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ARTICLE INFO ABSTRACT
Keywords: The construction sector has a significant impact on the environment, highlighting the need for sustainable
Life cycle assessment building practices to decrease the emissions and propose alternative construction solutions. In this framework,

Modular buildings
Prefabricated construction
Environmental impacts

prefabricated construction methods offer a promising solution, providing benefits such as reduced material
waste, improved energy efficiency, and alignment with net-zero principles. The Life Cycle Assessment (LCA)
approach represents a key tool for evaluating the environmental performance of buildings throughout their
entire life cycle, enabling a direct comparison between prefabricated and traditional construction methods. This
systematic review examines the application of LCA methodologies to assess the environmental impacts of
modular and prefabricated buildings. By analysing recent peer-reviewed articles, this study investigates the use
of key LCA elements, including software, databases, System Boundaries, Functional Unit, and environmental
impact categories. The impact categories analysis indicates that, in terms of global warming potential, 1 m? of
structure impacts an average of 325, 327, and 389 kg CO; eq for steel, wood, and concrete, respectively, for
phases A and C. Furthermore, this review highlights and discusses the main limitations and the research gaps of
the current studies of LCA methodology applied to modular construction, emphasising the need to intervene on
five potential improvement areas: (i) methodological development, (ii) policy implications, (iii) stakeholder
engagement and awareness, (iv) digital tools and innovation and (v) Circular Economy (CE) integration.

Abbreviations (continued)
MX Marine Ecotoxicity
BIM Building Information Modelling oD Stratospheric Ozone Depletion
CE Circular Economy PCR Product Category Rules
EoL End-of-life PE Primary Energy
FD Fossil Depletion PM Fine Particulate Matter Formation
FE Freshwater Eutrophication SB System Boundaries
FSS Fossil Resource Scarcity SCM Supplementary Cementitious Materials
FU Functional Unit SL Reference Service Life
FW Freshwater Ecotoxicity TA Terrestrial Acidification
GHG Greenhouse Gas TE Terrestrial Ecotoxicity
GW Global Warming Potential wc Water Consumption
HC Human Carcinogenic Toxicity
HN Human Non-carcinogenic Toxicity
LCA Life Cycle Assessment
LCI Life Cycle Inventory
LCIA Life Cycle Impact Assessment method 1. Introduction
LU Land Use
ME Marine Eutrophication The global pursuit of environmental sustainability is increasingly
MR Mineral Resource Scarcity

influencing all sectors of human activity, with particular attention being

(continued on next column) given to the construction industry (Bakindi et al., 2025; Myint and
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Shafique, 2024; Olsson et al., 2024). Clear articulation of sectoral
challenges strengthens the framing of sustainability discussions (Saleh
et al., 2024a). The construction sector accounts for a significant portion
of global energy consumption, Greenhouse Gas (GHG) emissions, and
material resource depletion, thereby playing a pivotal role in the
broader conversation around climate change and sustainability
(Almusaed et al., 2024; Bonoli et al., 2021; Myint et al., 2025). Globally,
in 2019, buildings were responsible for approximately 12 Gigatons CO5
eq of GHG emissions (UNEP, 2024). Of this, about 24% resulted from
on-site fuel use, 57% from off-site electricity and heat generation, and
18% was embodied in materials and construction (UNEP, 2024). By
2022, global emissions from the sector were just under 10 Gigatons CO,
eq, representing 37% of global carbon dioxide emissions for that year
(UNEP, 2024). In the EU, emissions from buildings decreased by 34%
from 2005 to 2022, with a further slight decline in 2023 (EEA, 2024).
However, the construction sector accounted for 34% of EU
energy-related emissions in 2022 (EEA, 2024). To reduce its impacts, the
industry must focus on strategies such as selecting optimal construction
methods, utilising sustainable materials, and improving energy effi-
ciency throughout the building life cycle (Aratjo et al., 2020; Mirabella
et al., 2018; Roopesh et al., 2024). By implementing these changes, the
construction industry can significantly contribute to global efforts to
create a more sustainable future (Fei et al., 2021).

Modular and prefabricated construction methods have increasingly
attracted attention as promising strategies to improve the sustainability
of the built environment and increase safety against external agents such
as radon gas (Baltrocchi et al., 2023b; Choi et al., 2019; Wu et al., 2021).
Prefabricated buildings can be made of concrete, steel, wood or different
combinations of the three materials (Tavares et al., 2021; Yuan et al.,
2018; Zhao, 2014). Prefabricated construction refers to a process in
which building components are manufactured off-site under controlled
conditions and assembled on-site (Fang et al., 2021; Hussein et al.,
2021). This approach offers several potential environmental benefits,
including reduced material waste, increased energy efficiency during
construction, shorter project timelines, and improved quality control
(Dal Lago et al., 2025a; Loizou et al., 2021). Prefabrication also aligns
well with concepts such as the Circular Economy (CE), in which mate-
rials and components are designed for reuse, repurpose or recycling,
further contributing to resource conservation and environmental pro-
tection (Garusinghe et al., 2023; Minunno et al., 2018; Zairul, 2021).
Modular constructions are usually more sustainable than cast-in-situ
concrete construction despite employing materials with higher envi-
ronmental impacts, thanks to the substantial reduction in the volume of
materials employed and to the structural optimisation (Dal Lago et al.,
2025b; Liang et al., 2020; Sandanayake et al., 2018).

Despite the apparent advantages, the environmental impacts of
modular and prefabricated construction are highly dependent on
numerous factors, including the types of materials used, manufacturing
processes, transportation logistics, building design, and end-of-life (EoL)
management (Ghanbari, 2023; Jangam and Myneni, 2025; Lei et al.,
2023). Therefore, it becomes critical to systematically assess these im-
pacts using comprehensive and standardised approaches such as Life
Cycle Assessment (LCA). According to EN 15978:2001 (CEN, 2011), the
issue of sustainable construction should be tackled from a life cycle point
of view, computing the environmental impact of all different life stages
through proper indicators (Anand and Amor, 2017).

LCA is a standardised approach designed to evaluate the environ-
mental impacts, which follows the guidelines outlined in the standards
ISO 14040:2006 and 14044:2006 (ISO, 2006a, 2006b). This methodol-
ogy provides a comprehensive, system-wide perspective on production
processes by objectively assessing and quantifying energy and envi-
ronmental burdens and potential impacts associated with a product,
process, or activity throughout its entire life cycle (Baltrocchi et al.,
2025a, 2025¢; Romagnoli et al., 2024). This approach spans from the
extraction of raw materials through production, distribution, use, and
eventual disposal (Baltrocchi et al., 2024; Ferronato et al., 2023). LCA is
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an essential tool for assessing sustainability and facilitating informed
decision-making, as it identifies the environmental impacts in the life
cycle, prioritises sustainable alternatives, and develops strategies to
minimise the overall environmental burden associated with technolo-
gies (Baltrocchi et al., 2025b; Barbhuiya and Das, 2023; Shafique et al.,
2022). Furthermore, it can be combined with the Social LCA (SLCA) and
Life Cycle Costing (LCC) to assess economic and social aspects
(Baltrocchi et al., 2023a; Pryshlakivsky and Searcy, 2021).

In literature, the review of Kamali and Hewage (2016) has only one
study that discussed the LCA approach applied to modular buildings.
The study revealed that, on average, modular buildings exhibit better
environmental performance than conventional buildings throughout
their life cycle. The benefits are primarily in terms of energy perfor-
mance. Other reviews have focused on the environmental sustainability
of modular or prefabricated buildings. For instance, Parracho et al.
(2025) analysed the state of the integration of digital technologies with
modular construction methods, extending the analysis to circular and
bioclimatic efforts, renewable energy sources, and passive building
design strategies. The study of Jayawardana et al. (2025) investigated
the state-of-the-art of economic sustainability and social sustainability
of prefabricated construction. Ly et al. (2024) evaluated the CE inte-
grated with modular construction. The research of Boafo et al. (2016)
analysed the performance of modular construction considering acoustic
constraints, seismic resistance, thermal behaviour, energy consumption,
and life cycle analysis based on existing case studies. Marjaba and Chi-
diac (2016) revised the metrics for sustainability and resiliency for
buildings. Further details of the reviews are reported in Table S1.

