

1 Title

2

3 **Latent Tuberculosis infection in high TB disease burden countries dysregulates cellular and**
4 **immunological profiles which is further enhanced with uncontrolled hyperglycemia**

5 Kiran Iqbal Masood¹, Maliha Yameen¹#, Javaria Ashraf¹#, Nanik Ram², Nausheen Saifullah³, Bushra Jamil²,
6 Muhammad Irfan², Qamar Masood², Fizza Fatima¹, Amina Ajmal¹, Hazel M. Dockrell⁴, Rabia Hussain¹, Martin
7 Rottenberg⁵, Jacqueline M. Cliff⁶ and Zahra Hasan¹*

8 #contributed equally

9 ¹Department of Pathology and Laboratory Medicine, Aga Khan University, Pakistan.

10 ²Department of Medicine, Aga Khan University, Pakistan,

11 ³Jinnah Postgraduate Medical Centereollege, Pakistan

12 ⁴The London School of Hygiene & Tropical Medicine

13 ⁵Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden

14 ⁶Centre for Inflammation Research and Translational Medicine and Department of Biosciences, Brunel

15 University of London, United Kingdom

16

17 *corresponding author

18 Zahra Hasan,

19 Department of Pathology and Laboratory Medicine

20 Aga Khan University, Stadium Road, P.O. Box 3500 Karachi 74800, Pakistan

21 Email: zahra.hasan@aku.edu

22

23

24

25 **Abstract**26 **Background**

27 Tuberculosis (TB) and diabetes mellitus (DM) are both highly prevalent in Pakistan. Latent *Mycobacterium*
28 *tuberculosis* (Mtb) infection is common however the effect of DM and latent TB infection (LTBI) is less
29 understood. We used RNA arrays to study host transcriptional responses to investigate this.

30 **Methods**

31 Participants were controls (EC) and with DM, sub-classified to LTBI and DM-LTBI. Host blood transcriptomes
32 were studied using microarrays followed by GO, [WwikiPathway](#) and [rReactome pathway analysis](#).

33 **Results**

34 Gene expression compared with EC revealed 187 differentially expressed genes (DEGs) associated with LTBI;
35 182 DEGs with DM and 13 DEGs with DM-LTBI. In LTBI and DM, downregulation of antigen presentation
36 and upregulation of inflammatory genes was evident whilst in DM, mostly immune related genes were
37 downregulated.

38 Comparison between LTBI-DM and LTBI revealed 321 up- and 12 downregulated DEGs, with upregulated
39 immune response and inflammatory genes whilst a downregulation of genes associated with insulin metabolism
40 and oxidative stress were observed.

41 The impact of uncontrolled hyperglycemia was seen as downregulation in protein synthesis and oxidative
42 phosphorylation in the host. This effect was further enhanced in those with hyperglycemia within the LTBI-DM
43 group ~~where a shift~~. Importantly, our observations of dysregulated pathways observed in diabetic individuals
44 were as found in published datasets.

45 **Conclusions**

46 We show here that LTBI and DM synergistically increase host inflammatory and metabolic processes whilst
47 reducing innate immunity. This dysregulation by uncontrolled hyperglycemia highlights increased risk of
48 progression of Mtb infection in this cohort and emphasizes the need for diabetes control in a TB endemic
49 population.

50

51 **Background**

52 In 2024 there were 10.5 million new TB cases and 1.5 million deaths globally. WHO defines latent TB
 53 infection (LTBI) as a state of persistent immune response to stimulation by

54 *Mycobacterium tuberculosis* (Mtb) antigens without evidence of clinically manifested active TB, which can be
 55 detected by the presence of Mtb specific T cells secreting IFN- γ in peripheral circulation (1). Comorbidities
 56 and conditions associated with risk of LTBI reactivation are categorized as high, moderate or low risk. At
 57 moderate risk are patients with diabetes mellitus type 2 (DM). In 2014, the global burden of LTBI was 23%
 58 (95% uncertainty interval: 20.4%-26.4%). Estimates based on these date estimate TB incidences of 16.5 per
 59 100,000/year in 2035 (2). Pakistan is highly endemic for tuberculosis (TB) with an estimate of 51,000 new
 60 cases emerging each year, contributing 61% of the TB cases in Eastern Mediterranean region (1). There is an
 61 increasing frequency of diabetes (31% with 34.5 million in 2024) in the adult population according to the
 62 International Diabetes Federation (3). DM increases the risk of activation of TB three-fold. Population based
 63 surveys show that prevalence of diabetes is also associated with LTBI. A study by Barron et al showed that in
 64 the US population, prevalence of LTBI with DM was 2x greater than those who were without DM (4).

65 Protection against TB is mainly shown to be CD4 $^{+}$ T cell driven (5). ~~CThe~~e cytokines including IL-12, IFN- γ ,
 66 and TNF- \downarrow are crucial for induction and maintenance of protective immune responses against Mtb. Cytokines
 67 and gene transcriptional analysis reflect the activation, regulation and modulation of innate and adaptive arms of
 68 the immune system. Individuals with DM have dysregulated T-cell-activation and signaling as compared with
 69 healthy controls (6). Further, genes enriched in immune response processes such as granulocyte and T-
 70 lymphocyte activation and those involved in antigen processing are downregulated in individuals with DM,
 71 whilst upregulated genes were associated with fatty acid and carbon metabolism (7). LTBI and DM diminished
 72 frequency of Th1, Th2 and Th17 has been observed in LTBI-DM subjects (8). Currently, the effect of LTBI
 73 and mechanisms associated with progression of Mtb infection due to diabetes are unclear (9).

74 Here we measured whole blood cytokines stimulated by Mtb-antigens and studied blood transcriptional profiles
 75 in individuals with and without a diagnosis of DM to investigate the effect of LTBI. Our study of host blood
 76 transcriptomes in the study groups revealed enhanced dysregulation due to the concomitant effect of LTBI and
 77 DM with uncontrolled hyperglycemia.

78

79 **Methods**

80 This is an observational study approved by the Ethical Review Committee of the Aga Khan University (AKU).
 81 All research was performed in accordance with relevant guidelines/regulations in accordance with
 82 the Declaration of Helsinki. Informed consent was obtained from all participants and/or their legal guardians.
 83 Participants were recruited from the AKU Hospital and Jinnah Postgraduate Medical Center, Karachi. Study

84 groups comprised: individuals aged > 18 years, those from the community, patients attending diabetes clinics
 85 and attendants accompanying patients to TB clinics. Exclusion criteria were those with known
 86 immunocompromised conditions including HIV, cancer, transplant recipients or with a history of
 87 immunosuppressive drugs. We recruited participants into four study groups: healthy endemic controls (EC),
 88 LTBI, DM and DM with LTBI (DM-LTBI). Complete blood counts (CBC), hemoglobin (Hb), as well as
 89 HbA1c levels were tested in all study participants. Patient history regarding any treatments taken for diabetes,
 90 hypertension or additional comorbs were documented. The number of individuals taking metformin,
 91 sitagliptin, glimepiride, insulin and statins was documented. The DM group was identified at HbA1c \geq 6.5 %.
 92 Individuals with HbA1c levels 6.5-8% were classified as controlled (C-DM), whilst those with HbA1c > 8%
 93 were classified as having uncontrolled hyperglycemia (H-DM).

