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Abstract—Microarrays produce high-resolution image data at improving the original images [13]-[16] such that final
that are, unfortunately, permga_ted with a great_deal of “noise” expressions are more realistic.
that must be removed for precision purposes. This paper preseat — \jqise i the images therefore will have a negative effect
a novel technique for such a removal process. On completion . . . .
of this non-trivial task, a new surface (devoid of gene spots) with respe_ct to the correct |den.t|f|cafuon and quantifigatio
is subtracted from the original to render more precise gene Of underlying genes. Therefore, in this paper we present an
expressions. The Graph-Cutting technique as implemented has algorithm that attempts to remove the biological experimen
the benefit that only the most appropriate pixels are replaced. (or gene spots) from the image. In the microarray field, it
This means the mflut_ence of outl_lers ar_ld other artefacts are is accepted as part of the analysis methodology that the
handled more appropriately (than in previous methods) as well . . L
as the variability of the final gene expressions being considerably Packground domain (non-gene spot pixels) infringes on the
reduced. Experiments are carried out to test the technique agast gene’s valid measure and steps must be taken to remove these
commercial and previously researched reconstruction methods. inconsistencies. In effect, this removal process is edgita

Index Terms—cDNA, Microarray, Background Reconstruction, to background reconstruction and should therefore prodace
Graph-Edge-Seam Cuts. image which resembles the “ideal” background more closely
in experimental (gene spot) regions. Subtracting this new
background image from the original would yield more acairat
gene spot regions.

Although microarray technology [1] was invented in the Gene expressions rendered by this reconstruction process
mid-90s’ the technology is still widely used in laboratsrieare contrasted to those as produced by GenePix [17] (a
around the world today. The microarray “gene chip” containsommercial system commonly used by biologists to analyse
probes for an organism’s entire transcriptome where difter images). The results are also compared with three recanstru
cell lines render gene lists with appropriate activation- letion approaches (O’Neilket al. [14], Fraseret al. [15], [16]).
els. Gene lists can be analysed with application of variousThe paper is organised in the following manner. First,
computational techniques, be they clustering [2] or maugll we formalise the problem area as it pertains to microarray
[3] for example such that the differential expressions camage data and briefly explain the workings of contemporary
be translated into a clearer understanding of the underlyiapproaches in Section Il. Section Ill discusses the fundéahe
biological phenomena present. For a detailed explanationi@ea of our approach with the appropriate steps involvetién t
the microarraying process readers may find references7é]-hnalysis highlighted. We then briefly describe the data used
of interest. throughout the work and evaluate the tests carried out over

Addressing the issue of data quality effectively is howevéyoth synthetic and real-world data in Section IV. Section V
a major challenge, particularly when dealing with realddor summarises our findings and gives some insight into future
data, as “cracks” will appear regardless of the design spefirections.
ifications etc. These cracks can take many forms, ranging
from common artefacts such as hair, dust, and scratches
on the slide, to technical errors like miscalculation of gen
expression due to alignment issues or random variation inMicroarray image analysis techniques require knowledge of
scanning laser intensity. Alongside these errors, therg ex a given gene’s approximate central pixel and the slideiscstr
host of biological related artefacts such as contaminatibn tural layout; therefore, all analysis techniques havelanities
the complementary Deoxyribonucleic Acid (cDNA) solutior(regardless of their specific implementations). For exampl
or inconsistent hybridisation of multiple samples. Theufc a boundary is defined around the gene - thus marking the
in the microarray field therefore is on analysing the gerfereground region - with any outer pixels in a given radius
expression ratios themselves [2], [8]-[12] as renderedhfrotaken to be local background. The background median is
image sets. This means there is relatively little work dedc subtracted from the foreground and the result is summarised

