum gravity of 2 g so that the samples were
not permanently damaged. The maximum velocity was set to 1520 mm/s and the low
frequency to 5 Hz. Parameters of the sweep were in the frequency range between 300 and
2000 Hz, with a sampling rate of 5 Hz/s.

Data acquisition was conducted with Labview [14] via three channels for the frequency–
time curve, the laser vibrometer velocity, and the acceleration of the clamp, which were
used for the calculation of the displacement. The recording rate was the same as the laser
sampling rate, meaning 36,000 scans per second, with a buffer size of 20,000 and 10,000 for
the scans per loop.

Figure 3 illustrates the composite plate with the positions of the points used for velocity
measurements. The three measurement points were chosen to be able to capture different
vibration modes. For the sake of repeatability, three equivalent tests were carried out in the
same conditions, and the results were compared. The output of the measurements was the
velocity at three measuring points in the time domain, v0 (x, t).



Vibration 2025, 8, 72 6 of 21

Figure 3. Clamped composite panel for vibration test. 1 2 and 3 denote positions of the points used
for velocity measurements.

The material used in the tests consisted of 24 plies and had the same balanced but not sym-
metric stack sequence [±45/(0/ − 45/90/45)2/0/ − 45/02/45/[(0/ − 45/90/45) 2/0/ ± 45].
To check the sensitivity of the results to the laminate orientation, the tests were carried out for
two orientations: Orientation 1 with the fibre orientation defined above; and Orientation 2,
rotated by 900 relative to the nominal Orientation 1.

Before data was recorded, each test began with the shaker oscillating at the specified
frequency and increasing the acceleration gradually until the specified acceleration of
2 g was achieved. Then the shaker began to increase the frequency according to the sweep
rate input, and the data recording was started. The recorded data is imported to a Matlab
R2021a for further postprocessing.

2.2. Finite Element Analysis

The experiments described in the previous section were modelled using FEM (Finite
Element Methods) and the LS Dyna implicit solver [15], which is suitable for static,
quasi-static, or dynamic problems with a low frequency. The LS Dyna solver uses an
incremental-iterative numerical algorithm with a full Newton method scheme and eight
quasi-Newton methods.

The linearised equilibrium equations of an implicit structural dynamics problem is
defined as

M
..
un+1

+ D
.
un+1

+ Kt(xn)∆uo = P(xn)n+1 − F(xn) (1)

where M is the mass matrix, D is the damping matrix, Kt is the positive definite tangent
stiffness matrix, ∆uo is un+1 = xn+1 − X, and

.
un+1 and

..
un+1 are the vectors of displacement

increments, velocity, and acceleration at time n + 1, respectively. P(xn)n+1 and F(xn) are
the external load vector and stress divergence vector, respectively.

Equation (1) is solved in LS Dyna by using the Newmark-β time integration scheme:

..
un+1

= ∆u
β∆t2 −

..
u

β∆t −
1
β

(
1
2 − β

) ..
un

.
un+1

=
.
un

+ ∆t(1 − γ)
..
un

+ γ∆t
..
un+1

xn+1 = xn + ∆u

(2)
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where ∆t is time increment; β and γ are the free parameters of integration. Numerical
damping is included in the solution as a consequence of the loss of energy and momentum if

γ > 1
2

β > 1
4

(
1
2 + γ

)2 (3)

Substituting (2) into (1) leads to

K∗∆u0 = P(xn)n+1 − F∗(xn) (4)

where

K∗ = Kt
1

β∆t2 M + γ
β∆t D

F∗ = F − M
[ .

un

β∆t +
1
β

(
1
2 − β

) ..
un

]
− D

[(
γ
β − 1

) .
un

+ ∆t
(

γ
2β − 1

) ..
u
] (5)

From Equation (4), ∆uo, the displacement, velocity, and acceleration vectors are up-
dated as follows:

..
u1

n+1
= ∆u0

β∆t2 −
.
un

∆t −
1
β

(
1
2 − β

) ..
un

.
u1

n+1
=

.
un∆t(1 − γ)

..
un

+ γ∆t
..
un+1

1

xn+1
1 = xn + ∆uo

(6)

The equilibrium iterations begin with the following equation written in the static
form as

K∗∆u1 = P
(

xn+1
i

)n+1
− F∗

(
xn+1

i

)
(7)

where
F∗ = F

(
xn+1

i

)
+ M

..
un+1

i + D
.
un+1

i (8)