94 **IGRA testing**

95 Diagnosis of LTBI was conducted by testing whole blood cells using the QuantiFERON-TB Gold (QFT-GIT)
 96 assay as per manufacturer's instructions (Qiagen, Cellestis, USA). Plasma supernatants from 'nil', 'TB1', 'TB2'
 97 and 'mitogen' tubes were tested for IFN- γ using the QFT~~u~~antiFERON ELISA assay. The TB1 tube contains
 98 antigens that stimulate CD4+ T-cells, while TB2 contains additional peptides that stimulate both CD4+ and
 99 CD8+ T-cells. LTBI diagnosis was made using QFT software. The cut-off for positivity was \geq 0.35 IU/ml of
 100 either TB1 or TB2 values (after subtraction of nil values).

101 **Host blood RNA transcriptome analyses**

102 RNA was extracted from whole blood. 100 ng RNA was used in the Clariom S Array Type gene expression
 103 assay as described previously (10). We included assessment of RNA QC and include a sample QC report (S
 104 Table 3). In each case ~~it was checked that~~ RNA quality was checked including that concentration, purity and
 105 integrity was within the defined acceptable limits. Samples selected for microarray processing were all with
 106 260/280 ratios above 1.5. CEL files were analysed using the TAC Transcriptome Analysis Software Suite
 107 (TACS version 2) using the Summarization Method: Gene Level - SST-RMA Pos vs Neg AUC Threshold: 0.7
 108 against Genome Version: hg38 (Homo sapiens). Normalization is performed by the Robust Multi-array Average
 109 (RMA) method which runs background correction followed by quantile normalization and summarization
 110 (median-polish) to generate a final output of one log2-normalized expression value per probeset per sample. We
 111 filtered the data to select significant differentially expressed genes (DEGs) up- or down-regulated (log2 FC
 112 (fold change) < -2 or > 2 ; P value < 0.05). Further, hierarchical clustering and volcano plots were made using
 113 TACS as well as R.

114 For accession number generation, array output raw files (CEL files) and processed files (CHP) were submitted
 115 to Gene Expression Omnibus (GEO) NCBI and are available as GSE177477 and GSE297003 (**S Table 1**).
 116 TACS generated list of DEGs used in the study for the gene enrichment analysis are shown in **S Table 2**.
 117 Specifically, as an example of data QC we have included details for the comparison of LTBI and Control (**S**
 118 Table 3).

119 **Functional gene enrichment analysis**

120 DEGs were analysed using 'R' to perform Gene Ontology (GO) analysis (11) and Kyoto Encyclopedia of Genes
 121 and Genomes (KEGG) pathway enrichment analysis (12, 13). We used two types of functions from
 122 clusterProfiler i.e, enricher function (enrichGO, enrichKEGG) for hypergeometric test and GSEA (gseGO,
 123 gseKEGG) function for gene set enrichment analysis on user defined data (14, 15). GO enrichment analysis was
 124 carried out employing enrichGO function which requires a gene list as input vector. The results are annotated
 125 along three ontologies: Molecular Functions, Biological Processes and Cellular Components with the following
 126 parameters: pvalueCutoff = 0.05, pAdjustMethod = "BH" (Benjamani and Hochberg) and qvalueCutoff = 0.05.
 127 The enrichKEGG requires a gene-list as input, parameter of pvalueCutoff = 0.05 and organism of interest
 128 (homo sapiens "hsa"). Gene set enrichment analysis was performed on GO terms using gseGO which requires
 129 gene-list in the form of input vector, organism of interest (database: org.Hs.eg.db), pvalueCutoff = 0.05,
 130 minGSSize (minimal size of genes annotated by Ontology term for testing) = 10 and maxGSSize (maximum
 131 number of genes annotated for testing) = 800. gseKEGG function is similar with respect to input parameters
 132 (genelist, organism = hsa, minGSSize, maxGSSize and pvalueCutoff), applied on KEGG database (with
 133 permission). Additional analysis was performed on wiki-pathways, using enrichWP (organism = "Homo
 134 sapiens") and gseWP (organism = "Homo sapiens"). Reactome pathway analysis was also performed as it can
 135 analyse multiple datasets simultaneously for comparative pathway analysis. The function used was gsePathway
 136 (geneList, pvalueCutoff = 0.2, pAdjustMethod = "BH"). For visualization of results related R packages such as
 137 GOplot, enrichplot, DOSE and pathview were used to generate pathway maps, dotplots, heatmaps and barplot
 138 (15-17).

139 To further validate the results of enrichment and functional analysis, a cell deconvolution analysis was
 140 performed on the DM-LTBI cohort (n=10), by classifying them in HDM=4 and CDM=6. The normalized data
 141 of the cohort was obtained from TACS using probe normalization method (RMA). The sample signal table was
 142 generated and used as input in the gedit(Gene Expression Deconvolution Interactive Tool) (18). The reference
 143 matrix used were LM22 (19) and ImmunoState (20). The heatmap of cell types was computed on the basis of
 144 minimum entropy.

145

146 Results

147 Description of study groups

148 We studied gender and age matched participants (51 with normoglycemia and 49 with hyperglycemia)
 149 subclassified as endemic controls (EC, n=22), LTBI (n=29), DM (n=30) and DM-LTBI (n=19), **S Fig 1**. Study
 150 subjects were aged 41.27 ± 13.09 years (**Table 1**). Whilst gender distribution was comparable between all
 151 groups, those with diabetes were significantly older ($p < 0.0001$). Hemoglobin levels, whole blood cell counts
 152 (WBC) and neutrophil/lymphocyte ratio (NLR) were comparable between the groups studied. HbA1c levels

153 were comparable between DM-LTBI and DM ($p=0.078$). Most hyperglycemic participants (93.3% DM, 89.5%
 154 DM-LTBI) were on treatment however, 60% of DM and 42.1% of DM-LTBI study subjects had H-DM. An
 155 equivalent number of individuals were taking anti-hypertensive medications and statins in DM and DM-LTB
 156 groups.

157 Details of the anti-diabetic treatments taken are given in **S Table 3**. All 49 patients with diabetes were on
 158 treatment but data was not available for six individuals. They were taking different medications either
 159 separately or in combination; 38 were on metformin, 25 were on sitagliptin, 17 were on glimepiride, and 6 were
 160 using insulin. Twelve patients with diabetes were on a single antidiabetic drug and of these four had C-DM and
 161 8 had H-DM. Thirty-one patients took combination treatments with two or three drugs. Fourteen patients used
 162 sitagliptin with metformin; 3 had C-DM, and 11 had H-DM. Nine patients took a combination of sitagliptin,
 163 metformin, and glimepiride, but all had H-DM. Further, six patients used insulin and two had C-DM and four
 164 had D-DM. There was no difference in the anti-diabetic drug combinations used by those in the H-DM and C-
 165 DM groups. Furthermore, the usage of medications between those in the DM-LTBI and DM groups was not
 166 significantly different.

167

168 **Assessment of IFN- γ in whole blood stimulated with Mtb antigens**

169 Measurement of IFN- γ after stimulation with Mtb specific antigens is indicative of host Mtb infection status
 170 (21). IFN- γ levels stimulated by TB1 and TB2 were found to differ, $p<0.001$ between study groups (**Fig 1**). As
 171 expected, TB1- and TB2- induced IFN- γ was greater in LTBI than EC groups ($p<0.0001$). Also, IFN- γ levels
 172 were raised in LTBI ($p<0.0001$) and DM-LTBI ($p<0.0001$) as compared with DM groups. IFN- γ levels
 173 induced by TB-1 and TB-2 correlate positively in each of the groups: EC (Spearman's rank rho 0.807,
 174 $p<0.0001$), LTBI (SR rho 0.961, $p<0.0001$), DM (SR rho 0.909, $p<0.0001$) and DM-LTBI (SR rho 0.994,
 175 $p<0.0001$) groups (data not shown).

