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Experimental Demonstration of Bending
Eavesdropping Detection in Optical

Communications using a Physics-Informed
Convolutional Network

Wenshuai Qin, Xiaoxue Gong, Weigang Hou, Lu Gan, Lei Guo

Abstract—This paper proposes a physics-informed convolu-
tional network (PICN) scheme to detect bending eavesdropping
attacks in dual-polarization coherent optical communication
systems. We present a theoretical model for optical signal
transmission under bending eavesdropping, analyzing the impact
of bending eavesdropping on fiber physical characteristics such
as dispersion and nonlinear effect. These physical characteristics
are embedded into a convolutional neural network (CNN) to
construct PICN, which automatically captures subtle variations
of the signal features under bending eavesdropping. To validate
the effectiveness of the scheme, we first develop an eavesdropping
experimental platform in an 80 km 168 Gbps dual-polarization
quadrature phase shift keying (QPSK) coherent optical communi-
cation system. Polarization data are then collected under normal
transmission, 10.8 mm and 15 mm bending radius. Finally, the
detection performance of four classifiers including PICN, random
forest (RF), support vector machine (SVM), and K-nearest
neighbor (KNN) are evaluated at single and mixed bending radii.
Experimental results demonstrate that PICN achieves detection
accuracies of 100%, 98.53%, and 99.02% under 10.8 mm, 15 mm,
and mixed bending radii, respectively. Our work provides novel
theoretical foundations and innovative perspectives for bending
eavesdropping detection in optical fiber communication systems.

Index Terms—Bending eavesdropping detection, secure optical
communications physics-informed convolutional network.

I. INTRODUCTION

F IBER communication is the foundational element of
information transmission, responsible for carrying over

90% of global internet data traffic [1], [2], [3], [4], [5], [6].
Since optical fibers are insulating media with high resistance
to electromagnetic interference (EMI) and optical signals are
strictly confined within the waveguide structure with near-
zero leakage during propagation, they were once considered
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highly secure. However, with the emergence of various ad-
vanced eavesdropping methods such as fiber bending, V-
groove cutting, and grating scattering, it has been demonstrated
that optical fibers are vulnerable to eavesdropping [7], [8],
[9], [10]. Among these methods, bending eavesdropping has
attracted significant attention due to its low implementation
cost and strong concealment. This technique is achieved by
stripping the protective coating of the fiber, bending it with
a specific curvature radius, and exploiting the mode coupling
induced by the macro-bending effect to extract signals [11],
[12]. Furthermore, optical signal power attenuation caused by
bending eavesdropping is typically below the system detection
threshold, making it difficult for existing optical network
monitoring devices to detect effectively [13], [14], [15].
Meanwhile, the transmission rate of optical signals in fibers
can reach terabit-level speeds. This implies that even brief
eavesdropping on the fiber results in massive data leakage.
Therefore, it is important to explore detection methods for
bending eavesdropping attacks.

In the context of detecting eavesdropping, existing research
mainly focuses on machine learning (ML) methods [16],
[17], [18], [19], [20]. Reference [21] proposed a long short-
term memory (LSTM) based detection scheme for bending
eavesdropping, achieving 95.83% accuracy by using smoothed
time domain data. Similarly, Reference [22] introduced a con-
volutional neural network (CNN) approach for optical splitting
eavesdropping detection, which attained 97% accuracy at 5%
split ratio through the combination of eye diagram analysis and
optical performance monitoring (OPM) metrics. Our previous
work proposed a optical splitting eavesdropping detection
scheme based backpropagation neural network (BPNN) [23].
By utilizing single-polarization spectra as the model input
achieved 99% detection accuracy. However, its detection per-
formance in dual-polarization coherent optical communication
systems still requires further investigation. Notably, existing
research exhibits two limitations. First, it lacks theoretical
modeling of bending eavesdropping mechanisms, which makes
it difficult to analyze the specific impact of eavesdropping on
optical signal transmission. More importantly, existing neural
network architectures in prior work have not adequately incor-
porated the physical characteristics of optical fiber channels.
Specifically, existing detection models ignore the impacts of
physical parameters such as dispersion and nonlinear effect.
This disconnection between physical mechanisms and data-
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driven may constrain both the accuracy and generalization
capability of models.

