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Urban morphology plays a critical role in shaping the energy utilization potential of rooftop photovoltaic (PV)
systems, with key factors including building height, available roof area, as well as obstruction angles and
orientation influencing shading patterns and solar exposure. Previous research highlighted the impact of building
and urban forms on enhancing solar energy utilization and decreasing energy demands. However, the devel-
opment of a simple design model that captures the relationship between key design parameters and their impact
on PV Utilization potential and Yield Density requires further large-scale investigation. This study aims to
develop design-oriented regression models that enable practitioners to reliably estimate PV technical potential in
the early stages of the design process. A comprehensive parametric analysis with around 1,000 simulation runs
were conducted to evaluate and predict rooftop PV energy performance, emphasizing the influence of building
and urban design parameters. Correlation analysis and regression models are developed to interpret the para-
metric relations and utilization potential of PV on building’s rooftop in Cairo, Egypt. Results indicate that roof-to-
total floor area (RTFA %) and sunhours % are the most significant predictors of PV Utilization. These variables
interact such that the sensitivity of PV Utilization in response to sunhours variations is doubled with every in-
crease in RTFA %. In contrast, sunhours % and South obstruction angle are found to be the effective predictors of
PV Yield Density. This study provides valuable insights for informed decision making, enabling the design of
urban environments that maximize solar energy utilization and support sustainable development.

1. Introduction clean energy with improved power generation and decreased life cycle

costs [4]. Global PV capacity has increased from 100 GW in 2012 to

Buildings account for around 30 % of global energy consumption and
are responsible for nearly 26 % of energy-related emissions worldwide
[1]. The need to generate energy from renewable resources is urgingly
rising to fulfill the global requirements, long-term sustainability and
energy security goals. Efforts are focused on making renewable energy
contribute two-thirds of the total energy supply by 2050 [2]. It is expected
that transition to renewable energy in power generation will have the
most significant reduction share of carbon dioxide (CO3) emissions to
achieve net-zero targets by 2050 under the 1.5°C climate pathway [3].
Solar energy is one of the most utilized sources of energy. Advances of
technology such as Photovoltaic (PV) systems make it a reliable source of

942 GW in 2021, showing an increase of 842 % in this period [5]. In 2021,
solar PV capacity in the Middle East and Africa increased by approxi-
mately 5.2 GW, representing a 3 % annual growth and bringing the
regional total to 28 GW. However, despite the region’s high solar irra-
diance, only a limited number of countries exceeded the 5 % threshold of
electricity demand met by solar PV, where Egypt reached around 3% [6].

Governments should provide specific incentives for using underutil-
ized spaces like building rooftops for clean energy installations, avoiding
the need for new land development. Additionally, simplifying permitting
processes for small-scale projects, like residential solar panels, can
remove administrative difficulties and encourage wider adoption [7]. In
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Egypt, the government has taken significant steps and introduced in-
centives to promote the use of renewable energy. These include tax ex-
emptions for electricity production projects based on renewable sources
aiming to increase the share of renewable energy to 42 % by 2030 [8].
Egypt is characterized by high solar radiation with an average solar
radiation ranging from 2,000 to 3,200 kWh/m? annually. This high level
of solar irradiance provides the country with considerable potential for
harnessing renewable solar energy [9]. In 2024, solar energy from
photovoltaic (PV) panels accounted for 32 % of the total renewable
electricity generated, ranking second after hydropower (37%), while
wind accounted for 28%, other solar technologies 2%, and biomass 1%
[8]. However, rooftop PV represents a small fraction of national PV ca-
pacity due to both logistical and regulatory issues. It is only concentrated
on pilot projects and a small number of residential installations. By 2021,
only 125 small-scale systems of around 11 MW capacity were installed
across 15 governorates, despite Egypt’s broader renewable goals [6].
Rooftop PV systems offer opportunities for clean energy generation
and carbon emission reductions within urban contexts. Nguyen et al.
[10] estimated that around one third of the roof areas are available in
cities, highlighting the potential of applying PV systems on rooftops.
Their effectiveness in mitigating uprising environmental pressures was
addressed in various studies [11-14]. Pan et al. [13] estimated that
Guangzhou city has 391.7 km? of suitable rooftop area with PV energy
potential ranging from 44.06 to 72.12 billion kWh annually and corre-
sponding reductions in power sector carbon emissions ranging from
72.12 % to 100 %. Gomez-Exposito et al. [15] showed that more than 95
% of the cities in Spain possess rooftop PV potential exceeding their
annual electricity demand. It was estimated that a maximum capacity of
234 GW installed on 1,134 km? of available rooftop area can be reached,
excluding north-facing surfaces. This corresponded to 46 % of the total
urban area and only 0.22 % of the Spanish national land area, capable of
generating approximately 290 TWh of electricity annually. Hong et al.
[16] estimated the suitable rooftop areas for installing PV panels in
Seoul, South Korea, using Hillshade analysis. They found that suitable
roof area in Gangnam district reached around 4,964 km? accounting for
66 % of the total area and a PV potential of around 1,130 GWh. Walch
et al. [17] used machine learning, GIS and physical models to estimate
PV potential of 9.6 million rooftops in Switzerland, showing that 55 % of
roof areas were suitable for PV installation, which can account for
around 40% of annual electricity demand. Alhammami et al. [18]
showed that Khalifa and Zayed City in Abu Dhabi, UAE cover total areas
of 23.39 km? and 49 km?, respectively, with rooftops representing
around 12.6 % of the total area. Based on rooftops utilization factors
ranging from 0.25 to 0.45, they estimated annual energy potential at
116.3-211.7 GWh and 249-448.2 GWh, respectively. These studies
estimated the PV energy generation based on the available solar po-
tential on the macroscale of urban clusters and the city scale level.
Making the best use of underutilized areas like rooftops requires
special attention to the building scale and the resultant factors that affect
solar energy utilization potential. Fakhraian et al. [14] classified these
factors based on four sub-potentials including physical, geographic
(urban), technical and economic potential. The physical potential
referred to the solar energy received based on climatic conditions. The
technical potential represented the electricity production determined by
technical characteristics like PV efficiency and PV performance. The
economic potential encompassed cost-related and social constraints.
Additionally, the geographic or urban potential involved factors like
building layout and urban context which impact shadow patterns and
solar irradiance [19,20]. These shadow patterns were found to signifi-
cantly impact the performance of rooftop PV systems. Ren et al. [21]
stated that reductions in PV energy generation reached up to 39.71%
under high shadows from neighboring buildings. Xie et al. [22] investi-
gated the impact of block typology and urban morphology on the energy
consumption and solar energy potential, indicating a possible 12.25 %
difference in energy use intensity (EUI) and 30.88% in solar energy
generation intensity (SEGI). The primary parameters included shape
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factor which affected both EUI and SEGI. Tower blocks were found to
have the best SEGI with the lowest net EUI, whereas the H and U-shaped
blocks had the lowest EUI from other shape types. Other parameters like
average block length and building density affected EUI, while the average
height of the block and sky view factor influenced more solar energy
generation. Wang et al. [23] also showed that there was a significant
inter-building effect on both energy consumption and PV Utilization
which varied greatly based on the climatic zone. Li et al. [24] investigated
the impact of building shape layouts on PV Utilization, recommending U-
shaped and courtyard blocks. The U-shaped layout achieved the highest
energy generation at 143 kWh/m?, while the courtyard shape had the
highest installation area ratio of 0.68. Liu et al. [25] assessed 17
morphological indicators on PV potential using 300 building clusters as a
sample of rural buildings in Nanjing, China, demonstrating that building
height and floor area ratio are the most influential factors. These studies
relied on complex building performance simulations (BPS), highlighting
the need for direct and generalized methods to estimate or predict PV
performance that can be easily applied by users.

