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Abstract

Objective. Speech imagery recognition from electroencephalography (EEG) signals is an emerging
challenge in brain-computer interfaces, and has important applications, such as in the interaction
with locked-in patients. In this work, we use graph signal processing for developing a more effect-
ive representation of EEG signals in speech imagery recognition. Approach. We propose a dynamic
graph representation that uses multiple graphs constructed based on the time-varying correlations
between EEG channels. Our methodology is particularly suitable for signals that exhibit fluctuating
correlations, which cannot be adequately modeled through a static (single graph) model. The res-
ultant representation provides graph frequency features that compactly capture the spatial patterns
of the underlying multidimensional EEG signal as well as the evolution of spatial relationships over
time. These dynamic graph features are fed into an attention-based long short-term memory net-
work for speech imagery recognition. A novel EEG data augmentation method is also proposed

for improving training robustness. Main results. Experimental evaluation using a range of experi-
ments shows that the proposed dynamic graph features are more effective than conventional time-
frequency features for speech imagery recognition. The overall system outperforms current state-
of-the-art approaches, yielding accuracy gains of up to 10%. Significance. The dynamic graph rep-
resentation captures time-varying spatial relationships in EEG signals, overcoming limitations of
static graph models and conventional feature extraction. Combined with data augmentation and
attention-based classification, it demonstrates substantial improvements over existing methods in
speech imagery recognition.

1. Introduction [4, 5], brain—computer interfaces (BCI), or general
human-machine interfaces [6].

The analysis of brain signals and activity is a com- Graph signal processing (GSP) [7-10] is an emer-

pelling research area which can provide insight
into cognitive activities and affective states. Among
the methods that can help monitor brain activity,
electroencephalography (EEG) is the most popu-
lar way to capture brain signals. EEG has advant-
ages over other methods as it is non-invasive, does
not require expensive medical devices, and can be
used for applications where the subject is mobile
[1]. Processing and analyzing EEG data have various
applications [2, 3], such as diagnosis of neurological
disorders, sleep analysis, silent speech applications

© 2025 The Author(s). Published by IOP Publishing Ltd

ging field that provides insight into the spatial fea-
tures and relationships within a graph. The applica-
tion of GSP on brain signals aims to better analyze and
model brain waves and interconnectivities between
different regions of the brain and give a more accur-
ate model for the representation of signals that have
been acquired from a network of sensors. Such mod-
els are particularly suited for brain signals, which tend
to have specific spatial relationships between different
regions of the brain. Therefore, instead of analyzing
brain signals individually, GSP provides a framework
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to analyze the network through graph signals and
graph frequencies.

A particular EEG application, which has
received relatively less attention, is speech imagery
recognition, i.e. the interpretation of the specific
words imagined by a subject [11-13]. This application
can have important applications, such as commu-
nication for coma patients or other BCIs. Although
some methods focusing on this application have been
proposed in the past [14—19], these methods typically
rely on signal analysis approaches that extract features
from each EEG channel separately. Such analysis neg-
lects the structure of the network of sensors as well
as the spatial relationships between them. One major
challenge in processing and analyzing EEG signals is
dealing with its multi-channel nature. The EEG data
reside on an irregular domain and analyzing channels
separately neglects the spatial features of the signals.
To jointly assess EEG signals, one would need a dif-
ferent representation, based on graphs.

A particular challenge in the case of speech
imagery recognition is that speech is a sequence of
multiple words which are produced and expressed
(covertly or overtly) within a short period of time.
This fact suggests that the reflection of specific words
or notions on the shape of a brain signal is moment-
ary and hard to detect. GSP can represent jointly the
ensemble of brain signals acquired from a subject and
can potentially offer features with increased discrim-
inatory capacity, which will be useful for the speech
imagery recognition. Despite the above, the dynamic
nature of speech raises questions as to whether graph
representation, which relies on a fixed graph con-
struction and focuses on spatial frequencies, can deal
with the challenges of speech imagery recognition.

Graph modeling for brain signals acquired in EEG
has been used in several past works [20-25]. All such
works construct a graph by determining the graph
weights on the basis of the spatial proximity between
the respective vertices, where vertices that are farther
away from each other are linked through edges that
have smaller weights. However, since the topology of
the graph in the modeling of EEG signals matches the
location (on the head of a subject) of the EEG elec-
trodes, which remains fixed, the resultant graphs are
static and cannot model different behaviors in situ-
ations where signals from different vertices exhibit
varying correlation over time. To overcome this lim-
itation, in our proposed EEG modeling using graphs,
we use weights that are calculated based on the tem-
porally varying correlations between the respective
vertex pair signals. As those correlations vary over
time, our approach naturally leads to a more flexible
modeling, based on multiple graphs that are jointly
used for the representation of brain signals.

Using a static graph is a common method to
model and represent EEG signals. A popular way to
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assign the weights for the graph adjacency matrix
is using the thresholded Gaussian kernel weighting
function [7]. For example, [20] uses this method to
create a static graph for all the subjects and ignores
any possible variation. Similarly, [24] creates a static
graph based on Cartesian 3D coordinates of the EEG
sensors and assigns the weights based on the distances
between sensor pairs. As a further example, authors
in [23] use a graph-based spatio-temporal attention
neural network for emotion recognition using EEG
data. The connections for the graph are based on the
inverse of the Euclidean distances for sensor pairs.
This approach leads to the same static graph for each
subject and cannot model dynamic processes where
different graphs would be suitable at different times.

Speech imagery recognition [26], which is the
focus of the present work, is a research area receiv-
ing increasing attention. A widely cited study [14]
used hand-crafted statistical features and classified
imagined words and phonemes using a deep-belief
network and support vector machines. Classification
was based on EEG data from subjects who imagined
talking those words without making any sound or
movements. The work in [14] presented five dif-
ferent binary classification experiments, and repor-
ted 18.08% accuracy for the vowel-only vs consonant
(C/V) classification experiment, and 79.16% accur-
acy for the presence of a vowel. This approach has
limited applicability, as in a real-life scenario it is
not feasible to manually choose features for each
subject/application.