Existing literature provides substantial insights into various aspects
of sustainability in modular and prefabricated buildings, such as inte-
grating digital technologies, CE principles, economic and social sus-
tainability, and specific performance parameters. However, a significant
gap remains in comprehensively assessing environmental sustainability
through applying the LCA methodology to modular and prefabricated
buildings. The only review concerning LCA applied to modular buildings
was published in 2016; therefore, a new literature review is needed, also
following the latest regulations and standards that incorporate new
studies, addressing variations in approaches, methodologies, and out-
comes across the entire life cycle of a modular and prefabricated
buildings. Our study fills these gaps by critically assessing how pre-
fabricated construction materials, building use, and typical LCA ele-
ments (e.g., software, database, Life Cycle Impact Assessment method
(LCIA), Functional Unit (FU), Reference Service Life (SL), System
Boundaries (SB), and impact categories) are used in existing researches
on modular or prefabricated buildings while identifying opportunities
for standardisation and methodological improvement to improve the
accuracy and comparability of environmental impact assessments in this
area.

2. Materials and methods
2.1. Selection strategy

To select proper documents, the Preferred Reporting Items for Sys-
tematic Reviews and Meta-analyses (PRISMA) guidelines have been
followed (Page et al., 2021). To choose only peer-reviewed documents,
the literature review was searched using the Scopus database (Meho and
Rogers, 2008; Naoum and Egbu, 2015). Scopus was selected because it
offers excellent access to curated abstracts and citation databases linked
to various academic literature (de Souza et al., 2024; Falagas et al.,
2008; Martin-Martin et al., 2018). The following combinations of search
query were used in Scopus and applied to the title, abstract, and key-
words: “life AND cycle AND assessment” AND “modular AND buildings”
OR “modular AND construction” OR “prefabricated AND construction”
OR “precast AND construction". The search returned 423 results spread
over a time period between 1994 and April 2025. The flow diagram of
literature review is reported in Fig. 1.
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Fig. 1. Flow diagram of literature review (n: number of articles).

2.2. Initial screening

In the first screening, only research articles published in interna-
tional peer-reviewed journals were selected; books, book chapters,
conference papers, reviews, and conference reviews were excluded. This
is in order to analyse only research articles that have undergone a high-
quality peer-review and selection process (Chigbu et al., 2023; Polanin
et al., 2019). Then, 167 documents were excluded, and 256 passed the
first screening. In the second screening, only research articles published
from 2010 to April 2025 in the English language and under the subject
areas engineering, environmental science and energy were included in
order to focus on the most recent studies and the right subject area. 27
papers are excluded, and 229 articles passed for the final selection.

2.3. Final selection

In the final screening, all research articles from the previous phase
were examined in detail. In particular, two exclusion criteria were
applied: (i) the construction system of the analysed building and (ii) the
application of the LCA analysis. In this phase, titles and abstracts of the
selected papers were read in order to identify the focus of the works. In
addition, the following keywords were searched in the body text:
“modular”, “prefabricated”, “precasting” for the first criterion, while
“LCA” and “Life Cycle Assessment” for the second criterion. On the one
hand, according to the first exclusion criterion, all articles that did not
have modular and prefabricated buildings as their primary focus were
discarded. On the other hand, regarding the second criterion, all studies
that did not apply the LCA methodology or used the LCA analysis only
partially to assess environmental impacts were excluded. Finally, ac-
cording to the selected criteria, 34 research articles were identified as
relevant and were included in the final revisions. However, it is neces-
sary to highlight that it cannot be excluded that other peer-reviewed
documents fitting the criteria of the screenings can be available in
different databases.

3. Results
3.1. General overview of selected articles

3.1.1. Years of publications and locations of the studies

From 2010 to 2018, the number of publications remained very low,
no more than one per year, excluding three at 2015 (Balasbaneh and Bin
Marsono, 2017; Bonamente and Cotana, 2015; Cao et al., 2015; Dong
et al., 2015; Monahan and Powell, 2011; Quale et al., 2012). However,
starting in 2019, it is notable a rise in the number of articles. The number
of publications reached its peak in 2024, with 6 articles, the highest of
the considered period of 15 years (Al-Sammar and Aleisa, 2024; Gao
et al., 2024; Souaid et al., 2024; Wen et al., 2024; Yang et al., 2024). The
trend of publications over the years is reported in Fig. 2a. Most of the
studies are concentrated in a few key countries, with Hong Kong and
China leading with 5 publications each (Cai et al., 2023; Cao et al., 2015;
Dong et al., 2015; Gao et al., 2024; Satola et al., 2020; Teng and Pan,
2019; Tian and Spatari, 2022; Wen et al., 2024; Yang et al., 2024; Zheng
et al.,, 2025). Other significant contributors include Canada and
Malaysia, with 3 studies each (Balasbaneh and Bin Marsono, 2017;
Balasbaneh and Ramli, 2020; Balasbaneh and Sher, 2021; Dara et al.,
2019; Head et al., 2020; Kamali et al., 2019). Europe provided 12 arti-
cles across 10 countries (Andersen et al., 2022; Arslan et al., 2023;
Bonamente and Cotana, 2015; de Paula Filho et al., 2024; Iuorio et al.,
2019; Manso et al., 2018; Monahan and Powell, 2011; Shokouhi and
Weidlich, 2025; Souaid et al., 2024; Szalay et al., 2022; Tavares and
Freire, 2022; Wang and Sinha, 2021). The map of global distribution is
shown in Fig. 2b.

3.1.2. Regionals gaps

The regional distribution of publications indicates a concentration in
East Asia, particularly China and Hong Kong, with several studies
originating from these regions. This prevalence is primarily due to rapid
urbanisation and high housing demand, which have driven the adoption
and evaluation of modular and prefabricated systems. In contrast,
Europe and North America have smaller contributions, reflecting more
mature construction markets and lower immediate housing pressure.
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Fig. 2. General overview of selected articles: (a.) trend of publications over the years and (b.) global distribution map.

3.1.3. Main modular construction materials, building types, aims of the
studies and main findings

The studies considered in this review were classified according to (i)
the main prefabricated construction material, which means that which
constitutes the largest volume of the structural body material of the
building (concrete, steel, wood or fiberglass); (ii) the final use of the
building (residential or commercial); (iii) aims of the LCA analysis. On
the one hand, regarding the main material, 16 articles focus on concrete,
followed by 15 studies on steel, 8 on wood, 1 on fiberglass, and 1 not
declared the material. On the other hand, 27 studies considered resi-
dential buildings, while 7 articles evaluated commercial constructions,
including offices, industrial buildings, and schools. The third category
can be divided into three subcategories according to their aims: (i)
comparison of prefabricated construction with cast-in-situ buildings, (ii)
evaluation in order to support the decision-making process and (iii)
environmental impacts analysis of the case studies. The contributions

are equally distributed among the three subcategories: 12 studies have
the objective of supporting the decision-makers, 12 other papers eval-
uate the environmental impacts of case studies, and 10 publications
compare prefabricated buildings with traditional solutions.

