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Abstract

Background

Tuberculosis (TB) and diabetes mellitus (DM) are both highly prevalent in Pakistan. Latent Mycobacterium
tuberculosis (Mtb) infection is common however the effect of DM and latent TB infection (LTBI) is less

understood. We used RNA arrays to study host transcriptional responses to investigate this.
Methods

Participants were controls (EC) and with DM, sub-classified to LTBI and DM-LTBI. Host blood transcriptomes

were studied using microarrays followed by GO, WwikiPathway and rReactome pathway analyseis.
Results

Gene expression compared with EC revealed 187 differentially expressed genes (DEGs) associated with LTBI;
182 DEGs with DM and 13 DEGs with DM-LTBI. In LTBI and DM, downregulation of antigen presentation
and upregulation of inflammatory genes was evident whilst in DM, mostly immune related genes were

downregulated.

Comparison between LTBI-DM and LTBI revealed 321 up- and 12 downregulated DEGs, with upregulated
immune response and inflammatory genes whilst a downregulation of genes associated with insulin metabolism

and oxidative stress were observed.

The impact of uncontrolled hyperglycemia was seen as downregulation in protein synthesis and oxidative
phosphorylation in the host. This effect was further enhanced in those with hyperglycemia within the LTBI-DM
group-where-a-shif. Importantly, our observations of dysregulated pathways observed in diabetic individuals

were as found in published datasets.
Conclusions

We show here that LTBI and DM synergistically increase host inflammatory and metabolic processes whilst
reducing innate immunity. This dysregulation by uncontrolled hyperglyemia highlights increased risk of
progression of Mtb infection in this cohort and emphasizes the need for diabetes control in a TB endemic

population.

Background
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In 2024 there were 10-5 million new TB cases and 1-5 million deaths globally. WHO defines latent TB

infection (LTBI) as a state of persistent immune response to stimulation by

Mycobacterium tuberculosis (Mtb) antigens without evidence of clinically manifested active TB, which can be
detected by the presence of Mtb specific T cells secreting IFN-JJj in peripheral circulation (1). Comorbidities
and conditions associated with risk of LTBI reactivation are categorized as high, moderate or low risk. At
moderate risk are patients with diabetes mellitus type 2 (DM). In 2014, the global burden of LTBI was 23%
(95% uncertainty interval: 20.4%-26.4%). Estimates based on these date estimate TB incidences of 16.5 per
100,000/year in 2035 (2). Pakistan is highly endemic for tuberculosis (TB) with an estimate of 51,000 new
cases emerging each year, contributing 61% of the TB cases in Eastern Mediterranean region (1). There is an
increasing frequency of diabetes (31% with 34.5 million in 2024) in the adult population according to the
International Diabetes Federation (3). DM increases the risk of activation of TB three-fold. Population based
surveys show that prevalence of diabetes is also associated with LTBI. A study by Barron et al showed that in

the US population, prevalence of LTBI with DM was 2x greater than those who were without DM (4).

Protection against TB is mainly shown to be CD4* T cell driven (5). CFhe-eytokines including IL-12, IFN-y,
and TNF- v are crucial for induction and maintenance of protective immune responses against Mtb. Cytokines
and gene transcriptional analysis reflect the activation, regulation and modulation of innate and adaptive arms of
the immune system. Individuals with DM have dysregulated T-cell-activation and signaling as compared with
healthy controls (6). Further, genes enriched in immune response processes such as granulocyte and T-
lymphocyte activation and those involved in antigen processing are downregulated in individuals with DM,
whilst upregulated genes were associated with fatty acid and carbon metabolism (7). LTBI and DM diminished
frequency of Thl, Th2 and Th17 has been observed in LTBI-DM subjects (8). Currently, the effect of LTBI

and mechanisms associated with progression of Mtb infection due to diabetes are unclear (9).

Here we measured whole blood cytokines stimulated by Mtb-antigens and studied blood transcriptional profiles
in individuals with and without a diagnosis of DM to investigate the effect of LTBI. Our study of host blood
transcriptomes in the study groups revealed enhanced dysregulation due to the concomitant effect of LTBI and

DM with uncontrolled hyperglycemia.

Methods

This is an observational study approved by the Ethical Review Committee of the Aga Khan University (AKU).
All research was performed in accordance with relevant guidelines/regulations in accordance with
the Declaration of Helsinki. Informed consent was obtained from all participants and/or their legal guardians.