Building Performance Simulation (BPS) and optimization are
essential for assessing PV energy performance; however, due to the time-
consuming nature and lack of skill of this computational approach,
environmental assessments are often left to late stages of the design or
even neglected [26]. Jiang et al. [27] highlighted challenges of adopting
traditional BPS, particularly its dependence on detailed models and
expert data input, which limits its scalability and early-stage adoption in
design processes. To address this limitation, developing user-friendly
predictive models is valuable in providing early results with quick
feedback on PV Utilization potential with the least possible resources.
Although previous research studies have examined the impact of
geographic parameters on PV Utilization, there remains a gap in
providing designers with simple, practical models that can be used in the
early design phase to estimate rooftop PV technical potential.

This paper aims to address this gap by developing predictive models
that directly estimate design performance in terms of solar potential,
linking building and context parameters to rooftop PV Utilization and
Yield Density potential. The goal is to estimate the percentage of a
building’s energy demand that can be met by rooftop PV system (PV
Utilization). By evaluating both the capacity for PV energy generation
and the total building energy use, this study seeks to estimate the per-
centage of PV Utilization for various building configurations. In addi-
tion, it calculates the PV Yield Density, defined as the annual energy
generated per one meter square of PV panel. To achieve this, around
1,000 rooftop PV installations are simulated using Climate Studio tool,
providing a wide range of design parameters by varying building length,
width, height, and the orientation and angles of surrounding obstruc-
tions. Correlation analysis is then employed to identify key parameters
influencing PV performance, while regression models are developed to
predict PV Utilization and Yield Density as a function of building form
and surrounding obstruction variables.

This paper is structured into three main sections. First, it outlines the
proposed methodology, which includes a parametric simulation analysis
of the case study and the development of regression models. Next, the
results and discussion section presents the prediction performance of the
developed regression models for PV Utilization and Yield Density.
Finally, the conclusion highlights the impact of rooftop PV installations
on energy reduction, emphasizes the critical role of building and urban
configurations, and underscores the novelty of the proposed approach
while suggesting directions for future research.

2. Methodology

Reliable predictions of rooftop PV energy generation are influenced
by several variables, including climatic conditions, sun exposure hours
and the available rooftop area for PV installations. This study in-
vestigates the hot climatic context of Cairo, Egypt having Latitude 30°N
and Longitude 31°E using a generic office building as a case study



F. Fathy et al.

Context parameters
Building Heights
Street widths
Buildings Orientation (South,
East, North, and West)

Deduced Parameters

Building parameters

Dimensions (Length and Width)
Roof Level (Height)
No. of floors

Roof Area . .
BV PaneiArea Surrounding obstruction angles

Roof-to-Total Floor Area (RTFA%) [ (©)

Software to Build parametric model
Rhino & Grasshopper

> 4
2) Building Performance Simulation
PV Simulation

» Annual energy generated
(kWh) )
Divide by Multiply by
( No. of floors |

Energy Simulation
« EUI (KWh/m?2)

Divide by
( PV Panels area ]

!
l Total energy Use (kWh/m?) ]
v

PV Yield Density (KWh/m?) PV Utilization (%)

Solar Radiation
« Total Solar Radiation on PV panels (kWh)
+ Average Solar radiation on one meter square of PV panel (kWh/m?)
« Average unobstructed sunrays (sunhours) on PV panels (%)
Software

Climate Studio in GH for PV and energy Simulation
Ladybug in GH for Solar Radiation and Sunhours

»

Solar Energy 307 (2026) 114364

3) Regression Analysis

Examining Pearson correlation between design variables

'

Multiple linear regression (Subset regression analysis)

Independent Variables
(Predictors)

Dependent Variables
(Response)

Building Parameters and

resulted PV
Configurations = PV Utilization (%)
(Percentage of PV energy
* Length — S output to total Energy
« Width Use)
* RoofArea
« Total Floor Area
* Roof-to-Total Floor Area
(RTFA%)
* No.of Floors —
« Obstruction Angle &
Orientation « PVYield Density
+ Sunhours (kWh/m?) (energy output
» Average Solar Radiation of 1-meter square of PV
+ Total Solar Radiatic area)
Model Evaluation

Standard Error (SE), Coefficient of determination (R?) and adjusted R?

Fig. 1. The workflow for predicting PV Utilization and Yield Density.

surrounded by obstructions from the four orientations. The research
explores the impact of varying building configurations and shading
patterns on PV Utilization potential and Yield Density. The proposed
methodology comprises of three main phases as shown in Fig. 1. The first
is concerned with data generation through parametric modelling,
incorporating key design variables of building form and surrounded
obstructions that impact rooftop PV Utilization potential. The second
involves performance simulation analysis for calculating the PV Utili-
zation potential and PV Yield Density. The third step proposes regression
models for analyzing the impact of designed variables and predicting the
potential outcome. These phases are sequentially integrated to system-
atically explore the impact of design parameters on PV performance,
ensuring a comprehensive and data-driven approach to achieving the
study’s objectives.