I. INTRODUCTION

Il. EXISTING TECHNIQUES



as a log ratio. Bounding mechanisms include partitioningertalmio, albeit much faster. Alas, microarray imagestaion
pixels via their histograms [8], [18], edge-based [19],][20tens of thousands of regions requiring such reconstrusaoal
region growing [20], [21] and clustering [22], [23] functis, are therefore computationally expensive to examine with th
a detailed comparison of the more common approaches e@arementioned techniques.
be found in [13]. The underlying assumption throughoutéhes Sunet al. [28] proposed an interactive method to inpainting
mechanisms however is that there is little variation witthia  with missing strong visual structures by propagating thecst
gene and background regions. tures according to user-specified curves which does improve
This is unfortunately not always the case as can be seerpii previous methods somewhat, but the interactivity clause
the example regions of Fig. 1a, which depicts a typical test syould be inappropriate in this context.
slide (enhance_d to show gene spot Iocat_ior)s) with a to'FaI OfGraph or seam-cutting on the other hand as used in the
9216 gene regions on the surface held within an approximatgage-editing related field is quite prevalent. For example
area 0f~5000x< 2000 pixels. Note in addition that every image>erezet al, [29] proposed a Poisson Image Editing technique
in the test set was created on a so called two-dye microarggy compute optimal boundaries between source and target
system which means the DNA tagging agents are known @gqes, while Agarwaleet al. [30] created an interactive
Cyanine 5 (Cy5) and Cyanine 3 (Cy3). The close-up sectiopgyital Photomontage system that combined parts of a set
proylde_ good examples of the Iow—leyel S|gn_al _produced iN& photographs into a composite picture. Kwaggal [31]
typical image; problems such as partial or missing genesspQionosed a system that attempted to smooth the edge between

shape inconsistencies, and background variation arellegjifferent target and source images. Other Graph relateti-met
evident. Such issues are further highlighted in panels b aggs can pe seen with [32]-[34] for example.

¢ where the scratch and background illuminations around theHowever graph methods are predominantly designed for

genes change significantly. interactive usage (however minimal) while inpainting tech
P o nigues are focused at producing aesthetic reconstructions
rather than accurate ones as required in a medical context.
To address the issue of removing objects, O’'Neillal. [14]
attempted to harness ideas from the Efbsl. technique and
improve background prediction results. Specifically, CINet
al. remove gene spots from the surface by searching known
background regions and selecting pixels most similar to the
reconstruction border. By making the new region most simila
to given border intensities it is theorised that local bawokgd
structures transition through the new region. However bt
such a process has accomplished in this regard is to maintain
a semblance of valid intensities, while the original togidal
information is lost.
Fig. 1. Example Images: Typical test set Slide lllustratingu&tire and The next section describes an approach that attempts to
Noise (a) with Sample Gene, Background Locations for Gen¥Riteys (b) address issues related to object removal by using a seam
and ImaGene Circles (c) detection mechanism in an automatic and natural way.

A background identification process is required such that
inherent variations between gene and background regiens ar

handled more appropriately. Texture Synthesis represemes I1I. AN EW TECHNIQUE
possible avenue for such reconstruction approaches as they
deal with a similar problem. For example, Efmeisal. [24] pro- In this work, we have proposed Seam-Cut Image Re-

posed a non-parametric reconstruction technique thatws noonstruction $CIR, a novel technique that removes gene
well established. The underlying principal of the work was tspots from a microarray image surface such that they are
grow an initial seed pixel (located within a region requirin indistinguishable from the surrounding regions. Remowal o
rebuilding) via Markov Random Fields (MRF). Although thighese regions leads to more accurate gene spot intensities.
works well, the nature of the approach is such that speedQsir previous work in this domain examined the effects of
sacrificed for accuracy. Recalibration HIR) and Fourier ChainingGFIR) (Fraseret al.
Bertalmio et al. [25] on the other hand took an approaciil5], [16] respectively) techniques. Althou@FIR dealt with
inspired by the techniques as used by professional restofer shading and illumination issues more appropriately tH#R,
paintings; i.e. the principle of isotropic diffusion. Chahal HIR produced similar results significantly faster. However,
[26] extended these works along with other related teclesquboth techniques can produce poorer reconstructions iomegi
and proposed an elastic curvature model approach that catominated by strong artefacts (a saturated gene surrounded
bined amongst others Bertalmio’s transportation mechanisvith similar level artefact for example). This work therefo
with the authors earlier Curvature Driven Diffusion work tattempts to improve on this issue; while at the same time
produce accurate yet relatively slow reconstructions. generating exact pixel value€FIR and HIR produce pixel
Oliveira et al. [27] tried to produce similar results toestimates).