Participants were recruited from the AKU Hospital and Jinnah Postgraduate Medical Center, Karachi. Study


https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/

84
85‘
86
87‘
88
89
90
91
92
93

94

95‘
96
97‘
98
99
LOO‘

101

102
103
104
105
106
107
108
109
110
111
112
113

114
115
|16
|17
118

119

groups comprised: individuals aged > 18 years, those from the community, patients attending diabetes clinics
and attendants accompanying patients to TB clinics. Exclusion criteria were those with known
immunocompromised conditions including HIV, cancer, transplant recipients or with a history of
immunosuppressive drugs. We recruited participants into four study groups:: healthy endemic controls (EC),
LTBI, DM and DM with LTBI (DM-LTBI). Complete blood counts (CBC), hemoglobin (Hb), as well as

HbA Ic levels were tested in all study participants. Patient history regarding any treatments taken for diabetes,
hypertension or additional comorbids were documented. The number of individuals taking metformin,
sitagliptin, glimepiride, insulin and statins was documented. The DM group was identified at HbAlc > 6.5 %.
Individuals with HbAlc levels 6.5-8% were classified as controlled (C-DM), whilst those with HbAlc > 8%

were classified as having uncontrolled hyperglycemia (H-DM).
IGRA testing

Diagnosis of LTBI was conducted by testing whole blood cells using the QuantiFERON-TB Gold (QFT-GI¥F)
assay as per manufacturer’s instructions (Qiagen, Cellestis, USA). Plasma supernatants from ‘nil’, ‘TB1°, ‘“TB2’
and ‘mitogen’ tubes were tested for IFN-y using the QF TuantiFERON ELISA assay. The TB1 tube contains
antigens that stimulate CD4+ T-cells, while TB2 contains additional peptides that stimulate both CD4+ and
CD8+ T-cells. LTBI diagnosis was made using QFT software. The cut-off for positivity was > 0.35 [U/ml of

either TB1 or TB2 values (after subtraction of nil_values).
Host blood RNA transcriptome analyses

RNA was extracted from whole blood. 100 ng RNA was used in the Clariom S Array Type gene expression
assay as described previously (10). We included assessment of RNA QC and include a sample QC report (S
Table 3). In each case #-was-ehecked-that RNA quality was checked including that concentration, purity and
integrity was within the defined acceptable limits. Samples selected for microarray processing were all with
260/280 ratios above 1.5. CEL files were analysed using the TAC Transcriptome Analysis Software Suite
(TACS version 2) using the Summarization Method: Gene Level - SST-RMA Pos vs Neg AUC Threshold: 0.7
against Genome Version: hg38 (Homo sapiens). Normalization is performed by the Robust Multi-array Average
(RMA) method which runs background correction followed by quantile normalization and summarization
(median-polish) to generate a final output of one log2-normalized expression value per probeset per sample. We
filtered the data to select significant differentially expressed genes (DEGs) up- or down-regulated (log2 FC
(fold change) < -2 or > 2; P value <0.05). Further, hierarchical clustering and volcano plots were made using
TACS as well as R.

For accession number generation, array output raw files (CEL files) and processed files (CHP) were submitted
to Gene Expression Omnibus (GEO) NCBI and are available as GSE177477 and GSE297003 (S Table 1).
TACS generated list of DEGs used in the study for the gene enrichment analysis are shown in S Table 2.

Specifically, as an example of data QC we have included details for the comparison of LTBI and Control (S
Table 3).

Functional gene enrichment analysis
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DEGs were analysed using ‘R’ to perform Gene Ontology (GO) analysis (11) and Kyoto Encyclopedia of Genes
and Genomes (KEGQG) pathway enrichment analysis (12, 13). We used two types of functions from
clusterProfiler i.e, enricher function (enrichGO, enrichKEGG) for hypergeometric test and GSEA (gseGO,
gseKEGGQG) function for gene set enrichment analysis on user defined data (14, 15). GO enrichment analysis was
carried out employing enrichGO function which requires a gene list as input vector. The results are annotated
along three ontologies: Molecular Functions, Biological Processes and Cellular Components with the following
parameters: pvalueCutoff = 0.05, pAdjustMethod = "BH" (Benjamani and Hochberg) and qvalueCutoff = 0.05.
The enrichKEGG requires a gene-list as input, parameter of pvalueCutoff = 0.05 and organism of interest
(homo sapiens “hsa”). Gene set enrichment analysis was performed on GO terms using gseGO which requires
gene-list in the form of input vector, organism of interest (database: org.Hs.eg.db), pvalueCutoff = 0.05,
minGSSize (minimal size of genes annotated by Ontology term for testing) = 10 and maxGSSize (maximum
number of genes annotated for testing) = 800. gseKEGG function is similar with respect to input parameters
(genelist, organism = hsa, minGSSize, maxGSSize and pvalueCutoff), applied on KEGG database (with
permission). Additional analysis was performed on wiki-pathways, using enrichWP (organism = "Homo
sapiens" ) and gseWP (organism = "Homo sapiens" ). Reactome pathway analysis was also performed as it can
analyse multiple datasets simultaneously for comparative pathway analysis. The function used was gsePathway
(geneList, pvalueCutoff = 0.2, pAdjustMethod = "BH"). For visualization of results related R packages such as
GOplot, enrichplot, DOSE and pathview were used to generate pathway maps, dotplots, heatmaps and barplot
(15-17).

To further validate the results of enrichment and functional analysis, a cell deconvolution analysis was
performed on the DM-LTBIi cohort (n=10), by classifying them in HDM=4 and CDM=6. The normalized data
of the cohort was obtained from TACS using probe normalization method (RMA). The sample signal table was
generated and used as input in the gedit(Gene Expression Deconvolution Interactive Tool) (18). The reference
matrix used were LM22 (19) and ImmunoState (20). The heatmap of cell types was computed on the basis of

minimum entropy.