2.1. Data generation through parametric modelling

The parametric modelling process was performed using Rhino and
Grasshopper (GH) software, enabling the generation of a wide range of
design configurations. Fig. 2 and Table 1 presented the ranges of
building and surrounding context input parameters used in the simula-
tions. The building model varied in height, length and width to produce
configurations with roof areas ranging from 225 to 2,025 m? and
number of floors from 2 to 12 floors assuming a fixed floor height of 3 m,
providing a roof-to-total floor area (RTFA %) between 8% and 50%.

Fenestration design adopted window-to-wall ratios (WWR) of 0.6 for
the North facade, and 0.4 for the remaining orientations, with a
maximum module length of 5 m. Simple horizontal shading devices were
modeled on South facing windows. External obstructions were modeled
on the four orientations, South, West, North and East, to obtain different
shading patterns on rooftops. Different combinations of street widths
and obstruction heights were varied to simulate a range of obstruction
angles. These angles were further formed by the number of floors, as the
height difference between building and the opposing building determine

the resulting angle. The simulated obstruction angles ranged from 0 to
around 80 degrees, with mean values of 33.7 °, 27.6 °, 16.1 °, and 27.7 °,
and standard deviation of 32.2 °, 30.5 °, 27.4 °, and 30.7 ° for the South,
West, North and East orientations respectively. PV panels were installed
on the available rooftop area, oriented to the South with a fixed tilt angle
of 30 °, which was found to be an optimal angle for solar radiation in
Cairo’s climatic context [28]. Each PV module measured 1 m by 2 m
with clear distance of 1.7 m between rows to minimize inter row
shading.

2.2. PV simulation analysis

In the second step, building performance simulations were carried
out to estimate the energy generated by roof mounted PV system, as well
as the overall building energy performance in terms of the energy use
intensity (EUI). A total of 1,000 simulation runs were performed, rep-
resenting various combinations of building and context parameters
within Cairo. The EPW weather data file was downloaded from the
energyplus website and imported to Climate Studio tool which was used
for conducting both PV and energy simulations as illustrated in Fig. 3.
The typical average efficiency of commercial PV panels ranges from 15
to 20 % [29]. The lower end of this range was selected (15 %) for the
simulation setting, as high temperatures, dust, and other environmental
factors reduce PV performance in real operating conditions, making it
more representative of actual rated efficiencies. This assumption is
supported by a recent study evaluating a rooftop PV system installed in
Cairo, which reported an average annual system efficiency of 15.8 %
[30].

An effective area factor was set to be 80 % to account for additional
architectural or service constraints beyond the modelled stair core and
inter-row spacing to be in line with the practical roof utilization factors
for PVs [31]. The modelled PV areas ranged from 64 to 1,128 m? with
effective areas between 51 and 902 m?. This corresponded to utilization
factors (UF) of 0.23 to 0.45, which is the ratio of effective PV area to the
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Fig. 2. Building and context design configuration.

Table 1
Parameters range for building and context.

Building Parameters Context Parameters

Roof Height (m) Length (m) Width (m) Obstruction Angle 6
(°) and orientation
Range 6-36 15-45 15-45 0-80 S,W,N,E
Increment 3 5 5 Random

total floor area. This aligned closely with the findings of Ghaleb et al.
[31] who reported that UF values of office buildings ranged between
0.27 and 0.39. Another study estimated available rooftop area for
evaluating PV potential by applying facility coefficients to exclude
surfaces which have other specific applications like aerials and HVAC
equipment. For 16 representative building typologies, these coefficients
ranged from 0.6 to 0.92 with an average of 0.77, indicating an average
reduction of 23 % in effective roof area [32]. This closely aligned with
the assumed 20% reduction.

The installed PV capacity ranged from 7.7 to 135.4 kW representing
the peak direct current output of PV under standard test conditions of
solar radiation of 1,000 W/m?. It was determined based on the effective
PV area available on the roof and the assigned PV efficiency (15 %), as
expressed in Eq. (1). The implied capacity factor (CF) was then derived
to represent the ratio of simulated annual energy output to the theo-
retical output if the system operated at full capacity over the year, as
illustrated in Eq. (2). This factor signified the physical potential of
Cairo’s climate for energy generation through rooftop PV.

PVcapacity = PVeffectivearea x Solarirradiance (1,000 W/m?)
x PVefficiency (@)

ImpliedCF = PVenergyoutput(kWh]/(PVcapacity[kW]*8, 760 ) 2)

Additionally, Ladybug tool in GH was used to calculate the total and
average solar radiation on the PV panels. It was also used to calculate
sunhours, defined as the annual duration of unobstructed direct sunlight
incident on a surface, derived from the sun position (solar altitude and
azimuth) over the year. This metric was referred to as solar access or
direct sunlight availability in solar and urban planning studies [33,34]
and it can be mathematically expressed by the summation of the sun
visibility V(t) over time steps (t) in a year, as illustrated in Eq. (3).
Sunhours = IllV(t)At 3)
where V(t) is the sun visibility, V(t) = 1, if the sun position at time t is
unobstructed by shading, and V(t) = 0, if obstructed. At is the time
increment (1 h), and N is the total number of analyzed time steps t.

Sunhours was calculated by estimating the annual average number of
unblocked sunrays reaching the rooftop PV panels. These sunrays were
affected mainly by the four main building obstructions from the four
sides, as well as the parapet wall of 1 m height around the perimeter of
the roof and stairs core. Sunhours % was then calculated as the per-
centage of the average unobstructed sunhours to the total possible
sunhours, which was derived from the sunpath diagram as shown in
Fig. 4.

An automated workflow was developed to run the simulation anal-
ysis for around 1,000 design iterations, integrating energy performance
simulations within the parametric environment. The resulting data,
representing the relationship between design parameters and perfor-
mance outcomes, were exported to Excel using the Lunchbox Write to
Excel component in GH for further analysis.