The specific use of EEG-based GSP for speech
imagery has not been widely explored. The work in
[27] uses a graph approach based on a static graph.
The database in [15] was used for training and test-
ing. The works in [24] and [28] used GSP for speech
imagery classification. However, both of them used
static graphs with fixed parameters, calculated based
on spatial proximities between sensor pairs. Other
works [16—19] used the popular ‘Kara One’ database
[14], but did not use graph representations.

In this work, we address the issues arising from the
use of static graphs by proposing a dynamic graph sig-
nal representation methodology for speech imagery
recognition from EEG signals. Our approach util-
izes multiple graphs to represent a set of EEG sig-
nals by combining different graph models which are
jointly used for the formation of a novel EEG signal
representation. This approach is particularly efficient
for representing signals that exhibit varying behavior
which cannot be accurately modeled through a static
graph model. Further, we classify the EEG signals
represented using the proposed graph representation
using a neural network architecture that is custom-
ized to the underlying representation. To boost classi-
fication performance, we also introduce a novel EEG
data augmentation method to expand the training
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dataset without modifying the underlying connectiv-
ity or channel-wise relationships of EEG sensors.
Specifically, the contributions of this work are:

e The construction of multiple graphs, with distinct
properties, that are jointly used for the modeling
of multidimensional EEG signals. The proposed
dynamic graph representation takes into account
the time-varying interdependencies between chan-
nels and achieves EEG signal representations that
are more accurately reflecting the underlying brain
functions. The number of graphs and eigenvectors
are fine-tuned to the underlying signals.

e An application of the above dynamic graph repres-
entation on speech imagery EEG data followed by
a frequency transformation of the resultant graph
signals, which yields a powerful EEG representation
with high discriminatory capacity.

e An long short-term memory (LSTM)-based
machine learning architecture for the classifica-
tion of imagined words, combined with a novel
graph-based data augmentation method to create
augmented EEG data and increase the number of
samples for the training without changing the con-
nectivity structure and channel-wise relationships
between different channels.

e A thorough comparison of the resulting system
with current state-of-the-art systems, which shows
the superiority of the proposed system in speech
imagery recognition.

The structure of the paper is as follows. In section 2,
we briefly present the fundamentals of GSP and
the representation of EEG signals using graphs. The
dynamic graph representation of EEG signals is
presented in section 3. In section 4.1, we present the
spatiotemporal representation of graph EEG signals.
In section 4.2, we present a neural network architec-
ture that is suitable for our method. In section 5, we
present a novel method for EEG data augmentation.
In section 6, we present an experimental assessment
of the dynamic graph representation of EEG signals
and its effectiveness in speech imagery recognition.
Discussion is presented in section 7 and conclusions
are drawn in section 8.

2. GSP theory and graph representation of
EEG signals

2.1. GSP theory and notation

A graph G ={V, £} can be described by its edges
& and vertices V = {v,v1,...,VNy—1}, where N is
the cardinality of the vertex set. A graph signal s =
[ So S SN—1 ]T € CN is an N-dimensional
signal whose values at each time instant are indexed
using a graph G as shown in figure 1.

C Selcuk and N V Boulgouris

Figure 1. Signal s = [so,s1,52,53,54]T is shown on graph G
with vertex set V = {vy,v1,v2,v3,v4}. Weight a; j represents
the weight for the edge from vertex j to vertex i.

The adjacency matrix A is an N X N matrix that
encodes the connections between the vertices of the
graph. The element aj, i,j =0,1,...,N—1, of the
adjacency matrix indicates whether there is a con-
nection from vertex j to i; a; will be 1 if there is a
connection and 0 when there is no incoming edge.
If the graph is weighted, then a; = w;j;, where w;;
is the weight for that edge. If the graph is undir-
ected, then A will be symmetric, with a; = a; and
W,‘]‘ = Wj,‘.

Assuming A has a complete set of eigenvectors,
spectral decomposition of A can be written as A =
VAV~!. The matrix V holds the eigenvectors of A
on its columns as V.= [vg,vy,...,vy_;] and the mat-
rix A holds the eigenvalues of A on its diagonal
as A = diag(Xo, A1, .., AN—1). Degree matrix D is a
diagonal matrix with each element d; on its diag-
onal showing the total number of incoming edges
(or weights) to vertex i from other vertices, i.e. d; ; =
>_;dij. As ajj is an edge from j to i, each element
on the diagonal of D shows the number of incom-
ing connections and it has all 0 s on the off-diagonal
elements.

As an operator, degree matrix D amplifies the
signal at a vertex by the total weight around the
neighborhood, and adjacency matrix A provides the
weighted sum of the neighbor channels. Laplacian
matrix L, which is defined as L = D — A, gives a sense
of variance for a vertex around its neighborhood.
This factors in the number of vertices in the ver-
tex neighborhood as it is not normalized. Therefore,
when the Laplacian operator is applied to a graph sig-
nal, a vertex with higher degree will have a greater
value when the signal at that vertex is different
than the neighbor vertices, which gives a sense of
variance.

We can get the eigendecomposition of the
Laplacian matrix as L = UAU" where (-)? denotes
the Hermitian operation and U is the matrix contain-
ing the eigenvectors of L in its columns. The Graph
Fourier matrix is given by F = U™ and §= Fs is the
graph Fourier transform (GFT) of a graph signal s.
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2.2. Graph representation of EEG signals

Let S be a matrix representing EEG data with N chan-
nels, where each row of S includes the signal captured
by an EEG electrode.

An EEG signal can be represented as a sequence of
time frames (vectors) that include the signal samples
from all channels at time #. A time frame representing
the signal at time ¢ is defined as

O[O L

T
W] e
where +=0,...¢ — 1, is the temporal index of the
respective time frame and ( is the total number of
time frames. The sequence of signal vectors for all
time indices can be represented as

S=| sO 0 s(¢=D ]. 2)

For each time frame ¢, the respective GFT frequency
vector is obtained as §) = Fs(), Therefore, the final
GFT representation of the entire EEG data is a tem-
poral sequence of consecutive graph frequency vec-
tors, which can be compactly expressed as

S=Fs=| 3§ . 0 SR FNE)
The GFT does not capture temporal variations at
a time instant. In the ensuing section, we describe
our proposed method for dynamic graph represent-
ation and modeling of the brain signals. Such model-
ing and representation is suitable for speech imagery
recognition.