The main findings show that prefabricated constructions generally
have lower environmental impacts than traditional construction
methods. In particular, the wooden buildings consistently show the
lowest environmental impact, followed by steel structures, especially
when including EoL stages (Balasbaneh and Bin Marsono, 2017; Cai
et al., 2023; Kamali et al., 2019; Minunno et al., 2020; Quale et al., 2012;
Satola et al., 2020). However, considerable variability across studies is
evident. Wooden buildings often emerge as the lowest-impact option,
but this result depends on methodological choices. For instance, studies
that account the stage B or assume shorter SL for the wood elements tend
to report higher emissions, thus reducing the relative advantage of the
wood. In contrast, when longer SL assumption are incorporated or stage
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B is omitted, wood buildings consistently achieve favourable perfor-
mance. As regarding the steel structures, generally show intermediate
performance, but the results are primarily influenced by assumptions
regarding recycling rates and burden allocation in EoL stages. Pre-
fabricated concrete buildings, while varying in performance across re-
gions, generally achieve significant emission reductions due to
prefabrication, which allows for optimised use of concrete (Andersen
et al., 2022; Arslan et al., 2023; Balasbaneh and Sher, 2021; Cao et al.,
2015; Dong et al., 2015; Jayawardana et al., 2023a; Tian and Spatari,
2022; Wang and Sinha, 2021). This variability highlights that compar-
ative results are highly sensitive to SB, SL assumptions, and EoL stages,
highlighting the need for transparency and harmonisation in LCA
methodologies to ensure robust comparisons between construction
methods. The general overview of the selected studies is reported in
Table 1.

3.2. LCA methodology features

3.2.1. Software, database and life cycle impact assessment methods (LCIA)

The LCA methodology features are shown in Table 2. The LCA soft-
ware Simapro (Goedkoop et al., 2016) was used by 16 articles, followed
by GaBi (Spatari et al., 2001) with 3 studies and Athena (Holzinger et al.,
2014) with 2 articles. Again, eBalance (Bai et al., 2017), eFootprint (Lao
et al., 2023), Hawking/Brown Emission Reduction Tool (HBERT)
(Bowles et al., 2021), OpenLCA (Pamu et al., 2022) and Tool to Optimise
the Total Environmental impact of Materials (TOTEM) (Jurgelionis
et al., 2013) are used by 1 study each. Moreover, 8 works do not declare
which software they used to perform the LCA analysis.

Regarding the Life Cycle Inventory (LCI) database, 23 articles take
background data from Ecoinvent (Frischknecht et al., 2005) in different
versions; this represents the majority of the studies. The others are
definitely less used: 2 contributes each involve Athena (Holzinger et al.,
2014) and Okobaudat (Gantner et al., 2018) databases, while eFootprint
(Lao et al., 2023), GaBi (Spatari et al., 2001) and Inventory of Carbon
and Energy database (ICE) (Abdelaal et al., 2023) are performed by 1
article each. Industry Data 2.0 (Grajewski et al., 2024) and Malaysia Life
Cycle Inventory Database (MY-LCID) (Hafizan et al., 2021) are used in 2
works, each within Ecoinvent. Again, two studies involved the Envi-
ronmental Product Declaration (EPD) (Del Borghi, 2013) for back-
ground data of the analysis, while 3 articles do not declare the LCI
database.

The evaluation of the environmental impacts is carried out using 11
different LCIA methodologies. The most used method is ReCiPe
(Goedkoop et al., 2009) with 8 studies, followed by CML 2001
(Gabathuler, 2006) and IPCC (Roscoe, 2016) with 3 contributes, EN
15804+A2 (Van Gulck et al., 2022) with 2 articles and BEES (Lippiatt,
2002), CML I-A (Gabathuler, 2006), GHGProtocol (Hickmann, 2017),
ILCD 2011 (Chomkhamsri et al., 2011), IMPACT 2002+ (Jolliet et al.,
2003), TRACI (Bare, 2011) and USLCI (Deru, 2009) with 1 study each.
However, 10 studies do not report the LCIA methods involved in the LCA
analysis.

3.2.2. Functional unit and reference service life

The majority of the studies defined their Functional Unit (FU) as 1
building unit and 1 m?, with 14 and 12 articles, respectively. The FU of 1
building unit refers to all FUs that include the entire building in different
dimension, while 1 m? includes all FUs that considers the surface of the
building or the construction site. Other FUs are 1 m® evaluated in 5
studies and 1 m?/year, 1 ft? and 2,000 ft? for 1 paper each. As regards
the Reference Service Life (SL), 50 years is the most used time with 18
studies, followed by 60 years with 4 articles, 30 with 2 papers, while 25
and 10 years are considered in 1 study each. SL is not declared in 8
contributions. Finally, 1 article considered the SL of 15, 25, 50 and 100
years.
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3.2.3. System boundaries and life cycle stage

According to Product Category Rules (PCR) for construction mate-
rials (EPD International AB, 2023) and EN 15804 (EN, 2012), in this
study, the considered System Boundaries (SB) to classify the selected
articles are divided into four main life cycle stages: A, B, C and D (out of
the SB). A1-A3 (Production stage) is subdivided into (i) the Al phase,
which considers the extraction and processing of all raw materials and
energy (ii) the A2 phase, which accounts for the transport of the raw
materials to the manufacturing site (iii) A3 phase that includes all ac-
tivities related to manufacturing within the facility site. A4-A5 (Con-
struction stage) is divided into (i) A4 module that includes transport
from the manufacturing facility to the building site and (ii) A5 module
that reports the installation of prefabricated elements into the buildings.
B1-B7 (Operational stage) includes (i) Bl stage that considers any
emissions to the environment of the used product and technical opera-
tions on the product, (ii) B2 stage that represents the maintenance, (iii)
B3 module the repair, (iv) B4 stage reports the replacement, (v) B5
module the refurbishment, (vi) B6 stage the operational energy use and
(vii) B7 stage the operational water use. C1-C4 (EoL stage) includes (i)
the C1 module that represents the de-construction or dismantling of the
entire building, (ii) the C2 stage that includes the transport to waste
disposal site, usually 50 km are assumed, (iii) C3 stage that considers
waste processing for reuse, recovery, and/or recycling and (iv) C4
module that models final disposal. D (Benefits of recovery stage) de-
clares the environmental benefits of reusable products, recyclable ma-
terials, or energy recovery. This module is outside the SB; therefore, the
environmental loads do not add to the impacts of other phases. Fig. 3
reports the reference SB considered in this study according to EN 15804.

As regards the results of the analysis, the entire SB plus D phase is
analysed in 5 studies (in B stage 1 study only considered B1 and B2, 1
study excluded B5, and 1 study excluded B2; in C stage 1 study excluded
B2 and 1 study only included C1 and C2). 8 articles considered from A to
C modules (in B stage 1 study included only B4 and B6; in C stage 1 study
excluded C1). The SB from A to B stages are analysed only in 1 study,
while only A modules are included in 9 contributions (1 study included
only A4). The modules A, C and D are considered in 5 studies (1 study
includes only C1 and C2; 1 study includes only A5, C1 and C4). A and C
stages are included in 3 articles, while 1 work is focused only on A1, C1,
C3, C4 and D modules. Finally, 1 contribution includes only the C phase.
In summary, 33 studies include A1-A3 modules (1 study only included
A1); 32 works analyse A4-A5 stages (1 study excluded A4, 1 study only
included A5 and 1 study only included A4); 15 contributions study B
modules (1 study only included B2 and B4, 1 study only included B4 and
B6, 1 study excluded B5, 1 study excluded B2 and 1 study only included
B2); 16 articles include C phases (1 study only included C1, C3 and C4, 1
study excluded C1, 1 study only included C1 and C2, 1 study only
included C1 and C2, 1 study only included C1 and C4); 12 works aim
with D module.

3.2.4. Environmental impact categories

The relevant environmental impact categories are chosen according
to ReCiPe (Goedkoop et al., 2009) as the most used LCIA method in
selected studies (Feng et al., 2023). In particular, 16 impact categories
are analysed. All 34 studies report the results in terms of Global
Warming Potential (GW). Other relevant impact categories are Fresh-
water Eutrophication (FE) with 14 works, followed by Terrestrial
Acidification (TA) with 13 studies. 12 contributions each are included in
Primary Energy (PE) and Terrestrial Ecotoxicity (TE). Again, Fossil
Depletion (FD) and Marine Eutrophication (ME) were selected in 11
studies each, while Stratospheric Ozone Depletion (OD) and Fine Par-
ticulate Matter Formation (PM) were in 10 articles each. 7 studies
include Human Carcinogenic Toxicity (HC), 6 contributions analyse
Freshwater Ecotoxicity (FW), Land Use (LU) and Marine Ecotoxicity
(MX), 5 studies select Mineral Resource Scarcity (MR), 3 articles study
Water Consumption (WC) and 1 work chooses Human Non-carcinogenic
Toxicity (CN). In summary, 14 articles consider only the environmental
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Table 1
General overview of selected articles: years of publications, location of the studies, main construction material, building type, aims of the contributions and main
findings.