2.3. Developing regression models

The third step involved data analysis to show the relationship be-
tween the assigned building and urban variables and both PV Utilization
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Fig. 3. PV and energy simulation models in Climate Studio in GH.

potential and PV Yield Density. Then, linear and multilinear regression
models were developed to predict PV performance. Linear regression
models were selected for two main reasons. The primary objective was
to develop a simple, interpretable, and easily applicable design tool that
can be used to predict PV Utilization and Yield Density without
requiring advanced statistical expertise. In addition, preliminary anal-
ysis, which included scatterplots and correlation assessments, indicated
linear relationships between PV Utilization, Yield Density and building
and urban parameters.

The first regression model predicted PV Utilization potential (%),
defined as the ratio of PV energy output to total building energy use. The
second regression model focused on predicting PV Yield Density, defined
as the annual energy generated per one meter square of PV panel. These
models captured PV performance and can be used to make predictions,
with performance evaluated using Standard Error (SE), Coefficient of
determination (R2) and adjusted R? as defined below [35].

Standard error (SE) represents the standard deviation of the pre-
diction errors and provides an interpretation of how spread out these
errors are. A lower SE indicates a better fit between predicted and actual
values.

SSE 1 " -
SE=\ppe = \/mZin - Yy

where SSE is the Sum of Squares of Errors, Dfe is the Degree of freedom

C))

which is n-p-1, p is the number of parameters, y; is the actual or
simulated value for a given i and ¥; is the predicted value for the same i.

The coefficient of determination or R-squared (R?) quantifies the
proportion of variance in the dependent variable that is predictable from
the independent variables. It indicates the model’s goodness of fit,
showing how well the simulated data explains the predicted values
when it approaches 1. Adjusted R? were used when using multilinear
regression as it provides more indicative results when there are multiple
variables. R-squared predicted is also calculated which assesses how
much the model can predict unseen data.

R? = SSR _ E;;:l ()'i _5’\i)2

ST YL ©
1-R*))(n-1
R = ©

Where SSR is the sum of squares of regression, SST is the sum of squares
of total, y; is the actual or simulated value for a given I, §; is the pre-
dicted value for the same I, y is the average of y, n is the total number of
Samples, and k is the number of variables.

Regression models and Pearson correlation analysis were performed
using Minitab software which is a statistics software for data analytics
and visualizations, while Microsoft excel was used for graphs genera-
tion. SPSS was also used for residual diagnostic and applying robust
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LB Incident Radiation

Fig. 4. Solar radiation analysis using Ladybug in GH.

standard errors to ensure unbiased inference using heteroscedasticity-
consistent correction (HC3) [36].

Data processing started with a correlation analysis among all vari-
ables to identify the existing relationships and avoid problems of mul-
ticollinearity and overfitting in the regression model. Subset regression
models were applied to find the most influential predictors of PV Utili-
zation and Yield Density while reducing redundancy among correlated
variables such as roof area, length and width [37]. This approach
allowed for the exploration of different variable combinations,
providing a manageable set of variables that maintain high predictive
accuracy while avoiding overfitting and multicollinearity. The problem
of multicollinearity was detected using Variance Inflation Factor (VIF),
which is a factor that quantifies how much variance of an estimated
regression coefficient is increased by linear correlation among inde-
pendent variables. VIF of 1 indicates no correlation, while values above
5 typically suggest a collinearity problem [38].

3. Results and discussion

Results emphasized the significance of considering both building and
urban parameters for assessing and predicting the energy performance
of roof-mounted PV panels. The analysis was structured into three sec-
tions. Section 3.1 examined the simulated results to give insights into the
relationship between design variables and PV energy outputs, supported
by sample data analysis. Sections 3.2 and 3.3 described the regression
models developed for predicting PV Utilization and PV Yield Density,
respectively.

3.1. PV simulation analysis

The generated PV energy across all iterations ranged from 13,253 to
260,694 kWh, corresponding to roof areas of 225 m? and 2,025 m?,
floor heights of 6 m and 36 m, sun hours of 60 % and 73 %, and average
solar radiation levels of 1,668 and 1,815 kWh/m?, respectively. With PV
capacities ranging from 7.7 to 135.4 kW, the corresponding capacity

factors ranged between 15 % and 26 %. This range was consistent with
the reported actual measures of capacity factors by Edalati et al. [39],
which typically ranged between 10 % and 30 %, reflecting fluctuations
of weather conditions and daily and monthly variations in solar irradi-
ance. Understanding both the installed PV capacity and the implied
capacity factor indicate the realistic productivity of rooftop PV systems.
While the described ranges outline the limits of this study, the results
reflect that Cairo’s climate offers sufficient sunhours and irradiance to
make rooftop PV an efficient energy source, while also emphasizing the
importance of accounting for building design variables and local
obstructions.

3.1.1. Impact of design variables on PV Utilization

To evaluate the contribution of rooftop PV systems to building en-
ergy needs, the relationship between PV Utilization and design variables
was investigated. Among the tested design variables, the roof-to-total
floor area ratio (RTFA %) exhibited a clear and strong relationship
with PV Utilization, as shown in Fig. 5. The relationship was approxi-
mately linear, with the highest PV Utilization of 125 % reached at an
effective area of PV panels of 393 m? mounted on a 768 m? roof area and
RTFA of 50 % without surrounding obstructions, except the parapet wall
and stairs core. In contrast, PV Utilization decreased when obstructions
were introduced, which is signified by sunhours %. The PV reduction
rate was more evident at higher RTFA % indicating an interaction be-
tween RTFA % and sunhours %. At same building configuration with
RTFA % of 50 % the introduction of obstruction reduced sunhours to 65
%, resulting in a notable decline in PV Utilization (from 125 % to 70 %).
This demonstrated that maximizing rooftop PV potential depends not
only on the RTFA % but also managing surrounding obstructions and
shading patterns. Therefore, evaluating the magnitude of this impact is
crucial for informed decision-making in PV installation.