To address the above challenges, this paper proposes
a physics-informed convolutional network (PICN) detection
scheme for bending eavesdropping attacks in dual-polarization
coherent optical communication systems. First, we present a
theoretical model for optical signal transmission under bending
eavesdropping and analyze the impacts of fiber dispersion and
nonlinear effects on the signal. Subsequently, these physical
characteristics are integrated into CNN to propose the PICN
model with dispersion and nonlinear modules. This integra-
tion enables the model to accurately simulate optical signal
transmission characteristics in fiber channels, which captures
subtle variations of signal feature under bending eavesdrop-
ping. Finally, to verify the effectiveness of the scheme, an
80 km, 168 Gbps dual-polarization quadrature phase shift
keying (QPSK) coherent optical communication experimental
platform is constructed. The performance of four algorithms
(PICN, random forest (RF), support vector machine (SVM),
and K-nearest neighbor (KNN)) is evaluated for detecting
bending eavesdropping. The experimental results show that
PICN achieves detection accuracies of 100%, 98.53%, and
99.02% under 10.8 mm, 15 mm, and mixed bending radii,
respectively. Overall, this work integrates physical properties
with data-driven analysis technology and provides an innova-
tive solution for bending eavesdropping detection in optical
communication systems.

The remainder of this paper is organized as follows. Section
II presents the optical signal transmission model under bending
eavesdropping. Section III details the bending eavesdropping
detection scheme based on PICN. Section IV describes the
experimental setup and data collection under bending eaves-
dropping. Section V presents a comprehensive evaluation of
the PICN model detection performance under various bending
conditions. Finally, conclusions are provided in Section VI.

II. OPTICAL SIGNAL TRANSMISSION MODEL UNDER
FIBER BENDING EAVESDROPPING

To explore the effect of bending eavesdropping on the
physical characteristics of optical signal transmission, we
construct a transmission model of a dual-polarization coherent
optical communication system under bending eavesdropping.
In such systems, light waves propagate along two orthogo-
nal polarization directions, and the transmission process is
described by a partial differential equation [24].
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where Ex(x, y, z, ω − ω0) represents the slowly varying en-
velope of the optical field. ω0 is the central frequency of
the optical field, µ0 is the magnetic permeability of vacuum,

ε0 is the electric permittivity of vacuum. χ
(1)
xx is the first-

order electric susceptibility, describing the fiber dispersion
characteristics. χ(3)

xxxx is the third-order electric susceptibility,
describing the fiber nonlinear effect.

A. Fiber Dispersion Characteristics Under bending eaves-
dropping

First, to investigate the impact of fiber dispersion. According
to the relationship between fiber refractive index n and first-
order electric susceptibility and the weakly guiding approxi-
mation in single-mode fiber (SMF).
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xx ] (2)
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we derive the equivalence relations β2 = ε0µ0[1 + χ
(1)
xx ]ω2 =

µ0ε0n
2ω2. Consequently, Eq. (1) can be simplified to
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Under bending eavesdropping, Eq. (4) can be solved via the
separation-of-variables method. We assume the solution takes
the form:

Ex(x, y, z, ω − ω0) = F (x, y)A(z, ω − ω0)e
jβ0z (5)

where A(z, ω) is a slowly varying function of z and β0 de-
notes the wavenumber. Eq. (4) separates into two independent
equations governing A(z, ω) and F (x, y), respectively.[
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where nbe and βbe represent the effective refractive index and
dispersion under bending eavesdropping. According to c =
1/
√
ε0µ0, β2

be = µ0ε0n
2
beω

2, Eq. (6) simplifies to
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Eq. (7) simplifies to:

j
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Eq. (8) and Eq. (9) demonstrate that bending eavesdropping
affects the fiber dispersion transmission characteristics by
altering parameter nbe. Specifically, bending eavesdropping di-
rectly influences the fiber dispersion value βbe through changes
in nbe. This introduced βbe modifies the amplitude broadening
of signals during transmission, thereby providing rich signal
features for detecting bending eavesdropping attacks.
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Fig. 1. PICN for bending eavesdropping detection scheme: Data collection module, Data judgment module, PICN module.