The complete FEM programme consisted of two modelling approaches: (1) a plate
modelled with the constrained end by using shell and solid element formulations and (2) a
solid model with the plate and clamp, developed for the analysis of potential coupling
modes between the clamp and the plate in the range of frequencies of interest. The
latter FEM model of the composite plate and the shaker clamp is shown in Figure 4.
The components were modelled using hexahedral solid elements and two discretisation
densities for the composite plate: four elements through the thickness, shown in Figure 4,
and eight elements through the thickness, both with Jacobian equal to 1.0. The number of
solid elements used for the modelling plate was 40,000 and 320,000, respectively, whilst the
total number of elements was 130,528 and 410,528. Several element formulations where
investigated, with fully integrated 8-node solid elements (elform = 18) was selected in all
simulations due to its accuracy. The bottom part of the clamp was fully constrained.

Steel and Aluminium parts of the clamping systems were modelled using linear elastic
material models, with the material properties given in Table 1, whilst the composite plates
were modelled using orthotropic material models, with the equivalent material properties
calculated using the lamination theory. The equivalent lamina elastic material properties
used in the LS Dyna models are given in Table 2. The analysis was conducted using Block
Shift and Invert Lanczos, which is a default for the LS Dyna solver [15].
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Figure 4. FEM model of the composite plate (navy blue) and the shaker’s clamp.

Table 1. Material properties for metallic clamp parts.

Aluminium Steel

Density, ρ 2.8 × 103 kg/m3 7.85 × 103 kg/m3

Young Modulus, E 75 GPa 210 GPa
Poisson’s Ratio, ν 0.3 0.3

Table 2. UD lamina elastic properties.

Density, ρ 1.65 × 103 kg/m3

Tension E11 139 GPa
Tension E22 8.72 GPa
Tension E33 10.4 GPa

Compression E11 117 GPa
Compression E22 9.66 GPa
Compression E33 10.7 GPa

G12 5.4 GPa
G13 5.4 GPa
G23 5.4 GPa

ν12 0.3
ν13 0.11
ν23 0.17

Viscous damping was modelled using the Damping_global function in LS Dyna, where
mass weighted nodal damping was applied to all the nodes of deformable bodies. The
damping coefficient was assigned using a curve in the time domain and the values for the
loss factors obtained from the experiment. Namely, the force vector due to system damping
is defined as

Fn
damp = C v = Dsmv (9)

where C = 2mωiξi, m is the modal mass, ωi is the natural frequency, and ξi is the damping
coefficient. Namely, Ds is calculated as

Ds = 2ωiξi (10)
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For a low frequency domain, one can obtain the ξi from the loss factor ηi:

ηi ≈ 2ξ (11)

Simulations for two-plate orientation were conducted, and the results are presented in
Section 3.3.

3. Results and Discussion
3.1. Natural Frequency

The row data recorded in the time domain in one experiment conducted with Orienta-
tion 1 is shown in Figure 5. The first column in the matrix is the velocity measured at the
points and the second column is the acceleration recorded at the shaker clamp. One can
observe that, for the symmetric points of the symmetry plane (Point 1 and Point 3), there
are two peaks in the velocity recording, with the second resonance at the time around 150 s,
which cannot be seen at Point 2. The result suggests that Point 2 is a node of this mode,
which may either be a flexural mode in the y-axis with a node in the middle or, most likely,
a torsional vibration mode.

Although the number of data points recorded by the laser vibrometer was around
13,000,000, this amount of data is challenging, as only 1,300,000 points were used in
postprocessing. The same approach was applied for the data recorded at the clamp.

Fourier transformation could be applied during the test recording, but that would
lead to a significant reduction in the number of data points that can be recorded [6].
Consequently, Fourier transformations were applied offline in postprocessing, with the
signals recorded in the time domain transformed to the frequency domain using the fast
Fourier transformation (FFT) algorithm [6,16], available in Matlab [17], which returns the
discrete Fourier transformation (DFT).

The velocity results at Point 1 and Orientation 1 in the frequency domain obtained by
Fourier transformation, DAF 11-01, are shown in Figure 6. It is of note that the minimum
frequency in the test was set to 300 Hz so that the curves below the minimum frequency
should be discarded. The results were obtained with the working sampling frequency of
3603 Hz, i.e., 1800 Hz due to symmetry. Figure 7 shows the equivalent results in the decibel
scale without any filter applied. The amplitude of the first mode of around 75 dB is 15 times
larger than the amplitude of the second mode, which suggests that the first vibration mode
is by far more significant for structural applications compared to the subsequent modes.