To better illustrate this observation with a qualitative illustration, a
representative data sample of the typical performance shown in Fig. 6
was analyzed to find the relationship between PV Utilization and the
design variables: RTFA % and sunhours %. It was then quantified
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Fig. 5. The relation between RTFA % and PV Utilization.

through regression analysis of the full dataset to demonstrate the overall
relationship. This sample was chosen with the same roof area of 625 m?
to isolate the area effect, which also reflected the mean value of simu-
lated roof areas. The roof-to-total floor area (RTFA %) showed a clear
positive correlation with PV Utilization. The average solar radiation and
sunhours % were correlated positively with each other; however, they
did not show a consistent relation with the PV Utilization, unlike RTFA
%. Discrepancy was shown in Fig. 6 where the PV Utilization increased
with the decrease of radiation and sunhours %, and vice versa. This
returned to variables interaction, where RTFA % had more dominant
influence on PV Utilization. On the other hand, sunhours had a notice-
able impact on PV Utilization when comparing cases with the same
RTFA %, highlighting the significance of the impact of external
obstruction. For example, by comparing the cases 1 and 7, each having
the same RTFA of 50 %, the PV Utilization declined by 31 % through the
effect of obstructions and reduction of sunhours %. In case 1, with no
obstructions and sunhours of 90 %, average solar radiation reached

2,224 kWh/m? and PV Utilization reached 112 %, exceeding the
building’s energy use by 12 %. When adding obstructions as in case 7,
with sunhours 61 %, the average solar radiation decreased to 1,700
kWh/m2, and PV Utilization declined by 31 % (from 112 % to 81%).
This impact of sunhours % on PV Utilization was less significant at lower
RTFA %. For instance, in cases number 6 and 12, which had RTFA of 8
%, and nearly the same sunhours variation (90 % to 64 %) as cases 1 and
7 (90 % to 61 %), PV Utilization declined by only 5 % (from 20 % to 15
%). These sample results suggest that the impact of obstructions on PV
Utilization may vary with RTFA %, with a stronger influence observed at
higher RTFA % values. Therefore, further analysis on a larger dataset
was needed to validate and better understand this relationship.

To validate this relationship, cases with the highest and lowest RTFA
% (50 % and 8 %) were plotted in Fig. 7a to examine the effect of
sunhours % on PV Utilization. The graph confirms a significant impact of
surrounding obstructions on PV Utilization at high RTFA of 50 %. The
trendline showed a steep slope of 1.0834, indicating high sensitivity of
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Fig. 7. The relationships between RTFA % and sunhours % on PV Utilization.

PV Utilization to reductions in sunhours. In contrast, this impact The results showed a strong linear relation (R? of 0.99), where the in-
decreased at low RTFA % of 8 % with the trendline slope decreasing to fluence of sunhours on PV Utilization almost doubled (coefficient =
0.2095. To further quantify the relationship, PV Utilization was 2.099) with each incremental increase in RTFA % as shown in Fig. 7c.
analyzed across the full RTFA % range (50% to 8%) as shown in Fig. 7b. This highlighted the significant impact of RTFA % on the sensitivity of
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PV Utilization to variations in sunhours %, thus signifying the interac-
tive effect of building design (RTFA %) and urban morphology (sun-
hours %).

3.1.2. Impact of design variables on PV Yyield density

PV Yield Density was the second metric investigated to evaluate PV
energy performance. It represented the average PV energy generated per
square meter of PV area. It ranged from 162 to 274 kWh/m?, with
average incident radiation on PV panels ranging from 1,297 to 2,251
kWh/m? and sunhours % between 40 % and 92 %. These variations in
PV Yield Density were primarily driven by sunhours %and solar radia-
tion, with a clear linear relationship observed between them, as shown
in Fig. 8.

To visualize and interpret representative results, Table 2 presented
two configurations of surrounding building obstructions and their
respective effect on sunhours % and solar radiation and overall PV
performance. This comparison provided qualitative insights that were

Table 2

Solar Energy 307 (2026) 114364

then quantified through regression analysis. In both scenarios, PV panels
were installed on a roof area of 875 mz, with an effective PV area of 346
m? and RTFA of 17 %. The obstruction angles differed, resulting in
average annual solar radiation of 1,887 kWh/m? in the first case and
1,576 kWh/m? in the second reflecting mean values across the dataset.
Correspondingly, the sunhours % (unobstructed sunrays) were reduced
from 68 % to 55 %. As a result, PV Yield Density decreased by 67 kWh/
m? (from 266 kWh/m? to 199 kWh/m?. Both PV Yield Density and
Utilization were affected by surrounding obstructions from the South,
West, and East orientations, with sunhours % serving as the key medi-
ating factor. These findings highlighted the significant influence of
obstruction angles on solar access and hence on PV performance. To
further investigate this effect on a larger scale, regression analysis was
then performed.

The effect of surrounding obstructions on solar radiation and sunhours % on PV performance.

Roof-to-Total

)

Average solar
Radiation (kWh/m?)

Geo. parameters Length Width No. of Floors Floor Area
P (RTFA%)
25 35 6 17
South East North West South East North West
Obstruction Angles 0 79 77 0 69 50 0 69

Sunhours (%)

(kWh/m?)

68 55
EUI (kWh/m2) 70.02 74.85
om:&’ui:::g(iwm 97,635.75 85,843.23
PV Utilization (%) 27 22
PV Yield Density 266 199




%. However, this model, graphically represented in Fig. 10, accounted
only for the building configuration without taking into consideration the
urban context and its shading impact.
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3.2. Regression model for predicting PV utilization 140

The first step in the multi regression involved examining Pearson 120 y=1.441x + 3.5228 :
correlation between design variables as shown in Fig. 9. PV Utilization R?=0.7882 l
showed a high positive correlation with both the number of floors (0.8) 100 .
and the roof-to-total floor area RTFA % (0.89) indicating their potential § 8 .
effectivness in the regression model. However, these two dependant 2 i ......
variables were also highly negatively correlated with each other £ 60 o a T
(—0.88), which indicated multicollinearity. In addition, the multi 2 I -----
regression model showed a moderate Variance Inflation Factor (VIF) of & 40 ; i l ......... l
4.33, indicating the potential of unreliable coefficient estimates. To I
address this, a linear regression model was done for RTFA % given its 20 '“ll'
higher correlation value with PV potential. The model yielded adjusted
R? of 78.82 % and predicted R? of 78.64 %, with standard error of 8.88 0

0 10 20 30 40 50 60
Roof-to-Total Floor Area (RTFA %)

Fig. 10. A simple linear regression model for predicting PV Utilization.