Results
Description of study groups

We studied gender and age matched participants (51 with normoglycemia and 49 with hyperglycemia)
subclassified as endemic controls (EC, n=22), LTBI (n=29), DM (n=30) and DM-LTBI (n=19), S Fig 1. Study
subjects were aged 41.27 + 13.09 years (Table 1). Whilst gender distribution was comparable between all
groups, those with diabetes were significantly older (p<0.0001). Hemoglobin levels, whole blood cell counts

(WBC) and neutrophil/lymphocyte ratio (NLR) were comparable between the groups studied. HbAlc levels
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were comparable between DM-LTBI and DM (p=0.078). Most hyperglycemic participants (93.3% DM, 89.5%
DM-LTBI) were on treatment however, 60% of DM and 42.1% of DM-LTBI study subjects had H-DM. An
equivalent number of individuals were taking anti-hypertensive medications and statins in DM and DM-LTB

groups.

Details of the anti-diabetic treatments taken are given in S Table 3. All 49 patients with diabetes were on
treatment but data was not available for six individuals. They were taking different medications either
separately or in combination; 38 were on metformin, 25 were on sitagliptin, 17 were on glimepiride, and 6 were
using insulin. Twelve patients with diabetes were on a single antidiabetic drug and of these four had C-DM and
8 had H-DM. Thirty-one patients took combination treatments with two or three drugs. Fourteen patients used
sitagliptin with metformin; 3 had C-DM, and 11 had H-DM. Nine patients took a combination of sitagliptin,
metformin, and glimepiride, but all had H-DM. Further, six patients used insulin and two had C-DM and four
had D-DM. There was no difference in the anti-diabetic drug combinations used by those in the H-DM and C-
DM groups. Furthermore, the usage of medications between those in the DM-LTBI and DM groups was not
significantly different.

Assessment of IFNJJj in whole blood stimulated with Mtb antigens

Measurement of IFN-JJl] after stimulation with Mtb specific antigens is indicative of host Mtb infection status
(21). IFN-J levels stimulated by TB1 and TB2 were found to differ, p<0.001 between study groups (Fig 1). As
expected, TB1- and TB2- induced IEN-JJf was greater in LTBI than EC groups (p<0.0001). Also, IFN-JJi} levels
were raised in LTBI (p<0.0001) and DM-LTBI (p<0.0001) as compared with DM groups. IFN-JJj levels
induced by TB-1 and TB-2 correlate positively in each of the groups: EC (Spearman’s rank rho 0.807,
p<0.0001), LTBI (SR rho 0.961, p<0.0001), DM (SR rho 0.909, p<0.0001) and DM-LTBI (SR rho 0.994,
p<0.0001) groups (data not shown).

Investigating the impact of MTB infection and hyperglycemia on host blood transcriptional profiles

We investigated host blood transcription profiles to understand immunological and cellular profiles in study
participants. Between EC, LTBI, DM and DM-LTBI groups, 359 Differentially Expressed Genes (DEGs) were
observed. DEGs between EC and other groups are listed in S Table 2. Compared to EC, there were 187 DEGs
against LTBI, with 4 Up- (2.1%) and 183 down- regulated genes, Fig 2A. There were 182 DEGs against DM
(25 up- (13.7%) and 127 down- regulated genes) and then 13 DEGs between DM-LTBI and EC groups (6 up-
and 7 down-regulated genes), Fig 2B.

Analysis of abovementioned DEGs through a Venn diagram (Fig 2C) revealed 165 common DEGs between
LTBI and EC, 160 DEGs between DM and EC and 12 DEGs between DM-LTBI and EC groups. Twenty-two



|85
| 86
|87
| 88
|89
190

191

192

193
194
195

196
197
198
199

10
11
12
213‘
14

216

down-regulated DEGs were similar to LTBI/ EC, and DM/ EC analyses, Fig 2D. These included immune
response genes (CHI3L1 which plays a role in Th2 inflammation; PECAM1, a cell adhesion and signaling
molecule; ADGRE?2, involved in mast cell responses; CHMP2A, involved in endocytosis and, DDX56 an
Interferon Stimulated Gene, ISG). Genes associated with mRNA processing (SNRPN), ribonucleases
(RNASET?2), as well as cellular metabolism (TALDO1, involved in the pentose phosphate pathway; SLC2A43, a

GLUT membrane transporter) were downregulated.

Downregulation of innate immune response related genes in LTBI

We focused further on the transcriptomic comparison between individuals in the LTBI and EC groups.
Specifically, as an example of a dataset comparison, we have included details for sample QC and list of DEGs

the comparison of the LTBI and Control groups (Tables S4-5).

In LTBI, we found upregulated USP/7 genes (de-ubiquitinating enzymes involved in apoptosis), OR51F2 (G
protein-coupled receptor signaling) and YEATS?2 (activates TAK1/NF-kappaB pathway), Fig 3A. HLA genes
(HLA-DRBS5, HLADQAI) were most downregulated. Also downregulatedlewered were JCHAIN, UBE2W,
TLR10, CHI3LI and PI3. Dotplot analysis of GSE-GO biological processes and molecular functions (Fig 3B)
and the heatmap of DEGs (Fig 3C) further emphasized how affected DEGs were involved in antigen

presentation and protein modification.