B. Nonlinear Effect Under bending eavesdropping

When nonlinear effect is considered, the nonlinear coeffi-
cient γbe can be expressed as

γbe =
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In this context, n2 represents the nonlinear refractive in-
dex coefficient and Aeff denotes the effective mode area.
Eq. (10) demonstrate that bending eavesdropping alters the
fiber nonlinear characteristics through modifications to nbe.
Specifically, bending eavesdropping directly modifies the non-
linear refractive index coefficient n2 through changes in nbe,
thereby influencing the parameter γbe. This introduced γbe
induces phase variations in the signal transmission, which
in turn provides distinctive features for detecting bending
eavesdropping.

In summary, bending eavesdropping alters the amplitude
and phase of signals by changing the fiber dispersion and
nonlinear coefficients. These bending induced amplitude and
phase variations are contained in four-channel polarization
data. The data structure exhibits analogy to RGB channels
in imaging systems, where each channel corresponds to hor-
izontal or vertical polarization. The data value characteristics
at each discrete sampling point are analogous to pixels in
images. Considering the effect of bending eavesdropping on
optical signal transmission and data structure characteristics,
a PICN model is proposed. By combining these physical
characteristics, the model automatically extracts features re-
lated to eavesdropping from the data, achieving high-accuracy
detection.

III. BENDING EAVESDROPPING DETECTION SCHEME

A. The PICN model for Bending Eavesdropping

Fig. 1 shows a bending eavesdropping detection scheme
based on PICN. The scheme comprises three functional mod-
ules, data collection module, data judgment module, and
PICN module. In the data collection module, the coherent
receiver converts optical signal into electrical signals, which is
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then sampled by analog-to-digital converter (ADC) to acquire
four-channel polarization data (HI, HQ, VI, VQ). The data
judgment module is responsible for performing digital signal
processing (DSP) on the HI, HQ, VI, VQ, evaluating system
performance through constellation diagram analysis and bit
error rate (BER). When the BER exceeds the threshold of
3.8× 10−3, the HI, HQ, VI, VQ are discarded. Subsequently,
the HI, HQ, VI, VQ with BER below the threshold are fed
into the PICN module. This module comprises dispersion,
nonlinear, and neural network layers. The neural network
architecture consists of an input layer, a hidden layer, and
an output layer, where the output layer produces classifi-
cation results indicating normal communication or bending
eavesdropping. Note that in the PICN module, to achieve
dual constraints of data-driven and physical characteristics,
a combined loss function is designed to compute the total
loss. The combined loss comprises data loss and physical
loss. Specifically, the data loss measures the mismatch be-
tween predictions and labels. Meanwhile, the physical loss
incorporates dispersion and nonlinear loss, which regulate the
model adapts to variations in input amplitude and phase. The
optimizer updates the model weights based on the gradients
of the total loss, backpropagating the gradients layer by layer
through the chain rule. After multiple iterations, the model
converges to an optimal parameter configuration. In summary,
the proposed scheme realistically simulates the signal prop-
agation process under bending eavesdropping by embedding
fiber dispersion and nonlinear effect into CNN. The introduced
combined loss function helps to comprehensively capture the
features of eavesdropping signals for highly accurate bending
eavesdropping detection.

B. Detailed Design of the PICN Model

Next, we detail the architecture of the proposed PICN,
illustrated in Fig. 2. The input HI, HQ, VI, VQ first undergo
processing through dispersion and nonlinear layers to emulate
optical signal propagation. Following this physical preprocess-
ing, a convolutional layer extracts spatially correlated features
from the polarized input data. The layer operates by sliding
an f · f convolutional kernel across the spatial dimensions of
the input with a specified stride. Given the polarization input
data X , the feature extraction process can be mathematically
formulated as:

Aij = σ(

f−1∑
p=0

f−1∑
q=0

X(i·s+p,j·s+p) ·Wpq + b) (11)

where p, q denote the vertical kernel horizontal index of the
convolution kernel, σ is the activation function, W represents
the weight of the convolution kernel, b is biased, and s denotes
stride. The convolution output is processed through the ReLU
nonlinear activation function [25] to facilitate learning of both
linear and nonlinear data relationships. To improve model
generalization and alleviate gradient vanishing during back-
propagation, batch normalization is applied between network
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Fig. 2. Parameter settings of the PICN model. polarization data with size of
4× 24576, convolutional kernel with size of 2× 5, pooling layer with size
of 2× 2, fully connected layer consisting of 1024, 128, 32, 2.