The noise in the results is due to the logarithm applied to the low amplitude values
and has to be filtered out, but the obtained result is consistent with the results reported
in [6] for the Fourier transformation of the beam response to an impulse loading.

The equivalent results in the test of Orientation 2 are given in Figure 8 in the time
domain and frequency domain at a sweep rate of 1 Hz/s, starting from the minimum
frequency of 200 Hz. It is well known that the sweep rate applied affects the results of the
natural frequency due to inertia and non-linear effects, so that for the high excitation rates,
the measured resonance frequency is much higher than the real natural frequency. On the
other hand, the tests at the lower sweep rates are more time consuming and require a larger
capacity for data recording. Consequently, the tests were conducted at 1 Hz/s and 5 Hz/s
and the results obtained for the natural frequencies for the first four modes are given in
Table 3. As expected, the results obtained at the higher rate are below the results obtained
at the lower sweep rate, but the difference was only 0.55%, hence the subsequent results
were obtained at the higher sweep rate.
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Figure 5. Row data reading from the channels recorded at three points: Point 1 is recorded in the top
row; Point 2 is recorded in the middle row; and Point 3 is recorded in the bottom row.

Figure 6. Fourier transformation result of velocity recording at Point 1 with Orientation 1, DAF 11-01.
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Figure 7. Fourier transformation of the velocity at Point 1 of the daf 11-01 panel in decibel scale.

 

(a)  (b) 

Figure 8. Velocity results obtained with Orientation 2 at 1 Hz/s of sweep rate: (a) time domain and
(b) frequency domain.

The results were filtered using the Savitzky–Golay filter [17] and the one-dimensional
median filter [17], where the analysis of the error was conducted based on the calculation
of the integral on the curve with and without the applied filters.

The Savitzky–Golay FIR smoothing filter is available in Matlab as a function
sgolay f ilt(x, k, f ) [17], where the arguments are data to be filtered in vector x, the poly-
nomial order k must be less than the frame size f, which must be an odd number. For
k = f − 1, the filter produces no smoothing. With the frame size of f = 41 and a range of
the polynomial orders, the calculated errors of the filtering are reported in Figure 9. It is
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well known that for the polynomial order higher than twelve, the matrix within the filter
approaches singularity, and the results are inaccurate.

Table 3. Frequency results for the first four modes obtained at the sweep rates of 1 Hz/s and 5 Hz/s.

Sweep Rate 1st Mode [Hz] 2nd Mode [Hz] 3rd Mode [Hz] 4th Mode [Hz]

1 Hz/s 453.7 1094.2 1250.9 1318.1
5 Hz/s 451.2 1100.0 1247.0 1317.0

Figure 9. Errors obtained for a range of the polynomial orders of the Savitzky–Golay filter.

For the polynomial order of k = 3 and f = 41, the obtained error is 2.2%, and the
resultant curve compared with the unfiltered data is shown in Figure 10.

The one-dimensional median filter is available in Matlab as a function med f ilt1(x, n) [17],
where the arguments are the order of the one-dimensional median filter n and the data vector
x. More smoothing corresponds to the higher order of the filter, with the errors for different
orders presented in Figure 11. One can observe that the error stabilises around 1.8% without
having mathematical singularity or other problems. Therefore, a 41 order was selected, and
the filtered results with unfiltered results are shown in Figure 12.

Figure 10. FFT of the velocity with and without third-order Savitzky–Golay filter.
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Figure 11. Errors obtained for different polynomial orders of the one-dimensional media filter.

Figure 12. FFT of the velocity with (red) and without (blue) a three-order one-dimensional median filter.

Analysis of the filtered results revealed that the Savitzky–Golay filter suffered
with singularities for soft smoothed data. For the values of k = 3, the smoothed
curve had an error of 2.2%, which was acceptable. However, the one-dimensional
median filter was mathematically stable for the considered range and had a stable error
around 1.8%. Consequently, the 41-order one-dimensional median filter was selected fo
r data postprocessing.

