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Abstract

Background/Objectives: Eye movements provide important insights into face processing.
Hidden Markov models of eye movements (EMHMMs) are a relatively new approach that
identifies common patterns across observers, moving beyond region-of-interest analyses.
Prior EMHMM studies with static faces have typically revealed two strategies: a central
“holistic” style and a feature-based “analytical” style. However, it is unknown whether
such patterns extend to dynamic faces, which more closely reflect real-world viewing. This
study is the first to apply EMHMMs to dynamic face recognition. Methods: Participants
completed a face learning task in which half of the identities were presented as static im-
ages and half as dynamic videos. Eye movements were analysed using EMHMMs during
both learning and recognition phases. Results: Two consistent patterns emerged across
conditions: Central-focused and Eye-focused. A small subgroup displayed a third, central-
plus-right-eye pattern when learning static faces. Eye movement patterns were largely
stable across static and dynamic conditions, with only 16–27% of participants switching
between them. Patterns were generally unrelated to recognition accuracy; however, par-
ticipants adopting Eye-focused patterns during static learning performed better on static
recognition. Conclusions: EMHMM-identified patterns generalise from static to dynamic
faces, indicating strong stability in face-viewing behaviour across stimulus types. This
finding contrasts with previous region-of-interest analyses suggesting greater differences
between static and dynamic faces. By extending EMHMMs to dynamic faces, this study un-
derscores the value of diverse analytical approaches for capturing eye movement behaviour
and advancing understanding in face processing.

Keywords: face recognition; eye tracking; eye movements; hidden Markov models; movement
advantage; motion

1. Introduction
Eye movements are a rich source of information about how we process the visual

world, and particularly the faces of those around us. A substantial body of work has
examined where people look when learning and recognising faces; this work has typically
reported a strong focus on the internal features of the face, especially the eye and nose
regions [1–6], which are considered to contain the most useful information for recogni-
tion [4,5]. Although these findings advance our understanding of general face recognition
strategies, the role of individual differences in eye movements in shaping recognition
performance and the effect of facial movement on eye movement patterns is still unclear.
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Recent work has identified substantial variation in eye movement patterns to faces
between individuals, e.g., [7–11]. Findings have demonstrated significant between-person
variation in scan paths, fixation distributions, and saccade dynamics (for example, see [8]).
Moreover, studies have shown that individuals tend to exhibit relatively consistent eye
movement patterns over time, even across different face stimuli and tasks [12]. In some
instances, eye movement patterns have been linked to face recognition ability [11,13].
For instance, Bobak et al. [13] found that individuals with more severe prosopagnosia
(a condition characterised by problems with face recognition) spent less time examining
internal face features. Further, some prosopagnosics spent less time examining the eyes
and more time examining the mouth than controls. In contrast, individuals who excel at
face recognition (“super-recognisers”) may make longer fixations to the inner features of
the face (i.e., nose and eyes) [13,14].

More recent work has employed a novel approach to looking at individual differences
in eye movement patterns when completing face recognition tasks using eye movement hid-
den Markov models (EMHMMs e.g., [15–17]). Unlike earlier work, which examined how
much time participants spent looking at specific pre-defined areas of an image (regions of
interest, ROIs; e.g., [9,13]) or focused purely on the spatial distribution of fixations [18,19],
EMHMMs use a data-driven approach to derive person-specific ROIs and to cluster partici-
pants into groups based on both the spatial distribution of these ROIs, sometimes including
their durations, (e.g., [16]), and the pattern of transitions between them [15]. This allows
researchers to identify qualitative differences in eye movements between individuals or con-
ditions (by classifying participants into different groups or clusters) as well as quantitative
differences between individuals or conditions (by examining how closely eye movement
patterns resemble the group pattern). As such, it is well-suited to examining individual
differences in face processing. Using this approach, several studies have identified two or
three distinct patterns of eye movements when learning and recognising faces. Broadly,
these patterns have been conceptualised as reflecting more “holistic” or more “analytic”
eye movement patterns, although more recent work often labels these eye movement pat-
terns as “eye-focused” and “nose-focused” [17,20,21], reflecting some level of uncertainty
around the actual perceptual strategies underpinning these eye movement patterns. In
holistic/nose-focused eye movement patterns, most fixations begin and remain focused on
the centre of the face; whereas in analytic/eye-focused eye movement patterns, fixations
generally transition from the centre of the face to the eye region [15,16,22,23]. Several
papers have found that analytic/eye-focused eye movement patterns are associated with
better face recognition ability [16,22,23], e.g., [15,17], which aligns with other eye-tracking
work suggesting that the eye region is important for face recognition [9].

The relationship between the analytic/eye-focused eye movement patterns and face
recognition accuracy is noteworthy because faces have a limited number of features to
focus on (typically the eyes, nose, and mouth), and the differences between the patterns are
relatively subtle in terms of the spatial distribution of fixations [16,23]. The findings from
the EMHMM literature demonstrate the importance of integrating transition information
into analyses, to detect more nuanced differences between individuals.

Despite recent efforts to better characterise individual differences in eye movement pat-
terns during face recognition using hidden Markov models [15–17], the existing literature is
limited by its exclusive use of static facial stimuli. There are several reasons that necessitate
extension of this early work to dynamic (i.e., moving) facial stimuli, not least because the
faces we engage with in everyday life move. They move both rigidly (e.g., head nodding
and shaking) and non-rigidly (elastic facial motion, e.g., expressions, speech), and these
facial movements carry a substantial amount of socially important information (e.g., speech,
emotional state, and potentially intentions and goals). A true understanding of individual
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differences in eye movements during face recognition requires that our conclusions extend
to ecologically valid stimuli.

Aside from ecological validity, we also cannot assume the findings observed for static
faces using hidden Markov models [16,23] can be generalised to moving faces, because
there is evidence of differential processing of static and moving faces. Behavioural differ-
ences have been found when learning and recognising moving compared to static faces
(for review, see [24]). Seeing a face move leads to better learning of previously unfamil-
iar faces [25–27], more accurate and faster face matching [28], and better identification
of degraded familiar faces [29,30]. This enhanced recognition performance for moving
faces is termed the “motion advantage” and has been observed in children as young as
3–4 months old [31] and in individuals with developmental prosopagnosia during familiar
face recognition [32] and face matching [33].

These behavioural findings have led to debate about what causes the motion advan-
tage, with the dominant theories being that (a) facial motion facilitates the perception of the
three-dimensional structure of a face (the representation enhancement hypothesis) and (b) facial
motion acts as an additional cue to identity, as we represent characteristic facial motions
of individual faces in addition to the invariant structure of the face (the supplemental infor-
mation hypothesis) [34,35]. Consequently, it is theoretically possible that we might observe
qualitatively different patterns of eye movements for moving compared to static faces—for
example, eye movement patterns that are optimal for extracting 3D shape information or
those that focus on areas of the face that feature more idiosyncratic movement.