layers. Finally, the max-pooling layer reduces feature map
dimensionality by half, mathematically expressed as:

Pi,j =
f ′−1
max
m,n=0

Zi·s′+m,j·s′+n (12)

Following the pooling operation, the extracted features
are fed into four fully connected layers to perform binary
classification. Class 0 indicates normal communication and
Class 1 denotes bending eavesdropping. The specific param-
eters of the PICN model are as follows, input dimension is
4 × 24576, convolution kernel 2 × 5, stride 1 × 1, pooling
2 × 2. The combined loss function combines cross-entropy
loss [26] and physical loss (dispersion loss, nonlinear effect
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loss), as mathematically equations Eq. (13)–(16).

LCE = −
C∑
i=1

yc log(ŷc) (13)

Ldispersion =
1

N

N∑
i=1

|ŷi| × λdispersion (14)

Lnonlinear =
1

N

N∑
i=1

ŷ2i × λnonlinear (15)

Ltotal = LCE + Ldispersion + Lnonlinear (16)

Here, LCE represents the cross-entropy loss, and C denotes
the total number of classes. Since bending eavesdropping
detection is a binary classification task, C = 2. yc represents
the polarization data label, which takes values of 0 or 1,
and ŷc denote the predicted probability from the PICN model
for normal or bending eavesdropping. Ldispersion represents
the dispersion loss, N denotes the batch size. ŷi are the
model’s output values, λdispersion is the weight coefficient for
the dispersion loss. Lnonlinear represents the nonlinear loss,
λnonlinear denotes the weight coefficient for the nonlinear
loss, and Ltotal represents the total loss. To optimize the
model, the Adam optimizer is employed during training, which
adjusts the model’s parameters based on the loss gradients to
minimize the discrepancy between predictions and true values.

IV. EXPERIMENTAL SETUP AND DATA COLLECTION

To validate the proposed PICN based bending eavesdrop-
ping detection scheme, we establish an 80 km, 168 Gbps dual-
polarization QPSK coherent optical communication system,
as shown in Fig. 3. At the transmitter, a pseudo-random
binary sequence (PRBS) is generated offline that undergoes
QPSK modulation and shaping filtering. The processed signals
are then loaded into an arbitrary waveform generator (AWG,
Keysight M8196A) operating at a sampling rate of 92 GSa/s,
which generates I and Q branch signals at a symbol rate
of 42 GBaud. Subsequently, the I and Q branch signals are
amplified by an electrical amplifier (EA, SHF S807C) and fed
into the upper and lower RF ports of the IQ Mach-Zehnder
Modulator (IQ-MZM, Fujitsu FTM7977HQA 8V). The light
source employs a continuous-wave laser diode (LD) with an
output power of 10 mW, a center frequency fc = 193.415
THz, and a linewidth of 100 kHz. After the two branch signals
are modulated into optical QPSK signals, the polarization
controller adjusts the input polarization states to ensure that
each signal can be properly demodulated at the receiving end.
The transmission link is based on the G.652.D standard single-
mode fiber with a total length of 80 km. To simulate bending
eavesdropping [27], we select optical couplers with splitting
ratios of 1/99 and 10/90 based on the relationship between the
fiber bending power loss coefficient and the bending radius.
These couplers simulate bending eavesdropping with radii of
10.8 mm and 15 mm, respectively.
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Fig. 4. Learning curves for detection loss and accuracy across the training, validation, and testing phases of the PICN (a) 10.8 mm bending radius, (b) 15
mm bending radius, (c) mixed bending radii.