There were only 13 DEGs between DM-LTBI vs EC, so gene ontology pathway analysis could not be run.
However, upregulated genes in DM-LTBI were associated with innate immunity (CLEC12A), processing of
proteins and lipids (PAM16, MAN2A42, PIGC) oxidative (CORQO?7) and angiogenic (SVBP) function. Down-
regulated genes (DPP4, FAMI102A4, TTN, EROI1A, IL6ST, LEF1) were associated with blood sugar control and

insulin secretion.

Transcriptional profiles of diabetic individuals display enhanced inflammatory and reduced innate

immune responses

DEGs between DM and EC visualized in a volcano plot (Fig 4A) show up-regulated genes include ADAM?29 (a
disintegrin and metalloprotease domain) and CHMP?7 (involved in endosomal sorting). Downregulated genes
include SORLI (associated with endolysosomal processing), GNLY, CRLF3 and CACUL] (associated with anti-
obesity treatment), ADGRE?2 and CHI3LI. Dotplot analysis of the GSE Reactome for these data further
supported suppression of neutrophil degranulation, innate immune and immune pathways in the DM group (Fig
4B). Additionally, the heat map of the GSE-Reactome identifies downregulated genes associated with innate
responses (GNLY, PRF 1) and neutrophil function (KLRC3), Fig 4C.




Impact of diabetes on the transcriptome of those with LTBI

Next, a comparison of DM-LTBI and LTBI revealed 333 DEGs with 321 (96.3%) upregulated genes. HLA-
DRB5 was the most upregulated, followed by S70048 (involved in leukocyte recruitment). Other upregulated-
genes were, PI3, HEMGN (hematopoietic cell differentiation), GYPA (erythrocyte protein) and BLVRB
(regulator of hematopoiesis and intermediary metabolism) (FigSA). Downregulated genes included ND6 (role

in mitochondrial function), ABCD? (involved degradation of fatty acids) and PSMC3 (an ATPase subunit).

GSEPathway (Reactome) analysis revealed that in those with DM-LTBI there was upregulation of innate (Toll
like receptor, neutrophil degranulation) and adaptive immune responses (antigen presentation pathways),
inflammatory processes related to interferon signaling and cytokine signaling (Fig 5B.) These pathways are
further described through the KEGG GSE heatmap showing inflammation and innate host immunity (/L-/R2,
TLRI, TLR4, TLRS, TREM1, JAK2 and MMP9) and antigen presentation (HLA-DQA1, HLA-DRA) to be
differentially regulated (Fig 5C).

We also compared transcriptional profiles eenverseby-by comparing individuals with DM-LTBI and those with
diabetes only. Analysis of host transcripts between DM-LTBI and DM groups revealed 195 DEGs, with 150
upregulated and 45 downregulated genes (S Table 2). Upregulated genes in DM-LTBI were mostly related to
innate immunity pathways and 38 of them overlapped with those raised in comparison with LTBI. However, the
fold change of DEGs between DM-LTBI and DM (using the eurcut-off used) was insufficient to give results in
GO pathway analyses.

Gender and age-based analysis in those with diabetes

We investigated the effect of gender and age on host transcriptional profiles of study subjects with DM (DM-
LTBI and DM). There were 11 males and 11 females, respectively. Analysis revealed 58 DEGs with 20
upregulatedtp- genes. GSE biological pathway analysis revealed the-ene suppressed pathway related to
macrometabolic processes (S Fig 3). Presence of sex-specific signatures were present particularly related to the
Y -chromosome identifying DDX3Y (DEAD box protein crucial for RNA metabolism and translation), EIF1A4
(eukaryotic translation initiation factor), RPS4Y1 (encodes ribosomal protein S4 crucial for protein synthesis),
USPIY (involved in protein deubiquitination and is-responsible for male fertility), UTY (encodes protein with
TPR motifs involved in protein-protein interaction), and PRKY (pseudogene). Genes associated with the
contractile ring and intraflagellar transport were observed such as ACTN4, MYH9, MSN (encodes moesin
protein critical for immune synapse formation), and IFT52 (cilial biosynthesis and maintenance). Transcription
regulators like HIPK1 (phosphorylation of homeodomain transcription factors), MED15 (encodes subunit of a

mediating complex that regulates transcriptional signaling), NCOA6 (multifunctional coactivator), RTF1



(encodes a component of PAF1 complex regulating transcription elongation), and ZMAT?2 (pre-mRNA
splicing). CX3CR1 a sex-specific gene was found to be downregulated. Biological pathway analysis identified
athe hemoglobin signal (haptoglobin-hemoglobin complex, hemoglobin alpha binding) and reflects the sex-

based differences in erythroid transcript contribution (males and females have different erythroid biology).