However, other perceptual mechanisms may underpin performance differences for
moving compared to static faces, with recent research focusing on whether facial motion
alters reliance on holistic and/or featural processing. It has been argued that facial motion
might promote more part-based (as opposed to holistic) face processing (see [24] for a
review). Indeed, Xiao et al. [36] found that facial movements facilitate part-based, not
holistic, face processing in children, adolescents, and adults. However, others argue that
holistic processing is a fundamental aspect of face perception that applies equally to both
static and moving faces [37–39], a finding replicated in both same- and other-race faces [40].
In fact, Lian et al. [40] found that rigid facial motion improves holistic processing of own-
race faces during encoding. Whilst the impact of facial motion on holistic/featural face
processing continues to be debated, these findings raise the possibility of a quantitative
difference in eye movement strategies for moving and static faces—in other words, a
shift in the degree of holistic and featural processing that might be observable in eye
movement patterns.

There is some, though limited, existing research on the effect of facial motion on
eye movement patterns during face recognition tasks [24,41]. Xiao et al. [41] examined
the role of facial movement in face recognition at the ages of 3, 6, and 9 months, finding
that across the age groups infants fixated mostly on the centre of static faces, but with
increased age, they fixated longer on the mouth of moving than static faces and less
on the eyes of moving than static faces. More recently, Butcher et al. [42] studied the
effect of facial movement on adult eye movement patterns during both familiar face
recognition and unfamiliar face learning. Participants directed a higher proportion of
fixations to the internal features (i.e., eyes, nose, and mouth) of moving faces versus static,
and the proportion of fixations to the internal non-feature area (i.e., cheeks, forehead,
chin) and external area was significantly reduced for moving compared with static faces.
The findings of Butcher et al. [42] suggest that facial motion is associated with increased
attention to internal facial features. Collectively, these findings reveal eye movement
differences for static and moving faces. However, Butcher et al.’s eye movement analyses
did not reveal a significant association with recognition performance in a face learning task;
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thus, the relationship between eye movements and individual differences in moving faces
remains unclear.

The existing work on eye movement differences for static and moving faces uses a
traditional approach to studying eye movements with pre-determined ROIs, with a focus
on presentation mode differences (static vs. moving) rather than individual differences.
As noted above, these analyses carry several limitations, such as averaging out individual
variation in eye movements, relying on experimenter-defined ROIs, and not incorporating
information about eye movement durations and transitions into the analyses. Due to these
limitations, previous studies have been somewhat limited in their ability to identify qualita-
tive differences in processing—for example, shifts from holistic to more analytic processing
styles (which, as outlined above, are often most apparent in transition information) or
the use of novel eye movement patterns for moving faces (e.g., patterns that may reflect
structural encoding or the use of supplemental information). Consequently, examining
eye movement patterns, such as those identified in EMHMM analyses, may reveal fur-
ther differences (or similarities) in how people look at moving and static faces and how
these differences are related to face recognition performance. For example, participants
might change their eye movement patterns from one strategy to another (e.g., from more
analytic/eye-focused to more holistic/nose-focused) when learning and recognising static
or moving faces (a quantitative shift), or the EMHMM analysis may reveal different, unique
eye movement strategies when learning faces in motion compared to static images (a quali-
tative change). Further, it may be that these eye movement patterns (which incorporate
both duration and order of fixations as well as their location) can account for variability
in moving face recognition performance, as has been reported for static face recognition
(e.g., [23]).

To date, the only research using the EMHMM approach to compare eye movement
patterns in moving and static faces has focused on emotion recognition tasks [21,43] rather
than face recognition. Analogous to analyses involving face recognition, these studies
revealed two or three general eye movement patterns, which can broadly be construed
as centrally focused (or holistic) and more eye-focused (or analytic). Paparelli et al. [43]
and Zheng and Hsaio [21] found that the majority of participants adopted a similar eye
movement strategy across conditions, regardless of whether the images were moving
or static. However, unlike the face recognition literature, there was no clear benefit of
one strategy over another [43]. While these studies provide important information about
eye movement strategies in moving and static emotion processing, it is difficult to judge
how well their conclusions will translate to an identity-based task: emotion recognition
and identity are distinct processes (see [44] for a review) relying on information from
different facial regions [45], and the EMHMM-based eye movement patterns in the emotion
recognition tasks were less well-defined than in the identity-based research (e.g., ROIs
tended to be larger and with higher levels of overlap).

To better understand how eye movement patterns differ for moving and static faces in
an identity-based task and how this relates to face recognition performance, we applied
the EMHMM approach to some of the data from Butcher et al. [42]. Our aims were to
(1) examine eye movement patterns when learning faces as static or dynamic images and
when recognising faces learnt as static or dynamic images; (2) analyse whether specific
eye movement patterns are associated with better face recognition performance; and
(3) examine consistency in eye movement patterns for static and dynamic faces. Regarding
eye movement patterns, given our previous findings using a pre-defined ROI approach [42],
we expected that participants would show qualitatively different patterns of eye movements
for dynamic and static faces, with dynamic patterns focused more on the internal face
features compared to static patterns, which may show more diffuse and less feature-
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focused ROIs. In relation to performance, based on previous work applying EMHMM to
static face images, we expected that participants adopting a more eye-focused/analytic
processing style for static faces would show better performance in static face learning
and recognition [16,20,22,23], although it is unclear whether the same relationship would
apply to moving face learning and recognition. In terms of consistency, studies applying
EMHMMs to emotion recognition data suggest that participants may show minimal eye
movement differences between moving and static images [21,43]. However, taking into
account the differences between emotion and identity processing [44,45], as well as previous
research with moving faces [24,42], it is also feasible that participants may shift to more
feature-focused eye movement patterns when learning and recognising moving faces.

2. Materials and Methods
The majority of the data presented here were initially reported in Experiment 3 of

Butcher et al. [42]. The methods are reported in detail in that paper, but a summary is
included below.

2.1. Design

Participants completed a face learning experiment, with a repeated-measures design
with one independent variable (presentation of the faces during the learning phase: moving
or static). For this new analysis, the key dependent variable of interest was the eye
movement data (fixation location and duration). Performance on the learning task was also
a dependent variable. This was examined using the signal detection theory measure A, a
bias-free measure of sensitivity that is suitable for non-parametric data [46]. A can range
from 0 to 1, with A = 0.5 representing chance-level performance.