To get a more comprehensive model, a subset regression analysis was
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Table 3

A subset regression model for PV Utilization potential using 13 independent variables.

South  East North  West

RTFA

Total Floor

Width  Roof
Area

Length

No. of

Sunhours

%

Total Radiation

R-Sq R-Sq SE Average Radiation
kWh/m? kWh

(adj)
78.8

No. of

Area

Floors

(pred)
78.6

Sq

Variables

>

8.88
11.62

78.8

63.6

63.8

63.8

>

>

RO X K ) X XX

XK X XX X K X X XX

5.44
5.53
5.17
5.23
5.07
5.07
4.93
4.94
4.87
4.88
4.79
4.83
4.77
4.78
4.74
4.76
4.74
4.74
4.73
4.74
4.74
4.74
4.74

92.0

92.1

92.1

91.7

91.8

91.8

92.7

92.8

92.8

92.6

92.7

92.7

X)X X

Ko X X

Eo I S T I A i ]

93.0

93.1

93.1

93.0

93.1

93.1

93.4

93.5

93.5

93.3

93.4

93.5

93.5

93.6

93.7

93.5

93.6

93.6

93.7

93.8

93.9

93.6

93.7

93.8

93.8

93.9

93.9

93.7

93.9

93.9

93.8

93.9

94.0

93.8

93.9

94.0

93.9

94.0

94.0

10
10
11
11

93.8

93.9

94.0

93.8

94.0

94.0

93.8

94.0

94.0

93.8

12 94.0 94.0

12
13

93.8

94.0

94.0

93.8

94.0

94.0
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then performed using the 13 independent variables: average solar ra-
diation, total solar radiation, Sunhours %, number of floors, building
length, width, roof area, total floor area, roof-to-total floor area RTFA %,
South, East, North, and West angles. This approach minimized infor-
mation loss and facilitated a comparative analysis of various subsets of
predictor variables. The optimal subset was selected aiming to maximize
adjusted R? adjusted while minimizing overfitting and multicollinearity.

In the subset regression analysis presented in Table 3, a total set of 25
models were explored, each composing of a different combination of
variables (X) ranging from 1 to 13 providing the two best performing
models for each variable number. This allowed comparing and selecting
the lowest number of independent variables that maintain a high pre-
dictive power to avoid overfitting. A notable improvement was found in
model accuracy by adding the average radiation as a second variable
with the RTFA %. Despite its low individual correlation with the PV
Utilization (p < 0.2), it increased the adjusted R? to 92.1 % and pre-
dicted R? to 92 %, while decreasing standard error to 5.44 %.

When replacing average radiation with sunhours %, a slight differ-
ence was observed, where both variables demonstrated high predictive
performance as highlighted in Table 4. These variables reflected the
influence of urban context and the associated shading effects. The sec-
ond model, using sunhours %, was advantaged despite performing
slightly lower compared to the average radiation model, as sunhours %
can be claculated direclty without the need for simulation, unlike the
solar radiation. They can be simply estimated by identifying the number
of sunrays passing through the surrounding building obstructions and
reaching the rooftop.

When adding more variables, the model’s performance was not
found to have a significant increase. It peaked with an adjusted R? of 94
% and predicted R? of 93.9 % when at least 10 variables were included
as highlighted in Table 3. With this large number of variables, a problem
of overfitting and multicollinearity may occur, particularly among
correlated variables like length, width and roof area which require
another method like using Principle Component Regression (PCR) to
reduce model complexity [40].

Therfore, the two-variable regression model (RTFA % and sunhours
%) was selected, achieving adjusted R? of 91.8 % and predicted R? of
91.7 %, and a standard error of 5.53 %. The variation inflation factor
(VIF) was low at 1.08 confirming the absence of multicollinearity be-
tween the two variables. The regression coefficients of the two variables
demonstrated the relative impact of each variable showing a higher
impact for the RTFA % of coefficient 1.61, while sunhours % of coeffi-
cient 0.51 (p < 0.001). The ANOVA results showed that the regression
model is highly significant (F = 5,598.257, p < 0.001), indicating that
the predictor variables (RTFA % and Sunhours %) explain a large pro-
portion of the variance in PV Utilization as shown in Table 4.

When observing the residual plot, heteroscedasticity was indicated,
as the variance of residuals changed across the range of predicted values.
At lower predicted values the residuals were tightly clustered, while at
higher predicted values, the residuals showed a fanning pattern with
large positive and negative deviations. Accordingly, robust standard
errors were applied to ensure unbiased inference using
heteroscedasticity-consistent correction (HC3) which adjusts the stan-
dard errors by giving more weight to observations with large influential
points without changing the coefficients. The resulting 95 % confidence
intervals were narrow, and all coefficients remained highly significant
(p < 0.001), indicating stable and reliable parameter estimates as shown
in Table 5.

3.3. Regression model for predicting PV yield density

PV Yield Density is the second objective investigated in this study,
indicating the annual PV energy output per square meters. Results
showed high positive correlations with average radiation (1.00) and
sunhours % (0.95), and high negative correlation with South (—0.82)
and West angle (—0.74), as well as a moderate negative correlation with
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Table 4
The selected multi regression model results for the PV Utilization and ANOVA analysis.

Regression Equation
PV Utilization (%) = —37.51 + 0.5075 Sunhours % + 1.6110 RTFA %

Model Summary

SE R-sq R-sq(adj) R-sq(pred)
5.53 91.81% 91.79% 91.71%
ANOVA
df SS MS F Significance F
Regression 2.000 342,538.651 171,269.326 5,598.257 0.000
Residual 999.000 30,562.737 30.593
Total 1,001.000 373,101.389
Table 5
Residual plot and robust standard errors of PV Utilization model.
Residual plot
Scatterplot
Dependent Variable: PV Utilization%
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Parameter Estimates with Robust Standard Errors
Dependent Variable: PV Utilization

Parameter Coefficient (p) Robust Std. Error® t P- value 95% Confidence Interval

Lower Bound Upper Bound
Intercept —37.549 1.583 -23.715 <0.001 —40.656 —34.442
RTFA % 1.614 0.030 53.270 <0.001 1.554 1.673
Sunhours % 0.508 0.017 29.636 <0.001 0.474 0.542

a. HC3 method.