176 **Investigating the impact of MTB infection and hyperglycemia on host blood transcriptional profiles**

177 We investigated host blood transcription profiles to understand immunological and cellular profiles in study
 178 participants. Between EC, LTBI, DM and DM-LTBI groups, 359 Differentially Expressed Genes (DEGs) were
 179 observed. DEGs between EC and other groups are listed in **S Table 2**. Compared to EC, there were 187 DEGs
 180 against LTBI, with 4 Up- (2.1%) and 183 down- regulated genes, **Fig 2A**. There were 182 DEGs against DM
 181 (25 up- (13.7%) and 127 down- regulated genes) and then 13 DEGs between DM-LTBI and EC groups (6 up-
 182 and 7 down-regulated genes), **Fig 2B**.

183 Analysis of abovementioned DEGs through a Venn diagram (**Fig 2C**) revealed 165 common DEGs between
 184 LTBI and EC, 160 DEGs between DM and EC and 12 DEGs between DM-LTBI and EC groups. Twenty-two

down-regulated DEGs were similar to LTBI/ EC, and DM/ EC analyses, **Fig 2D**. These included immune response genes (*CHI3L1* which plays a role in Th2 inflammation; *PECAM1*, a cell adhesion and signaling molecule; *ADGRE2*, involved in mast cell responses; *CHMP2A*, involved in endocytosis and, *DDX56* an Interferon Stimulated Gene, *ISG*). Genes associated with mRNA processing (*SNRPN*), ribonucleases (*RNASET2*), as well as cellular metabolism (*TALDO1*, involved in the pentose phosphate pathway; *SLC2A3*, a *GLUT* membrane transporter) were downregulated.

192 Downregulation of innate immune response related genes in LTBI

193 We focused further on the transcriptomic comparison between individuals in the LTBI and EC groups.
 194 Specifically, as an example of a dataset comparison, we have included details for sample QC and list of DEGs
 195 the comparison of the LTBI and Control groups (Tables S4-5).

196 In LTBI, we found upregulated *USP17* genes (de-ubiquitinating enzymes involved in apoptosis), *OR51F2* (G
 197 protein-coupled receptor signaling) and *YEATS2* (activates TAK1/NF-kappaB pathway), **Fig 3A**. HLA genes
 198 (*HLA-DRB5*, *HLADQA1*) were most downregulated. Also downregulatedlowered were *JCHAIN*, *UBE2W*,
 199 *TLR10*, *CHI3L1* and *PI3*. Dotplot analysis of GSE-GO biological processes and molecular functions (**Fig 3B**)
 200 and the heatmap of DEGs (**Fig 3C**) further emphasized how affected DEGs were involved in antigen
 201 presentation and protein modification.

202 There were only 13 DEGs between DM-LTBI vs EC, so gene ontology pathway analysis could not be run.
 203 However, upregulated genes in DM-LTBI were associated with innate immunity (*CLEC12A*), processing of
 204 proteins and lipids (*PAM16*, *MAN2A2*, *PIGC*) oxidative (*CORO7*) and angiogenic (*SVBP*) function. Down-
 205 regulated genes (*DPP4*, *FAM102A*, *TTN*, *ERO1A*, *IL6ST*, *LEF1*) were associated with blood sugar control and
 206 insulin secretion.

208 Transcriptional profiles of diabetic individuals display enhanced inflammatory and reduced innate 209 immune responses

210 DEGs between DM and EC visualized in a volcano plot (**Fig 4A**) show up-regulated genes include *ADAM29* (a
 211 disintegrin and metalloprotease domain) and *CHMP7* (involved in endosomal sorting). Downregulated genes
 212 include *SORL1* (associated with endolysosomal processing), *GNLY*, *CRLF3* and *CACUL1* (associated with anti-
 213 obesity treatment), *ADGRE2* and *CHI3L1*. Dotplot analysis of the GSE Reactome for these data further
 214 supported suppression of neutrophil degranulation, innate immune and immune pathways in the DM group (**Fig**
 215 **4B**). Additionally, the heat map of the GSE-Reactome identifies downregulated genes associated with innate
 216 responses (*GNLY*, *PRF1*) and neutrophil function (*KLRC3*), **Fig 4C**.

217 **Impact of diabetes on the transcriptome of those with LTBI**

218 Next, a comparison of DM-LTBI and LTBI revealed 333 DEGs with 321 (96.3%) upregulated genes. *HLA-*
 219 *DRB5* was the most upregulated, followed by *S100A8* (involved in leukocyte recruitment). Other upregulated-
 220 genes were, *PI3*, *HEMGN* (hematopoietic cell differentiation), *GYPA* (erythrocyte protein) and *BLVRB*
 221 (regulator of hematopoiesis and intermediary metabolism) (**Fig 5A**). Downregulated genes included *ND6* (role
 222 in mitochondrial function), *ABCD2* (involved degradation of fatty acids) and *PSMC3* (an ATPase subunit).

223 GSEPathway (Reactome) analysis revealed that in those with DM-LTBI there was upregulation of innate (Toll
 224 like receptor, neutrophil degranulation) and adaptive immune responses (antigen presentation pathways),
 225 inflammatory processes related to interferon signaling and cytokine signaling (**Fig 5B**.) These pathways are
 226 further described through the KEGG GSE heatmap showing inflammation and innate host immunity (*IL-1R2*,
 227 *TLR1*, *TLR4*, *TLR8*, *TREMI*, *JAK2* and *MMP9*) and antigen presentation (*HLA-DQA1*, *HLA-DRA*) to be
 228 differentially regulated (**Fig 5C**).

229 We also compared transcriptional profiles ~~eonversely~~, by comparing individuals with DM-LTBI and those with
 230 diabetes only. Analysis of host transcripts between DM-LTBI and DM groups revealed 195 DEGs, with 150
 231 upregulated and 45 downregulated genes (**S Table 2**). Upregulated genes in DM-LTBI were mostly related to
 232 innate immunity pathways and 38 of them overlapped with those raised in comparison with LTBI. However, the
 233 fold change of DEGs between DM-LTBI and DM (using ~~the our~~ cut-off ~~used~~) was insufficient to give results in
 234 GO pathway analyses.

235

236 **Gender and age-based analysis in those with diabetes**

237 We investigated the effect of gender and age on host transcriptional profiles of study subjects with DM (DM-
 238 LTBI and DM). There were 11 males and 11 females, respectively. Analysis revealed 58 DEGs with 20
 239 upregulated genes. GSE biological pathway analysis revealed the ~~one~~ suppressed pathway related to
 240 macrometabolic processes (**S Fig 3**). Presence of sex-specific signatures were present particularly related to the
 241 Y-chromosome identifying *DDX3Y* (DEAD box protein crucial for RNA metabolism and translation), *EIF1A4*
 242 (eukaryotic translation initiation factor), *RPS4Y1* (encodes ribosomal protein S4 crucial for protein synthesis),
 243 *USP9Y* (involved in protein deubiquitination and ~~is~~ responsible for male fertility), *UTY* (encodes protein with
 244 TPR motifs involved in protein-protein interaction), and *PRKY* (pseudogene). Genes associated with the
 245 contractile ring and intraflagellar transport were observed such as *ACTN4*, *MYH9*, *MSN* (encodes moesin
 246 protein critical for immune synapse formation), and *IFT52* (ciliary biosynthesis and maintenance). Transcription
 247 regulators like *HIPK1* (phosphorylation of homeodomain transcription factors), *MED15* (encodes subunit of a
 248 mediating complex that regulates transcriptional signaling), *NCOA6* (multifunctional coactivator), *RTF1*

(encodes a component of PAF1 complex regulating transcription elongation), and ZMAT2 (pre-mRNA splicing). CX3CR1 a sex-specific gene was found to be downregulated. Biological pathway analysis identified ~~at the~~ hemoglobin signal (haptoglobin-hemoglobin complex, hemoglobin alpha binding) and reflects the sex-based differences in erythroid transcript contribution (males and females have different erythroid biology).