A variable optical attenuator (VOA) is used to regulate
signal output power. At the receiving end, the coherent receiver
(U2T CPRV1225A) performs optical-to-electrical conversion,
yielding four analog waveforms corresponding to X/Y po-
larization I/Q components. These signals undergo analog-
to-digital conversion via a 4-channel 80 GSa/s oscilloscope
(Keysight DSOZ594A), producing digital signals denoted as
HI, HQ, VI, VQ. Next, the HI, HQ, VI, VQ signals are
processed offline through a series of DSP steps including
IQ equalization, chromatic dispersion compensation (CDC),
matched filtering, frequency offset estimation (FOE), clock
recovery, channel equalization, synchronization, QPSK de-
modulation, and BER calculation. Finally, digital signals with
a BER below the threshold are input into the PICN model for
training and testing.

For the datasets of the PICN model, polarization data are ini-
tially collected over 80 km fiber links under normal conditions
and bending radii of 10.8 mm and 15 mm. Subsequently, the
polarization data corresponding to bending radii of 10.8 mm
and 15 mm are combined with the normal polarization data
to form composite dataset, each containing 4096 polarization
data samples. Additionally, to assess PICN model performance
under mixed bending radii, a hybrid dataset is constructed
by equally allocating 4096 samples from both bending radii.
The datasets underwent stratified randomization into training,
validation, and test subsets at a 7:1.5:1.5 ratio before being fed
into the PICN architecture. Finally, the PICN model is built,
trained, and tested using the PyTorch framework.

V. RESULTS AND ANALYSIS

To assess the stability and generalization performance of
the PICN model, we first examine the accuracy loss curves
across training, validation, and test sets. We then quantitatively
investigate the response characteristics of model stability and
generalization capability under varying noise intensities and
learning rate conditions based on the test set. For comprehen-
sive performance quantification, we employ four quantitative
evaluation metrics: Accuracy, Precision, Recall, and F1 Score.
These metrics are derived from a confusion matrix, which
is a 2 × 2 matrix that describes how well a model predicts
bending eavesdropping. The confusion matrix consists of four
key elements True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN). Where FP denote the

number of instances erroneously predicted as the normal class.
TP represent the number of instances correctly predicted as the
normal class. FN indicate the number of instances incorrectly
predicted as the bending eavesdropping class. TN correspond
to the number of instances accurately predicted as the bending
eavesdropping class. The above four evaluation indicators are
calculated using the following formula.

Accuracy is the proportion of the total number of samples
for which all predictions are correct.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (17)

Precision is defined as the proportion of true normal samples
among those predicted as normal, which measures the model’s
accuracy in detecting normal cases.

Precision =
TP

TP + FP
(18)

Recall represents the proportion of actual normal samples
correctly identified, reflecting the model’s coverage capability
for normal instances.

Recall =
TP

TP + FN
(19)

The F1 score is calculated as the harmonic mean of
precision and recall, and it comprehensively evaluates the
model’s balanced prediction performance for normal samples.
An increase in this metric typically indicates better equilibrium
between prediction accuracy and coverage capability.

Accuracy = 2× Precision×Recall

Precision+Recall
(20)

A. The Accuracy and Loss curves Analysis of the PICN Model

Fig. 4(a) illustrates the loss and accuracy curves of the PICN
model across the training, validation, and test sets over 50
epochs under the bending radius of 10.8 mm. During the initial
10 epochs, the training set loss decreases and classification
accuracy improves from approximately 57% to nearly 100%.
Meanwhile, both the validation and test set losses decline as
their corresponding classification accuracies rise, indicating
strong generalization capability of the model. From epochs
11 to 50, the training, test, and validation sets losses continue
to decline steadily until convergence is achieved. Notably, the
test set classification accuracy reaches a maximum of 100%.
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Fig. 5. Noise analysis of the test set under different bending radius (a) 10.8 mm bending radius, (b) 15 mm bending radius, (c) mixed bending radii.
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Fig. 6. Learning rate analysis of the test set under different bending radius (a) 10.8 mm bending radius, (b) 15 mm bending radius, (c) mixed bending radii.