3. Dynamic graph representation of EEG
signals using multiple adjacencies

The definition of a graph G requires that the con-
nections and weights between graph vertices be spe-
cified. There are several methods to construct a graph
and define its connections, such as using a threshol-
ded Gaussian kernel weighting function [7]. This
approach can model a system where the neighbor-
ing vertices exhibit high correlations, such as temper-
ature variations in adjacent geographical locations.
However, such modeling would not be suitable in the
case of EEG signals where the connections and cor-
relations between different vertices do not depend on
proximity between vertices. For this reason, modeling
the network structure of the brain requires a different
approach.

Apart from determining connections and weights
of the graph G, another modeling challenge is the
possibility that the underlying signals may exhibit
variations that cannot be adequately represented by
a single graph. A static graph can model a system
where the connections between the vertices remain
unchanged over time. However, when a graph is used
to model brain signals, one has to consider that brain
activity depends on the brain task undertaken and,

4
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therefore, different graphs may be needed for differ-
ent underlying brain activities. For this reason, we do
not rely on one static graph to model brain signals,
instead we use a dynamic graph model that is based
on multiple graphs for the representation of the brain
signals.

The modeling of an EEG signal using K graphs
requires the identification of K distinct correlation
patterns within the graph signal. To this end, we use
a sliding window to slice the multi-channel EEG sig-
nal into M temporal segments 7,,m =0,...,M — 1.
For the EEG matrix S € RN*L, where N is the num-
ber of EEG channels and L is the number of time
samples, the mth temporal segment is defined as 7, =
[tgm),tgm)]. The mth signal segment from channel i
is zfm) € R", with zfm) = (Sir, )T, where n= tgm) -
A" 1.

Subsequently, for each temporal segment, we cal-
culate correlations between channel pairs. In our
graph modeling, the correlation values between chan-
nels are directly used as weights in adjacency matrices.
If z;, z; represent signals from two channels, the (i, j)
element of the normalized correlation matrix P") for
the mth segment is calculated as

pfjm) £ ncorr (zi,z]-) = % (i + 1) ,0< p

|zi[|z

(m)
i ST
(4)

and represents the normalized (non-negative) cor-
relation between channel i and channel j for tem-
poral segment 7,,. As each N-channel signal is divided
into M segments, M normalized correlation' matrices
with size N x N are obtained from each multidimen-
sional signal, representing cross correlations between
different channels for each of the temporal segments.

The varying correlations between the channels of
a multidimensional signal (e.g. an EEG signal) indic-
ate that multiple adjacencies may need to be taken
into account for the graph modeling of EEG signals.
To capture the varying correlation between chan-
nels over time, we cluster the correlation matrices
from different temporal segments using the k-means
algorithm [29], and calculate K correlation centers
ch k= 0,...,K— 1.For each experiment, we use all
the available training data (all subjects and trials) to
create K global graphs. In particular, in intra-subject
experiments, we use all the training data from the
subject, and in cross-subject experiments, we use all
the training data from all subjects to create K global
graphs based on correlation patterns.

To create multiple graphs, we use the correla-
tion centers to define K adjacency matrices A% k =
0,....K—1,as

AW =cW 1 fork=0,....K—1 (5

1 Henceforth, normalized correlation will be referred to as ‘correl-
ation’ for simplicity.
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Figure 2. Adjacency matrices in a dynamic graph model
with two (K = 2) correlation clusters. The differences
between the two adjacencies show that the correlations
between channels in the multidimensional EEG signal are
varying over time. Therefore, the use of multiple adjacen-
cies offers advantages in the graph modeling of the signal
as the multiple adjacencies can capture more accurately the
varying correlations between EEG channels over time.

where diagonal elements have been set to zero to pre-
vent self-loops in the graphs. To analyze the graph
spectrum of different graphs, we use the Laplacian
matrices

LD =p® _A® fork=0,....K—1 (6)
where the diagonal matrix D) is the degree matrix
for correlation cluster k.

We present a graph model example with two
adjacency components (K = 2) in figure 2 and an
example with four adjacency components (K = 4) in
figure 3. Through empirical evaluation, we determ-
ined that using shorter temporal segments results in
decreased similarity among adjacency components,
which helps capture instantaneous variations in cor-
relation between channels. A segment length of 16 ms
was selected because it provides sufficient variability.
We also observed that overlaps did not affect the res-
ults but increased computational cost, and therefore
were not used.

For each graph, we get the eigendecomposition

H
L® — g A® ((ﬂk)) fork=0,....K—1 (7)
with eigenvectors

v = [uék)u§k)...u%c)_1} fork =0,...,K—1.
(8)

An example of graph eigenvectors (8) is shown in
figure 4 (generated using the PyGSP package [30]).
In general, our dynamic graph modeling involves
K(N—1)+1 eigenvectors. This is because each of
the K different graphs G produces N eigenvectors.
However, we discard the constant vectors from all
graphs except the first one resulting in K(N—1) +1
eigenvectors overall. The larger set of eigenvectors can
capture a wider set of graph frequencies (spatial pat-
terns) because the dynamic representation takes into
account the varying channel-wise correlations over
time.

) Adjacency component 1

1.0
10
20
30 0.8
40
50
0.6
60
Q 20 40 60
. Adjacency component 3
10 | 04
20
- 0.2
A0 e !
|
50 =
wll | 0.0

s} 20 a0 60 0

Figure 3. Adjacency matrices in a dynamic graph model
with four (K = 4) correlation clusters. Horizontal and
vertical labels represent electrode indices. When K = 4, the
correlations between EEG channels are assumed to exhibit
four distinct patterns over time.