2.2. Participants

Eye movement data from 73 participants (Mage = 24.74 years, SD = 7.32; 20 males,
52 females, all reporting normal or corrected-to-normal vision) were included in the current
analyses. Unlike in Butcher et al. [42], no exclusions were made based on behavioural
performance, as we were primarily interested in eye movement patterns, and there were
no obvious problems with the eye movement data for any participants in the sample. A
post hoc power calculation indicated that this sample size has sufficient power to detect
large (f = 0.40; d = 0.80) effects in a one-way ANOVA with three groups. This is in line with
effect sizes in previous studies that have examined differences in performance related to
eye movement patterns [23].

The data were collected across two sites (Brunel University of London and Teesside
University). Participants took part voluntarily or in return for course credit. Informed
consent was obtained in writing prior to the beginning of the experiment, and ethical
approval was granted at both institutions.

2.3. Materials and Apparatus

The learning phase of the experiment included 20 faces from the Amsterdam Dynamic
Faces Expression Dataset (ADFES [47]). The moving images showed the face moving from
a neutral expression to a joyful expression. The static images showed a single frame from
the peak of the expression (smiling). All clips (static and moving) were 4 s long, and all
stimuli were 720 × 576 pixels in size and displayed in full colour. Participants viewed half
of the faces moving and half of the faces static (counterbalanced between participants).

The test phase included 40 static face images: 20 displaying the same identities as
in the learning phase (learnt faces), and 20 displaying new identities (distractor faces).
The learnt faces showed the same faces from the ADFES, but this time displaying a single
frame from the peak of the angry expression. The 20 distractor faces also displayed
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an angry expression and were selected from several validated emotional face databases
(RADIATE [48], Radboud database [49], KDEF [50]). All test phase stimuli were edited
using Adobe Photoshop to replace distinctive clothing and backgrounds with a standard
grey overlay and to standardise the lighting and pupil alignment across the faces. All test
phase stimuli were 720 × 576 pixels and were displayed in full colour.

The experiment was programmed and presented using SR Research Experiment
Builder software version 2.4.1 (SR Research Ltd., Kanata, ON, Canada). For participants
at Brunel University of London, eye movements were recorded via an EyeLink 1000 desk-
mounted video-based eye tracker, which recorded eye movements at 1000 Hz (SR Research
Ltd., Kanata, ON, Canada). Viewing distance was held constant at 60 cm with a chin rest.
For participants at Teesside University, eye movements were recorded via an EyeLink
II head-mounted, video-based eye tracker (SR Research Ltd., Kanata, ON, Canada), at a
sampling rate of 250 Hz. Viewing distance was maintained at 65 cm with a chin rest.

2.4. Procedures

Prior to the start of the main experiment, participants carried out a nine-point eye
movement calibration and validation procedure within the EyeLink API software version
4.594. They then moved onto the learning phase. In the learning phase, participants were
instructed to learn a set of 20 faces (10 moving and 10 static, presented in a randomised
order). Each learning trial consisted of a 4 s video/static image of a face. Participants were
not required to respond.

After completing the learning phase, participants moved directly onto the test phase.
In the test phase, participants viewed 40 faces (20 learnt and 20 distractors, presented in
a randomised order) and were asked to indicate whether they had seen each face earlier
in the experiment via a keypress. Participants were asked to respond as quickly and as
accurately as possible, and the face remained onscreen until a response was recorded. There
was no time limit in each trial. At the end of each trial, participants were shown a drift
correction fixation. The next trial was triggered manually by the experimenter when the
participant focused on the drift correction fixation.

2.5. Data Analysis
2.5.1. Behavioural Data

Hits (correct identification of learnt face) and false alarms (incorrectly identifying a
distractor face as a learnt face) were combined into the signal detection measure A [46],
separately for faces learnt moving and static. As distractors were not assigned to either
movement category, the false alarm rate was common to both conditions. A was selected
due to the non-parametric distribution of the hit rate (moving faces) and false alarm rate,
and because this allowed clear comparisons with the findings from Butcher et al. [42], who
used the same measure.

2.5.2. Eye Movement Data

Eye movement data were analysed using the EMHMM toolbox version 0.80 [15],
obtained from http://visal.cs.cityu.edu.hk/research/emhmm/ (accessed on 30 July 2024).
The EMHMM toolbox uses hidden Markov models, a form of time series model that can
be used to describe a series of observations that depend on unobservable, or “hidden”,
states, and where the current state depends only on the previous state (a Markov chain). In
this analysis, the observations are the fixation sequences in the eye movement data (i.e.,
spatial coordinates, duration, and sequence), and the hidden states of the HMM represent
eye movement regions of interest with duration (ROIDs). Each ROID is represented as a
three-dimensional Gaussian emission, with their dimensions corresponding to the spatial
locations (x and y coordinates) and duration of fixations. The Gaussian emission represents

http://visal.cs.cityu.edu.hk/research/emhmm/
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the probabilistic association between the observed data (e.g., eye fixation locations and
durations) and the hidden state the ROID is modelling. This approach has been applied
to model eye movement data during a range of face processing tasks (e.g., identification,
emotion processing) and is particularly useful for analysing the effects of different factors
on eye movements to faces (e.g., drawing experience [20], cognitive ability [22], own-race
biases [23]), and how individual differences in eye movement patterns are associated with
performance on various tasks [17,23,43].

We began by splitting each participant’s eye movement data by experiment stage
(learning or test) and condition (moving or static—for the test phase, this reflected the
condition the faces were learnt in, as all test images were static). We then applied a
variational Bayesian expectation maximisation algorithm to each dataset to determine
the HMM parameters—this determines the optimal number of hidden states. For these
analyses, we set the maximum number of hidden states to four. The prior distributions for
the Gaussian emissions were Normal-Wishart distributions, with the centre of the image
and population mean fixation duration set as prior means. For the spatial dimensions, we
set the prior mean to be the centre of the image; for the temporal dimensions, we set the
prior mean and standard deviation to be the mean and standard deviation of the whole
sample (these were calculated separately for each analysis). Prior to the analysis, fixations
falling to the edges of the screen (outside the face image) were cropped. This resulted in
the exclusion of 145 fixations in total across all conditions (141/17,271 or 0.82% of fixations
in the learning phase; and 5/7635 or 0.06% of fixations in the test phase). The central area
of the screen included in the analysis was 472 × 424 pixels.

Once the individual HMM models had been derived, we used a variational hier-
archical expectation maximisation algorithm (VHEM) to cluster the individual HMMs
and to generate a representative cluster HMM, displaying the cluster centre and common
ROIDs and transitions within each cluster. The number of ROIDs within each cluster was
determined by the median number of ROIDs within the individual models entered into
the VHEM. For each participant, we calculated the log likelihood of their eye movement
patterns belonging to each of the different clusters. This acts as a measure of how similar
each participants’ individual eye movements were to each of the representative cluster
HMMs. These log likelihood values were used to identify the number of clusters and to
measure the relationship between eye movement patterns and performance.