Furthermore, as there is a significant difference in age of the DM cohort and(BM; DM-LTBI) cohorts, an

analysis was required to check the impact of age on these responses. Wwe compared DEGs comparing those

aged below 50 years with those aged 50 years and over (S Fig 4). This analysis showed 68 DEGs with 28 Ypup-
regulated genes. Due to the limited number of differentially expressed genes, enrichment analysis using
ClusterProfiler could not be reliably performed. Therefore, we used g:Profiler (22) package in R, which is
suitable for smaller gene lists, to conduct functional enrichment analysis. Enrichment pathway analysis
performed using KEGG, reactome and WikiPathways revealed the dysregulation of Coronavirus disease, has-
mir, axon guidance and cytoplasmic ribosomal protein pathways. The highest gene count corresponded to has-
mir-590-3p which is a precursor miRNA (mir-590) and regulates genes associated with synaptic maturation.
Followed by nervous system development and axon guidance displayed in the REACTOME category. The
COVID-19 KEGG hit likely points towards pathways overlapping with innate immunity or other inflammatory

genes.
Impact of hyperglycemia on the host and in those with LTBI

Although most study participants with diabetes were on treatment, only 41% of individuals had controlled blood
sugar (C-DM). We first focused on the effect of H-DM comparing profiles with C-DM, irrespective of LTBI
status. A PCA analysis showed separation between profiles of H-DM and C-DM groups, (SFig 5A) with 13
DEGs, as shown in the unsupervised hierarchical heatmap, SFig SB. The 10 up-regulated genes included those
associated with lymphocyte activation (AKAP7, IL6ST, BANKI, FCER?2) and the three down-regulated genes
were markers of innate responses (HLA-DRB1, ST8S144, VNN2).

We then investigated uncontrolled hyperglycemia in those with LTBI whereby a comparison of H-DM and C-
DM participants revealed 333 DEGs with 321 (96%) Up- and 12 Down-regulated genes. A volcano plot depicts
upregulated genes to include ribosomal proteins (RPL5/7/21/34 and RPS17), small nucleolar RNAs
(SNORD21/66) and those associated with cell growth and signaling (CASP8AP2, ACOTI13, NATI), Fig 6A.
Gene enrichment and GO biological processes analysis depicts upregulation of pathways related to leucocyte
migration, cell motility and differentiation, as well as catabolic processes in this cohort. We observed
downregulation of ribosome biogenesis, RNA processing, ribonucleoprotein complex biosynthesis and peptide

processing, Fig 6B.

We used investigatedusing-an cell-deconvolution analysis to identify which cellular types were identified in the

sample groups analysed. We also include the sample signal data for the same DM-LTBi-HDM and DM-LTBi-
9
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CDM individuals (Table S6). These data were used via Gedit3 tool to deconvolute as per cell type analysis
using different reference databases. We used Immunostates as well as LM22 Immune signature analysis and
obtained partners distinct to the comparison of H-DM and C-DM subsets (S Tables 7-8). Immunostates analysis
revealed upregulation of a neutrophil signature across all samples, consistent with a DM phenotype. Further,
CD8-positive alpha-beta-T cells were present (Fig 6C). LM22 revealed that tissue-wise expression profiles
showed dysregulation in monocytes and T cell (CD8 and CD4-naive) fractions. Of note downregulation of M2

macrophages was evident in samples with H-DM (Fig. 6D).

Comparison of transcriptional data with published gene sets

To validate our LTBI group and analysis, we checked for RISK genes of active TB in DEGs associated with
LTBI, S Table 2. Warasinkse et al. 3- gene, Zak et al. 4-gene, Penn-Nicholson et al. 6- gene and Mulenga et al.
11- gene signatures (S Table 9), (23-27), were all absent in these DEGs. We also compared LTBI associated
DEGs with those reported in a UK- based study of IGRA+ individuals by Broderick et al. (28). We found four
commonly downregulated genes; FAM174A (prognostic markers in cancer progression), KIAA0226L (involved
in endocytic trafficking), PECAMI (leucocyte trafficking and inflammation) and RASSF2 (tumor suppressor

gene).

Next, we compared our DM associated DEGs with transcripts identified in diabetic individuals in the multi-
country study by Eckold et al. (29), and found 42 DEGs common with our list (S Table 10A). Enriched GO
biological pathway analysis of these common DEGs demonstrated their role related to cellular signaling, protein
secretion and platelet formation (S Fig SA). Notably, these data (S Fig SB), included the downregulated genes
SORL1, CACULI earlier noted in Fig 4. We also compared H-DM DM-LTBI associated DEGs with the Eckold
et al. study (29). Here 100 DEGs (12 up- and 88 d-own-regulated) were common between the data sets (S Table
10B). Further, GSE GO biological pathway analysis highlights the activation of protein biosynthesis and
metabolic processes and gene expression in individuals with H-DM (S Fig 6A), with key ribosome associated
proteins (RPS and RPL family). WikiPpathway analysis depicts the impact of diabetes on oxidative
phosphorylation in the mitochondria (S Fig 6B).

