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A B S T R A C T

Urban morphology plays a critical role in shaping the energy utilization potential of rooftop photovoltaic (PV) 
systems, with key factors including building height, available roof area, as well as obstruction angles and 
orientation influencing shading patterns and solar exposure. Previous research highlighted the impact of building 
and urban forms on enhancing solar energy utilization and decreasing energy demands. However, the devel
opment of a simple design model that captures the relationship between key design parameters and their impact 
on PV Utilization potential and Yield Density requires further large-scale investigation. This study aims to 
develop design-oriented regression models that enable practitioners to reliably estimate PV technical potential in 
the early stages of the design process. A comprehensive parametric analysis with around 1,000 simulation runs 
were conducted to evaluate and predict rooftop PV energy performance, emphasizing the influence of building 
and urban design parameters. Correlation analysis and regression models are developed to interpret the para
metric relations and utilization potential of PV on building’s rooftop in Cairo, Egypt. Results indicate that roof-to- 
total floor area (RTFA %) and sunhours % are the most significant predictors of PV Utilization. These variables 
interact such that the sensitivity of PV Utilization in response to sunhours variations is doubled with every in
crease in RTFA %. In contrast, sunhours % and South obstruction angle are found to be the effective predictors of 
PV Yield Density. This study provides valuable insights for informed decision making, enabling the design of 
urban environments that maximize solar energy utilization and support sustainable development.

1. Introduction

Buildings account for around 30 % of global energy consumption and 
are responsible for nearly 26 % of energy-related emissions worldwide 
[1]. The need to generate energy from renewable resources is urgingly 
rising to fulfill the global requirements, long-term sustainability and 
energy security goals. Efforts are focused on making renewable energy 
contribute two-thirds of the total energy supply by 2050 [2]. It is expected 
that transition to renewable energy in power generation will have the 
most significant reduction share of carbon dioxide (CO2) emissions to 
achieve net-zero targets by 2050 under the 1.5◦C climate pathway [3]. 
Solar energy is one of the most utilized sources of energy. Advances of 
technology such as Photovoltaic (PV) systems make it a reliable source of 

clean energy with improved power generation and decreased life cycle 
costs [4]. Global PV capacity has increased from 100 GW in 2012 to 
942 GW in 2021, showing an increase of 842 % in this period [5]. In 2021, 
solar PV capacity in the Middle East and Africa increased by approxi
mately 5.2 GW, representing a 3 % annual growth and bringing the 
regional total to 28 GW. However, despite the region’s high solar irra
diance, only a limited number of countries exceeded the 5 % threshold of 
electricity demand met by solar PV, where Egypt reached around 3 % [6].

Governments should provide specific incentives for using underutil
ized spaces like building rooftops for clean energy installations, avoiding 
the need for new land development. Additionally, simplifying permitting 
processes for small-scale projects, like residential solar panels, can 
remove administrative difficulties and encourage wider adoption [7]. In 
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Egypt, the government has taken significant steps and introduced in
centives to promote the use of renewable energy. These include tax ex
emptions for electricity production projects based on renewable sources 
aiming to increase the share of renewable energy to 42 % by 2030 [8].

Egypt is characterized by high solar radiation with an average solar 
radiation ranging from 2,000 to 3,200 kWh/m2 annually. This high level 
of solar irradiance provides the country with considerable potential for 
harnessing renewable solar energy [9]. In 2024, solar energy from 
photovoltaic (PV) panels accounted for 32 % of the total renewable 
electricity generated, ranking second after hydropower (37%), while 
wind accounted for 28%, other solar technologies 2%, and biomass 1% 
[8]. However, rooftop PV represents a small fraction of national PV ca
pacity due to both logistical and regulatory issues. It is only concentrated 
on pilot projects and a small number of residential installations. By 2021, 
only 125 small-scale systems of around 11 MW capacity were installed 
across 15 governorates, despite Egypt’s broader renewable goals [6].

Rooftop PV systems offer opportunities for clean energy generation 
and carbon emission reductions within urban contexts. Nguyen et al. 
[10] estimated that around one third of the roof areas are available in 
cities, highlighting the potential of applying PV systems on rooftops. 
Their effectiveness in mitigating uprising environmental pressures was 
addressed in various studies [11–14]. Pan et al. [13] estimated that 
Guangzhou city has 391.7 km2 of suitable rooftop area with PV energy 
potential ranging from 44.06 to 72.12 billion kWh annually and corre
sponding reductions in power sector carbon emissions ranging from 
72.12 % to 100 %. Gomez-Exposito et al. [15] showed that more than 95 
% of the cities in Spain possess rooftop PV potential exceeding their 
annual electricity demand. It was estimated that a maximum capacity of 
234 GW installed on 1,134 km2 of available rooftop area can be reached, 
excluding north-facing surfaces. This corresponded to 46 % of the total 
urban area and only 0.22 % of the Spanish national land area, capable of 
generating approximately 290 TWh of electricity annually. Hong et al. 
[16] estimated the suitable rooftop areas for installing PV panels in 
Seoul, South Korea, using Hillshade analysis. They found that suitable 
roof area in Gangnam district reached around 4,964 km2 accounting for 
66 % of the total area and a PV potential of around 1,130 GWh. Walch 
et al. [17] used machine learning, GIS and physical models to estimate 
PV potential of 9.6 million rooftops in Switzerland, showing that 55 % of 
roof areas were suitable for PV installation, which can account for 
around 40% of annual electricity demand. Alhammami et al. [18]
showed that Khalifa and Zayed City in Abu Dhabi, UAE cover total areas 
of 23.39 km2 and 49 km2, respectively, with rooftops representing 
around 12.6 % of the total area. Based on rooftops utilization factors 
ranging from 0.25 to 0.45, they estimated annual energy potential at 
116.3–211.7 GWh and 249–448.2 GWh, respectively. These studies 
estimated the PV energy generation based on the available solar po
tential on the macroscale of urban clusters and the city scale level.