Eigenvector 0 Eigenvector 14
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Figure 4. Different eigenvectors of the first adjacency com-
ponent of the dynamic graph for the first subject of the
database [14]. The first eigenvector shows the DC com-
ponent where all the elements have the same value. Higher
graph frequencies (represented by the other eigenvectors)
exhibit greater variation in the elements of respective
eigenvectors.

To simplify the above representation, from each
correlation cluster we select A eigenvectors, indexed
e(()k), eik), ey ,e(Ak)_l. Then we use the selected
eigenvectors from each cluster to form the dynamic

graph eigenvector matrix €2,

Q= ug))ug?) ul?

K1 K—1
EA_l...ugl )DL (9)

LN

from first cluster ~ from last cluster

The eigenvectors in € represent different graph
frequencies from all graphs within a dynamic graph
representation. These graphs capture the dynamic
relationships between vertices. By projecting each ori-
ginal N-dimensional signal s onto the eigenvectors of
the dynamic graph eigenvector matrix €2, we obtain
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Figure 5. Spatiotemporal representation of EEG signals using a dynamic graph with K constituent graphs. EEG signals are pro-
jected onto the eigenvectors of different graphs and spatial frequency components are obtained from each graph. We calculate the
short-time Fourier transform (STFT) of each component separately to get the dynamic multiple graph Fourier (DMGF) repres-
entation that captures frequencies both in graph space and time. Tensor shapes are shown for the Kara One [14] database with a
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the new representation § = Qs. For the entire ori-
ginal EEG signal (N-dimensional time series), the
new representation is

~

S=Q's (10)
where § is a KA-dimensional series of graph fre-
quency coefficients. In the following sections, we
present how we use these features in neural network-
based speech imagery recognition.

4. Speech imagery recognition system

4.1. Spatiotemporal representation of the graph
EEG signals

The above graph-based modeling produces time
series of coefficients representing spatial frequencies
(spatial patterns) over time. To take into account tem-
poral variations of those spatial frequencies, we cal-
culate separately the short-time Fourier transform
(STFT) magnitude of the time series of each graph
frequency coefficient, as shown in figure 5. The result-
ant dynamic multiple graph Fourier (DMGF) repres-
entation expresses the original multidimensional sig-
nal with respect to the way in which the signal’s spatial
patterns are changing over time.

In order to prepare the DMGF for neural net-
work classification, we offset STFT magnitude values
by 1 to make the smallest magnitude equal to 1. We
then apply log-normalization to keep the STFT mag-
nitude values within a range that can be handled by
the neural network. In this way, the minimum log-
magnitude is 0 while small magnitudes, such as 10729,
are represented as approximately 0. The resultant rep-
resentation is graphically shown in figure 6.

4.2. Neural network architecture for speech
imagery classification

For the classification task we used a three-layer LSTM
network with attention mechanism as shown in

STFT Magnitude

Frequency [Hz]

Time [sec]

Figure 6. A sample DMGF (dynamic multiple graph
Fourier) representation that is input to the neural network.
Multiple such representations are input simultaneously
(one per graph frequency coefficient sequence).

figure 7. The input signal is projected onto the eigen-
vectors of the dynamic graph representation, yield-
ing a set of graph frequencies for each of the differ-
ent graphs. The subsequent STFT of each graph fre-
quency time series captures the variations of dynamic
graph frequencies through time. The resultant DMGF
coefficients are used as inputs to the LSTM network.
To simplify the representation and reduce the num-
ber of features input to the LSTM network, we cal-
culate the average of every four temporal frequency
components of each graph frequency. The number of
features input to the LSTM network is the number of
graph frequencies multiplied by the number of tem-
poral frequencies.

As seen in figure 7, we use three bidirectional
LSTM (BiLSTM) layers. We chose the LSTM for
such modeling as LSTMs are robust at learning long-
term and short-term dependencies in long temporal
sequences, like the ones used in the present work.
The small number of LSTM layers limits the num-
ber of parameters in the neural network, reduces

6
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(32, 94, 2205)

(32, 245, 33, 94)
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spatiotemporal
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Figure 7. Main architecture for classification of speech imagery using a dynamic graph with K constituent graphs. Multi-channel
EEG signals are projected onto the eigenvectors of each graph, yielding time series of graph (spatial) frequency coefficients. These
are then subjected to short-time Fourier transform (STFT), producing the proposed DMGF representation. The resulting DMGF
coefficients are reshaped into a 2D tensor of shape (timesteps, features) and fed into an attention-based BiLSTM network for
speech imagery recognition. Tensor shapes are shown for the Kara One [14] database with a batch size of 32, 62 channels, and a

signal length of 3000.

the computational cost, and prevents overfitting. We
used 256 hidden units per direction in each layer
and did not use any dropout to regulate overfit-
ting, as the model itself converges well and dropout
induces oscillations in the loss function on small val-
idation sets. Each spatiotemporal graph frequency in
the DMGEF representation is used as a different chan-
nel/feature which is input to the first LSTM layer,
while the cascaded LSTM layer learns how those fea-
tures evolve through time. The attention mechan-
ism at the end of the last LSTM layer is used to
ensure that the neural network focuses on the most
relevant features at the end of the cascaded LSTM
layers.

5. Data augmentation

EEG datasets generally have limited samples com-
pared to other types of datasets. Even with EEG
epoching, whereby a trial is divided into multiple tri-
als, the number of available trials is still small. For
intra-subject experiments, which use data from only
one subject, the risk of overfitting increases. For cross-
subject experiments, data from different subjects are
used, i.e. a higher number of trials per class is avail-
able. However, cross-subject experiments are challen-
ging as signals from different subjects may vary too
much.