Discussion

Control of hyperglycemia remains a challenge in resource limited settings where diagnosis of diabetes and
access to treatment remains difficult. In high TB burden settings, there is a compounding effect of diabetes
together with need to investigate its impact in the context of latent TB infections. We observed dysregulation of

inflammatory markers in those with LTBI and in the presence of diabetes there was alteration of metabolic
10
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pathways leading to disrupted glycemic control with downregulated immune-related genes. Our data highlights
the impact of uncontrolled hyperglycemia with dysfunction of cellular pathways such as oxidative

phosphorylation in the host with LTBI and DM.

Study participants were age-and-gender matched however, those with diabetes were comparatively older,
consistent with the natural distribution of diabetes which is more prevalent in older individuals (30). Neutrophil
counts were significantly higher in those with diabetes (DM and DM-LTBI), corroborating previous reports of

increased neutrophil levels in diabetic subjects (29).

In the study cohort, individuals with diabetes were receiving routine medications prescribed by the
endocrinologist including insulin or metformin alone, with each other or in combination with other
antihyperglycemic agents. These drugs such as metformin might have a modulatory impact on immune and
metabolic pathways. The relatively small sample size and variation in the diabetic medications used did not

allow for multivariate analysis based on antidiabetic treatment.

Studies of blood transcriptional profiles revealed that in LTBI, there was upregulation of USP17, which is
associated with inflammation and endolysosomal trafficking (31), and a-Also of, YEATS, associated with
activation of TAK1/NF-kappaB pathway shown to influence cellular processes in TB infections (32).
Additionally, inflammatory markers and host antigen processing pathways were downregulated. Notably,
increased CHI3L1 and PI3 expressions are associated with disease severity in patients with TB. CHI3L1 recruits
immune cells, influence cell apoptosis and proliferation signals, in response to microbial infection (33). Similar
to LTBI associated DEGs reported by Broderick et al. (28), we found downregulation of genes associated with

inflammatory and cell recruitment processes, which might be necessary to maintain the latency of infection.

In those with diabetes we observed upregulation of inflammatory genes, changes in the metabolic pathways as
well as increased host protein synthesis, with downregulation of innate immunity related genes (Fig 4).
Decreased NK cell activity is also associated with impaired metabolic pathways and increasing glucose
concentrations and greater infection risk (34). Genes found to be commonly downregulated in LTBI/EC and
DM/EC group comparisons (Fig 2) were related to immune response pathways as well as others related to gene
regulation (SNRPN and RNASET?2) and metabolic pathways (TALDO1, SLC2A43). Increased ADAM?29 is
associated with DM-associated pathology. Downregulation of SORLI and ADGRE?2, which affect insulin
signaling and adipogenesis (35, 36), and of CACULI, is-a cell stress response gene (37), highlights the cellular

and metabolic dysfunction in diabetic individuals.

The upregulation of HLA-DRBS5 points to an enhanced immune defect in DM-LTBI given that this marker is

associated with progression to TB. Similarly, S7/00A48 induces proinflammatory cytokines and chemokines and

is increased in active TB (38). Our findings fit with literature showing that individuals with diabetesies with

latent TB infection have decreased frequencies of yd T cells, Type I and Type 17 cytokines, and CD8 T cell
11
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markers (perforin, granzyme B, granulysin) (39). The shift in inflammatory markers is supported by reports that
people with LTBI and DM display a shift in frequencies of classical monocytes (M1) to non-classical
monocytes (M2) (40). In DM-LTBI, upregulation of HEMGN and GYPA indicates dysregulation of
hematopoietic function in this group, whilst upregulation of BLVRB involved with intermediary metabolism and
insulin signaling supporting dysregulation of glucogenesis associated with diabetes mellitus. Whilst

downregulation of ND6 and PSMC3 alterations in mitochondrial function and oxidative metabolism (Fig 5).

BLVRB reduces biliverdin to bilirubin in a NADPH-dependent mechanism in a final step in heme metabolism.
In the case of BLVRB deficiency there is a change in cellular pathophysiology with an increase in oxidative
stress and a shift in macrophages to the M2 phenotype (41, 42). Hence, the observed increase in BLVRB in
DM-LTBI suggests that there may be a shift to an alternate macrophage phenotype in this cohort. The
observation of increase in ribosomal protein expression also fits with the hypothesis of increased cellular stress

in this group.

It was important to conduct a sex-based analysis to see if there was an effect within the diabetic cohort studied.
We found differential regulation of genes associated with male-sex such as those on the Y chromosome and
male sexual function. Further, the hemoglobin pathway was found upregulated whichith fits with increased

erythroid cells in males. CX3CRI1 a fractile chemokine was found to be downregulated in males.

In comparison of older and younger than 50 years age groups, we found cytoplasmic ribosomal pathways
associated with our age-related analysis. As protein synthesis is associated with effective cellular responses this
fits with the increased in the COVID-19 KEGG which is associated with innate immunity and inflammatory

genes. These may suggest increased innate immune activation in the younger age group.

Sex-specific biological traits along with environmental factors also modulate an individual’s susceptibility to
obesity and type 2 diabetes (43). [Howewver,-in summary our data showed that gender-based differences exist
amongst those with diabetes but these did not overlap with the ind-inflammatory signature shift observed in the

analysis of DM-LTBI and DM groups.