To identify the appropriate number of clusters within the dataset, we initially gen-
erated two clusters; then, for each cluster, we compared the log likelihood values for the
two representative HMMs (in other words, testing if the eye movements from cluster 1
resemble cluster 1 significantly more than they resemble cluster 2). If the t-tests comparing
the mean log likelihoods for the different HMMs were significant, we increased the number
of clusters and reran the analyses. If any of the t-tests were not significant, we concluded
that the clusters were not significantly different and reverted to the next highest number
of clusters.

To measure relationships between eye movement patterns and performance, we
correlated behavioural outcomes with the log likelihood values. We also calculated a scale
of how much each participant’s eye movements resembled each representative HMM along
dimensions, contrasting the different HMMs (here dubbed HMM A and HMM B), using
the following calculation:

(LLA − LLB)/(|LLA| + |LLB|), (1)

where LLA and LLB represent the log likelihood of an eye movement pattern belonging
to two different representative HMMs. In previous research, this has been referred to as
the A-B scale, with more positive values indicating greater similarity to HMM A and a
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negative value indicating greater similarity to HMM B [21,22]. In the current study, we
calculated this for each pairing of HMMs (resulting in up to 3 A-B scales when three clusters
were identified).

In the first round of analysis, we applied the above clustering method sepa-
rately for each condition (moving and static) and each experiment stage (learning and
recognition)—i.e., all of the HMMs from the learning stage with moving faces were clus-
tered into groups; then, all of the HMMs from the learning stage with static faces were
clustered into groups separately; this was repeated for the test stage. These analyses were
used to explore and compare eye movement patterns for moving and static faces (and
faces learnt in movement or from static images) during the identification task as well as
to examine how these eye movement patterns were related to accuracy in the task. As
the focus was on the effect of movement, we did not include the distractor faces from the
test phase (which were only ever seen as static images) in the analyses. Subsequently, we
clustered participants’ HMMs from the moving and static conditions together (although
we still analysed the learning and test phases separately) to examine whether participants
showed similar eye movements across movement conditions.

3. Results
3.1. Learning Phase

Figure 1 shows the groups obtained when clustering the HMMs from viewing moving
in the learning stage. For moving faces, our analyses indicated that two clusters were
sufficient to summarise the data. The median number of ROIDs from the individual HMMs
in the analysis was four; thus, each representative cluster HMM included four ROIDs. In
the first group (henceforth Central-focused), containing 39 participants, all four ROIDs were
centred around the middle of the face, with the smallest ROID (1: black) focused around the
nose bridge. Although several of the ROIDs show substantial spatial overlap (e.g., 2 and 3),
in some cases they can be distinguished by the length of fixations directed to them (see
ROIDS (duration) panels in Figure 1). Likewise, the distribution of fixation durations for
some ROIDs is practically indistinguishable (e.g., 1 and 4), but the spatial distribution of
fixations may differ (see ROIDs (area) panels in Figure 1).

People in the Central-focused group typically (around 61% of the time) started with a
relatively short fixation (M = 293 ms) in this central ROID before transitioning to another
relatively short fixation (M = 353 ms) to an area encompassing the internal facial features—
the wider face area (2: dark grey), or less commonly (around 13% of the time), a longer
(M = 501 ms) fixation to a similar area (3: light grey). Less frequently (around 20% of the
time), participants made repeated fixations within ROID 4 (white), which encompasses the
entire face area.

In the second group (henceforth Eye-focused), containing 34 participants, the smallest
ROID (3: light grey) was focused around the eyes, and the others were centred around the
middle of the face. Once again, there was some overlap between ROIDS (specifically, 1 and
2), but these can be distinguished by the length of fixations directed to them (see ROIDS
(duration) panels in Figure 1). Participants in this group typically (around 90% of the time)
started with a short fixation (M = 245–288 ms) to an area encompassing the facial features
(ROIDs 1: black and 4: white, which show substantial overlap spatially and temporally
and can be collapsed together). Their next fixation tended to stay in this inner facial area
(around 52% of the time), although it sometimes (around 20% of the time) moved to a
longer fixation (M = 454 ms) to the eye region (3: light grey).
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Figure 1. Eye movement patterns for moving faces in the learning phase. The ROIDs (area) column
shows the centre and two standard deviations around the centre of each ROID. The ROIDs (duration)
column shows the distribution of fixation durations (in ms) within each ROID; the boxes at the top
right of each duration distribution figure display the mean and standard deviation of the fixations in
each ROID (M ± SD). For both groups, ROIDs 1 and 4 have very similar duration distributions, and
the curves overlap. The Transitions column shows the prior probability of fixation patterns beginning
in each ROID (top row) and the probability of transitions between ROIDs (bottom matrix). The colour
of the ROID spatial and temporal distributions corresponds to the colour of the background of the
boxes showing M ± SD and in the transition table. Black: ROID 1; Dark grey: ROID 2; Light grey:
ROID 3; White: ROID 4.

Figure 2 shows the groups obtained when clustering the HMMs from viewing static
in the learning stage. For static faces, the data could be clustered into three significantly
different groups. The median number of ROIDs from the individual HMMs in the analysis
was four, so each representative cluster HMM included four ROIDs.

The first group, with 38 participants, was very similar to the Central-focused cluster
from the moving faces, but with an even stronger tendency to begin by with a short fixation
(M = 275 ms) around the nose bridge (1: black), before moving to a region encompassing
the entire face (ROIDs 2: dark grey and 4: white) around 74% of the time. The second
group, with 14 participants, resembled the first, Central-focused group, except the broadest
ROID (4: white) was more focused on the internal facial features (as opposed to the entire
face in the Central-focused group), and there was one ROID focused around the right eye
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specifically. Participants in this group tended to begin with a relatively short fixation in a
ROID centred on the internal facial features (1: black or 4: white), then either repeatedly
fixated within the same ROID (around 60% of the time) or, less commonly, transitioned to a
long (M = 775 ms) fixation centred around the bridge of the nose (2: dark grey) (around
14% of the time). We refer to this cluster as the Central and right eye-focused cluster.