There are different methods to augment EEG
data, i.e. adding noise, combining different EEG
sequences, delaying an EEG sequence and combin-
ing it with different EEG sequences. However, those
techniques have limitations [31]. In the present work,
instead of randomly combining different channels
with randomly selected patches of sequences, we use
graph operators to combine the channel signals with
signals from neighboring vertices. It should be noted
that to create an artificial instance of a channel sig-
nal, all other channels also need to be taken into
account to preserve channel-wise correlations in the
artificial instance. For that reason, we first use the

original multi-channel EEG signal to create an arti-
ficial multi-channel EEG signal and then extract the
specific channel from the artificial signal.

If S is a multi-channel signal in the form of a mat-
rix with rows representing channels, we create an arti-
ficial sample as

S =aS+(1—a)QS+0LN (11)

where Q is the random walk matrix defined as
Q=D"'A, L is the symmetric normalized Laplacian
defined as £ = D™'LD™!, and N is a white noise
matrix. The product QS provides the weighted aver-
age of the neighboring vertices using the weights for
each pair of vertices [32]. Constants o and 6 are para-
meters to fine-tune the augmentation. Specifically, «
is the weight of the channel signal itself, while 1 — «
is the weight of the weighted average of the neigh-
boring channels, and @ is the weight of the noise. As
seen, the white noise is multiplied with the symmet-
ric normalized Laplacian operator £ to amplify the
noise by the average variance between the vertex and
its neighbors. This approach adds more noise when
there is higher normalized variance between neigh-
boring vertices. This ensures the preservation of the
relationships between neighboring channels. Figure 8
presents the creation of an artificial sample based on
the pairwise relationships of vertices of a graph.

6. Experimental assessment

6.1. Databases

For the experimental evaluation of our method, we
used the databases in [14] and [15], which include
EEG data for speech imagery. The first database that
we used is the Kara One database [14]. Although
the database also includes video and audio data, we
only used the EEG signals collected while subjects
were performing speech imagery. There are 14 sub-
jects performing seven phonemic/syllabic prompts,
which are /iy/, /uwl/, /piy/, /tiy/, /diy/, /m/, /n/, and
four different words ‘pat’, ‘pot’, ‘knew’ and ‘gnaw’,
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Figure 8. Creation of an artificial EEG signal by using graph
operators as formulated in (11). Signal s = [so, 51,52, 53,54]T
is shown on a graph with vertex set V = {vo, v1,v2,v3,v4}.
For each vertex 7, neighbor j contributes with a value of

(1 — a)(gi,j)sj alongside cs;, which is a portion of the
original signal value s;, for vertex i.

with around 12 samples per class. To enable a direct
comparison, we performed the same five binary clas-
sification experiments as in [14, 16—18].

The second database was introduced in [15] and
includes four different experiments, namely, short
word classification, long word classification, vowel
classification and short word vs long word classifica-
tion. Out of the four experiments, the long word clas-
sification and short vs long word classification exper-
iments are binary, while the other two experiments
involve three classes. In short word vs long word exper-
iment, the subject sees the short word ‘in’ or the
long word ‘cooperate’ as visual cues on a computer
monitor and the subject imagines speaking those
words without moving their lips or any other muscles.
Similar protocols were applied to other classification
tasks. As only a subset of the subjects contributed tri-
als for the short word vs long word experiment, we rep-
resent them as subjects A, B, C, D, E, F instead of using
their IDs for clarity.

6.2. Experiments

We applied our proposed dynamic graph repres-
entation to the EEG signals in the above data-
bases. To model brain signal activity during speech
imagery tasks, we created multiple graphs by clus-
tering correlation matrices, calculating multiple adja-
cency matrices, and creating a separate graph for
each adjacency matrix. To calculate the correlations,
as described in (4), we used segments of 16 ms
from each trial to compute channel-wise correlations.
The correlation matrices were then clustered and the
cluster centers yielded four (K = 4) distinct adjacency
matrices. We empirically found that using 4 clusters
gives the best performance, while higher numbers of
clusters do not yield consistent gains. After comput-
ing the eigendecomposition of each adjacency matrix
to obtain the graph Fourier matrices of each graph,
as in (7), we used all eigenvectors from all graphs
to construct the dynamic graph eigenvector matrix,
as described in (9). Subsequently, for each EEG trial,
we calculated the respective graph frequencies and we
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applied STFT to the respective temporal sequences
of graph frequencies, producing a DMGF represent-
ation. An example of our DMGF representation is
shown in figure 6.

For classification, we concatenated the spatial-
frequency and temporal-frequency dimensions of the
DMGF data structure and used the resultant struc-
ture as input to the LSTM layers. The architec-
ture of our main scheme is shown in figure 7. We
applied the STFT with a 64-point Hann window and
50% overlap. The 4D output of the STFT is in the
form of (trials x graph frequencies x time frequen-
cies X time) and after concatenation it acquires a
3D shape (trials x graph/time frequency combina-
tions X time). We used this representation as an input
to a three-layer LSTM network [33, 34] with attention
to classify brain signal activity during speech imagery.
The tensor shapes for the experiments conducted on
Kara One database [14] are presented in figures 5
and 7, where 32 is the batch size, 62 is the number of
channels, and 3000 is the signal length per channel.
Tensor shapes for the dataset [15] are the same except
for the number of channels, which is 64 instead of 62.
As shown in figure 7, the shape of the tensor fed into
the neural network is (32,94, 2205) with 32 being the
batch size, 94 the number of time steps, and 2205 the
number of frequency features.

For the experiments conducted on Kara One
database [14], we used a leave-one-subject-out cross-
validation scheme as it was conducted in [14, 16—
18] to have the identical setups for a fair comparison.
For intra-subject (per-subject) experiments conduc-
ted on database [15], we used a nested 10-fold cross-
validation [35] scheme to validate our results.

6.3. Exploration of different numbers of
adjacencies

For fine-tuning our dynamic graph representation,
we explored the impact of K, the number of cor-
relation clusters, on classification accuracy. To this
end, we used the database in [15] and ran different
experiments using one, two, and four clusters. We
repeated the experiments on Subject A and Subject D,
as Subject A has a lower classification accuracy than
other subjects and Subject D has higher classification
accuracy. We present the results in table 1. As seen,
using a higher number of correlation clusters gener-
ally improves performance, as multiple graphs cap-
ture more accurately the varying correlations between
EEG channels over time. As stated in the preced-
ing subsection, we empirically found that a practical
choice for the number of constituent graphs is K = 4.