Furthermore, as there is a significant difference in age of the DM cohort and(DM, DM-LTBI) cohorts, an analysis was required to check the impact of age on these responses. ~~We~~ compared DEGs comparing those aged below 50 years with those aged 50 years and over (S Fig 4). This analysis showed 68 DEGs with 28 Upup-regulated genes. Due to the limited number of differentially expressed genes, enrichment analysis using ClusterProfiler could not be reliably performed. Therefore, we used g:Profiler (22) package in R, which is suitable for smaller gene lists, to conduct functional enrichment analysis. Enrichment pathway analysis performed using KEGG, reactome and WikiPathways revealed the dysregulation of Coronavirus disease, has-mir, axon guidance and cytoplasmic ribosomal protein pathways. The highest gene count corresponded to has-mir-590-3p which is a precursor miRNA (mir-590) and regulates genes associated with synaptic maturation. Followed by nervous system development and axon guidance displayed in the REACTOME category. The COVID-19 KEGG hit likely points towards pathways overlapping with innate immunity or other inflammatory genes.

Impact of hyperglycemia on the host and in those with LTBI

Although most study participants with diabetes were on treatment, only 41% of individuals had controlled blood sugar (C-DM). We first focused on the effect of H-DM comparing profiles with C-DM, irrespective of LTBI status. A PCA analysis showed separation between profiles of H-DM and C-DM groups, (S Fig 5A) with 13 DEGs, as shown in the unsupervised hierarchical heatmap, S Fig 5B. The 10 up-regulated genes included those associated with lymphocyte activation (*AKAP7, IL6ST, BANK1, FCER2*) and the three down-regulated genes were markers of innate responses (*HLA-DRB1, ST8S1A4, VNN2*).

We then investigated uncontrolled hyperglycemia in those with LTBI whereby a comparison of H-DM and C-DM participants revealed 333 DEGs with 321 (96%) Up- and 12 Down-regulated genes. A volcano plot depicts upregulated genes to include ribosomal proteins (*RPL5/7/21/34* and *RPS17*), small nucleolar RNAs (*SNORD21/66*) and those associated with cell growth and signaling (*CASP8AP2, ACOT13, NAT1*), Fig 6A. Gene enrichment and GO biological processes analysis depicts upregulation of pathways related to leucocyte migration, cell motility and differentiation, as well as catabolic processes in this cohort. We observed downregulation of ribosome biogenesis, RNA processing, ribonucleoprotein complex biosynthesis and peptide processing, Fig 6B.

We used investigated using an cell-deconvolution analysis to identify which cellular types were identified in the sample groups analysed. We also include the sample signal data for the same DM-LTBI-HDM and DM-LTBI-

282 CDM individuals (Table S6). These data were used via Gedit3 tool to deconvolute as per cell type analysis
 283 using different reference databases. We used Immunostates as well as LM22 Immune signature analysis and
 284 obtained partners distinct to the comparison of H-DM and C-DM subsets (S Tables 7-8). Immunostates analysis
 285 revealed upregulation of a neutrophil signature across all samples, consistent with a DM phenotype. Further,
 286 CD8-positive alpha-beta-T cells were present (**Fig 6C**). LM22 revealed that tissue-wise expression profiles
 287 showed dysregulation in monocytes and T cell (CD8 and CD4-naive) fractions. Of note downregulation of M2
 288 macrophages was evident in samples with H-DM (**Fig. 6D**).

289

290 **Comparison of transcriptional data with published gene sets**

291 To validate our LTBI group and analysis, we checked for RISK genes of active TB in DEGs associated with
 292 LTBI, S Table 2. Warasinkse et al. 3- gene, Zak et al. 4–gene, Penn-Nicholson et al. 6- gene and Mulenga et al.
 293 11- gene signatures (**S Table 9**), (23-27), were all absent in these DEGs. We also compared LTBI associated
 294 DEGs with those reported in a UK- based study of IGRA+ individuals by Broderick et al. (28). We found four
 295 commonly downregulated genes; *FAM174A* (prognostic markers in cancer progression), *KIAA0226L* (involved
 296 in endocytic trafficking), *PECAMI* (leucocyte trafficking and inflammation) and *RASSF2* (tumor suppressor
 297 gene).

298 Next, we compared our DM associated DEGs with transcripts identified in diabetic individuals in the multi-
 299 country study by Eckold et al. (29), and found 42 DEGs common with our list (**S Table 10A**). Enriched GO
 300 biological pathway analysis of these common DEGs demonstrated their role related to cellular signaling, protein
 301 secretion and platelet formation (**S Fig 5A**). Notably, these data (**S Fig 5B**), included the downregulated genes
 302 *SORL1*, *CACUL1* earlier noted in **Fig 4**. We also compared H-DM DM-LTBI associated DEGs with the Eckold
 303 et al. study (29). Here 100 DEGs (12 up- and 88 d-down-regulated) were common between the data sets (**S Table**
 304 **10B**). Further, GSE GO biological pathway analysis highlights the activation of protein biosynthesis and
 305 metabolic processes and gene expression in individuals with H-DM (**S Fig 6A**), with key ribosome associated
 306 proteins (RPS and RPL family). WikiPpathway analysis depicts the impact of diabetes on oxidative
 307 phosphorylation in the mitochondria (**S Fig 6B**).

308

309 **Discussion**

310 Control of hyperglycemia remains a challenge in resource limited settings where diagnosis of diabetes and
 311 access to treatment remains difficult. In high TB burden settings, there is a compounding effect of diabetes
 312 together with need to investigate its impact in the context of latent TB infections. We observed dysregulation of
 313 inflammatory markers in those with LTBI and in the presence of diabetes there was alteration of metabolic

314 pathways leading to disrupted glycemic control with downregulated immune-related genes. Our data highlights
315 the impact of uncontrolled hyperglycemia with dysfunction of cellular pathways such as oxidative
316 phosphorylation in the host with LTBI and DM.

317 Study participants were ~~age and~~ gender matched however, those with diabetes were comparatively older,
318 consistent with the natural distribution of diabetes which is more prevalent in older individuals (30). Neutrophil
319 counts were significantly higher in those with diabetes (DM and DM-LTBI), corroborating previous reports of
320 increased neutrophil levels in diabetic subjects (29).

321 In the study cohort, individuals with diabetes were receiving routine medications prescribed by the
322 endocrinologist including insulin or metformin alone, with each other or in combination with other
323 antihyperglycemic agents. These drugs such as metformin might have ~~a~~ modulatory impact on immune and
324 metabolic pathways. The relatively small sample size and variation in the diabetic medications used did not
325 allow for multivariate analysis based on antidiabetic treatment.