 

Figure 2. Eye movement patterns for static faces in the learning phase. The ROIDs (area) column shows the
centre and two standard deviations around the centre of each ROID. The ROIDs (duration) column shows
the distribution of fixation durations (in ms) within each ROID; the boxes at the top right of each duration
distribution figure display the mean and standard deviation of the fixations in each ROID (M ± SD). For
groups 1 and 3, ROIDs 1 and 4 have very similar duration distributions, and the curves overlap. The
Transitions column shows the prior probability of fixation patterns beginning in each ROID (top row)
and the probability of transitions between ROIDs (bottom matrix). The colour of the ROID spatial and
temporal distributions corresponds to the colour of the background of the boxes showing M ± SD and in
the transition table: Black: ROID 1; Dark grey: ROID 2; Light grey: ROID 3; White: ROID 4.
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The third group, with 21 participants, was very similar to the Eye-focused cluster from
the moving faces, although ROID 4 (white) was more lateralised to the left. Once again,
participants typically started with a short fixation (M = 257 ms) to an area encompassing
the facial features (1: black); from here, they often remained in the same ROID for several
fixations (around 27% of the time) or transitioned directly to a relatively short fixation
(M = 352) to the ROID focused on the eye region (2: dark grey) (around 30% of the time).
Less commonly, participants in this cluster transitioned from a short fixation (M = 240 ms)
to a left-biased region of the face (4: white) to a long fixation (M = 1618) on the left eye
(3: light grey).

As we were interested in the relationship between eye movement patterns and accu-
racy, we (1) ran two one-way ANOVAs examining whether individuals in different eye
movement groups performed differently in the behavioural task; and (2) examined the
correlations between performance and the log likelihood of individuals belonging to each
group. Three extreme outliers in the behavioural data were removed prior to the analyses.

A for moving trials did not differ significantly between the Central-focused group
(M = 0.85, SD = 0.09) and the Eye-focused group (M = 0.84, SD = 0.10) identified in the
moving faces’ EMHMM, F(1,68) = 0.33, p = 0.565, η2p = 0.00. There was no significant
correlation between moving A values and the log likelihood of participants belonging to
the Central-focused (r = 0.06, p = 0.600) and Eye-focused (r = 0.02, p = 0.858) eye movement
patterns and no significant correlation between A and the A-B scale when contrasting
Central-focused and Eye-focused HMMs (r = 0.08, p = 0.527).

Likewise, A for static trials did not differ significantly between the three groups
(Central-focused: M = 0.84, SD = 0.83; Eye-focused: M = 0.81, SD = 0.78; Central and
right eye-focused: M = 0.78, SD = 0.10; F(2,67) = 2.09, p = 0.131, η2p = 0.06). There was
no significant correlation between static A values and the log likelihood of participants
belonging to the Central-focused (r = −0.07, p = 0.569) or Eye-focused (r = 0.12, p = 0.324),
or Central and right eye-focused (r = −0.18, p = 0.144) eye movement patterns. A values did
not correlate with the A-B scale contrasting Central-focused and Central right eye-focused
groups (r = 0.19, p = 0.114), but there was a significant correlation between A for static trials
and the A-B scales when contrasting the Eye-focused pattern with the Central-focused
(r = −0.25, p = 0.034) and the Central right eye-focused pattern (r = −0.35, p = 0.003). In
both cases, a more negative A-B scale value, indicative of more Eye-focused eye movement
patterns, was associated with better identification performance.

In sum, analyses of the learning phase revealed two similar clusters in the moving and
static conditions: one centrally focused and one more eye-focused. These may be broadly
in line with the holistic and analytic patterns reported previously using the EMHMM
technique [16,22,23]. The analysis also revealed a third cluster of eye movements for static
faces (central and right-eye focused), which was not present for moving faces. There
was a tendency for people whose eye movement patterns were more aligned with eye-
focused compared to central-focused (or central and right eye-focused) to show better
performance in the static condition. However no other associations between eye movement
and performance were significant.

3.2. Test Phase

Figure 3 shows the groups obtained when clustering the HMMs from viewing moving
faces in the test (recognition) phase. The median number of ROIDs from the individual
HMMs was three; thus, the representative cluster HMMs for moving faces included three
ROIDs. As in the learning phase, there was significant spatial overlap between several of
the ROIDs, but these could be distinguished by the fixation durations within them.
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Figure 3. Eye movement patterns for faces learnt in motion, when viewed in the test phase. The
ROIDs (area) column shows the centre and two standard deviations around the centre of each ROID.
The ROIDs (duration) column shows the distribution of fixation durations (in ms) within each ROID;
the boxes at the top right of each duration distribution figure display the mean and standard deviation
of the fixations in each ROID (M ± SD). For group 1, ROIDs 1 and 3 have very similar duration
distributions, and the curves overlap. The Transitions column shows the prior probability of fixation
patterns beginning in each ROID (top row) and the probability of transitions between ROIDs (bottom
matrix). The colour of the ROID spatial and temporal distributions corresponds to the colour of the
background of the boxes showing M ± SD and in the transition table. Black: ROID 1; Light grey:
ROID 2; White: ROID 3.

For faces learnt in motion, two clusters were sufficient to summarise the data. In the
first group, containing 45 participants, two ROIDs were focused on the centre of the face,
containing short fixations (M ~ 250 ms) encompassing the entire nose (1: black) or just
the top of the nose (3: white). The third ROID (2: dark grey) contained longer fixations
(M = 752 ms) to the left eye only. The majority of sequences in this group (57%) consisted
of repeated short fixations in the larger ROID (3: black), although a significant proportion
(41%) started in the smaller, nose-focused ROID (1: white) and moved to the larger ROID.
We refer to this as the Central-focused group.

In the second group, containing 28 participants, all ROIDs were centred around the
top of the nose. The larger ROID (2: dark grey) extended to cover the forehead and mouth
region; a smaller ROID containing longer fixations (M = 473 ms) was centred on the top
of the nose and encompassed the right eye (3: white); and the final ROID covered the
top of the nose and some of the eyes. Typically, participants in this group began with a
short fixation (M = 261 ms) to the top of the noise/eye region (1: black), and most fixation
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sequences in this group (70%) were repeated short fixations to this small area. We refer to
this pattern as the Eye-focused group.

Figure 4 shows the groups obtained when clustering the HMMs from viewing static
faces in the test phase. The median number of ROIDs from the individual HMMs was two;
thus, the representative cluster HMMs for static faces included two ROIDs. For faces learnt
as static images, two clusters were sufficient to summarise the data. Each cluster contained
only two ROIDs, both located fairly centrally on the face. In the first group (36 participants),
one ROID was characterised by short fixations (M = 254 ms) to an area encompassing the
nose (1: black); the other was characterised by longer fixations (M = 533 ms) to the left eye
(2: white). Participants in this group typically made repeated short fixations to the nose
ROID (1: black), with 95% of the sequences in this group falling into this pattern. While the
focus was more limited than in other groups, this group still showed a broad resemblance
to the Central-focused patterns in other analyses.

Figure 4. Eye movement patterns for faces learnt as static images, when viewed in the test phase.
The ROIDs (area) column shows the centre and two standard deviations around the centre of each
ROID. The ROIDs (duration) column shows the distribution of fixation durations (in ms) within each
ROID; the boxes at the top right of each duration distribution figure display the mean and standard
deviation of the fixations in each ROID (M ± SD). The Transitions column shows the prior probability
of fixation patterns beginning in each ROID (top row) and the probability of transitions between
ROIDs (bottom matrix). The colour of the ROID spatial and temporal distributions corresponds to
the colour of the background of the boxes showing M ± SD and in the transition table. Black: ROID
1; White: ROID 2.