Ref. Year Location Main Building LCA study aims Key findings

material use
Zheng et al. 2025  Hong Kong Steel Residential Assess the reuse and recycling potential of Reusing and recycling the modular elements
(2025) modular units and their elements from an offset a portion of the environmental impact,
environmental perspective. resulting in equivalent carbon dioxide
Improve the data collection and storage emissions.
process across multiple use cycles. In the first use cycle, the building emits 830
Provide a solution for visualising modular tons of CO; eq per unit.
building systems' reuse and recycling Intermediate use cycle(s) 350 + 124 tons
potential. CO5, eq per unit.
Last use cycle 770 =+ 93 tons CO; eq per unit.
Shokouhi and 2025  Germany n.a Commercial ~ Evaluate the environmental impacts of office The emissions ranged from 42.14 to 74.08 kg
Weidlich buildings in different shapes (12 x 14 square  CO, eq/m? NFA*a, depending on building
(2025) meter modular units) and heights (3.6 and 12  shape and height (NFA: Net Floor Area).
m).
de Paula Filho 2024  Luxembourg Concrete, Commercial ~ Compare the impact of structural design Concrete buildings emit 235 kg CO, eq/m?,
et al. (2024) steel and choices on the overall GW of an office building ~ followed by structural steel buildings with
wood made in concrete, steel or wood. 170 kg CO, eq/m? and other steel buildings
Investigate the influence of critical with 125 kg CO3 eq/m?
assumptions, such as EoL scenarios for wood. The emissions of wood construction ranged
from 169 to 226 kg CO, eq/m? depending on
the EoL treatment.

Yangetal. (2024) 2024  Hong Kong Steel Commercial ~ Assess the environmental credits and loads The reuse and recycling of the modular unit
associated with reusing modular components resulted in approximately 9,007 + 362 kg
over multiple use cycles. CO; eq per unit, 2,925 + 602 kg CO, eq per

unit, and 8,433 + 544 kg CO; eq per unit in
the first, intermediate, and last use cycles,
respectively.

Souaid et al. 2024  Netherlands Wood Residential Evaluate the impact of downsizing and the use ~ Emissions ranged from 42,608 to 70,384 kg

(2024) of wood on the embodied carbon of a new- CO;, eq per unit for the wood designs versus
build dwelling. 54,681 to 91,270 kg CO; eq per unit for their
concrete counterparts.

Al-Sammar and 2024  Kuwait Fiberglass Residential Assess the environmental implications of The energy requirements significantly

Aleisa (2024) constructing a fiberglass modular contribute to the impact of climate change,
prefabricated room compared to a accounting for 77% and 90% of concrete and
conventional concrete structure. fiberglass modules, respectively.

Fiberglass modules exhibit substantially
higher environmental impacts compared to
concrete modules in agricultural land
occupation (143%), terrestrial ecotoxicity
(81%), and urban land occupation (66%).

Gao et al. (2024) 2024  China Concrete Residential Analyse and calculate the spatial distribution The selection of prefabricated construction
of GHG emissions from prefabricated can lead to a 32% reduction in total GHG
components and buildings during China's emissions per square meter, with 269.16 kg
production, transportation, and construction CO, eq/m? emissions, compared to
stages. traditional construction with 393.63 kg CO»

eq/m? emissions.

Wen et al. (2024) 2024  Hong Kong Steel Residential Estimate the EoL carbon emissions and Net carbon emissions during the EoL stage
savings potential, focusing on the steel-framed  could be saved —764.40 kg CO, eq /m?.
modular residential building. An average of 41.56 kg CO, eq/m? is still

released in the EoL stage, most of which is
contributed by transportation, waste
disposal, demolition, and waste processing.

Jayawardana 2023  Sri Lanka Steel Commercial ~ Conduct a design-stage life cycle assessment of ~ The overall impact of the design for the

et al. (2023b) a design for disassembly and linear versions of  disassembly version is 472.36 kg CO, eq per
a modular building unit to evaluate the unit compared to 1,285.09 kg CO, eq per
potential environmental benefits. unit by linear unit.

Cai et al. (2023) 2023  China Steel Residential Analyse the life cycle GHG emission The results show that the life cycle GHG
characteristics of prefabricated light-steel emissions of prefabricated light-steel
buildings compared to the traditional cast-in-  buildings and traditional cast-in-place
place buildings. buildings are 2,848.58 and 3,055.11 kg CO»
Explore their GHG emission in order to eq/m>, respectively.
evaluate the reduction potentials.

Jayawardana 2023  Sri Lanka Concrete Commercial  Investigation of the cradle-to-gate Results showed that buildings with

et al. (2023a) environmental performance of prefabricated prefabricated components provide
construction methods compared to traditional ~ environmental impact savings.
in-situ construction in buildings. The prefabricated buildings emitted 258.86

kg CO, eq/m>.

Arslan et al. 2023  United Kingdom Concrete Residential Establish environmental impacts from The emissions of the prefabricated building

(2023)

prefabricated residential buildings against the
current benchmarking in the UK.

were 1,076 kg CO, eq/m?
The impact was low compared to the
business-as-usual model.

(continued on next page)
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Ref. Year Location Main Building LCA study aims Key findings
material use
Tavares and 2022  Angola, Brazil, Steel Residential Assess the environmental impacts of a The comparison reported that the average
Freire (2022) France, Morocco lightweight prefabricated house for seven impacts ranged from 560 to 672 kg CO, eq
and Portugal. house locations. per unit for the embodied stage and 860 to
2,890 kg CO,, eq per unit for the operational
stage.
Tian and Spatari 2022  China Concrete Residential Evaluate and compare the environmental The traditional building emitted 363.59 kg
(2022) impacts of prefabricated and traditional CO, eq/m?, while the prefabricated project
building construction in China. emitted 324.86 kg CO, eq/m?, an
approximate 11% reduction.
Building materials contributed most to GHG
emissions in both projects, making up 92%
and 92% in traditional and prefabricated
projects, respectively.
Szalay et al. 2022  Hungary Wood Residential Explore whether carbon neutrality can be The assessment showed that the ratio of
(2022) achieved over the whole life cycle of a embodied and operational impacts is
building with a net balance approach. typically 1:2 for wooden buildings and 1:1.5
for brick buildings.
In both cases, life cycle carbon neutrality
could be achieved with additional
photovoltaic panels installed on the roof.
Andersen et al. 2022  Australia and Concrete Residential Evaluate and compare the environmental In general, modular buildings presented
(2022) Denmark impacts of conventional and modular housing  lower environmental impacts across all
by applying "absolute environmental impact categories.
sustainability" measures. The primary contributor was the operational
phase.
Balasbaneh and 2021 Malaysia Concrete Residential Assess three construction techniques: on-site The production and construction stage of the
Sher (2021) concrete, Individual Panel System and on-site concrete had emissions of 49,800 kg
Prefabricated Prefinished Volumetric CO;, eq per unit, followed by Individual
Construction. Panel System with 44,500 kg CO,, eq per unit
and Prefabricated Prefinished Volumetric
Construction with 40,900 kg CO; eq per unit.
Kucukvar et al. 2021  Qatar Concrete Commercial ~ Quantify the endpoint impact categories fora  The planned circularity allowed for savings
(2021) and steel sustainable modular stadium design of the of more than 4.26E07 species.year compared
RAA Stadium in Qatar. with 1.7 species.year across the overall life-
cycle impacts in the EoL phase.