Making the best use of underutilized areas like rooftops requires 
special attention to the building scale and the resultant factors that affect 
solar energy utilization potential. Fakhraian et al. [14] classified these 
factors based on four sub-potentials including physical, geographic 
(urban), technical and economic potential. The physical potential 
referred to the solar energy received based on climatic conditions. The 
technical potential represented the electricity production determined by 
technical characteristics like PV efficiency and PV performance. The 
economic potential encompassed cost-related and social constraints. 
Additionally, the geographic or urban potential involved factors like 
building layout and urban context which impact shadow patterns and 
solar irradiance [19,20]. These shadow patterns were found to signifi
cantly impact the performance of rooftop PV systems. Ren et al. [21]
stated that reductions in PV energy generation reached up to 39.71% 
under high shadows from neighboring buildings. Xie et al. [22] investi
gated the impact of block typology and urban morphology on the energy 
consumption and solar energy potential, indicating a possible 12.25 % 
difference in energy use intensity (EUI) and 30.88% in solar energy 
generation intensity (SEGI). The primary parameters included shape 

factor which affected both EUI and SEGI. Tower blocks were found to 
have the best SEGI with the lowest net EUI, whereas the H and U-shaped 
blocks had the lowest EUI from other shape types. Other parameters like 
average block length and building density affected EUI, while the average 
height of the block and sky view factor influenced more solar energy 
generation. Wang et al. [23] also showed that there was a significant 
inter-building effect on both energy consumption and PV Utilization 
which varied greatly based on the climatic zone. Li et al. [24] investigated 
the impact of building shape layouts on PV Utilization, recommending U- 
shaped and courtyard blocks. The U-shaped layout achieved the highest 
energy generation at 143  kWh/m2, while the courtyard shape had the 
highest installation area ratio of 0.68. Liu et al. [25] assessed 17 
morphological indicators on PV potential using 300 building clusters as a 
sample of rural buildings in Nanjing, China, demonstrating that building 
height and floor area ratio are the most influential factors. These studies 
relied on complex building performance simulations (BPS), highlighting 
the need for direct and generalized methods to estimate or predict PV 
performance that can be easily applied by users.

Building Performance Simulation (BPS) and optimization are 
essential for assessing PV energy performance; however, due to the time- 
consuming nature and lack of skill of this computational approach, 
environmental assessments are often left to late stages of the design or 
even neglected [26]. Jiang et al. [27] highlighted challenges of adopting 
traditional BPS, particularly its dependence on detailed models and 
expert data input, which limits its scalability and early-stage adoption in 
design processes. To address this limitation, developing user-friendly 
predictive models is valuable in providing early results with quick 
feedback on PV Utilization potential with the least possible resources. 
Although previous research studies have examined the impact of 
geographic parameters on PV Utilization, there remains a gap in 
providing designers with simple, practical models that can be used in the 
early design phase to estimate rooftop PV technical potential.

This paper aims to address this gap by developing predictive models 
that directly estimate design performance in terms of solar potential, 
linking building and context parameters to rooftop PV Utilization and 
Yield Density potential. The goal is to estimate the percentage of a 
building’s energy demand that can be met by rooftop PV system (PV 
Utilization). By evaluating both the capacity for PV energy generation 
and the total building energy use, this study seeks to estimate the per
centage of PV Utilization for various building configurations. In addi
tion, it calculates the PV Yield Density, defined as the annual energy 
generated per one meter square of PV panel. To achieve this, around 
1,000 rooftop PV installations are simulated using Climate Studio tool, 
providing a wide range of design parameters by varying building length, 
width, height, and the orientation and angles of surrounding obstruc
tions. Correlation analysis is then employed to identify key parameters 
influencing PV performance, while regression models are developed to 
predict PV Utilization and Yield Density as a function of building form 
and surrounding obstruction variables.

This paper is structured into three main sections. First, it outlines the 
proposed methodology, which includes a parametric simulation analysis 
of the case study and the development of regression models. Next, the 
results and discussion section presents the prediction performance of the 
developed regression models for PV Utilization and Yield Density. 
Finally, the conclusion highlights the impact of rooftop PV installations 
on energy reduction, emphasizes the critical role of building and urban 
configurations, and underscores the novelty of the proposed approach 
while suggesting directions for future research.