Fig. 4(b) presents the loss and accuracy curves of the
PICN model across the training, validation, and test sets over
50 epochs under the bending radius of 15 mm. During the
first 3 epochs, the training set loss gradually decreases, and
the classification accuracy improves from 57.97% to 81.83%,
while the validation and test losses also decline and their
corresponding accuracies steadily rise. From epochs 4 to 20,
the training set loss continues to decrease and the classification
accuracy exceeds 98%. Concurrently, the validation and test
losses further decrease with their accuracies exceeding 98%,
demonstrating enhanced generalization capability. Between
epochs 21 and 50, the training, validation, and test set losses
remain stable at low levels until final convergence. The test
set achieves a peak classification accuracy of 99.67%. These
results confirm the PICN model effectively identifies tiny
signal changes for single-radius bending eavesdropping detec-
tion and demonstrates strong convergence with stable training
performance.

Fig. 4(c) illustrates the loss and accuracy curves of the
training, validation, and test sets over 50 epochs under mixed
bending radii. During the training process, the training set
loss decreases from 0.8007 to 0.1123 with its classification
accuracy rising from 48.52% to 98.78%, demonstrating the
PICN model strong learning capability on the training data.
Concurrently, the validation set loss gradually declines as its
classification accuracy rises from 52.44% to 98.37%, reflecting
enhanced generalization performance. The test set achieves
a maximum classification accuracy of 99.84%. These results
confirm the PICN model maintains high accuracy for eaves-
dropping detection across mixed bending radii.

B. Noise Analysis of the Test Set Under Different Bending
Radius

Fig. 5(a) evaluates the proposed PICN model’s performance
across multiple noise levels using test data at a 10.8mm
bending radius. At noise levels of 0.1 and 0.15, the model
maintains smooth accuracy and loss curves as the epochs
increase while achieving 100% accuracy. However, at 0.2
noise level, both metrics exhibit fluctuations accompanied by
decreased accuracy. Fig. 5(b) assesses performance at a 15mm
bending radius. With 0.05 noise level, smooth accuracy and
loss curves persist as the epochs increase, yielding 98.2%
accuracy. When noise increases to 0.1, accuracy drops to
96.9%, declining further to 94.6% at 0.15 noise level. Fig. 5(c)
examines performance under mixed bending radii. At 0.25 and
0.3 noise levels, stable accuracy and loss curves are maintained
with 99.3% accuracy, decreasing to 98.3% at 0.35 noise level.
It can be concluded that the PICN model exhibits excellent
anti-noise performance under mixed bending radii and its
robustness is significantly better than in single bending radius
scenarios. This performance requires optimization according
to the noise level and bending radius of the actual application
scenario.

C. Learning Rate Analysis of the Test Set Under Different
Bending Radius

Fig. 6(a) compares and evaluates the proposed PICN model
performance under multiple learning rates based on the test
set under the bending radius of 10.8 mm. When the learning
rate is 0.00001 and 0.0001, both the accuracy and loss of
the PICN model remain relatively smooth as the epochs
increase, and when the learning rate is 0.001, the changes in
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Fig. 7. Confusion matrix for the PICN model (a) 10.8 mm bending radius, (b) 15 mm bending radius, (c) mixed bending radii.
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Fig. 8. Detection accuracy comparison of KNN, SVM, RF, and PICN (a) 10.8 mm bending radius, (b) 15 mm bending radius, (c) mixed bending radii.

the accuracy and loss values no longer follow the original
linear law. Fig. 6(b) compares and evaluates the proposed
PICN model performance under multiple learning rates based
on the test set under the bending radius of 15 mm. At a
fixed learning rate of 0.00001, both accuracy and loss of the
PICN model demonstrate stable convergence characteristics
with increasing epochs. When the learning rate rises to 0.0001
or 0.001, however, these metrics exhibit significant nonlinear
fluctuations. Fig. 6(c) compares and evaluates the proposed
PICN model performance under multiple learning rates based
on the test set under the mixed bending radius. The variation
patterns of its accuracy and loss align with the conclusions
drawn from Fig. 6(a). It can be concluded that as the learning
rate decreases, the accuracy and loss curves smooth out and
convergence improves. But when the learning rate is 0.0001,
the accuracy and loss values at the three bending radii no
longer follow the original linear law.