Table 6

The best subset regression analysis for PV Yield Density.
No. of Variables R-Sq R-Sq (adj) R-Sq (pred) SE Sunhours % South East West
1 90.6 90.5 90.5 9.88 X
1 67.0 67.0 66.9 18.49 X
1 55.2 55.2 55.0 21.54 X
1 27.7 27.7 27.5 27.35 X
2 94.8 94.8 94.8 7.33 X X
2 94.2 94.2 94.2 7.75 X X
2 90.6 90.5 90.5 9.89 X X
2 85.7 85.7 85.6 12.17 X X
3 97.1 97.1 97.1 5.47 X X X
3 96.2 96.2 96.2 6.28 X X X
3 95.1 95.1 95.1 7.10 X X X
3 86.2 86.2 86.1 11.95 X X X
4 98.0 98.0 98.0 4.55 X X X X
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East angle (—0.53). Notably, these variables were also correlated with
each other, indicating the occurrence of multicollinearity. As shading-
related variables were the dominant drivers of PV Yield Density, the
regression model focused on obstruction angles and sunhours % while
excluding other variables with weak contributions and low correlation
to ensure statistically robust and meaningful predictors. The average

Table 7
Multi regression model for PV Yield Density using all four variables showing
high VIF.

Term Coefficient VIF
Constant 1.83

South Angle —0.19727 4.38
East 0.3351 5.69
West 0.37595 4.45

Sunhours % 2.9650 14.72

Table 8
The selected multi regression model for PV Yield Density and ANOVA analysis.

Regression Equation
PV Yield Density
(kWh/m?)

=120.07-0.291 South Angle + 1.68 Sunhours %

Model Summary

SE R-sq R-sq(adj) R-sq(pred)
7.33812 94.81% 94.80% 94.78%
ANOVA
df SS MS F Significance F
Regression 2 981,956.9 490,978.4 9,117.856 0
Residual 999 53,794.17  53.848
Total 1001 1035,751
Table 9

Residual plot and robust standard errors of PV Yield Density model.

Solar Energy 307 (2026) 114364

radiation was intentionally excluded as it requires simulation process to
obtain its value. The focus of this phase was on finding the influence of
building and urban morphology parameters on PV Yield Density using
variables accessible at the early design stage. Linear regressions were
then performed using each of the remaining variables individually, as
well as in the best subsets, as shown in Table 6. Model performance was
evaluated aiming to maximize adjusted R? while minimizing VIF.

The highest R? was achieved when including all variables, reaching
98 %. However, the model showed critically high VIF of 14.72, as shown
in Table 7, indicating severe multicollinearity and thus unreliable co-
efficient estimates. The simple linear model with sunhours % as the
independent variable explains 90.5 % of the variability in PV Yield
Density, with an intercept of 75.8 and a coefficient of 2.14 for sunhours
%. However, adding the South angle to the model increased R? by 4.3 %.
This improvement can be attributed to the critical role of South orien-
tation in Cairo, as rooftop PV panels oriented South receive the highest
solar radiation due to exposure to high altitude sun angles, thereby
improving prediction accuracy. Moreover, sunhours % act as a medi-
ating factor for obstructing angles around the building, improving
model’s predictive accuracy compared to using obstruction angles
alone. When only the South, West and East obstruction angles were
included, the prediction model reached a maximum R? of 86.2 % as
shown in Table 6. In contrast, using sunhours % alone increased accu-
racy with 4.4 %, reaching R? of 90.6%. This signified the practical value
of incorporating sunhours %, even as a derived parameter, to enhance
model prediction for rooftop PV design. Accordingly, the best compro-
mise between model fit and multicollinearity was obtained with a two-
variable model (sunhours % and South angle), as illustrated in Table 8,
which reached R? of 94.8 % and VIF of 2. Sunhours % had the strongest
effect with a coefficient of 1.611, followed by South angle with coeffi-
cient of 0.508 (p < 0.001). The ANOVA results showed that the

Residual plot

Scatterplot
Dependent Variable: PV Yield Density kWhim2

Regression Standardized Residual

Regression Standardized Predicted Value

Parameter Estimates with Robust Standard Errors
Dependent Variable: PV Yield Density kWh/m?

Parameter Coefficient () Robust Std. Error® t
Intercept 120.108 2.218
Sunhours % 1.679 0.025
South —0.291 0.012

54.141
67.797
—-23.392

P-value 95% Confidence Interval

Lower Bound Upper Bound
<0.001 115.755 124.461
<0.001 1.631 1.728
<0.001 —-0.315 —0.266

a. HC3 method.
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Table 10
ANOVA of sunhours % model.
ANOVA
df SS MS F Significance F
Regression 3 190,159.7 63,386.57 4,564.431 0
Residual 998 13,859.3 13.88707
Total 1001 204,019

regression model was highly significant (F = 9,117.856, p < 0.001),
indicating that the predictor variables (Sunhours % and South angle)
explain a large proportion of the variance in PV Yield Density. Robust
standard errors were applied using HC3 to ensure unbiased statistical
inference, and the 95 % confidence intervals showed narrow bounds,
indicating stable coefficient estimates as shown in Table 9.

This model can be applied in the early design phase to estimate the
Yield Density potential of installing PV panels on the roof based on
surrounding contextual parameters. It supports the decision making by
indicating the required PV area to be installed to achieve a target energy
output. Beyond building energy use, this model provides an overview of
roof potential under varying shading patterns and relates the energy
generated to the PV area or number of panels installed.

To conclude, in both regression models for PV Utilization and PV
Yield Density, sunhours % was found to be a critical predictor of PV
performance. Sunhours % was derived from the sun path diagram and
obstructions causing shade on the PV panels, like the stairs core and
parapet wall. In this study, such elements blocked between 2 % and 11 %
of the sunrays reaching the PV panels, depending on the roof area. More
substantial reductions in sunhours % were caused by external sur-
rounding obstructions with values decreasing to as low as 40 % in cases

Table 11
Residual plot and robust standard errors of sunhours % model.
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of high obstruction angles in the South, East and West.