Wang and Sinha 2021 Sweden Concrete Residential Compare the environmental performance of The total emissions of reference

(2021) the prefabricated building with different prefabricated buildings are 185.8 kg CO, eq/
prefabricated rates from a life cycle m?. The changing emissions rate, depending
perspective. on the scenario, ranged from around —3% to
Examines whether the increasing 9%.
prefabricated rate is more environmentally
friendly.

Minunno et al. 2020  Australia Steel Residential Evaluate the environmental impact of a The prefabricated building emitted 47.2 tons

(2020) modular building following the CE design CO;, eq per unit from the A to C phases.
principles for disassembly and reuse. Regarding stage D, the emissions are —5.4
Compare it to the same modular building tons CO, eq per unit.
constructed without considering the
disassembly phase.

Satola et al. 2020  China Steel Residential Assess the environmental impacts from the The total impacts are equal to 209.5 tons CO,

(2020) baseline, low-energy, net-zero energy eq per building area for the baseline design,
development, and off-grid energy designs. followed by low energy design with 151.6

tons CO,, eq per building area, off-grid design
with 51.2 tons CO; eq per building area and
net-zero with 30.3 tons CO, eq per building
area.

Headetal. (2020) 2020  Canada Wood Residential Calculate the climate change impacts of wood  The climate change impacts range from
building products for different use contexts —1,264 to —388 kg CO, eq/m® for the wood
across Canada. product cases, affected mainly by wood

product lifespans.

Balasbaneh and 2020  Malaysia Concrete Residential Compare the environmental impacts of steel The steel structure had more emissions of

Ramli (2020) and steel and concrete prefabricated prefinished 9,623.13 kg CO-, eq per unit than the
volumetric construction life cycle. concrete building (8,264.03 kg CO, eq per

unit).

Teng and Pan 2019 Hong Kong Concrete Residential Evaluate the environmental impacts of The average cradle-to-end of construction

(2019) concrete prefabricated buildings. embodied emissions are 0.561 kg CO, eq/

m%

Daraetal. (2019) 2019  Canada Concrete Residential Evaluate the integrated life cycle impact of a The most impactful solution is the lightwood

and wood modular container-based single-family house code with 3,629 tons CO, eq per unit,
compared to a conventional lightwood house. ~ followed by the container code with 3,533

tons CO, eq per unit, improved lightwood
with 1,346 tons CO, eq per unit and
improved container with 1,322 tons CO, eq
per unit.

Tuorio et al. 2019  Italy Steel Residential Investigate the environmental impacts of The total impact of the lightweight steel

(2019)

lightweight steel systems.

systems is 8,710 kg CO, eq per unit.

(continued on next page)
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Ref. Year Location Main Building LCA study aims Key findings

material use

Kamali et al. 2019  Canada Wood Residential Analyse the environmental impacts of single- The wood modular constructions have an
(2019) family buildings constructed by traditional average emissions of 476 kg CO, eq/ft.

on-site and wood modular off-site This value is lower than that of the
construction methods. traditional construction method emissions.

Manso et al. 2018  Portugal Steel Residential Identify the environmental impacts The total emissions of the modular building
(2018) throughout the life cycle of a steel modular are 138.71 kg CO, eq/m?.

building.

Balasbaneh and 2017  Malaysia Concrete, Residential Compare the environmental impacts of six The most impactful solution is a block-work
Bin Marsono steel and different types of buildings: Block-work system with 30,600 kg CO, eq per unit,
(2017) wood system, precast concrete framing, steel followed by a steel frame work system with

framework system, timber prefabricated, 23,800 kg CO, eq per unit, precast concrete

glued laminated wood and steel with timber framing with 11,900 kg CO; eq per unit,

wall, laminated veneer lumber, and steel with  glued laminated timber and steel with timber

timber wall. wall with 6,020 kg CO, eq per unit,
laminated veneer lumber and steel with
timber wall with 5,800 kg CO, eq per unit
and timber prefabricated 2,040 with kg CO,
eq per unit.

Bonamente and 2015  Italy Concrete Commercial ~ Assess the environmental performance of The average emissions of the four selected
Cotana (2015) and steel different typologies of industrial prefabricated ~ buildings are 133.7 kg CO, eq/m> (33.95 kg

buildings. CO, eq/m® not considering the use phase).

Dongetal. (2015) 2015  Hong Kong Concrete Residential Investigate the carbon emissions of concrete The emissions of the precast construction are

precast and cast-in-situ construction methods 692 kg CO, eq /m°.

for high-rise residential buildings. The precasting solution can lead to a 10%
carbon reduction compared to cast-in-situ
building.

Cao et al. (2015) 2015  China Concrete Residential Evaluate prefabricated buildings' The prefabricated buildings emit a total of

environmental benefits and limitations in the 193 kg CO, eq/m?, which is around 10%
Chinese residential building industry. higher than traditional buildings.
Quale et al. 2012  United States Wood Residential Quantify the environmental impacts of The average total emissions of the modular
(2012) constructing a typical residential home using building are equal to 13,600 kg CO, eq per
the two methods based on data from several 2,000 sq ft home.
modular construction companies and
conventional home builders.
Monahan and 2011  United Kingdom Wood Residential Quantify the embodied carbon in constructing ~ The building's emissions are 405 kg CO eq/

Powell (2011)

a wood building and compare the model with
traditional construction methods.

m%
Comparison with traditional construction

methods resulted in a 34% reduction in
embodied carbon.

Notes: n.a.: not available.

impacts of GW.

3.2.5. LCA results: focus on global warming potential (GW)

The only impact category taken into consideration by all the selected
studies is GW. For this reason, in this paragraph, the main results in
terms of GW for the construction materials and for the FUs equal to 1 m?
and 1 building unit are reported. Starting with the prefabricated con-
crete buildings, the emissions per 1 m? are shown to span from 139 to
764 kg CO, eq (average 357 kg CO, eq) in stage A, 280 kg CO5 eq in
stage B and 32 in stage B kg CO; eq (Arslan et al., 2023; Cao et al., 2015;
de Paula Filho et al., 2024; Dong et al., 2015; Gao et al., 2024; Jaya-
wardana et al., 2023a; Manso et al., 2018; Teng and Pan, 2019; Tian and
Spatari, 2022; Wang and Sinha, 2021). Considering the FU equal to 1
building unit, the emissions ranged from 616 to 49,360 kg COy eq
(average 22,924 kg CO; eq) in phase A, from 124 to 1,875 kg CO2 eq
(average 736 kg CO5 eq) in phase B and from 935 to 2,490 kg CO; eq
(average 1,712 kg CO; eq) in phase C (Balasbaneh and Ramli, 2020;
Balasbaneh and Sher, 2021; Monahan and Powell, 2011; Tavares and
Freire, 2022). One study reports the results per 1 m®, which are 37 kg
CO2 eq, 100 kg CO3 eq and —2 kg CO4 eq per A, B, and C phases,
respectively (Bonamente and Cotana, 2015). Regarding 1 m? of pre-
fabricated buildings composed of steel, the stage A has emissions of 440
kg CO; eq, stage B 2,680 kg CO; eq and stage C ranged from —242 and
42 kg CO, eq (average —115 kg CO3 eq) (Cai et al., 2023; Wen et al.,
2024). The GW per 1 unit of steel buildings is ranged from 8,409 to 15,
182 kg CO; eq in the case of module A (average 22,798 kg CO; eq), from

55 to 4,100 kg CO; eq for module C (average 2,385 kg CO; eq) and from
—39,400 to —6,824 kg CO2 eq in module D (average —23,773 kg CO2 eq)
(Iuorio et al., 2019; Jayawardana et al., 2023a; Minunno et al., 2020;
Yang et al., 2024). The buildings made in wood report impacts for FU of
1 m? equal to 68 kg CO,, eq, 184 kg CO, eq and 259 kg CO, eq for A, B,
and C stages, respectively (Souaid et al., 2024). Furthermore, the FU of 1
building unit composed of wood had emissions ranging from 4,125 to
56,000 kg CO3 eq for stage A (average 30,063 kg CO2 eq), from 440 to 2,
398,000 kg CO, eq for stage B (average 1,199,220 kg CO, eq) and from
1,265 to 3,000 kg CO, eq for stage C (average 2,132 kg COy eq)
(Balasbaneh and Bin Marsono, 2017; Dara et al., 2019; Szalay et al.,
2022). The summary of the comparison of the results between concrete,
steel and wood is reported in Fig. S1.