6.4. Exploration of different eigenvector selection
strategies

For the purpose of assessing the discrimination
capacity of graph frequencies in speech imagery
recognition, we explored the use of subsets of graph
frequencies. We present the results in table 2, where
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Table 1. Classification accuracies using different numbers of correlation clusters using the database [15]. As seen, using a higher number
of clusters helps with classification accuracy. Results are averaged for all subjects. Our results are shown in bold.

Classification accuracies using different number of correlation clusters.

Method Short words Vowels Long words Short vs long words
[15] 50.07 +7.60% 48.96 £6.21% 66.18 £5.78% 80.05 £ 5.80%
[26] N/A N/A 62.99 & 4.78% N/A

[27] 44.2% 46% 71% 70%

DMGEF with 1 55.06 £+ 3.32% 52.54 4 3.44% 71.92 £5.27% 85.77 £5.87%
cluster (K=1)

DMGEF with 2 56.28 1+ 2.83% 53.50 £3.71% 73.08 £ 5.43% 86.83 +4.51%
clusters (K = 2)

DMGEF with 4 57.33 £2.52% 55.08 £ 2.59% 74.75 £+ 5.36% 88.58 £3.91%
clusters (K = 4)

DMGF with 8 56.78 £ 2.65% 54.71 £ 2.55% 74.33 +5.03% 87.79 £5.14%

clusters (K = 8)

—_ — — =
Raw = == 2 2 Recognized
EEG ShiaH &N 2 £ speech
signals E E C—Ell g A imagery
GO
R SRR Recosnized
aw S ) ecognize
ElELJELEL] &
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signals - - E E E iﬁ [a} imagery
(b)

Figure 9. Baseline (conventional) methods without graph
representation, for comparison purposes. (a) Baseline
method using only short-time Fourier transform (STFT).
(b) Baseline method with independent component analysis
(ICA) and STFT representation.

the representation of EEG signals using the lowest n
eigenvectors is denoted as GSP,, i.e. GSPy is a rep-
resentation using the first/lowest 20 eigenvectors (out
of a total of 64). As seen in table 2, using a subset
of eigenvectors yields comparable results to using all
eigenvectors. This means that the coefficients repres-
enting low spatial frequencies carry most discriminat-
ory capacity and can be used reliably for classification
of speech imagery. However, the best performance is
achieved when high graph frequencies are also taken
into account, which suggests that high graph frequen-
cies are also useful in speech imagery.

To confirm that the dynamic graph represent-
ation of EEG signals leads to improved speech
imagery classification performance, we deployed an
experimental setup without any graph representa-
tions, which served as a baseline system (shown in
figure 9(a)). The baseline system directly uses raw
EEG signals as input to the STFT, i.e. no graph repres-
entation and no graph frequencies are used. In addi-
tion, we tested a further baseline system where the raw
EEG signals are first subjected to independent com-
ponent analysis (ICA) using the algorithm defined
in [36]. Subsequently, STFT is applied to the time
series of independent components, and the resulting
frequency features are fed into the neural network
(figure 9(b)).

Results using the two baseline methods are
presented in table 2. As seen, even using only five
eigenvectors with our 4-cluster dynamic graph rep-
resentation, it is possible to outperform the two
baseline methods that do not use graph signal repres-
entations. This confirms the suitability and effective-
ness of our graph representation for speech imagery
classification.

6.5. Exploration of different neural network
variations

We repeated the experiments using three alternative
neural network architectures for classification. These
are explained below.

6.5.1. Multi-channel 3-BiLSTM with attention

(figure 10(a))

We tested our methodology using two separate graphs
and separate graph eigenvector sets. We calculated
the STFT of the resulting graph frequencies and
provided them as inputs to different LSTM layers.
This approach is similar to the main method, shown
in figure 7, but processes the features of different
graphs separately. The attention layers at the end of
the LSTM layers facilitate the selection of the most rel-
evant features for the classification task. The concat-
enation of the resulting outputs was fed into a dense
layer with a softmax function that calculates the prob-
ability of each class.

6.5.2. Multi-channel 5-Conv2D with attention

(figure 10(b))

This architecture uses five 2D convolution layers
instead of LSTM layers. The low number of LSTM lay-
ers and convolution layers helps keep computational
cost low and avoid overfitting.

6.5.3. 1-channel 5-Conv2D with attention

(figure 10(c))

This architecture uses 2D convolutional layers on a
single channel, taking as input the same graph rep-
resentation used by the main architecture.
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Table 2. Classification accuracies using DMGF constructed with different subsets of eigenvectors for the short word vs long word
experiment using database [15]. Results for traditional baselines and the method in [15] are also reported for reference. The best results

are shown in bold.

Classification accuracies using a subset of the eigenvectors.

Method

Subject A

Subject D

Benchmark [15]
Baseline (Raw

70.3 +5.5%
61.50 £ 3.20%

88.0 £ 6.4%
70.63 = 4.00%

signal 4+ STFT)
Baseline (Raw 63.00 4= 4.00% 72.50 £ 5.00%
signal + ICA + STFT)
Dynamic 68.00 £ 3.32% 76.88 +4.88%
GSPs + STFT
Dynamic 71.50 £+ 5.02% 80.00 £+ 3.75%
GSPyo 4 STFT
Dynamic 75.00 £ 3.87% 86.25+3.75%
GSPy0 + STFT
Dynamic 78.50 £ 3.20% 91.88 £ 4.00%
GSPyy + STFT
Dynamic 81.50 +3.91% 93.75 + 4.84%
GSPg4 + STFT
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Figure 10. Neural network architecture variants for the classification of our DMGF representation. (a) Multi-channel 3-BiLSTM
with attention, (b) Multi-channel 5-Conv2D with attention and (c) 1-channel 5-Conv2D with attention.