In the second group (37 participants), one ROID was characterised by fixations to the
nose and eye region (1: white), while the other focused only on the eyes (2: white); both
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typically included short fixations (M ~ 280 ms). However, unlike the first group, most
fixation sequences in this group began in the smaller eye ROID (1: black), and the majority
of sequences in this group (51%) consisted of repeated fixations to this ROID. However,
it was somewhat more common for participants in this group to transition from the eye
ROID to the broader features ROID (2: white) (16%); whereas, in the first group, there were
very few transitions from the nose to the eyes (8%). This group resembles the Eye-focused
groups from other analyses.

Analyses to investigate the relationship between these eye movement patterns and
accuracy found no difference between Central-focused and Eye-focused groups in per-
formance on the task for faces learnt in motion, F(1,68) = 0.21, p = 0.647, η2p = 0.00, or
faces learnt as static images, F(1,68) = 0.12, p = 0.728, η2p = 0.00. A for faces learnt in
motion did not correlate with the log likelihood for Central-focused eye movement patterns
(r = 0.18, p = 0.140) or Eye-focused eye movement patterns (r = 0.08, p = 0.487). There was
no significant correlation between moving A and the A-B scale when contrasting Central-
focused and Eye-focused HMMs (r = 0.07, p = 0.579). Likewise, there were no significant
correlations between A for faces learnt as static images and the log likelihood for Central-
focused eye movement patterns (r = 0.18, p = 0.138) or Eye-focused eye movement patterns
(r = −0.01, p = 0.967) or the A-B scale when contrasting Central-focused and Eye-focused
HMMs (r = 0.09, p = 0.434).

In sum, analyses of the test phase revealed two patterns of eye movements, broadly
similar to the central- and eye-focused patterns in the learning phase. These patterns were
very similar for faces learnt in motion and those learnt as static images. This suggests
that there is limited carry-over of any motion-related differences in eye movements from
learning to recognition.

3.3. Consistency in Eye Movements

Next, we entered all the data from the learning phase into one analysis (although
we still generated separate individual HMMs for each participant in the moving and
static conditions; in essence, this meant each participant contributed two datapoints to
the cluster analysis). This allowed us to visualise overall patterns of eye movements that
emerged across conditions and to examine whether participants’ eye movements from each
condition tended to be clustered together. In short, this analysis allowed us to examine
whether people used different eye movement strategies when viewing faces in motion and
static images.

Unsurprisingly, the clusters that emerged from the analysis of the learning stage
(Figure 5) closely resembled those from the separate analyses of the learning stage condi-
tions. In the Central-focused group (Group 3, 57 datapoints), all four ROIDs were focused
around the centre of the face, and participants tended to direct most fixations to the ROIDs
that encompassed the inner features (1: black) or the entire face (2: dark grey). In the
Eye-focused group (Group 2, 69 datapoints), participants tended to begin by fixating on the
upper nose and eye region and frequently transitioned from there to the eye region. The
final group, which we call Central and left eye-focused (Group 1, 20 datapoints), resembled
the Central and right eye-focused group from the initial analysis of static faces, but with an
ROID centred on the left eye instead of the right eye.

The frequency of participants being allocated to each cluster is displayed in Table 1.
Out of 73 participants, 53 (72.6%) showed consistent eye movement patterns across the
moving and static faces.
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Figure 5. Eye movement patterns for all faces in the learning phase. The ROIDs (area) column
shows the centre and two standard deviations around the centre of each ROID. The ROIDs (duration)
column shows the distribution of fixation durations (in ms) within each ROID; the boxes at the top
right of each duration distribution figure display the mean and standard deviation of the fixations in
each ROID (M ± SD). For groups 1 and 2, ROIDs 1 and 4 have very similar duration distributions, and
the curves overlap. The Transitions column shows the prior probability of fixation patterns beginning
in each ROID (top row) and the probability of transitions between ROIDs (bottom matrix). The colour
of the ROID spatial and temporal distributions corresponds to the colour of the background of the
boxes showing M ± SD and in the transition table. Black: ROID 1; Dark grey: ROID 2; Light grey:
ROID 3; White: ROID 4.
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Table 1. Number of participants within each eye movement group in the learning phase, displayed
separately for moving and static faces.

Static Faces

Central and Eye Eye Central Total

Moving
faces

Central- and eye-focused 9 - - 9
Eye-focused 1 25 12 38
Central-focused 1 6 19 26
Total 11 31 31 73

Numbers in bold indicate the total number of participants in each group.

A similar analysis for the test phase (learnt items only) resulted in two clusters, each
with three ROIDs that covered similar areas (Figure 6). However, as in the main analysis,
the transitions differentiated the groups.

 

Figure 6. Eye movement patterns for all learnt faces in the test phase. The ROIDs (area) column shows
the centre and two standard deviations around the centre of each ROID. The ROIDs (duration) column
shows the distribution of fixation durations (in ms) within each ROID; the boxes at the top right of each
duration distribution figure display the mean and standard deviation of the fixations in each ROID
(M ± SD). The Transitions column shows the prior probability of fixation patterns beginning in each
ROID (top row) and the probability of transitions between ROIDs (bottom matrix). The colour of the
ROID spatial and temporal distributions corresponds to the colour of the background of the boxes
showing M ± SD and in the transition table. Black: ROID 1; Light grey: ROID 2; White: ROID 3.

In the Central-focused group (Group 1, 94 datapoints), most sequences started in a
small central ROID (1: black) and then transitioned to a broader ROID covering most of
the internal facial features (3: grey). In the Eye-focused group (Group 2, 52 datapoints),
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most sequences included repeated fixations to a small ROID encompassing the eye region
(1: black, and 2: grey).

The frequency of participants being allocated to each cluster is displayed in Table 2.
Out of 73 participants, 61 (83.6%) showed consistent eye movement patterns across moving
and static faces.

Table 2. Number of Participants Within Each Eye Movement Group in the Test Phase, Displayed
Separately for Faces Learnt as Moving and Static Images.

Static Faces

Eye Central Total

Moving faces
Eye-focused 20 5 25

Central-focused 7 41 48
Total 27 46 73

Numbers in bold indicate the total number of participants in each group.

Overall, there is little evidence that people change their eye movement pattern when
learning moving vs. static faces; or when recognising faces learnt in motion or as static images.