For the considered test cases, the plate orientation did not have a significant effect
on the overall behaviour of the shaker, as illustrated in Figure 13, where the test with
Orientation 2 was deliberately started at 400 Hz to demonstrate the overlap, with the level
of noise of both curves being within 15 dB.
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Figure 13. FFT of the shaker’s motion during the tests with panels with Orientation 1 (blue) and
Orientation 2 (red).

To compensate for the motion of the clamp, it is necessary to subtract the clamp’s
displacement from the panel response. For that purpose, different integration methods of
the acceleration achieved by means of the accelerometer arrangement at the clamp were
considered, including the fourth order Runge–Kutta and forward and backward Euler
methods, which required over a million integration steps and unacceptable accumulation
of the numerical errors. To minimise the error, the measurement was taken with the laser
vibrometer pointing to the clamp and the same sampling frequency aiming at the clamp,
so an analogous signal was obtained and easily compared with the plate response. It was
impossible to subtract the two signals directly in the time domain due to the difficulty of
synching the two signals; hence, the subtraction was carried out in the frequency domain
following the Fourier transformation. Analysis of the subtracted signals also revealed that
this step needed to be conducted with the filtered data. Figure 14 shows the filtered plate
response in the frequency domain after the subtraction of the filtered motion of the clamp
where the obtained noise in the unexcited areas was below 5 dB.

Figure 14. FFT results for the plate response with the shaker’s motion subtracted.
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3.2. Damping Results

The damping of the structure was evaluated based on the half-power bandwidth
method, which finds a band of frequencies with a −3 dB amplitude, with respect to the
amplitude of the natural frequency ∆ f , and divides it by the natural frequency fi, as is
shown in Equation (12):

ηi =
∆ f
fi

(12)

where ηi is the loss factor of the mode i.
Tables 4 and 5 provide the experimental results for all natural frequencies and calcu-

lated loss factors for every test. The results also include average values and the standard
deviation σ, calculated as

σ =

√
∑n

i=1 a2
i

n
−

(
∑n

i=1 ai

n

)2

(13)

Table 4. Natural frequencies and damping results for all tests with Orientation 1.

Panel Freq1 Freq2 Freq3 Freq4 Damp1 Damp2 Damp3 Damp4

W
it

h
Sh

ak
er

Su
bt

ra
ct

io
n

Point 1
1 400.6 1065 1261 - 0.00724 0.00657 0.01269 -
2 401.6 1060 1263 1317 0.01096 0.01038 0.01584 0.02506
3 408.2 1072 1261 1330 0.00931 0.00746 0.01586 0.03308

Point 2
1 374 - 1231 1305 0.00668 - 0.04224 0.01839
2 401.6 - 1246 1324 0.00971 - 0.03772 0.03474
3 408.3 - - - 0.01053 - - -

Point 3
1 373.2 1008 1229 1308 0.00777 0.00893 0.02848 0.01682
2 401.5 1061 1253 1312 0.01021 0.00943 0.02713 0.03277
3 407.6 1073 - - 0.01079 0.00839 - -

Average 397.4 1056.5 1249.14 1316 0.00925 0.00853 0.02571 0.02681

σ 13.06 22.25 13.27 8.77 0.00152 0.00125 0.01063 0.03714

% 3.286 2.106 1.062 0.667 16.48 14.652 41.36 138.53

Table 5. Natural frequencies and damping results for all tests with Orientation 2.

Panel Freq1 Freq2 Freq3 Freq4 Damp1 Damp2 Damp3 Damp4

W
it

h
Sh

ak
er

Su
bt

ra
ct

io
n

Point 1
1 451.2 1100 1251 1326 0.0082 0.00909 0.02158 0.02866
2 457.8 1108 1262 1330 0.00743 0.01173 0.01347 0.02707
3 459.4 1099 1261 1333 0.00892 0.00819 0.01507 0.02926

Point 2
1 451.5 - 1258 1324 0.00864 - 0.02782 0.03399
2 455 - 1254 1323 0.00923 - 0.04226 0.02268
3 459.5 - 1257 1324 0.00936 - 0.02705 0.03021

Point 3
1 431.6 1049 1201 1262 0.00834 0.00858 0.0358 0.0412
2 457.4 1109 1258 1322 0.00787 0.01262 0.01351 0.02799
3 460 1100 1256 1319 0.00913 0.01 0.0207 0.02654

Average 453.7 1094.2 1250.9 1318.1 0.00857 0.01004 0.02414 0.02973

σ 8.42 20.59 17.92 20.23 0.00062 0.00163 0.00951 0.00496

% 1.855 1.881 1.432 1.535 7.264 16.27 39.39 16.68
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The first and second modes are at 397.4 Hz (±13.06 Hz) and 1056.5 Hz (±22.25 Hz),
respectively, for Orientation 1 and 453.7 Hz (±8.42 Hz) and 1094 Hz (±20.59 Hz), respectively,
for Orientation 2. It is clear that Orientation 2 is stiffer than Orientation 1.