326 Studies of blood transcriptional profiles revealed that ~~in~~ LTBI, there was upregulation of *USP17*, which is
327 associated with inflammation and endolysosomal trafficking (31), ~~and a~~. Also of, *YEATS*, associated with
328 activation of TAK1/NF-kappaB pathway shown to influence cellular processes in TB infections (32).
329 Additionally, inflammatory markers and host antigen processing pathways were downregulated. Notably,
330 increased *CHI3L1* and *PI3* expressions are associated with disease severity in patients with TB. *CHI3L1* recruits
331 immune cells, influence cell apoptosis and proliferation signals, in response to microbial infection (33). Similar
332 to LTBI associated DEGs reported by Broderick et al. (28), we found downregulation of genes associated ~~with~~
333 inflammatory and cell recruitment processes, which might be necessary to maintain the latency of infection.

334 In those with diabetes we observed upregulation of inflammatory genes, changes in the metabolic pathways as
335 well as increased host protein synthesis, with downregulation of innate immunity related genes (Fig 4).
336 Decreased NK cell activity is also associated with impaired metabolic pathways and increasing glucose
337 concentrations and greater infection risk (34). Genes found to be commonly downregulated in LTBI/EC and
338 DM/EC group comparisons (Fig 2) were related to immune response pathways as well as others related to gene
339 regulation (*SNRPN* and *RNASET2*) and metabolic pathways (*TALDO1*, *SLC2A3*). Increased *ADAM29* is
340 associated with DM-associated pathology. Downregulation of *SORL1* and *ADGRE2*, which affect insulin
341 signaling and adipogenesis (35, 36), and of *CACUL1*, ~~is~~ a cell stress response gene (37), highlights ~~the~~ cellular
342 and metabolic dysfunction in diabetic individuals.

343 The upregulation of *HLA-DRB5* points to an enhanced immune defect in DM-LTBI given that this marker is
344 associated with progression to TB. Similarly, *S100A8* induces proinflammatory cytokines and chemokines and
345 is increased in active TB (38). Our findings fit with literature showing that ~~individuals with~~ diabetes~~ies~~ with
346 latent TB infection have decreased frequencies of $\gamma\delta$ T cells, Type I and Type 17 cytokines, and CD8 T cell

347 markers (perforin, granzyme B, granulysin) (39). The shift in inflammatory markers is supported by reports that
 348 people with LTBI and DM display a shift in frequencies of classical monocytes (M1) to non-classical
 349 monocytes (M2) (40). In DM-LTBI, upregulation of *HEMGN* and *GYPA* indicates dysregulation of
 350 hematopoietic function in this group, whilst upregulation of *BLVRB* involved with intermediary metabolism and
 351 insulin signaling supporting dysregulation of glucogenesis associated with diabetes mellitus. Whilst
 352 downregulation of *ND6* and *PSMC3* alterations in mitochondrial function and oxidative metabolism (**Fig 5**).
 353

353 BLVRB reduces biliverdin to bilirubin in a NADPH-dependent mechanism in a final step in heme metabolism.
 354 In the case of BLVRB deficiency there is a change in cellular pathophysiology with an increase in oxidative
 355 stress and a shift in macrophages to the M2 phenotype (41, 42). Hence, the observed increase in BLVRB in
 356 DM-LTBI suggests that there may be a shift to an alternate macrophage phenotype in this cohort. The
 357 observation of increase in ribosomal protein expression also fits with the hypothesis of increased cellular stress
 358 in this group.

359 It was important to conduct a sex-based analysis to see if there was an effect within the diabetic cohort studied.
 360 We found differential regulation of genes associated with male-sex such as those on the Y chromosome and
 361 male sexual function. Further, the hemoglobin pathway was found upregulated which fits with increased
 362 erythroid cells in males. CX3CR1 a fractile chemokine was found to be downregulated in males.

363 In comparison of older and younger than 50 years age groups, we found cytoplasmic ribosomal pathways
 364 associated with our age-related analysis. As protein synthesis is associated with effective cellular responses this
 365 fits with the increased in the COVID-19 KEGG which is associated with innate immunity and inflammatory
 366 genes. These may suggest increased innate immune activation in the younger age group.

367 Sex-specific biological traits along with environmental factors also modulate an individual's susceptibility to
 368 obesity and type 2 diabetes (43). However, in summary our data showed that gender-based differences exist
 369 amongst those with diabetes but these did not overlap with the inflamm-inflammatory signature shift observed in the
 370 analysis of DM-LTBI and DM groups.

371 Chronic hyperglycemia associated with diabetes results in increased inflammation and disease associated
 372 pathophysiology (44). The association of lymphocyte activation in H-DM (*AKAP7* and *IL-6*) fits with worse
 373 outcomes in diabetes (45, 46). Conversely, downregulation of *FCER2* fits with lowered immunity and failure to
 374 kill microbial organisms (47).

375 In particular, the upregulation of innate immune genes *IL-1R2*, *TLR1*, *TLR4*, *NLRP3* and *MMP9* in H-DM with
 376 LTBI denotes affected inflammation and oxidative stress in this group (**Fig 6**). This may further induce the
 377 secretion of other cytokines and interfere with beta cell function (48, 49). *MMP9* has also been shown to be
 378 associated with dissemination of granulomas (50). We observed upregulation of *MMP9* in DM-LTBI as

379 compared with DM. Previous studies have shown increased expression of *MMP9* in monocytes/macrophages
380 (51). *MMP-9* degrade type IV collagen, fibronectin and elastin in the lung allowing migration of immune cells
381 at the site of infection. Altered *MMP9* in the DM-LTBI group suggests increased inflammation and
382 extracellular matrix remodelling. Increased expression of TLR-pathway associated genes (TLR1, 4 and 8) were
383 observed in DM-LTBI group. Elevated expression of TLR have been documented in both TB and diabetes
384 showing increased pathogen recognition as well as a marker for chronic inflammation (52). Altered level of
385 TLRs are also shown to be associated with TB resistance and more severe TB outcomes. Higher TLR4
386 expression in TB with DM have shown increased expression of NFKb resulting in persistent inflammation
387 explaining increased pathology in such cases (53).

388 Conversely, we found NAT downregulated in the DM-LTBI cohort and this could contribute to worsening
389 outcomes as *NAT1* is known to contribute to insulin sensitivity in diabetics (54, 55). NAT1 is included as a
390 prognostic marker for breast cancer and in patients receiving chemotherapy low NAT1 expression has been
391 associated with a significant decrease in 5 year survival (56). The effect of *NAT1* on drug-metabolism results in
392 its association with oxidative phosphorylation in related genes (e.g. NDUFB6). Therefore, NAT1 levels can also
393 play a role in progression of MTB infections, especially in the presence of diabetes where cellular stress levels
394 are increased.

395 Importantly, deconvoluted cell-specific analysis using reference datasets revealed that in the Immunostates
396 generated heatmap there was a neutrophil-driven inflammatory signature in individuals of the H-DM subsets.
397 This fits with the impact shown of neutrophils function in type 2 diabetes and increase in RAGE products (57).
398 Similarly, cell specific analysis using the leucocyte matrix 22 immune-cell signature revealed an M2
399 macrophage response highlighted an immunoregulatory phenotype characterized by levels of IL-10 and TGF- β
400 and reduced expression of IL-12 (58). As an M2 phenotype is less capable of maintaining effective containment
401 of latent MTB, the LM22 deconvolution supports *our* findings that diabetes particularly in the H-DM group
402 triggers a shift towards impaired macrophage function.