4. Discussion
This study aimed to examine eye movement patterns when learning moving com-

pared to static faces, using an EMHMM analytic approach that has, until now, only been
applied to static face recognition. The analysis revealed three key findings. First, we
identified common eye movement patterns for the moving and static faces (in separate and
combined analyses), with similar patterns found regardless of whether the face was seen
moving or static. Second, we found that the majority of individuals used consistent eye
movement strategies for moving and static face learning (learning phase analyses) as well
as recognition of faces learnt as moving and static images (test phase analyses). That is,
participants’ individual eye movement patterns did not switch between eye-focused and
central-focused, depending on whether the face was seen moving or static. Instead, if an
individual used an eye-focused pattern when learning and recognising static faces, they
typically remained eye-focused when learning and recognising moving faces too; this was
the same for those in the central-focused group. Third, we found limited evidence that
eye movement patterns (at learning or testing) are related to task performance. The only
exception to this was the finding that individuals whose eye movement patterns were more
aligned with eye-focused compared to central-focused (or central and right eye-focused)
during face learning show better performance in the static condition. These key findings
will now be explored in more detail.

This is the first EMHMM analysis to our knowledge that examines the effect of facial
movement in a face learning task. The results, in both the learning and test phases, are
consistent with previous work that proposed more holistic vs. more analytic eye movement
patterns are engaged during face identification (analogous to the central-focused and
eye-focused HMMs in the current study) [15,16,20,22]. The condition-specific EMHMM
analyses showed relatively similar patterns of eye movements for moving and static faces.
In the learning phase, both static and moving eye movement patterns were clustered
into broadly similar clusters: Central-focused, where all ROIDs were focused around the
centre of the face (in each case, this cluster included roughly half of the participants),
and Eye-focused, which included an eye-specific ROIDs alongside other centrally focused
ROIDs. These are roughly analogous to the holistic and analytical patterns reported in
previous face recognition studies using only static faces [15,16,22]. One notable exception
to the consistency across conditions is that the analysis also revealed a third cluster of eye
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movement patterns for static faces, which was not present for moving faces (the Central and
right eye-focused pattern). The third group also appeared in the analysis of the learning
phase overall. This group appeared to be a blend of the other two, with an overall focus on
central ROIDs but including a lateralised eye-focused ROID.

In theory, the presence of the third group might be seen as evidence for qualitatively
or quantitatively different eye movement patterns for moving and static faces. However,
there are a number of caveats to this conclusion. First, this group was relatively small
compared to the other groups so should be interpreted with some caution. Second, the
pattern of eye movements in the third group does not appear to align with predictions of
more holistic processing in static compared to moving faces [36]; nor does the difference
between the moving and static eye movement patterns resemble the more internal-feature-
focused pattern we might expect based on our ROI-based analyses of the same data [42].
Finally, this pattern of eye movements is not unique to studies that use moving faces: other
studies using EMHMM analyses have occasionally identified three groups [23,43], with
the third group including an ROI with a stronger focus on a single eye or side of the face,
as in the current study. Consequently, it is feasible that the third cluster reflects a more
lateralised pattern of eye movements in a minority of people (as opposed to more spatially
balanced typical analytical strategies, such as our Eye-focused group). The lateralisation
of gaze patterns has been associated with perceiver and face gender [51], suggesting that
the presence of this pattern may be associated with sample and/or stimulus characteristics
rather than the presence of facial movement.

In the recognition phase, the EMHMM analysis revealed two eye movement patterns,
which were again relatively similar regardless of whether the faces were learnt in motion or
as static images. Like in the learning phase, the two patterns broadly distinguished between
participants who focused more on the central areas of the face and those who focused more
on the eye region. The consistency of these patterns across different conditions and studies
suggests that individuals adopt a limited number of visual strategies during face learning
and recognition and that these strategies are relatively robust to differences in stimulus
format (the current study) and factors such as age [17,22] and culture [23]. While both
strategies take in information from areas of the face that are computationally “optimal” for
face processing tasks [4], it is currently unclear whether these visual strategies are driven
by innate mechanisms or shaped by experience with faces during development.

Future work may consider how these eye movement patterns relate to other individual
differences in eye movements that have been reported in the literature. For example, Peter-
son and Eckstein [8] used an analytical approach that focused on identifying individuals’
preferred location for their first fixation to a face and found substantial variability be-
tween individuals—for example, some participants fixated higher on the face (eye-lookers),
whereas others tended to fixate lower (nose-lookers). It is possible that EMHMM analysis
taps into related idiosyncrasies in eye movements (e.g., eye-focused patterns might belong
to eye-lookers; nose-focused patterns may belong to nose-lookers); alternatively, the two
analyses may be measuring different sources of variation between individuals. Combining
the two strategies could provide a more thorough characterization of visual strategies
during face learning.

Given the similarity of patterns across the moving and static conditions, it is relatively
unsurprising that participants showed relatively consistent eye movements when viewing
moving and static faces: only a minority of people (16–27%) changed their eye movement
patterns from one group to another as a result of movement. The similarity of patterns
and high degree of consistency across conditions is in line with studies on emotional face
processing, which find that people adopt relatively consistent patterns of eye movements
for dynamic and static faces during emotion recognition tasks [21,43]. However, in the
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context of a face identification task, the lack of distinction between moving and static
faces (especially in the learning phase) is somewhat unexpected, especially as previous
ROI-based work with the same data has indicated significant differences between moving
and static faces [42]. On the other hand, it is relatively unsurprising that we find similar
patterns of eye movements for faces learnt in motion or as static images in the test phase,
given the test images were all static. Despite reporting a significant motion advantage
(that is, better face recognition performance for faces learnt as moving videos than as static
images), traditional ROI-based analyses on the same dataset also found no significant
differences in the test phase between faces learnt as moving and static images [42]. Taken
together, these findings suggest that the eye-movement-based effects of learning a face
in motion are relatively small. Further, they suggest that the EMHMM-based findings in
the literature, which are based on analyses of static images (e.g., the relationship between
eye movement patterns and different person characteristics [20,22,52]), likely generalise to
more ecologically valid moving faces as well. However, future work may wish to extend
this technique to examine eye movement patterns for moving and static familiar faces.
Previous behavioural work suggests that the motion advantage in face recognition might
be more prominent for familiar than unfamiliar faces [34], so it is possible the effects of
movement on eye movements are more pronounced for famous or familiar faces.

Our findings suggest relatively small differences in eye movement patterns for moving
and static faces. However, it is highly likely that eye movement patterns may vary based
on other factors, such as task demands. Previous work examining face learning and
recognition found that about 40% of participants changed their eye movement patterns
between learning and testing [16]—far higher than the level of variability we observed
when comparing moving and static images. While we cannot directly compare across
the learning and test phases, due to different numbers of groups in each stage (3 for
learning and 2 for test), our results suggest that a relatively similar number of participants
adopted central- (39.0%) and eye-focused (47.2%) patterns in the learning phase, while the
majority of participants (64.3%) adopted the eye-focused pattern in the test phase. This
suggests some degree of variability between the learning and test phases, potentially due
to the differing demands of initial encoding and subsequent recognition. Broadly, these
differences align with the idea that gaze follows functions [53]—that is, eye movement
patterns are driven not just by stimulus characteristics but also by the demands of the task
at hand.