A. Description to create a chain (or neighbouring set) of pixels through the

The technique is designed to replace gene spot pixels wiggion that have (in some sense) a minimal intensity. This ca
their most appropriate background neighbour. For exampré", thought of as a_grad|e_nt _functlon that search_es for high-
a scratch on a photograph could be removed such that itCRtrast (or edge) pixels within the gene spot region and low
unidentifiable after reconstruction. In the context of thizrk, contrast pixels within the local background region. _

a scratch is equivalent to the gene spot region itself. Fhere Fig.- 2 presents a sample-reconstructed region from the Fig.
fore, removal of this “scratch” should yield the underlyingt@ image as processed by the techniques. Note in particular
background region in the gene spot area. However, due¥@W the SCIR surface looks sharper than that of O'Neill.
the nature of the microarraying process, gene spots can GBS is due to the O'Neill surface being blurred such that
rendered with different shapes and dimensions, indivl;iualresumng outliers etc are suppressed. The SCIR technique o
and through the channel surfaces. the other hand generates absolute surfaces. A pseudo-code

Therefore, we use a pre-defined window centred at a target
gene (as determined by GenePix) to capture all pipglg
within a specified square distance from this centre. Noté tha
(«,y) are the relative coordinates of the pixels in the window
centred at pixep. The Window size is calculated directly from
an analysis of the underlying image along with resolution
meta-data. The window can then be used to determine the
appropriatesrcList and trgList pixel lists (foreground and
background) accordingly.

The gene spot pixels list can be defined via this windowed
region as,G’=0Q"(g,,,), with Q" representing pixels falling
into the windowed region andg, ,) meaning those pixels
falling into the gene spot. The second liB¢=Q"(g,,,)
denotes those pixels within the same window that are not held
in gene listG? (and must therefore be representative of local
background pixels).

The Seam-Cultting process then usesstictistto determine
those neighbouring pixels that have the strongest intens
through the surface. WhilérgList is used to determine the

weakest neighbouring background intensities respegtivel implementation of the SCIR algorithm can be found in Table I.

the general sense, if we let imagebe anxm surface, the o cjarity the implementation is based on processingetarg
vertical seam through the above lists could be defined as: | i, qow regions, which each contain a distinct set of pixels

s={sy}"_; = {(v(z),2)}"_,,Vz, VX)-v(x-1) < m, (1) that are separated into gene spot and background sets.

© @

Fig. 2. Reconstruction Examples: Original Image (a), Recaottd GenePix
{5) O’'Neill (c) and SCIR (d) Regions

wherex is the mappingx:1,...,n1,....,m The vertical seam is

therefore an 8-way connected set of pixels in the image from

top-to-bottom with one pixel per row. Initially, the imagse i  This section details numerous experiments that were de-

parsed such that cumulative energy for all possible cordecsigned to empirically test the performance charactesstic

pixel sets is at a minimum for each y pairing through the the reconstruction methods. Median expression intessitie

surface. utilised in the comparisons as these values are in-factae r
In essence then, foreground pixels are replaced with th@gne expressions (as used in post-analysis [2], [8]-[12kwo

appropriate background equivalents. Such a replacemént ger example). These values help provide clearer understgnd

icy guarantees that the new foreground surface is not artt & gene spot's repeat set and as such assist with clawficati

cially biased to a particular intensity range. Indeed, iftamg Of the reconstruction quality itself.

the new regions will consist of slightly lower intensity tha

perhaps is necessary meaning therefore a built-in buf@s® A pata set characteristics

applied presently.