Chronic hyperglycemia associated with diabetes results in increased inflammation and disease associated
pathophysiology (44). The association of lymphocyte activation in H-DM (4KAP7 and IL-6) fits with worse
outcomes in diabetes (45, 46). Conversely, downregulation of FCER? fits with lowered immunity and failure to

kill microbial organisms (47).

In particular, the upregulation of innate immune genes /L-/R2, TLR1, TLR4, NLRP3 and MMP9 in H-DM with
LTBI denotes affected inflammation and oxidative stress in this group (Fig 6). This may further induce the
secretion of other cytokines and interfere with beta cell function (48, 49). MMP9 has also been shown to be

associated with dissemination of granulomas (50). We observed upregulation of MMP9 in DM-LTBI as
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compared with DM. Previous studies have shown increased expression of MMP9 in monocytes/macrophages
(51). MMP-9 degrade type IV collagen, fibronectin and elastin in the lung allowing migration of immune cells
at the site of infection. Altered MMP9 in the DM-LTBI group suggests increased inflammation and
extracellular matrix remodelling-. Increased expression of TLR-pathway associated genes (TLR1, 4 and 8) were
observed in DM-LTBI group. Elevated expression of TLR have been documented in both TB and diabetes
showing increased pathogen recognition as well as a marker for chronic inflammation (52). Altered level of
TLRs are also shown to be associated with TB resistance and more severe TB outcomes. Higher TLR4
expression in TB with DM have shown increased expression of NFKb resulting in persistent inflammation

explaining increased pathology in such cases (53).

Conversely, we found NAT downregulated in the DM-LTBI cohort and this could contribute to worsening
outcomes as NATI is known to contribute to insulin sensitivity in diabetics (54, 55). NAT]1 is included as a
prognostic marker for breast cancer and in patients receiving chemotherapy low NAT1 expression has been
associated with a significant decrease in 5 year survival (56). The effect of NATI on drug-metabolism results in
its association with oxidative phosphorylation in related genes (e.g. NDUFB6). Therefore, NAT1 levels can also
play a role in progression of MTB infections, especially in the presence of diabetes where cellular stress levels

are increased.

Importantly, deconvoluted cell-specific analysis using reference datasets revealed that in the Immunostates
generated heatmap there was a neutrophil-driven inflammatory signature in individuals of the H-DM subsets.
This fits with the impact shown of neutrophils function in type 2 diabetes and increase in RAGE products (57).
Similarly, cell specific analysis using the leucocyte matrix 22 immune-cell signature revealed an M2
macrophage response highlighted an immunoregulatory phenotype characterized by levels of IL-10 and TGF-a»
and reduced expression of IL-12 (58). As an M2 phenotype is less capable of maintaining effective containment
of latent MTB, the LM22 deconvolution supports ourare findings that diabetes particularly in the H-DM group

triggers a shift towards impaired macrophage function.

Our results describing the effect of diabetes on those with LTBI including downregulation of innate immune
and cancer markers, were supported through identification of common gene sets identified in TANDEM study
cohorts from South Africa and Romania (29). Additionally, in our H-DM DM-LTBI associated DEGs we found
common genes associated with dysregulated protein biosynthetic, metabolic and oxidative phosphorylation

pathways.

Our data identify key pathways which may be used as targets for host-directed therapies in the diabetic host
with LTBI. Host directed therapies for tuberculosis can add value to anti-tuberculous treatment regimens.
Inhibiting MMP activity has shown to enhance frontline TB drug delivery and/or retention in the infected

tissues through improving blood vessel integrity (59). TLR modulators can play a significant role in re-defining
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immune responses to control chronic inflammatory responses. Upregulation of vitamin D receptor following
ligation of TLRs induces antimicrobial peptides such as cathelicidins and defensins (60). TLR modulators can
play a significant role in re-defining immune responses to control chronic inflammatory responses. Hence
v¥itamin D can be used as a therapeutic marker which may enhance the immune responses and might be

helpful in favourable disease outcome.

It is a limitation that this was a cross-sectional study and we did not follow the individuals to record if any
progressed to active TB or, could not measure clinical outcomes. It is also a limitation that we were unable to
conduct any protein validation studies such as through Western blots, or use flow cytometric analysis to
characterize cell populations. Additional limitations include the absence of full treatment protocols of the
individuals in the diabetes group. Previous studies have shown synergistic effects of metformin and rifampicin
in reducing intracellular growth of MtbAL—+#berewlosis. Retrospective analysis of clinical trial data
demonstrated that patients with TB and DM show better clinical outcomes with fewer lung cavities and
decreased proportion of individuals progressing to advanced disease post treatment with metformin (61). As a
result, metformin is being promoted as a candidate for therapeutic prevention and adjunctive treatment
approaches in TB (62). However, as these medications are not standardized across the treatment cohort and due
to their heterogenous use we could not determine their specific effects on host transcriptomic changes. In
addition, we also did not have chest X-ray information on our study participants, rule out any granulomas
within the LTBI cohort. The group sizes were too small to enable the DM group participants to be studied by

their diabetes treatment regimen.