To estimate the sunhours % without the need of specific tools for
sunpath, it was advantageous to develop a mathematical model that
calculates sunhours % from obstruction angles or street width and
building and obstruction height difference. An additional regression
model was therefore developed to obtain the sunhours % from the
obstruction angles of South, East and West, while excluding the north
which had a negligible effect on reducing sunhours %. The resulting
model achieved a high adjusted R? of 93.19 % and SE 3.7 % as expressed
in the equation below.

Sunhours% =91.573 — 0.16264 South(0) — 0.25959 East(6)

7
— 0.16825 West(0) 7

_ Height difference 180
0= aman( Street Width T ®)

The regression model explained a high proportion of variance in
sunhours % as indicated by a highly significant F-statistic (F =
4,564.431), with low residual mean square (MS = 12.89) signifying
limited unexplained variance as shown in Table 10. To address hetero-
scedasticity, identified in the non-constant variance shown in the re-
sidual plot (Table 11), HC3 robust standard errors were applied. The
estimates showed that obstruction angles had a statistically significant
effect on Sunhours % (p < 0.001). The East obstruction angle showed the
strongest reduction effect with a coefficient of — 0.260, followed by the
West (—0.168) and South (—0.163). This suggested that obstructions
from the South have the lowest impact on annual sun exposure for the
studied rooftop configurations, which is consistent with Cairo’s solar
path, where the sun has high altitude angles in the southern sky, while
lower altitude angles in the East and West making solar access more

Residual plot

Scatterplot
Dependent Variable: Sunhours %
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Parameter Estimates with Robust Standard Errors
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Parameter Coefficient () Robust Std. Error® t P-Value 95% Confidence Interval
Lower Bound Upper Bound

Intercept 91.573 0.120 764.262 <0.001 91.338 91.808
South —-0.163 0.005 -30.719 <0.001 -0.173 —0.152
East —0.260 0.005 —56.999 <0.001 —0.269 —0.251
West —0.168 0.006 —30.540 <0.001 -0.179 —0.157

a. HC3 method.
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sensitive to obstructions. The model intercept of 91.57 % represented
the expected annual sunhours % in the absence of external obstructions,
while the remaining 8.43 % reduction was attributed to shading from
the parapet wall and stairs core.

The developed predictive regression models provide rapid and
resource-efficient estimates of PV Utilization and PV Yield Density with
the least possible resources. They address a key limitation in previous
research by providing simple, practical calculations that capture the
impact of building and urban morphology using basic geometric pa-
rameters of building length, width, height, surrounding building
heights, orientation and street widths. Using these models, sunhours %,
RTFA %, and obstruction angles can be derived and then used to predict
PV Utilization and Yield Density. These models bridge a critical gap by
providing straightforward, early-stage assessment of rooftop PV poten-
tial. Moreover, the regression equations have been integrated into a
user-friendly web-based tool that allows users to obtain results instantly
without making any calculation, which is accessible through this link:
Solar Potential Tool - Streamlit.

4. Conclusions

Climate change and global warming require urgent attention from all
entitles and individuals as all share the responsibility in addressing their
causes and mitigate their consequences. This global problem urges
everyone to contribute to achieving sustainable development goals,
particularly in advancing renewable energy adoption. In cities like
Cairo, where solar radiation is abundant, it is essential to assess the
potential benefits and utilization of solar energy through the available
technologies. Roof-mounted PV panels are one of the most widely
deployed solutions. However, their effectiveness can vary based on cli-
matic, urban, technical and economic factors.

This study makes a significant contribution by integrating urban and
environmental parameters within a parametric modelling framework,
enabling the evaluation of rooftop PV performance in terms of Utiliza-
tion potential and Yield Density. The novelty lies in bridging architec-
tural design considerations with quantitative PV performance
simulation, offering a methodology that can inform early-stage design
decisions to maximize renewable energy potential. The developed
regression models are designed to be user-friendly, providing straight
forward insights into how building geometry and shading from external
obstructions influence PV potential and subsequent energy savings. This
dimension is often overlooked despite having a great influence on the
performance of rooftop mounted PV panels. Accounting for these factors
through regression models highlights the importance of orientation and
shading control in design and planning decisions for maximizing the
benefits of solar potential. Key findings include:

e PV systems can supply up to 125 % of a building’s total energy re-
quirements at a Roof-to-Total Floor Area (RTFA %) of 50 % with no
external obstructions and sunhours of 91 %.

e By decreasing sunhours to 65 % for the same building configuration,

PV Utilization decreased from 125 % to 70 %, signifying the impact

of obstructions.

The effect of sunhours % is diminished at lower RTFA % signifying

the major role of RTFA % in determining PV Utilization potential.

e As rooftops occupy a larger proportion of building area (High RTFA

%), PV systems become more sensitive to reductions in sunhours %.

For every increase in RTFA %, the sensitivity of PV Utilization to

sunhours % doubles, emphasizing their interdependence.

Sunhours % is a key predictor for both PV Utilization and PV Yield

Density acting as a mediating variable that captures the influence of

obstruction angles. Its inclusion significantly enhances the model’s

predictive accuracy compared to models based only on obstruction
angles.

The South obstruction angle is the most influential supplementary

variable when combined with sunhours %, improving the PV Yield
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Density model R? from 90.5 % to 94 % without introducing problems
of multicollinearity.

e The sunhours % model indicates that 91.57 % of sunrays reach the
rooftops in the absence of obstructions, excluding shading from
building’s parapet wall and stairs core.

These findings reinforce the need to consider urban morphology and
environmental parameters as integral components of rooftop PV plan-
ning and design, providing a quantitative foundation for future decision-
making frameworks aimed at maximizing solar energy potential in
dense urban contexts. It can provide urban planners, architects, and
policymakers with evidence-based insights to guide the design of
building codes, incentive schemes, and rooftop planning policies that
align both environmental and spatial factors to accelerate renewable
energy adoption. Although, the study is confined to the hot arid climate
of Cairo, Egypt, future research could extend this methodology to other
climatic contexts allowing for broader applicability across different
urban settings. In addition, machine learning techniques could be
employed to further enhance prediction accuracy and scalability.
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