IV. EXPERIMENTS AND RESULTS

The images used in this paper are derived from the human
genl clone set [35] data. These experiments were designed
B. Example and Pseudo-Code to contrast the effects of two cancer-inhibiting drugs (ol
Initially, the SCIR process creates two distinct lists for and LPS) over two different cell lines. One cell line reprase
given gene spot location. The source list represents geaste gpe control (untreated) and the other the treatment (HelLa)
pixels as demarcated within the square window centred at fivee over a series of several time points. In total, there are
gene, while the target list consists of the remaining pixels 47 distinct slides with the corresponding GenePix results
the window. Equation 1 is executed on the lists with the locaklesent. Each slide consists of 24 gene blocks with each
background taken as the source region and the gene piXalsck containing 32 columns and 12 rows of gene spots.
the region to be reconstructed. Essentially the approaeb trThe gene spots in the first row of each odd-numbered block



TABLE |

SEAM-CUT RECONSTRUCTIONFUNGTIONS PSEUDO-CODE The first experiment therefore is focused at answering “how
well the SCIR process removes synthetic gene spots from

Input the image”? Sixty-Four (64) realistic SGS’s were placed int
srcList List of gene spot region pixels existing background regions of the Fig. 1la images Cy5 and

Cy3 surfaces. These synthetic gene’s were then recorstruct
with the before and after surfaces compared for similarity.
Note that as the artefact region itself could be considered
gene spot similar, our reconstruction processes also ptteEm
build the region such that the artefact pixels are removaiéks T

trgList: List of sample region pixels
Output

outList srcList pixels recalibrated into trgList range
Function seamCut(srcList,trgList):outList

2

11. geneRadius-=1
12. outList=srcList
13. End While
14. End For

End Function Reconstruction Technique

@

1. For each gene process yields a ball-park-figure for the potential distitn
2. geneRadius=radius of current gene spot errors generated by the various background reconstruction
3. While geneRadius not equal 0 techniques. Such potentials as rendered from test imagery ¢
4. fgEnergy=calc max pixel surface from srcList members be seen in Fig. 3a, while Fig. 3b highlights a close up sample
5. bgEnergy=calc min pixel surface from trgList members region of the aforementioned SGS’s.
6. fgChain=Parse fgEnergy to determine max-neighbour "

pixel chain
7. bgChain=Parse bgEnergy to determine min-neighbour

pixel chain o
8. remove fgChain from fgEnergy Em =
9. remove bgChain from bgEnergy Zo
10. copy bgChain pixels into srcList locations ?;“

2

1
Median Sampling Oliveira ONeill SCIR

are known as the Lucidea ScoreCard [36], [37] and consist

of a set of 32 pre-defined genes that can be used to test _

various experiment characteristics. The remaining 11 rofvs (b)

the odd-numbered blocks contain the human genes themselygs 3. synthetic Gene Spots: Average Absolute Pixel Ereyrand close

The even-numbered blocks are repeats of their odd-numbeuvedf a Fig. 1a region with ten synthetic spots (b)

counterparts. This means that each slide has 24 repeats of th

32 ScoreCard genes and 4224 repeats of the human genddie graph presents the potential intensity flux error (PIFE)

respectively. Note it is generally accepted that extrenxelpi for the reconstruction techniques. On average, the GenePix

values should be ignored as these values could go beyond @8giocated median sampling approach yields a PIFE of 177

scanning hardware’s capabilities. per pixel per SGS region while the other techniques yield
decreasing values (our process value of 122 represents a
~30% reduction over GenePix). Such a finding reiterates that