The standard deviation of the natural frequencies is below 5%, whilst the standard
deviation of the damping results is higher, with a maximum of 16.48% for the two first
modes. The results obtained for the loss factor are shown in Figure 15 and consistent with
the results available in the literature for the first two modes, with the damping increasing
linearly with the natural frequency [6]. However, this trend does not apply for the other
two frequencies, 1249.14 Hz and 1316 Hz, which might be due to the fact that these two
modes are not necessarily composite plate modes but coupled with the shaker’s modes,
see Figure 13.
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Figure 15. Experimental results for the damping versus natural frequency of panel Orientation 1
(amber) and Orientation 2 (blue).
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3.3. Finite Element Analysis Results

A FEM analysis of the experiment described above was performed to verify the
experimental results and to determine the vibrational modes beyond the range of the
frequencies determined experimentally. Consequently, simulation results for the first
10 natural frequences for Orientation 1 and Orientation 2 are given in Figure 16, with the
data provided in Appendix A, Table A1. The first natural frequencies in all tests are above
the minimum frequency at the beginning of the experiments, which justify the experimental
plan. The simulation results agree well with the experimental results for the first two modes,
with the discrepancy for the first and second modes being within 15% and 9%, respectively,
which makes the simulation results valid. The mode shapes calculated for the two-plate
orientation are shown in Figures 17 and 18. The first mode is pure plate bending, whilst the
second mode is symmetric bending about the longitudinal axis. The first coupling mode is
obtained to be mode 6, at a frequency close to 4000 Hz for both plate orientations, which
suggests that this vibrational mode was driven by the clamp response.

Figure 16. The first 10 frequencies calculated for two plates orientations.
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(a) 

(b) 

(c) 

Figure 17. FEM results for the composite panel with Orientation 1 mode shapes: (a) mode 1 with
ω1 = 472.94 Hz; (b) mode 2 with ω2 = 989.48 Hz; and (c) mode 6 with ω6 = 3956.90 Hz.
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(a) 

(b) 

(c) 

Figure 18. FEM results for the composite panel with Orientation 2 mode shapes: (a) mode 1 with
ω1 = 518.33 Hz; (b) mode 2 with ω2 = 1015.10 Hz; and (c) mode 6 with ω6 = 3959.20 Hz.

4. Conclusions
Three aerospace composite plates were tested for two different orientations, and

consistent sets of results for natural frequencies were obtained so that the repeatability
was demonstrated. Two panel orientations were tested to analyse the effects of the stack
sequence on the natural frequencies, and the results clearly demonstrated the influence:
Orientation 2 was stiffer compared to Orientation 1. The measurements taken in the time
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domain were transformed into the frequency domain by using the fast Fourier transforma-
tion algorithm available in Matlab. A couple of filtering options for the data were analysed
in terms of the quality of the results, and the one-dimensional median filter demonstrated
the stable and good quality of the results. The first two natural frequencies were significant
and used for further analysis, including the determination of the damping coefficients.
The experimental results obtained for the third and fourth mode were not reliable because
these modes seemed to be coupling modes between the plate and the shaker, which require
further investigation.

The tests were also modelled in LS Dyna, and the first 10 natural frequencies were
obtained using the implicit solver and damping coefficient calculated from the tests. The
results for the first two natural frequencies agreed well with the experiment, with the
maximum discrepancy in the natural frequencies being within 15%.

The key contribution of the work presented here is in new experimental data on the
natural frequencies and damping coefficients of the novel composite material, which is
designed for application in the vibration analysis of rotating components.
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Appendix A

Table A1. Natural frequencies for two tests with two orientations.