403 Our results describing the effect of diabetes on those with LTBI including downregulation of innate immune
404 and cancer markers, were supported through identification of common gene sets identified in TANDEM study
405 cohorts from South Africa and Romania (29). Additionally, in our H-DM DM-LTBI associated DEGs we found
406 common genes associated with dysregulated protein biosynthetic, metabolic and oxidative phosphorylation
407 pathways.

408 Our data identify key pathways which may be used as targets for host-directed therapies in the diabetic host
409 with LTBI. Host directed therapies for tuberculosis can add value to anti-tuberculous treatment regimens.
410 Inhibiting *MMP* activity has shown to enhance frontline TB drug delivery and/or retention in the infected
411 tissues through improving blood vessel integrity (59). *TLR* modulators can play a significant role in re-defining

412 immune responses to control chronic inflammatory responses. Upregulation of vitamin D receptor following
413 ligation of TLRs induces antimicrobial peptides such as cathelicidins and defensins (60). TLR modulators can
414 play a significant role in re-defining immune responses to control chronic inflammatory responses. Hence
415 vitamin D can be used as a therapeutic marker which may enhance the immune responses and might be
416 helpful in favourable disease outcome.

417 It is a limitation that this was a cross-sectional study and we did not follow the individuals to record if any
418 progressed to active TB or, could not measure clinical outcomes. It is also a limitation that we were unable to
419 conduct any protein validation studies such as through Western blots, or use flow cytometric analysis to
420 characterize cell populations. Additional limitations include the absence of full treatment protocols of the
421 individuals in the diabetes group. Previous studies have shown synergistic effects of metformin and rifampicin
422 in reducing intracellular growth of *Mtb* *M. tuberculosis*. Retrospective analysis of clinical trial data
423 demonstrated that patients with TB and DM show better clinical outcomes with fewer lung cavities and
424 decreased proportion of individuals progressing to advanced disease post treatment with metformin (61). As a
425 result, metformin is being promoted as a candidate for therapeutic prevention and adjunctive treatment
426 approaches in TB (62). However, as these medications are not standardized across the treatment cohort and due
427 to their heterogenous use we could not determine their specific effects on host transcriptomic changes. In
428 addition, we also did not have chest X-ray information on our study participants, rule out any granulomas
429 within the LTBI cohort. The group sizes were too small to enable the DM group participants to be studied by
430 their diabetes treatment regimen.

431 In summary, we observed dysregulated immunity in individuals with DM-LTBI which is compounded by
432 uncontrolled hyperglycemia. Such immune modulation is likely to increase susceptibility of the host to TB but
433 would extend to a broad range of pathogens. Of note, individuals with LTBI are not usually given prophylaxis
434 in Pakistan due to limited availability of treatment provided by the National TB Program, Pakistan for high-risk
435 individuals such as, patients living with HIV, household contacts of smear positive TB patients and those
436 initiating biologics treatment using anti-inflammatory drugs.

437 In conclusion, our data highlights the risks of ineffective diabetes management in a high TB burden setting,
438 where there is a high likelihood of LTBI amongst the population. Our data reinforces the importance of bi-
439 directional screening for LTBI and DM followed by effective diabetes management to reduce risk of
440 progression to active TB.

441

442 **Acknowledgements**

443 This work was supported by a Higher Education Commission Pakistan National Research Program for
 444 Universities Grant.

445 **Funding**

446 This research was supported by the Higher Education Commission, Pakistan under a National Research
 447 Program for Universities (NRPU) grant.

448 **Authors contributions**

449 ZH, designed the study; KIM, MY, JA, AA: implementation and execution; MY, JA: data analysis; NR, QM,
 450 NA, MI, BJ: recruitment of patients; KIM, ZH: drafted the initial manuscript; KIM, ZH, RH, HMD, MR, JMC:
 451 manuscript revision with critical input. All authors reviewed and approved the manuscript.

452 **Conflicts of Interest**

453 The authors declare no conflicts of interest regarding this work.

454 **Data availability statement**

455 All datasets generated and/or analysed during the current study are included in this published article and its
 456 supplementary information file.

457

458 **References**

1. 2024. Gtr. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO. 2024.
2. Houben RM, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. *PLoS Med.* 2016;13(10):e1002152.
3. Federation ID. Diabetes Atlas. 2025. Report No.: ISBN: 978-2-930229-96-6.
4. Barron MM, Shaw KM, Bullard KM, Ali MK, Magee MJ. Diabetes is associated with increased prevalence of latent tuberculosis infection: Findings from the National Health and Nutrition Examination Survey, 2011-2012. *Diabetes research and clinical practice.* 2018;139:366-79.
5. Cooper AM. Cell-mediated immune responses in tuberculosis. *Annu Rev Immunol.* 2009;27:393-422.
6. Grayson BL, Wang L, Aune TM. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes. *Genes Immun.* 2011;12(5):341-51.
7. Wang C, Ha X, Li W, Xu P, Zhang Z, Wang T, et al. Comparative gene expression profile and DNA methylation status in diabetic patients of Kazak and Han people. *Medicine (Baltimore).* 2018;97(36):e11982.
8. Liu Q, Yan W, Liu R, Bo E, Liu J, Liu M. The Association Between Diabetes Mellitus and the Risk of Latent Tuberculosis Infection: A Systematic Review and Meta-Analysis. *Front Med (Lausanne).* 2022;9:899821.
9. Jeon CY, Murray MB. Diabetes Mellitus Increases the Risk of Active Tuberculosis: A Systematic Review of 13 Observational Studies. *PLOS Medicine.* 2008;5(7):e152.
10. Masood KI, Yameen M, Ashraf J, Shahid S, Mahmood SF, Nasir A, et al. Upregulated type I interferon responses in asymptomatic COVID-19 infection are associated with improved clinical outcome. *Sci Rep.* 2021;11(1):22958.

481 11. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the
482 comprehensive functional analysis of large gene lists. *Nucleic Acids Res.* 2009;37(1):1-13.

483 12. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.*
484 2000;28(1):27-30.

485 13. Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. KEGG: biological
486 systems database as a model of the real world. *Nucleic Acids Res.* 2025;53(D1):D672-D7.

487 14. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological
488 themes among gene clusters. *OMICS.* 2012;16(5):284-7.

489 15. Yu G, Wang LG, Yan GR, He QY. DOSE: an R/Bioconductor package for disease ontology
490 semantic and enrichment analysis. *Bioinformatics.* 2015;31(4):608-9.

491 16. Yu G. enrichplot: Visualization of Functional Enrichment Result. 1.10.2 ed2021. p. R
492 package.

493 17. Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data
494 integration and visualization. *Bioinformatics.* 2013;29(14):1830-1.

495 18. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell
496 subsets from tissue expression profiles. *Nat Methods.* 2015;12(5):453-7.

497 19. Nadel BB, Lopez D, Montoya DJ, Ma F, Waddel H, Khan MM, et al. The Gene Expression
498 Deconvolution Interactive Tool (GEDIT): accurate cell type quantification from gene expression
499 data. *Gigascience.* 2021;10(2).

500 20. Vallania F, Tam A, Lofgren S, Schaffert S, Azad TD, Bongen E, et al. Leveraging
501 heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and
502 reduces biological and technical biases. *Nat Commun.* 2018;9(1):4735.

503 21. Alsleben N, Ruhwald M, Russmann H, Marx FM, Wahn U, Magdorf K. Interferon-gamma
504 inducible protein 10 as a biomarker for active tuberculosis and latent tuberculosis infection in
505 children: a case-control study. *Scand J Infect Dis.* 2012;44(4):256-62.