D. Performance Metrics Under PICN Model
Fig. 7(a) presents the confusion matrix for a bending radius

of 10.8 mm, achieving 100% accuracy in detecting bending
eavesdropping. Fig. 7(b) shows the confusion matrix for a
bending radius of 15 mm, achieving 98.53% accuracy in
detecting bending eavesdropping. Fig. 7(c) presents the confu-
sion matrix for mixed bending radii, with a detection accuracy
of 99.02%. These results show that the PICN model effectively
distinguishes between single-radius and mixed bending radii
eavesdropping, underscoring its robust capability in detecting.

To verify the effectiveness of the PICN model in bending
eavesdropping detection, we compare it with RF, SVM, and

KNN. Fig. 8(a) shows that at a bending radius of 10.8 mm,
the detection accuracies of KNN, SVM, RF, and PICN reach
66.05%, 68.5%, 91.19%, and 100%, respectively. Fig. 8(b)
demonstrates that at a 15 mm bending radius, the detection
accuracies become 65.09%, 67.83%, 90.45%, and 98.53%.
These results prove the PICN model’s outstanding perfor-
mance in single radius bending eavesdropping detection. Fig.
8(c) shows that under mixed bending radii, the detection
accuracies of KNN, SVM, RF, and PICN are 50.14%, 51.85%,
69.22%, and 99.02% respectively. The results demonstrate
that PICN achieves optimal performance in eavesdropping
detection under mixed bending radii.

In summary, the small variations between bending eaves-
dropping data and normal data reduce KNN detection accu-
racy. Furthermore, bending eavesdropping data involves both
linear and nonlinear relationships while SVM faces limitations
due to feature selection and kernel function constraints. RF
relies on data splits for decision making but struggle to capture
fine distinctions in intricate nonlinear patterns. In contrast, the
PICN model employs deep neural networks to learn input
and output relationships and capture subtle feature changes
in bending eavesdropping data. Consequently, it achieves the
highest accuracy in detecting both single-radius and mixed
radii eavesdropping.

Fig. 9(a) illustrates that at a bending radius of 10.8 mm,
both bending eavesdropping and normal cases achieve perfect
precision, recall, and F1 scores of 1. The PICN model achieves
100% accurate classification with no false positives or nega-
tives. Fig. 9(b) demonstrates that at a bending radius of 15 mm,
the normal precision reaches 1, indicating no misclassifications
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Fig. 9. Precision, Recall, and F1 Score for the PICN model (a) 10.8 mm bending radius, (b) 15 mm bending radius, (c) mixed bending radii.

for normal samples. Furthermore, the bending eavesdropping
recall of 1 confirms that all eavesdropping attack samples
are correctly classified. The F1 scores of 0.9852 and 0.9856
demonstrate an effective balance between normal precision
and attack recall performance. Fig. 9(c) displays the model
precision recall and F1 score under mixed bending radii. At
a 10.8 mm bending radius the model achieves a precision
of 0.98 and recall of 1 with an F1 score of 0.9899. This
result shows that the model accurately classifies nearly all
eavesdropping attacks. With a 15 mm bending radius precision
increases to 1 while recall slightly drops to 0.9813 yielding
an F1 score of 0.9906. These results confirm the PICN model
precision, recall, and F1 score exhibit dynamic fluctuations
across different bending radii. In practical applications we can
adjust the model strategy to balance precision recall and F1
score based on specific needs.

VI. CONCLUSION

The feasibility of utilizing the PICN model to detect bending
eavesdropping in dual-polarization coherent optical commu-
nication systems has been experimentally investigated. First,
we establish a theoretical model of optical signal transmission
under bending eavesdropping. Building upon this foundation,
the PICN model incorporating physical characteristics such
as dispersion and nonlinear effect is designed. Subsequently,
an experimental platform for bending eavesdropping detection
in dual-polarization coherent optical communication systems
is established to collect normal polarization data and eaves-
dropped polarization data. Finally, evaluate and compare the
performance of the PICN, RF, SVM, and KNN classifiers
in terms of accuracy, precision, recall, and F1 score under
both single-radius and mixed radii bending eavesdropping.
The experimental results show that PICN achieves detection
accuracies of 100%, 98.53%, and 99.02%, under 10.8 mm,
15 mm, and mixed bending radii, respectively. This work
validates the feasibility and effectiveness of PICN in detecting
bending eavesdropping attacks, while also providing a critical
foundation for advancing next-generation intelligent security
detection systems.
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