4. Discussion
4.1. Considerations about the results

The results of this systematic review demonstrate that the adoption
of modular and prefabricated construction methods generally offer
environmental benefits compared to traditional building practices.
Many of the studies analysed indicated prefabrication as beneficial in
reducing the consumption of raw materials. Given that the production of
raw materials is the primary driver of environmental impacts, using
prefabricated structures improves the environmental performance of
buildings, especially in terms of GW, which aligns with global efforts for



Table 2

LCA methodology features: software, database, Life Cycle impact assessment methods (LCIA), Functional Unit (FU), System Boundaries phases and Impact categories.

Ref. Software Database LCIA FU SB stages SL [yr] Impact categories
Al-A3 A4-A5 B C GW PE OD PM TA FE ME TE FW MX HC HN LU MR FD WC
Zheng et al. (2025) n.a. Ecoinvent and n.a. Modular building X X X 50 \/
Industry Data 2.0
Shokouhi and Gabi Okobaudat n.a. 1 m?/ NFA*a X X X 50 \/
Weidlich (2025)
de Paula Filho et al. n.a. EPDs EN 15804 1 m? X X X 50 \/
(2024)
Yang et al. (2024) n.a Ecoinvent and n.a. Modular unit X X X 50 \/
Industry Data 2.0
Souaid et al. (2024) TOTEM Ecoinvent n.a. m? for plane surfaces, m for X x box 60 v
tool structural elements and individual
piece for other elements.
Al-Sammar and Aleisa  n.a. Ecoinvent ReCiPe Single X X 25 \/ \/ \/ \/ v \/ v Vv \/ \/ v \/ \/
(2024) module with a floor area of 18 m?
Gao et al. (2024) eFootprint  eFootprint n.a. 1 m® of prefabricated components  x X X n.a. \/
Wen et al. (2024) SimaPro n.a. n.a. 1 m? of the building area X 50 \/
Jayawardana et al. SimaPro Ecoinvent IPCC and Modular building unit X x° 10 \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/
(2023b) ReCiPe
Cai et al. (2023) eBalance Ecoinvent CML 2001 1 m?of building area X X X 50 \/
Jayawardana et al. SimaPro Ecoinvent IPCC /ReCiPe 1 m? of the construction floor area  x X n.a. Vv \/ \/ \/ \/ \/ v
(2023a)
Arslan et al. (2023) HBERT ICE and EPDs n.a. 1m?ofa build-up X X 60 \/
Tavares and Freire SimaPro Ecoinvent CML 2001 Lightweight prefabricated house X X 50* \/ v v \/ v \/ v \/
(2022) with 56 m? of gross floor area
Tian and Spatari Gabi Ecoinvent ReCiPe 1 m? of the construction area X X n.a. \/ \/ \/ \/ \/ \/ \/
(2022)
Szalay et al. (2022) n.a. Okobaudat CML 2001 Full X x 5 x° 30 v/
compact house
Andersen et al. (2022) ~ OpenLCA  Ecoinvent ILCD 2011 Habitable floor area of a single- X X 7 x 50 v v Vv v
family
home
Balasbaneh and Sher SimaPro MY-LCID and ReCiPe 1 m? of the total floor area of X X x* 50 v v v v v
(2021) Ecoinvent buildings
Kucukvar et al. (2021) n.a. Ecoinvent ReCiPe Entire stadium area of 450,000 m?  x X X 30 \/ \/ \/ \/ \/ \/ \/
Wang and Sinha SimaPro Ecoinvent ReCiPe 1 m? of floor area X X 50 \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/
(2021)
Minunno et al. (2020)  SimaPro  Ecoinvent CML-IA Whole building x’ X 0 x n.a. VARRY, v v Vv oV Vv
Satola et al. (2020) SimaPro Ecoinvent ReCiPe Total gross building area X X X 25 \/ \/ \/ \/ \/ \/ \/ \/
Head et al. (2020) n.a. Ecoinvent IPCC 1 m® of wood product used in X X X 15, 25, 50 \/
buildings or construction projects and 100
Balasbaneh and Ramli SimaPro MY-LCID and IMPACT 1 m? of a wall component X X ox!? 50 \/ \/ \/ \/ \/
(2020) Ecoinvent 2002+
Teng and Pan (2019) SimaPro  n.a. na. 1m?and 1 m® X x x 50 v
Dara et al. (2019) Athena Athena TRACI House with a gross floor area of 238 x X X 50 v vV Vv Vv VYV v
m2
Tuorio et al. (2019) SimaPro Ecoinvent and EN 15804 25 m? and X x'? x4 50 \/ \/ \/ \/ v \/ v
EPDs 1 m?
Kamali et al. (2019) Athena Athena TRACI 1 ft? of average-quality single-family x x'® 60 \/ \/ \/ \/ \/ \/ \/ \/ \/
buildings
Manso et al. (2018) GaBi GaBi CML 2001 1 m? of each material required to X 50 v v v
assemble the Geogreen System
Balasbaneh and Bin Simapro MY-LCID and IPCC Building with 1 m? of living area X X X 50 \/
Marsono (2017) Ecoinvent

(continued on next page)

0 3 W200Pg A'd’Y

891001 (920Z) LT SUOZLOH 2)qDUIDISNS



(8

Table 2 (continued)

Ref. Software Database LCIA FU SB stages SL [yr] Impact categories
Al1-A3 A4-A5 B GW PE OD PM TA FE ME TE FW MX HC HN LU MR FD WC

Bonamente and Simapro Ecoinvent n.a. 1 m® of prefabricated building X X X 50 \/ \/

Cotana (2015)
Dong et al. (2015) Simapro Ecoinvent GHGProtocol 1 m® of concrete X X X n.a. \/
Cao et al. (2015) n.a. n.a. n.a. 1 m? X X 50 \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/ \/
Quale et al. (2012) Simapro Ecoinvent BEES 2,000 e X X n.a. \/
Monahan and Powell Simapro Ecoinvent USLCI House with a total foot print area of x X n.a. \/ v

(2011)

45 m? and a total internal volume of
220.5 m®

Notes: n.a.: not available;

—-

© ® N U AW N

only included B2 and B4.
only included Al.

only included C1, C3 and C4.
average.
only included B4 and B6.
excluded C1.
excluded B5.
only included C1 and C2.
excluded A4.

excluded B2.

only included B2.

only included C1 and C2.
only included A5.

only included C1 and C4.
only included A4.

System Boundaries phases description: A1-A3: Production stage; A4-A5: Construction stage; B: Use stage; C: End-of-life stage; D: Benefits of recovery.

Acronyms of impact categories: GW: Global Warming Potential; PE: Primary Energy; OD: Stratospheric Ozone Depletion; PM: Fine Particulate Matter Formation; TA: Terrestrial Acidification; FE: Freshwater
Eutrophication; ME: Marine Eutrophication; TE: Terrestrial Ecotoxicity; FW: Freshwater Ecotoxicity; MX: Marine Ecotoxicity; HC: Human Carcinogenic Toxicity; HN: Human Non-carcinogenic Toxicity; LU: Land Use; MR:

Mineral Resource Scarcity; FD: Fossil Depletion; WC: Water Consumption.

0 3 W200Pg A'd’Y

891001 (920Z) LT SUOZLOH 2)qDUIDISNS



A.P.D. Baltrocchi et al.

Sustainable Horizons 17 (2026) 100168

System Boundaries :

e N N

H I;b A1-A3 Production Stage = I; A4-AS5 Construction Stage .