506 22. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server
507 for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic Acids
508 Res.* 2019;47(W1):W191-W8.

509 23. Warsinske HC, Rao AM, Moreira FMF, Santos PCP, Liu AB, Scott M, et al. Assessment of
510 Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis,
511 Disease Severity, and Treatment Response. *JAMA Netw Open.* 2018;1(6):e183779.

512 24. Burel JG, Singhania A, Dubelko P, Muller J, Tanner R, Parizotto E, et al. Distinct blood
513 transcriptomic signature of treatment in latent tuberculosis infected individuals at risk of
514 developing active disease. *Tuberculosis (Edinb).* 2021;131:102127.

515 25. Suliman S, Thompson EG, Sutherland J, Weiner J, 3rd, Ota MOC, Shankar S, et al. Four-
516 Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. *Am J Respir Crit Care
517 Med.* 2018;197(9):1198-208.

518 26. Penn-Nicholson A, Mbandi SK, Thompson E, Mendelsohn SC, Suliman S, Chegou NN, et al.
519 RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response.
520 *Sci Rep.* 2020;10(1):8629.

521 27. Mulenga H, Fiore-Gartland A, Mendelsohn SC, Penn-Nicholson A, Mbandi SK, Borate B, et
522 al. The effect of host factors on discriminatory performance of a transcriptomic signature of
523 tuberculosis risk. *EBioMedicine.* 2022;77:103886.

524 28. Broderick C, Cliff JM, Lee JS, Kaforou M, Moore DA. Host transcriptional response to TB
525 preventive therapy differentiates two sub-groups of IGRA-positive individuals. *Tuberculosis
526 (Edinb).* 2021;127:102033.

527 29. Eckold C, Kumar V, Weiner Rd J, Alisjahbana B, Riza AL, Ronacher K, et al. Impact of
528 intermediate hyperglycaemia as well as diabetes on immune dysfunction in tuberculosis. *Clin
529 Infect Dis.* 2020.

530 30. Azeem S, Khan U, Liaquat A. The increasing rate of diabetes in Pakistan: A silent killer. *Ann
531 Med Surg (Lond).* 2022;79:103901.

532 31. Lu CH, Yeh DW, Lai CY, Liu YL, Huang LR, Lee AY, et al. USP17 mediates macrophage-
533 promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex
534 formation. *Oncogene.* 2018;37(49):6327-40.

535 32. Sheng H, Zheng F, Lan T, Chen HF, Xu CY, Wang SW, et al. YEATS2 regulates the activation
 536 of TAK1/NF-kappaB pathway and is critical for pancreatic ductal adenocarcinoma cell survival.
 537 *Cell Biol Toxicol.* 2023;39(3):1-16.

538 33. Zhao T, Su Z, Li Y, Zhang X, You Q. Chitinase-3 like-protein-1 function and its role in
 539 diseases. *Signal Transduct Target Ther.* 2020;5(1):201.

540 34. Kim JH, Park K, Lee SB, Kang S, Park JS, Ahn CW, et al. Relationship between natural killer
 541 cell activity and glucose control in patients with type 2 diabetes and prediabetes. *J Diabetes*
 542 *Investig.* 2019;10(5):1223-8.

543 35. Schmidt V, Schulz N, Yan X, Schurmann A, Kempa S, Kern M, et al. SORLA facilitates insulin
 544 receptor signaling in adipocytes and exacerbates obesity. *The Journal of clinical investigation.*
 545 2016;126(7):2706-20.

546 36. Olaniru OE, Persaud SJ. Adhesion G-protein coupled receptors: Implications for metabolic
 547 function. *Pharmacol Ther.* 2019;198:123-34.

548 37. Kigoshi Y, Fukuda T, Endo T, Hayasaka N, Iemura S, Natsume T, et al. CACUL1/CAC1
 549 Regulates the Antioxidant Response by Stabilizing Nrf2. *Sci Rep.* 2015;5:12857.

550 38. Gopal R, Monin L, Torres D, Slight S, Mehra S, McKenna KC, et al. S100A8/A9 proteins
 551 mediate neutrophilic inflammation and lung pathology during tuberculosis. *Am J Respir Crit Care*
 552 *Med.* 2013;188(9):1137-46.

553 39. Kathamuthu GR, Kumar NP, Moideen K, Menon PA, Babu S. Decreased Frequencies of
 554 Gamma/Delta T Cells Expressing Th1/Th17 Cytokine, Cytotoxic, and Immune Markers in Latent
 555 Tuberculosis-Diabetes/Pre-Diabetes Comorbidity. *Front Cell Infect Microbiol.* 2021;11:756854.

556 40. Kumar NP, Moideen K, Dhakshinraj SD, Banurekha VV, Nair D, Dolla C, et al. Profiling
 557 leucocyte subsets in tuberculosis-diabetes co-morbidity. *Immunology.* 2015;146(2):243-50.

558 41. Nesbitt NM, Malone LE, Liu Z, Jares A, Gnatenko DV, Ma Y, et al. Divergent erythroid
 559 megakaryocyte fates in Blvrb-deficient mice establish non-overlapping cytoprotective functions
 560 during stress hematopoiesis. *Free Radic Biol Med.* 2021;164:164-74.

561 42. Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and
 562 heme oxygenase-1-expressing myeloid cells in pathophysiology. *Front Immunol.*
 563 2024;15:1433113.

564 43. Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, et al. Sex
 565 differences in metabolic regulation and diabetes susceptibility. *Diabetologia.* 2020;63(3):453-61.

566 44. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G,
 567 Papaioannou S, et al. The Role of Inflammation in Diabetes: Current Concepts and Future
 568 Perspectives. *Eur Cardiol.* 2019;14(1):50-9.

569 45. He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring
 570 proteins (AKAPs) in ischemic stroke and therapeutic potentials. *Biomed Pharmacother.*
 571 2024;175:116715.

572 46. Devaraj S, Venugopal SK, Singh U, Jialal I. Hyperglycemia induces monocytic release of
 573 interleukin-6 via induction of protein kinase c-alpha and -beta. *Diabetes.* 2005;54(1):85-91.

574 47. Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the
 575 Immune System. *Curr Diabetes Rev.* 2020;16(5):442-9.

576 48. Akash MS, Shen Q, Rehman K, Chen S. Interleukin-1 receptor antagonist: a new therapy for
 577 type 2 diabetes mellitus. *J Pharm Sci.* 2012;101(5):1647-58.

578 49. Dedon PC, Tannenbaum SR. Reactive nitrogen species in the chemical biology of
 579 inflammation. *Arch Biochem Biophys.* 2004;423(1):12-22.

580 50. Baez IB, Sampieri CL, Solano FC, Martinez Cazares MT, Montero H, Cuevas RZ. Activity of
 581 matrix metalloproteinase 2 and 9 isoforms in sputum samples from individuals infected with *M.*
 582 *tuberculosis*. *Microb Pathog.* 2019;135:103607.

583 51. Taylor JL, Hattle JM, Dreitz SA, Troutt JM, Izzo LS, Basaraba RJ, et al. Role for matrix
 584 metalloproteinase 9 in granuloma formation during pulmonary *Mycobacterium tuberculosis*
 585 infection. *Infect Immun.* 2006;74(11):6135-44.

586 52. Huang J, Peng J, Pearson JA, Efthimiou G, Hu Y, Tai N, et al. Toll-like receptor 7 deficiency
 587 suppresses type 1 diabetes development by modulating B-cell differentiation and function. *Cell*
 588 *Mol Immunol.* 2021;18(2):328-38.