One notable difference between moving and static faces was their association with
performance. There were very few significant associations between eye movement patterns
and face recognition performance in the task. Eye movement patterns were not associated
with performance for moving faces in the learning phase or for any faces in the test phase.
Likewise, group-based analyses and simple log likelihood measures were not associated
with performance for static faces in the learning phase. However, there was a tendency for
people whose patterns were more aligned with eye-focused compared to central-focused
(or central and right eye-focused) in the learning phase to show better performance in the
static condition. This finding aligns with previous work [16,20,22,23] and adds to a growing
body of evidence for an association between analytic/eye-focused eye movement patterns
and static face recognition. However, our results suggest that the same associations do not
apply to performance with moving faces. Currently, we cannot account for this difference.

One simple explanation for the absence of an association between eye movements
and moving face recognition performance is power. While our sample size is equivalent
to many previous studies using this analytical approach, the introduction of movement
might increase the heterogeneity of eye movements and therefore weaken the relationship
with performance. It is also possible that the task or stimuli were too simple, which could
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have restricted the range of performance and limited the potential associations that could
be detected. However, given the presence of a significant association for static faces and
eye-focused movement patterns, these explanations seem unlikely. Similarly, the fact that
we found a significant behavioural motion advantage, and that Butcher et al. [42] reported
significant differences in eye movements between moving and static faces, suggests that
the limited difference between patterns of eye movements in the two conditions cannot be
dismissed as an artefact of the task or stimuli.

Alternatively, it may be that recognition for moving faces is driven at least partially by
factors that we did not measure, such as attention. We note that one prominent hypothesis
related to the movement advantage (the social signals hypothesis) suggests that movement
may increase attention to the face, thus improving face encoding [54]. It is therefore possible
that the presence of movement resulted in higher engagement with the stimuli, leading to
better performance without substantially altering eye movement patterns. Further work is
needed to replicate and extend these findings to different forms of facial motion (e.g., social
movements as in the current study, compared to non-social movements such as chewing),
as this may shed light on the role of social cues in driving these effects. On the other hand, it
may be that people adopt idiosyncratic, performance-maximising eye movement patterns,
akin to the idiosyncratic performance-maximising first fixations reported by Peterson and
Eckstein [8], and that these are particularly well-adapted to moving faces (potentially due
to their ecological validity). If this is the case, the specific eye movement pattern is of less
relevance to performance than the alignment between the individual and the eye movement
pattern. Paradigms that restrict viewing or limit the use of typical eye movements during
the recognition of moving faces (e.g., [1,55]), could address this point and shed further light
on the functionality of eye movements during face learning and recognition.

To our knowledge, this is one of the first times that both EMHMM and ROI-based
analyses have been applied to the same dataset (however, see [52]) and thus one of the first
opportunities to compare the findings from these two analytical approaches. The contrast
in findings for the learning phase between Butcher et al. [42] and the current findings might
reflect the different strengths and focuses of the two analytical approaches: a traditional
ROI-based approach may be more likely to detect quantitative and/or more spatially-
based changes, i.e., an increased focus on specific areas of the face, as we found in [42],
while the EMHMM analyses may pick up more qualitative differences in eye movements
strategies (e.g., analytic vs. holistic, or variation in how people transition between ROIs). It
is possible these qualitative differences are more likely to be observed when comparing
across participants, as opposed to conditions. For example, differences in eye movement
strategies have often been linked with characteristics of the perceiver, such as age and
cognitive decline [22], portraiture experience [20], social anxiety [52], and strength of
holistic processing [56]. On the other hand, EMHMM analyses generally report similar eye
movement patterns despite variations in face stimuli. For example, participants exhibit
similar eye movement patterns for faces displaying different emotions [21,43], dynamic and
static emotional faces [21,43], and faces of difference races [23]. This supports arguments
proposing that individuals show observer-specific consistent idiosyncratic eye movement
preferences, which reflect their optimal strategies for face processing within a given task [8].
It is important to note that we are not suggesting that one form of analysis is superior to the
other; rather, the analyses may address complementary research questions which, when
taken together, can contribute to a more robust understanding of how different factors
affect eye movements during face recognition. In line with this idea, the only other paper
that has applied both ROI and EMHMM analyses to the same dataset [52] found significant
effects for social anxiety using EMHMM analyses, though these effects were not apparent
in ROI-based analyses—essentially, the reverse pattern to what we observe in this paper
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and as observed by Butcher et al. [42]. This supports our point that each analysis has
its strengths and limitations and that both can contribute to our understanding of eye
movements in face recognition.

In sum, our research indicates that eye movement patterns are relatively stable during
face recognition, regardless of whether the faces are learnt in motion or as static images.
This has both theoretical and applied implications. Understanding how different patterns
of eye movements are associated with face recognition performance and how different
factors affect (or do not affect) this relationship can provide more information about the
perceptual underpinnings of face recognition in the typical population. For example, our
findings do not support the idea that the motion advantage in face recognition is driven by
specific patterns of eye movements. However, this knowledge is also important because it
can inform future research on face recognition deficits and contribute to the development
and evaluation of training programmes and interventions for people who struggle with
face recognition (e.g., those with acquired and developmental prosopagnosia) [57,58]. For
example, our study adds to a larger body of work suggesting that analytic processing is
associated with better face recognition performance. To date, eye movement research in
prosopagnosia has relied on traditional ROI-based analyses, but future work may consider
applying EMHMM analyses to determine whether individuals with face recognition deficits
show similar patterns of eye movements as those with typical face recognition, and if not,
whether more optimal patterns of eye movements can be trained.

5. Conclusions
In conclusion, this paper used a novel analytical technique (EMHMM) to examine

patterns of eye movements when learning and recognising moving and static faces. Broadly,
participants’ eye movements could be clustered into two or three groups, representing a
divide between more centrally focused and more eye-focused patterns. Participants tended
to be fairly consistent in their eye movements toward moving and static faces, and toward
faces learnt as moving and static images, and there were limited (small, condition-specific)
associations between performance and eye movements. Our findings contrast with previ-
ous analyses of the same data but align with other research suggesting consistency of eye
movement patterns across various stimulus-related factors, both within and across partici-
pants. This highlights the importance of diverse analytical approaches to understanding
stimulus-driven, task-based, and individual differences in eye movements.
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