: Al A2 A3 A4 A5 :

E Raw material Transport Manufacturing Transport Construction, E

H supply installation '

T\ A J E

e & N 7 N N
a B1-B7 & C1-C4 End-of-Life Stage QR D Benefits of recovery

; c1 c2 c3 ca : D

[ Use phase Deconstruction, Transport Waste Disposal Reuse, recovery,
demolition processing recycling, potential

p N J i\ Y/

Fig. 3. Reference System Boundaries and Life Cycle stages considered in the review analysis.

sustainability and net zero emissions targets (Mehra et al., 2022; Ryl-
ko-Polak et al., 2022).

As regarding the regionals gaps, the prevalence of studies in China
and Hong Kong can be explained by the combined effect of high popu-
lation density, rapid urban expansion, and governmental support for
industrialised construction methods, which create strong incentives for
research and practice in prefabrication. By contrast, Europe and North
America show fewer studies, as their more established construction
markets face lower urgency in adopting new building paradigms. This
imbalance highlights a regional gap that may limit the global applica-
bility of current findings, underlining the need to foster research in
underrepresented regions.

The findings consistently highlight wood as the most sustainable
material in module A, considering the FU of 1 m? (average 68 kg CO5 eq/
m?), followed by concrete (average 357 kg CO, eq/m?) and steel
(average 440 kg CO, eq/mz). In contrast, steel presents the lower im-
pacts in stage C (average —115 kg CO, eq/m?), followed by concrete
(average 32 kg CO2 eq/mz) and wood (average 259 kg CO» eq/mz)
(Arslan et al., 2023; Cai et al., 2023; Cao et al., 2015; de Paula Filho
et al., 2024; Dong et al., 2015; Gao et al., 2024; Jayawardana et al.,
2023a; Manso et al., 2018; Souaid et al., 2024; Teng and Pan, 2019; Tian
and Spatari, 2022; Wang and Sinha, 2021; Wen et al., 2024). This is due
to the almost total recyclability of the steel (Broadbent, 2016; Qin and
Kaewunruen, 2022). The optimised use of raw materials, the reduction
of waste and the recyclability of modular construction, according to
Sbahieh et al. (2025), contribute significantly to its lower environmental
impact. The constant improvements in GW observed for concrete
structures reflect the progress in material optimisation and prefabrica-
tion processes. However, the variability in the environmental perfor-
mance of concrete compared to other materials, such as wood,
highlights the importance of locally sourced materials, transport logis-
tics and EoL strategies (Chamasemani et al., 2023). Several studies have
investigated alternatives to mitigate the environmental impacts of
cement. For example, Caldas et al. (2021) proposed Portland cement
replacement with fly ash and metakaolin as Supplementary Cementi-
tious Materials (SCM) and workable wood bio-concretes, while Mistri
et al. (2021) evaluated the environmental implications of the use of
bio-cement treated recycled aggregate in concrete.

Modular steel construction has shown interesting potential for GW
reduction, primarily due to its recyclability and lightweight (Hasanbeigi
etal., 2014; He and Wang, 2017). However, as also reported in the study
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of La Rosa et al. (2025), the transportation and the high energy used in
steel production stages can accentuate its environmental impact. Chen
et al. (2022) evaluated the recent global research regarding minimising
the carbon emissions of steel building products. The most frequent
studies included the recovery of furnace gas and waste heat, alternative
fuels and energy alternative/improved ironmaking technologies.

The analysis of environmental impacts across different materials
reveals significant variability among studies, highlighting the sensitivity
of environmental assessments to methodological choices. Wood build-
ings are often shown as the lowest-impact option; however, these results
are strongly influenced by assumptions regarding SL and the inclusion of
stage B. Studies incorporating shorter SL or including stage B tend to
show higher emissions, thus reducing the relative environmental
advantage of wood. In contrast, when assuming longer SLs or excluding
stage B, wood consistently achieves favourable performance. Steel
structures generally exhibit intermediate environmental performance;
however, results are highly dependent on assumptions regarding recy-
cling rates and burden sharing across EoL phases. These observations
underscore the importance of carefully considering methodological pa-
rameters when comparing building materials, as even slight variations
can significantly impact conclusions.

4.2. LCA method key observations

The review identified substantial variations in the LCA methodolo-
gies employed, highlighting significant methodological discrepancies
that could impact the reliability and comparability of the results (Wu
and Su, 2020). ReCiPe emerged as the most commonly applied LCIA
method; however, many studies did not explicitly state their LCIA
methodology. This lack of transparency hinders comparisons between
studies and limits the use of different impact categories to assess
modular constructions. The selected studies used 9 different databases,
further conditioning the comparability of the results.

Furthermore, the diversity of FU and SL years used in the reviewed
articles highlights that the studies follow several standards. Among all
the FU approaches, the building unit is the most used. However, since
each building unit has different characteristics, using this FU has im-
plications for interpreting the results and a broader applicability. The
same problem is evident in SL, as the variability across years does not
allow proper comparison, especially in the operational phases (stage B)
and EoL scenarios (stage C).
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Similarly, SB varied across studies, with many studies omitting
operational phases (stage B) or EoL benefits (stage D). This selective
approach risks underestimating or misrepresenting life cycle impacts.
Studies that incorporated full SB according to EN 15804 (modules A to
D) provided clearer information on the full life cycle impacts of modular
buildings, highlighting their holistic environmental benefits as discussed
in Durao et al. (2020).

Regarding the impact categories, all selected studies evaluated GW,
while less than half evaluated other impact categories. This shows that,
although there is great sensitivity towards CO, emissions, other
important parameters such as water consumption and fossil depletion
that would allow us to have a clear idea of the complete environmental
profile are not considered. Analysing the major impact categories is
essential to understand the real impacts on human health, ecosystems
and resources (Feng et al., 2023).

Scientific journals and databases should adopt more rigorous
reporting standards, making the declaration of the FU, SB, SL, and the
LCIA method mandatory to ensure transparency and comparability be-
tween research papers and reports.

4.3. Research gaps and improvement areas

After having extensively discussed the results of this review, this
section aims to summarise the current research gaps and the areas in
which improvement can be made in assessing the environmental im-
pacts of prefabricated and modular buildings through LCA methodol-
ogy. In particular, as reported in Fig. 4, five areas have been identified:
(i) methodological development, (ii) policy implications, (iii) stake-
holders engagement and awareness, (iv) digital tools and innovation and
(v) Circular Economy (CE) integration.

4.4. Methodological development

As previously reported, significant diversity in LCA methodologies
regarding SB, FU, and SL has been observed. This lack of uniformity
hinders the comparability of results between different researchers.
Future studies should follow the existing standards, such as EN 15804,
more rigorously, including the operational phases (stage B) and end-of-
life impacts (stage C), and take into account the complete life cycle
phases (modules A-D).

1. Methodological development

» Lack of standardization
* Focus only on single impact category

3. Stakeholders Engagement and Awareness

* Lack of collaboration
» Social and Economic dimensions

5. Circular Economy integration

= Limited exploration of CE principles
* Encourage new reuse and recycling practice

<
P
%
O « Automation gaps in data collection
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The selected studies should also adopt a standard line for assessing
impact categories. Although several papers have evaluated the envi-
ronmental impacts through the ReCiPe method, most studies prioritise
GW over other relevant impact categories, such as water consumption,
fossil depletion and terrestrial ecotoxicity. This prevents a holistic un-
derstanding of environmental impacts. Practitioners, designers, and re-
searchers should move towards a common standardisation that aligns
with the principles of LCA. These are essential components to assess the
environmental impact of modular and prefabricated buildings fully.
Also, the research of Ali et al. (2025) demonstrates originality by
applying decision-making frameworks to underexplored infrastructure
contexts, underscoring the importance of methodological innovation in
sustainability research.