589 53. Agustin H, Massi MN, Djaharuddin I, Patellongi I, Susanto AD, Islam AA, et al. Correlation
590 expression Toll-like receptor 4 with multidrugs resistant tuberculosis in diabetes mellitus
591 condition. *Indian J Tuberc.* 2023;70(1):59-64.

592 54. Sletten AC, Davidson JW, Yagabasan B, Moores S, Schwaiger-Haber M, Fujiwara H, et al.
593 Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. *Nat*
594 *Commun.* 2021;12(1):5214.

595 55. Knowles JW, Xie W, Zhang Z, Chennamsetty I, Assimes TL, Paananen J, et al. Identification
596 and validation of N-acetyltransferase 2 as an insulin sensitivity gene. *The Journal of clinical*
597 *investigation.* 2015;125(4):1739-51.

598 56. Minchin RF, Butcher NJ. Trimodal distribution of arylamine N-acetyltransferase 1 mRNA in
599 breast cancer tumors: association with overall survival and drug resistance. *BMC Genomics.*
600 2018;19(1):513.

601 57. Yan SF, Yan SD, Ramasamy R, Schmidt AM. Tempering the wrath of RAGE: an emerging
602 therapeutic strategy against diabetic complications, neurodegeneration, and inflammation. *Ann*
603 *Med.* 2009;41(6):408-22.

604 58. Fu XL, Duan W, Su CY, Mao FY, Lv YP, Teng YS, et al. Interleukin 6 induces M2 macrophage
605 differentiation by STAT3 activation that correlates with gastric cancer progression. *Cancer*
606 *Immunol Immunother.* 2017;66(12):1597-608.

607 59. Xu Y, Wang L, Zimmerman MD, Chen KY, Huang L, Fu DJ, et al. Matrix metalloproteinase
608 inhibitors enhance the efficacy of frontline drugs against *Mycobacterium tuberculosis*. *PLoS*
609 *Pathog.* 2018;14(4):e1006974.

610 60. Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome
611 in tuberculosis. *Mucosal Immunol.* 2020;13(2):190-204.

612 61. Sutter A, Landis D, Nugent K. Metformin has immunomodulatory effects which support its
613 potential use as adjunctive therapy in tuberculosis. *Indian J Tuberc.* 2024;71(1):89-95.

614 62. Padmapriydarsini C, Mamulwar M, Mohan A, Shanmugam P, Gomathy NS, Mane A, et al.
615 Randomized Trial of Metformin With Anti-Tuberculosis Drugs for Early Sputum Conversion in
616 Adults With Pulmonary Tuberculosis. *Clin Infect Dis.* 2022;75(3):425-34.

519 **Figure Legends**

520 **Figure 1. IFN- γ induced by MTB antigen stimulation of whole blood higher in IGRA positive than**
 521 **IGRA negative individuals.** Whole blood cells from study subjects in each group endemic controls (EC,
 522 n=22), those with latent TB (LTBI, n=29), diabetes (DM) and with diabetics and LTBI (DM-LTBI, n=19) were
 523 stimulated using the QuantiFERON assay. IFN- γ levels shown are calculated after values of nil were
 524 subtracted from Mtb Ag1 and Ag2 stubs respectively. The Kruskall-Wallis (KW) test was conducted to
 525 compare the results across the four groups. The Mann-Whitney U (MWU) test was used to compare responses
 526 between two groups. $p \leq 0.05$ were considered significantly different.

527 **Figure 2. Investigating transcriptional differences between healthy individuals, those with diabetes and**
 528 **with LTBI. Whole blood RNA transcripts from study participants in EC (n=128), LTBI (n=16), DM**
 529 **(n=12) and DM-LTBI (n=10) groups were analysed.** A, Principal component analysis was used to visualize
 530 the clustering of samples in each group seen as EC (blue), LTBI (red), DM (purple) and LTBI-DM (green). B,
 531 A barplot depicts the number of differentially expressed genes (DEGs) between groups as Up-regulated
 532 (orange), Down-regulated (blue) genes respectively. DEGs were filtered at based on an absolute fold change
 533 (FC) of ≥ 2 or ≤ -2 and $p < 0.05$. C, The Venn diagram compared 359 DEGs between comparisons of LTBI
 534 (187), DM (182) and DM-LTBI (12) with EC groups. D, Twenty-two common DEGs found between LTBI and
 535 EC, as compared with DM and EC groups are depicted.

536 **Figure 3. Reduced innate immunity related genes in LTBI as compared with controls.** The figure depicts
 537 comparison between transcriptomes of participants of LTBI (n=16) and EC (n=12) groups whereby 187 DEGs,
 538 4 Up and 183 Down-DEGs were observed. A, Volcano plot analysis depicts the DEGs with showing Up-genes
 539 are shown in red and Down-genes in green. DEGs identified, based on a FC of ≥ 2 or ≤ -2 and $p < 0.05$. B,
 540 Dotplot of GSE-GO biological processes and molecular functions show pathways associated with the DEGs.
 541 First two are activated and last two entries in the dotplot are downregulated. C, Heatmap of GSE-GO biological
 542 processes and molecular functions, showing genes involved in the important processes.

543 **Figure 4. Reduced innate immunity related genes in DM as compared with controls.** The figure depicts
 544 comparison between transcriptomes of participants of DM (n=12) and EC (n=12) groups whereby 25 Up and
 545 157 Down-DEGs were observed. A, Volcano plot analysis depicts the DEGs with showing Up-genes are shown
 546 in red and Down-genes in green. DEGs identified, based on a FC of ≥ 2 or ≤ -2 and $p < 0.05$. The grey area of
 547 the volcano plot represents genes that were not differentially expressed between groups. The inset zoom shows
 548 further details of the DEGs. B, Dotplot of GSE Reactome showing suppression of neutrophil degradation and
 549 immune response. C, heat map of GSE-Reactome highlighting genes involved in the pathways.

550 **Figure 5. Dysregulated immune and metabolic pathways in those with diabetes and LTBI.** The DEGs were
 551 compared between DM-LTBI and LTBI groups. Significant differential expressions are represented by a FC of

652 ≥ 2 or ≤ -2 and $p < 0.05$. A, Shows volcano plot analysis of the DEGs. B, Depicts GSE Reactome. C, DEGS
653 were analysed through the heatmap of GSE Reactome pathways.

654 **Figure 6. Analysis of DEGs in the diabetic cohort based on LTBi infection and also hyperglycemic levels.**
655 The analysis shows comparison between individuals who have DM-LTBI in the the uncontrolled (H-DM, n=4)
656 as compared with controlled (C-DM, n=6) groups. A, The DEGs labelled in volcano plot showing significant
657 differential expression using a threshold of an absolute fold change ≥ 2 and p value < 0.05 . B, Dotplot showing
658 list of activated and suppressed biological processes enriched using GSE GO ontology, highlighted on the basis
659 of p-adjusted value. C, Cell-type proportion estimated heatmap generated using the ImmunoStates reference
660 matrix applied on the normalized data of the same cohort, each row corresponds to a specific immune cell, and
661 each column is our study sample. Color intensity and numeric values indicate the estimated relative proportion
662 of each immune cell type in each sample. Hierarchical clustering groups samples and cell types based on
663 similarity in immune composition. D, Heatmap of immune cells generated using Leukocyte Matrix 22 (LM22)
664 database as a reference.

665 ARTICLE IN PRESS