Results obtained using the above architectures are
presented in table 3. As seen in table 3, the main
scheme (figure 7) outperforms the alternative archi-
tectures, providing evidence that the dynamic graph
EEG representation combined with a single-channel
LSTM-based neural network is the architecture that
yields the best recognition results.

6.6. Hyperparameter tuning

Our neural network architecture was based on the
model proposed in [37], with adjustments made to
prevent overfitting and improve training efficiency.
We used three layers of BiLSTM, each with 256 hid-
den units per direction, resulting in an effective out-
put dimensionality of 512 units per layer. A single
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Table 3. Classification performance using our DMGF representation combined with different neural network architectures for short
word vs long word classification using database [15]. The best results are shown in bold.

Classification accuracies using alternative neural networks.

Neural network

variation Subject A Subject D
Benchmark [15] 70.3 +5.5% 88.0 + 6.4%
2-channel 3- 79.00 £ 4.36% 91.25+4.15%
BiLSTM + attention

2-channel 5- 80.00 £+ 3.87% 92.50 4+ 5.45%
Conv2D + attention

1-channel 5- 78.00 & 5.10% 89.38 £5.63%
Conv2D + attention

1-channel 3- 81.50 +3.91% 93.75 + 4.84%
BiLSTM + attention

dense layer was used at the output, with the number
of neurons equal to the number of target classes. This
was followed by a softmax activation function to pro-
duce class probabilities.

All hyperparameters were selected through
empirical tuning on the validation set within a nested
10-fold cross-validation scheme [35]. The model was
trained using the Adam optimizer for 3000 epochs.
We employed a learning rate scheduler that reduced
the learning rate when the validation loss plateaued,
with a patience parameter set to 400 epochs. Learning
rates of 107> and 10™* were initially explored, but
resulted in stagnation of the training loss. A learning
rate of 10~ yielded more stable convergence and was
therefore used in all experiments.

We did not apply dropout regularization, as the
model converged well without it, and dropout was
observed to introduce oscillations in the loss function
on small validation sets.

6.7. Data augmentation

Due to the scarcity of EEG data relevant to the task
of speech imagery analysis and recognition, we intro-
duced artificial trials using the novel methodology
presented in section 5. To generate artificial trials, we
set o = 0.9 to combine 90% of the original signal with
10% of the weighted average of signals from the prox-
imity of each vertex. We also used 6 = 0.05 to intro-
duce white noise based on the signals within the prox-
imity of each vertex. We used the augmented data
exclusively for training the neural network. To assess
performance, we utilized the original test samples. To
evaluate the impact of data augmentation, we applied
the same experimental setup for speech imagery clas-
sification and compared the classification accuracies
with and without using augmented data. Results are
presented in the ensuing sections.

6.8. Results on Kara One database [14]

We performed five distinct binary classification
tasks on the Kara One database [14], following
the same experimental setups used in [14, 16-18].
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These classification tasks are: vowel-only vs consonant
(C/V), presence of nasal (=Nasal), presence of bila-
bial (£Bilabial), presence of high-front vowel (+/iy/),
and presence of high-back vowel (£/uw/). We focused
on these binary tasks to make sure that our exper-
imental setups are identical to those in [14, 16-18]
and ensure that our comparisons to the respective
methods are conclusive. We tested our DMGF sys-
tem in subject-independent classification, where one
subject is kept aside for testing, while the remaining
subjects are used for training. The results are averaged
over all subjects and presented in table 4 in compar-
ison to results from relevant benchmarks [14, 16—18].
As seen, in most experiments our results exceed the
benchmark accuracies by margins that range from
4% to over 10%. This shows that our novel methodo-
logy can achieve substantial improvements in speech
imagery recognition.

6.9. Results on database [15]

We used the database in [15] to test our DMGF
method for speech imagery classification involving
the short word ‘in’ and long word ‘cooperate’. Results
are presented in table 5. As seen, our method out-
performs the benchmark method by up to 10%, and
exhibits lower standard variation across subjects. In
table 5 we also report results with our training data
augmentation method. As seen, augmentation leads
to a small additional increase in recognition per-
formance accompanied by a decrease in variability.
These experiments suggest that data augmentation is
a viable strategy for addressing the problem of lack of
training data. The overall consistency and robustness
of DMGEF are further evidenced in table 6 where rel-
evant performance metrics are reported.

In addition to the above assessment, we evaluated
our system in cross-subject (subject-independent)
classification where data from all subjects are used
for system training. In general, EEG classification is
more difficult when signals from different subjects are
used for training and testing [37], as opposed to using
signals from one subject. Our method is inherently
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Table 4. Phonological imagery classification accuracies using our proposed DMGF method on KARA One database [14]. The
experiments conducted are vowel-only vs consonant (C/V), presence of nasal (==Nasal), presence of bilabial (=Bilabial), presence of
high-front vowel (£/iy/), and presence of high-back vowel (£/uw/). The best results are shown in bold.

Classification accuracies on KARA One database [14].

Method C/vV +Nasal *+Bilabial +/iy/ +/uw/

[14] 18.08% 63.50% 56.64% 59.60% 79.16%

[16] 25.00% 47.00% 53.00% 53.00% 74.00%

[17] 85.23% 73.45% 75.55% 73.30% 81.99%

[18] 86.52% 72.10% 69.08% 75.27% 83.98%
DMGF 90.06 + 1.98% 76.73 +1.48% 71.71 £ 1.60% 89.56 +1.47% 91.08 +1.81%

Table 5. Short word vs long word classification accuracy using our proposed DMGF method, applied with and without data
augmentation. Performance is reported for our proposed 4-cluster method (K = 4) with 3-layer LSTM network and attention

mechanism. The best results are shown in bold.

Classification accuracies for short word vs long word on database [15].