In summary, we observed dysregulated immunity in individuals with DM-LTBI which is compounded by
uncontrolled hyperglycemia. Such immune modulation is likely to increase susceptibility of the host to TB but
would extend to a broad range of pathogens. Of note, individuals with LTBI are not usually given prophylaxis
in Pakistan due to limited availability of treatment provided by the National TB Program, Pakistan for high-risk
individuals such as, patients living with HIV, household contacts of smear positive TB patients and those

initiating biologics treatment using anti-inflammatory drugs.

In conclusion, our data highlights the risks of ineffective diabetes management in a high TB burden setting,
where there is a high likelihood of LTBI amongst the population. Our data reinforces the importance of bi-
directional screening for LTBI and DM followed by effective diabetes management to reduce risk of

progression to active TB.
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Figure Legends

Figure 1. IFNJJj induced by MTB antigen stimulation of whole blood higher in IGRA positive than
IGRA negative individuals. Whole blood cells from study subjects in each group endemic controls (EC,
n=22), those with latent TB (LTBI, n=29), diabetes (DM) and with diabetics and LTBI (DM-LTBI, n=19) were
stimulated using the QuantiFERON assay. IFN-Jl] levels shown are calculated after values of nil were
subtracted from Mtb Agl and Ag?2 stubes respectively. The Kruskall-Wallis (KW) test was conducted to
compare the results across the four groups. The Mann-Whitney U (MWU) test was used to compare responses

between two groups. p < 0.05 were considered significantly different.

Figure 2. Investigating transcriptional differences between healthy individuals, those with diabetes and
with LTBI. Whole blood RNA transcripts from study participants in EC (n=128), LTBI (n=16), DM
(n=12) and DM-LTBI (n=10) groups were analysed. A, Principal component analysis was used to visualize
the clustering of samples in each group seen as EC (blue), LTBI (red), DM (purple) and LTBI-DM (green). B,
A barplot depicts the number of differentially expressed genes (DEGs) between groups as Up-regulated
(orange), Down-regulated (blue) genes respectively. DEGs were filtered at based on an absolute fold change
(FC) of >2 or<-2 and p <0.05. C, The Venn diagram compared 359 DEGs between comparisons of LTBI
(187), DM (182) and DM-LTBI (12) with EC groups. D, Twenty-two common DEGs found between LTBI and
EC, as compared with DM and EC groups are depicted.

Figure 3. Reduced innate immunity related genes in LTBI as compared with controls. The figure depicts
comparison between transcriptomes of participants of LTBI (n=16) and EC (n=12) groups whereby 187 DEGs,
4 Up and 183 Down-DEGs were observed. A, Volcano plot analysis depicts the DEGs with showing Up-genes
are shown in red and Down-genes in green. DEGs identified, based on a FC of > 2 or < -2 and p <0.05. B,
Dotplot of GSE-GO biological processes and molecular functions show pathways associated with the DEGs.
First two are activated and last two entries in the dotplot are downregulated. C, Heatmap of GSE-GO biological

processes and molecular functions. (B}, showing genes involved in the important processes.

Figure 4. Reduced innate immunity related genes in DM as compared with controls. The figure depicts
comparison between transcriptomes of participants of DM (n=12) and EC (n=12) groups whereby 25 Up and
157 Down-DEGs were observed. A, Volcano plot analysis depicts the DEGs with showing Up-genes are shown
in red and Down-genes in green. DEGs identified, based on a FC of > 2 or < -2 and p <0.05. The grey area of
the volcano plot represents genes that were not differentially expressed between groups. The inset zoom shows
further details of the DEGs. B, Dotplot of GSE Reactome showing suppression of neutrophil degradation and

immune response. C, heat map of GSE-Reactome highlighting genes involved in the pathways.

Figure 5. Dysregulated immune and metabolic pathways in those with diabetes and LTBI. The DEGs were

compared between DM-LTBI and LTBI groups. Significant differential expressions are represented by a FC of
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>2 or <-2 and p <0.05. A, Shows volcano plot analysis of the DEGs. B, Depicts GSE Reactome. C. DEGS
were analysed through the heatmap of GSE Reactome pathways.

Figure 6. Analysis of DEGs in the diabetic cohort based on LTBi infection and also hyperglycemic levels.
The analysis shows comparison between individuals who have DM-LTBI in the the uncontrolled (H-DM, n=4)
as compared with controlled (C-DM, n=6) groups. A, The DEGs labelled in volcano plot showing significant
differential expression using a threshold of an absolute fold change >2 and p value < 0.05. B, Dotplot showing
list of activated and suppressed biological processes enriched using GSE GO ontology, highlighted on the basis
of p-adjusted value. C, Cell-type proportion estimated heatmap generated using the ImmunoStates reference
matrix applied on the normalized data of the same cohort, each row corresponds to a specific immune cell, and
each column is our study sample. Color intensity and numeric values indicate the estimated relative proportion
of each immune cell type in each sample. Hierarchical clustering groups samples and cell types based on
similarity in immune composition. D, Heatmap of immune cells generated using Leukocyte Matrix 22 (LM22)

database as a reference.
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