B. Synthetic Data downstream analysis when based on GenePix (specifically

The guiding principle of the technique is the feasibilit)Fhe BackGround Correction (BGC) stage) estimates dirgctly
that replacing gene spot pixels with pixels from neighbogri p_roduce more erroneous gene expressions than perhaps appre
regions will result in a reconstructed area that is indgtish- ciated. o _
able from the neighbouring region. Put another way, the genel '€ panel b surface highlights a sample of the SGS region
spots should simply vanish from the surface which means tH¥dfh @ large artefact running through two (2) gene spot negjio
their new texture has to be very similar to the neighbourifOte (as stated above) we can see that the strong artefazt edg
region. Note that regions with strong and sharp intensif}i3S been successfully replaced with appropriate backgroun
differences (an artefact edge for example) will be harder gybstitutions. Note hqwgver that such strong edges carecaus
“blend” successfully. In order to verify that the principie greater challenges within real data as shall be seen.
at least valid, one would need to rebuild an obscured known
region and compare before and after surfaces for accurdey. Real Data
However, as the gene spot sits above the optimal backgroundVith our confidence in the reconstruction techniques abil-
surface it is not possible to determine optimal rebuild [gixe ities enhanced by the synthetic results, the next stage is to
In order to validate rebuild feasibility therefore, we uée t understand how such reconstructions fare with real data. In
Synthetic Gene Spot (SGS) creation process as outlinedparticular, “how badly do strong artefact edges interferta w
Fraseret al. [16]. a reconstruction event’?




Experiment two only uses the ScoreCard control genes for " A A
all blocks across the test images. Recall, the composition o i /\ / \ /f'\\
the test imagery is such that we have more technical repeats ™ ; ] \ ] \\/ \ ;
of the control genes than the human ones. Also, the control \ 7 \ /‘ : \ /
genes are completely independent of the biological exparim \ ™ }* . . /’Y \ /
which means ideally they should fluoresce in exactly the same = s o = \7
way across the images regardless of environmental conditio . '
(in principle).
The Fig. 4 plot presents the tracking of the standard devi-
ations (STD) for the 32 ScoreCard genes over the 24 repeat T TR Genes R
locations. Note however that due to the way in which O’Neill + GenePix ~+-SOIR —~-ONeil
calculates a given gene spots region, their STD’s are somttewh @

lower than expected. However, the plot still imparts gehera i .
characteristics for the given reconstruction techniques.
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Fig. 4. Real Gene Spots: Overview of ScoreCard gene Staridiarations

If we disregard saturated gene spots for a moment affilities to deal with a range of image modalities. The panel

examine the close up section of the plot we see the profﬁeolot therefore shows the same information across theeentir

residuals follow each other fairly well. This means the prdt/-Slide test set. This should allow us to see how exactly a

cesses do reduce STDs at least in a partial sense. reduction manifests itself onto the final gene metrics. @Qlea
Critically then, this leads to a need to understand ifBe SCIR process has reduced the technlcallrepeats to amgreat
reconstruction techniques performance characteristiose m&Xtent than perceivable from the sample image alone. The
closely. Specifically the relationships between expressiea- respective proflle'values for the test set are 10374, 3742 and
surements for all ScoreCard genes in the same slide (Fig. 8413 flux respectively.
and across all slides in the test set (Fig. 5b) are comparedClearly, reconstruction of gene spot's does have a positive
Note that it is expected that some intensity differences wgffect on the final expression results but, not so obvious, ar
appear as the experimenta| time point’s increase as rehuifbe ramifications that the reconstruction has over the #&ist s
through the biological processes. Fig. 6a therefore is a comparison chart showing explictily t
These plots show the bound absolute foreground medigmprovement (or not) of a particular reconstruction tegiiei
values for the multiple image channels for the document@@ainst the original GenePix expressions.
techniques. From Fig. 5a it can be seen that SCIR and O’Neill
performed in a similar vein with very little difference angst
them. However, the saturated gene spots - 15 in this cas
has caused a blip in the profile plot for SCIR. Recall, that
by the very nature of a saturated gene spot, the surfac
is close to a constant value and obviously artificially high. «
But in this instance the gene in question also has a stronq%
artefact intercepting it. During reconstruction, the dans i
type value of the gene is not a major challenge to rectify;
more problematic is how to deal with the strong intercepting
artefacts appropriately. Note that the replacement piets as
derived during reconstruction actually do a fair job oviefedr
this image, the saturated gene spots did not affect the matco ) . ) ) )
of the final quantifcation stage greatly. P15, ol Resuls Comparson: Ml o (st st shoudprence
Whereas the Fig. 5a plot represents a specific image surfaggigned the colours blue(darkest), red and green(lighte40% difference)
which does not render a given reconstruction techniquesspectively

Wimproved M Unchanged  Degraded
95% 1% %

Experiments 1~47
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