Subject Benchmark [15] DMGF DMGEF + augm
Subject A 70.3+5.5 81.50 +3.91% 82.50 4-3.35%
Subject B 71.5+5.0 89.50 & 3.50% 90.00 £ 3.16%
Subject C 81.9+6.5 91.25 +5.00% 91.88 +4.00%
Subject D 88.0+t6.4 93.75 +4.84% 94.38 +4.38%
Subject E 793+79 81.50 3.20% 82.00 £ 2.45%
Subject F 89.3+£35 94.00 £ 3.00% 94.00 £ 2.00%
Average 80.1+5.8 88.58 £3.91% 89.13 £3.22%

Table 6. Performance metrics for each subject for short vs long word experiment. The proposed system exhibits consistent precision,
recall, F1 score and accuracy across all subjects, demonstrating its robust performance.

Performance metrics for short vs long word experiment.

Subject Precision Recall F1 Score Accuracy
Subject A 0.82 0.80 0.81 0.82
Subject B 0.88 0.92 0.90 0.90
Subject C 0.89 0.94 0.91 0.91
Subject D 0.96 0.91 0.94 0.94
Subject E 0.83 0.79 0.81 0.82
Subject F 0.96 0.92 0.94 0.94

Table 7. Classification accuracies for the short word vs long word experiment using our proposed DMGF method, applied with

augmented EEG data. The best results are shown in bold.

Classification accuracies for short word vs long word classification.

Task Benchmark [15] DMGF
Intra-subject classification 80.1£5.8 89.13+3.22%
Cross-subject classification N/A 76.52 + 1.65%

robust in subject-independent classification tasks
because the clustering of correlation matrices from
different subjects models task-dependent relation-
ships between different graph vertices instead of
subject-specific traits. Therefore, to emphasize fea-
tures relevant to speech imagery, we create dynamic
graphs by combining training data from all sub-
jects and imagined words. Results are presented in
table 7 and show that our method sustains a 75%
accuracy in the cross-subject scenario, which con-
firms the effectiveness of our approach. We also con-
ducted cross-subject experiments using augmented
data.
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7. Discussion

7.1. Methodological innovation and architectural
design

The conventional approach in EEG signal analysis
and classification is based on applying feature extrac-
tion on each EEG channel separately, usually by
means of a frequency transformation, such as STFT.
The extracted features from all EEG channels are then
classified through a neural network. Our approach,
based on GSP, calculates multiple spatial represent-
ations, which take into account all EEG channels
simultaneously. The deployment of multiple graphs
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for the dynamic representation of EEG signals enables
our system to capture the dynamic nature of EEG sig-
nals, which exhibit fluctuating correlations between
EEG channels and would render a fixed graph (single-
graph) representation less effective. The experimental
results and comparisons we report in tables 1-3 show
that the representation of EEG signals using mul-
tiple graphs leads to clear performance gains. While
an increasing number of constituent graphs gener-
ally improves performance, as seen in table 1, we
have found that using a dynamic graph represent-
ation with four (K =4) graphs is a good practical
choice, as higher numbers of graphs did not yield
any consistent performance gains. Each constituent
graph contributes to the EEG representation, with
best performance achieved if all eigenvectors are
used with each of these graphs. As seen in table 2,
the best-performing version of our system, which
forms EEG representations by using all eigenvectors
from four graphs, outperforms reference methods
and traditional approaches (e.g. based on ICA or
STFT) by a significant margin. Our method is archi-
tecturally completed by using a suitable attention-
based BiLSTM network for classification, as shown in
table 3.

7.2. Summative evaluation of results

A full experimental evaluation of our DMGF meth-
odology is presented in tables 4-7, where comparis-
ons to other methods are also presented. We tested
our DMGF method in a range of scenarios involving
phoneme and imagined word recognition. As seen in
tables 4 and 5, using DMGF achieves up to 10% gains
in recognition accuracy, including a smaller gain from
our data augmentation approach which helped with
increasing the robustness of the training. These res-
ults provide evidence of the merits of our method-
ological approach and the ability of the proposed
dynamic graph approach in the representation of EEG
signals for speech imagery recognition. The results
on cross-subject experiments (reported in table 7) are
also of particular interest as they show that it is pos-
sible to achieve speech imagery recognition even if
multiple subjects are used for the training of the sys-
tem. We believe that further overall gains are possible
both from further developing the dynamic graph rep-
resentation and also from formulating an optimized
augmentation approach.

7.3. Statistical significance of results

To assess whether improvements over benchmark
methods were statistically significant and lead to
safe conclusions, we performed two-proportion z-
tests [38] on classification accuracies for the res-
ults presented in tables 1, 4, 5 and 7 where our
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method is compared against the benchmark methods
[14-18, 26, 27]. The z-tests confirmed that the
gains over prior work were statistically signific-
ant (p <0.05). Overall, these analyses indicate that
the performance gains achieved by our dynamic
graph system are numerically robust and statistic-
ally significant.

7.4. Relation to hypergraphs and multigraphs

It should be noted that our dynamic graph model-
ing, which relies on multiple graphs, is different from
hypergraphs [39, 40], where a single edge can connect
more than two vertices, and therefore edges can have
any cardinality. Although hypergraphs have received
increasing attention [41, 42], they have not yet been
widely adopted. Further, our framework is unrelated
to ‘multigraphs’, i.e. graphs that can have multiple
edges between the same pairs of vertices to represent
pairwise relationships [40]. By contrast, our approach
focuses on addressing the limitations of static graphs.
Our proposed DMGF representation achieved this by
expressing the original multidimensional EEG signal
through a broader set of graph frequency compon-
ents, which were computed by factoring in variations
across subjects, tasks, and time.

8. Conclusion

We proposed a dynamic graph representation for
speech imagery recognition from EEG signals. The
proposed dynamic graph represents brain signals
using different graph frequencies obtained through
multiple graphs that can capture the varying correl-
ations among EEG signals. This approach is partic-
ularly suitable for representing signals which cannot
be adequately modeled through a simple static graph
model. We used the resulting dynamic graph repres-
entation of EEG signals as input to an attention-based
LSTM network, trained using a novel EEG data aug-
mentation process. The resulting system was shown
to be superior to current state-of-the-art methods for
speech imagery recognition.
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