4.5. Policy implications

Although in recent years, there has been an important political effort
towards the principles of environmental sustainability of buildings, this
is still insufficient to reach the net zero target by 2050, according to the
studies of Ohene et al. (2023, 2022a, 2022b). Current building standards
do not sufficiently integrate LCA-based -criteria. Politics should
encourage using common standards for conducting LCA analysis, espe-
cially in modules representing the operational phase (stage B) and the
EoL (stage C). Politics should also support the spread of widely recog-
nised certifications, such as EPDs and other environmental certifications
(Saleh et al., 2024b). These are drawn up through rigid schemes con-
tained in PCRs and allow comparability across different products (Moré
et al., 2022).

Another factor affecting the consistency of the reviewed studies is the
role of local regulations. In fact, in Europe, the EN 15804 standard al-
lows for comparisons between studies, as it provides a clear modular
structure (A1-A5, B, C, D) and harmonised standards for EPDs. In
contrast, Chinese frameworks such as the Green Building Evaluation
Standard (GB/T 50,378-2019) (He et al., 2024) and Hong Kong’s BEAM
Plus (Yeung et al., 2022) primarily promote general sustainability and
life cycle awareness, but lack the detailed breakdown of life cycle phases
offered by EN 15804. Consequently, studies conducted under these
frameworks often differ in how they define system boundaries, limiting
their comparability both within Asia and with European research.

Furthermore, it is necessary to encourage the studies to introduce

2. Policy Implications
« Principles of environmental sustainability
« Encourage the use of sustainable practice
« Limited geographical distribution

4. Digital Tools and Innovation

* Underutilization of digital tools

Fig. 4. Closed loop of research gaps and potential improvement areas.
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innovative raw materials and new production technologies to decrease
the environmental impacts (Uddin et al., 2025). These aspects have also
been highlighted in the study by Olumo and Haas (2024). Another sig-
nificant point from this analysis is the limited geographical distribution
of the studies, mainly concentrated in developed regions such as East
Asia and Europe. Politics should also encourage the study of modular
buildings in developing countries. This geographical disparity limits the
development of inclusive policies globally, especially in developing
countries, where modular buildings could be proposed as a sustainable
solution with affordable costs, according to the research of Ali et al.
(2023).

4.6. Stakeholders engagement and awareness

Collaboration between different stakeholders is essential to achieve
the common goal of environmental sustainability. However, there is a
lack of emphasis on collaboration between stakeholders: too little
attention is paid to interdisciplinary cooperation between engineers,
environmental scientists, manufacturers and policymakers to address
the systemic challenges of modular construction. Manufacturers should
provide more primary data without demonstrating low CO5 emissions
for commercial purposes. There should no longer be competition be-
tween companies for the lowest GW value. Furthermore, manufacturers
should support, as well as policy, the study and development of sus-
tainable raw materials and new technologies to mitigate current envi-
ronmental impacts.

Stakeholders should also encourage the assessment of social and
economic dimensions: most studies ignore social and economic evalu-
ations. A complete sustainability assessment would require integrating
LCA with Social LCA (SLCA) and Life Cycle Costing (LCC) analysis
(Baltrocchi et al., 2023a). This would allow for a holistic evaluation of
the three pillars of sustainability: environmental, economic, and social
(Purvis et al., 2019).

4.7. Digital tools and innovation

The review indicated that studies rarely exploit digital tools such as
Building Information Modelling (BIM) to improve data collection and
integrate environmental analysis. For example, Zheng et al. (2025)
studied the integration of BIM with LCA for the reuse and recycling
phases of modular steel buildings. Failure to use digital tools represents
a limitation since these tools can improve the quality of data collection
and process modelling. Again, the review of Tam et al. (2022) Click or
tap here to enter text.indicated that, although LCA data sources are
well-represented in the study literature, BIM data accessibility remains
limited, data exchange is predominantly manual, environmental im-
pacts are mostly visualised through traditional charts, and the majority
of studies focus on comparing design alternatives. (Safari and Azar-
iJafari, 2021) reported that studies using BIM-LCA primarily base their
approaches on manual or semi-automated methods in the early design
stages, with limited attention to design variants, incomplete automation
of data exchange, and significant opportunities for integrating local
databases, sensitivity analyses, and uncertainty assessment frameworks.
Furthermore, the study of (Hollberg et al., 2020) shows that the GW
assessed during the design phase via BIM is initially overestimated,
approximately double that of the final building, which indicates that
BIM-based assessments in the early stages can be misleading and high-
lights the need to improve BIM-LCA integration. On balance, the lack of
automation in data collection is also a fundamental problem. LCA
studies are often based on fragmented and non-automatic data sources,
provided mainly by the manufacturers that influence data accuracy,
reproducibility and precision. An improved digital framework could
solve this problem. In addition, current standards do not imply inte-
grating LCA analysis with digital tools; therefore, the standards and
guidelines must be adequate.
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4.8. Circular economy (CE) integration

The modular construction technique aligns with the principles of CE
in the building sector. However, further efforts are needed. The current
research cannot fully quantify the benefits of reuse, recycling and re-
covery of material in modular and prefabricated systems. The absence of
robust modelling for the life cycle of reuse, recycling and recovery of the
components limits the ability to carefully evaluate these systems’ long-
term sustainability. Several studies have assessed the importance of
addressing the principles of the CE in prefabricated and modular
buildings. For instance, Senaratne et al. (2025) proposed strategies for
integrating sustainable principles into the modular construction in-
dustry, aligning with global sustainability benchmarks and advancing a
CE. Again, Yang et al. (2024) evaluated the environmental benefits of
using modular building components from a multi-use cycle perspective.
From here emerges the need to encourage new reuse and recycling
practices in line with the most modern principles of the CE.

5. Conclusions

This systematic literature review evaluates the application of LCA
analysis to modular and prefabricated buildings. In total, 34 studies
were selected that met two main criteria: (i) the construction system of
the analysed building must be modular or prefabricated and (ii) the
application of the LCA analysis. This study highlights both the envi-
ronmental benefits of modular construction and the limitations of cur-
rent research practices. Key findings include:

e Environmental performance: prefabricated construction generally
exhibits a lower environmental impact than traditional construction
methods, particularly in terms of GW. The optimised material use,
waste reduction, and recyclability contribute significantly to this
advantage.

e Specific material impacts: wood has the lowest environmental
impact in stage A, but higher impacts in the EoL stage (C). Steel
exhibits intermediate impacts in the production stages, but benefits
from high recyclability. The impacts of concrete vary greatly, influ-
enced by local sourcing, transport logistics, and the use of additional
cementitious materials.

Regional gaps: most studies are concentrated in China and Hong

Kong due to their high urban density and government support, while

Europe and North America are underrepresented, which limits the

global applicability of the results.

e The main methodological limitation of LCA are in (i) FU, which is
often defined as a building unit, thereby reducing comparability
across studies; (ii) operational phases (Stage B) and end-of-life sce-
narios (Stage C) are frequently omitted, and (iii) the assessment
primarily focuses on GW, with limited consideration of other envi-
ronmental indicators. Moreover, the use of databases, SB and SL
assumptions, and LCIA methods is often inconsistent across studies.

To fill these research and methodological gaps, five potential areas
for improvement have been identified:

e Methodological development: adoption of standard frameworks (e.
g., EN 15804), including all life cycle phases, and assessment of
several indicators.

e Policy implications: stronger integration of LCA-based criteria in
building standards, promotion of EPDs, support for innovative ma-
terials, and encouragement of prefabricated building studies in
developing regions.

o Stakeholders engagement and awareness: greater interdisciplinary
collaboration, transparency of primary data, integration of social and
economic dimensions (SLCA and LCC) with LCA.



A.P.D. Baltrocchi et al.

e Digital tools and innovation: wider adoption of BIM-LCA integration
for accurate and automated environmental assessment, especially
during design and planning stages.

e Circular Economy (CE) integration: enhanced modelling of material
reuse, recycling, and recovery to quantify long-term sustainability
benefits of prefabricated construction.

Future research and stakeholders involved, such as policymakers,
manufacturers and researchers, should consider the improvement areas
identified in this review to optimise modular construction practices
globally and further their contribution to sustainable development.
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