MODE Orientation 1 [Hz] Orientation 2 [Hz]

1 5.18 × 102 4.73 × 102

2 1.02 × 103 9.89 × 102

3 2.77 × 103 2.83 × 103

4 3.16 × 103 2.97 × 103

5 3.91 × 103 3.71 × 103

6 3.96 × 103 3.96 × 103

7 5.24 × 103 5.21 × 103

8 5.91 × 103 5.73 × 103

9 5.94 × 103 5.88 × 103

10 6.10 × 103 6.10 × 103



Vibration 2025, 8, 72 21 of 21

References
1. Admas, R.; Bacon, D. Effect of fiber orientation and laminate geometry on the dynamic properties of CFRP. J. Compos. Mater. 1973,

7, 402–408. [CrossRef]
2. Kherredine, L.; Gouasmi, R.; Zeghib, N.E. Evaluation and measurement of the damping properties of laminated CFRP composite

plates. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2012; Volume 28.
3. Chen, C.-S.; Fung, C.-P. Non-Linear vibration of initially stressed hybrid composite plates. J. Sound Vib. 2004, 274, 1013–1029.

[CrossRef]
4. Singh, G.; Rao, G.V. Non-Linear vibrations of simply supported rectangular cross-ply plates. J. Sound Vib. 1990, 154, 213–226.

[CrossRef]
5. Adams, R.; Maheri, M.R. Dynamic flexural properties of anisotropic fibrous composite beams. Compos. Sci. Technol. 1994, 50,

497–514. [CrossRef]
6. Berthelot, J.; Sefrani, Y. Damping analysis of unidirectional glass and Kevlar fibre composites. Compos. Sci. Technol. 2004, 64,

1261–1278. [CrossRef]
7. Yim, J.H.; Jang, B.Z. An analytical method for prediction of the damping in symmetric balanced laminated composites. Polym.

Compos. 1999, 20, 192–199. [CrossRef]
8. Gorman, D. Exact Solution for the Free In-plane Vibration of Rectangular Plates with Two Opposite Simply Supported. J. Sound

Vib. 2006, 294, 131–161. [CrossRef]
9. Adams, R.; Bacon, D. Measurement of the flexural damping capacity and dynamic Young’s modulus if metals and reinforced

plastics. J. Phys. D Appl. Phys. 1973, 6, 27–41. [CrossRef]
10. Adam, R.; Fox, M.; Floor, R.; Friend, R.; Hewitt, R. The dynamic properties of unidirectional carbon and glass fiber reinforced

plastics in torsion and flexure. J. Compos. Mater. 1969, 3, 594–603. [CrossRef]
11. Ni, R.G.; Adams, R.D. The Damping and Dynamic Moduli of Symmetric Laminated Composite Beams—Theoretical and

Experimental Results. J. Compos. Mater. 1984, 18, 104–121. [CrossRef]
12. Lin, H.-Y.; Huang, J.-H.; Ma, C.-C. Vibration analysis of angle-ply laminated composite plates with an embedded piezoceramic

layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1084–1099. [PubMed]
13. Polytec. OFV-5000 Vibrometer Controller and OFV-505/503; Polytec: Waldbronn, Germany.
14. LabVIEW User Manual; National Instruments: Austin, TX, USA, 2003.
15. Hallquist, J.O. LS-DYNA Theory Manual; Livermore Software Technology Corporation: Livernore, CA, USA, 2006.
16. Bergland, G.D. A Guided Tour of the Fast Fourier Transform. IEEE Spectr. 2009, 6, 41–52. [CrossRef]
17. “Matlab Help,” MathWorks. Available online: https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel (accessed

on 2 November 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/002199837300700401
https://doi.org/10.1016/S0022-460X(03)00661-8
https://doi.org/10.1016/0022-460X(90)90553-C
https://doi.org/10.1016/0266-3538(94)90058-2
https://doi.org/10.1016/j.compscitech.2003.10.003
https://doi.org/10.1002/pc.10346
https://doi.org/10.1016/j.jsv.2005.10.023
https://doi.org/10.1088/0022-3727/6/1/308
https://doi.org/10.1177/002199836900300401
https://doi.org/10.1177/002199838401800202
https://www.ncbi.nlm.nih.gov/pubmed/14561025
https://doi.org/10.1109/MSPEC.1969.5213896
https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel

	Introduction 
	Methodology 
	Experimental Work 
	Finite Element Analysis 

	Results and Discussion 
	Natural Frequency 
	Damping Results 
	Finite Element Analysis Results 

	Conclusions 
	Appendix A
	References