2. Methodology

Reliable predictions of rooftop PV energy generation are influenced 
by several variables, including climatic conditions, sun exposure hours 
and the available rooftop area for PV installations. This study in
vestigates the hot climatic context of Cairo, Egypt having Latitude 30◦N 
and Longitude 31◦E using a generic office building as a case study 
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surrounded by obstructions from the four orientations. The research 
explores the impact of varying building configurations and shading 
patterns on PV Utilization potential and Yield Density. The proposed 
methodology comprises of three main phases as shown in Fig. 1. The first 
is concerned with data generation through parametric modelling, 
incorporating key design variables of building form and surrounded 
obstructions that impact rooftop PV Utilization potential. The second 
involves performance simulation analysis for calculating the PV Utili
zation potential and PV Yield Density. The third step proposes regression 
models for analyzing the impact of designed variables and predicting the 
potential outcome. These phases are sequentially integrated to system
atically explore the impact of design parameters on PV performance, 
ensuring a comprehensive and data-driven approach to achieving the 
study’s objectives.

2.1. Data generation through parametric modelling

The parametric modelling process was performed using Rhino and 
Grasshopper (GH) software, enabling the generation of a wide range of 
design configurations. Fig. 2 and Table 1 presented the ranges of 
building and surrounding context input parameters used in the simula
tions. The building model varied in height, length and width to produce 
configurations with roof areas ranging from 225 to 2,025 m2 and 
number of floors from 2 to 12 floors assuming a fixed floor height of 3 m, 
providing a roof-to-total floor area (RTFA %) between 8% and 50%.

Fenestration design adopted window-to-wall ratios (WWR) of 0.6 for 
the North facade, and 0.4 for the remaining orientations, with a 
maximum module length of 5 m. Simple horizontal shading devices were 
modeled on South facing windows. External obstructions were modeled 
on the four orientations, South, West, North and East, to obtain different 
shading patterns on rooftops. Different combinations of street widths 
and obstruction heights were varied to simulate a range of obstruction 
angles. These angles were further formed by the number of floors, as the 
height difference between building and the opposing building determine 

the resulting angle. The simulated obstruction angles ranged from 0 to 
around 80 degrees, with mean values of 33.7 ◦, 27.6 ◦, 16.1 ◦, and 27.7 ◦, 
and standard deviation of 32.2 ◦, 30.5 ◦, 27.4 ◦, and 30.7 ◦ for the South, 
West, North and East orientations respectively. PV panels were installed 
on the available rooftop area, oriented to the South with a fixed tilt angle 
of 30 ◦, which was found to be an optimal angle for solar radiation in 
Cairo’s climatic context [28]. Each PV module measured 1 m by 2 m 
with clear distance of 1.7 m between rows to minimize inter row 
shading.

2.2. PV simulation analysis

In the second step, building performance simulations were carried 
out to estimate the energy generated by roof mounted PV system, as well 
as the overall building energy performance in terms of the energy use 
intensity (EUI). A total of 1,000 simulation runs were performed, rep
resenting various combinations of building and context parameters 
within Cairo. The EPW weather data file was downloaded from the 
energyplus website and imported to Climate Studio tool which was used 
for conducting both PV and energy simulations as illustrated in Fig. 3. 
The typical average efficiency of commercial PV panels ranges from 15 
to 20 % [29]. The lower end of this range was selected (15 %) for the 
simulation setting, as high temperatures, dust, and other environmental 
factors reduce PV performance in real operating conditions, making it 
more representative of actual rated efficiencies. This assumption is 
supported by a recent study evaluating a rooftop PV system installed in 
Cairo, which reported an average annual system efficiency of 15.8 % 
[30].

An effective area factor was set to be 80 % to account for additional 
architectural or service constraints beyond the modelled stair core and 
inter-row spacing to be in line with the practical roof utilization factors 
for PVs [31]. The modelled PV areas ranged from 64 to 1,128 m2 with 
effective areas between 51 and 902 m2. This corresponded to utilization 
factors (UF) of 0.23 to 0.45, which is the ratio of effective PV area to the 

Fig. 1. The workflow for predicting PV Utilization and Yield Density.
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total floor area. This aligned closely with the findings of Ghaleb et al. 
[31] who reported that UF values of office buildings ranged between 
0.27 and 0.39. Another study estimated available rooftop area for 
evaluating PV potential by applying facility coefficients to exclude 
surfaces which have other specific applications like aerials and HVAC 
equipment. For 16 representative building typologies, these coefficients 
ranged from 0.6 to 0.92 with an average of 0.77, indicating an average 
reduction of 23 % in effective roof area [32]. This closely aligned with 
the assumed 20% reduction.

The installed PV capacity ranged from 7.7 to 135.4 kW representing 
the peak direct current output of PV under standard test conditions of 
solar radiation of 1,000 W/m2. It was determined based on the effective 
PV area available on the roof and the assigned PV efficiency (15 %), as 
expressed in Eq. (1). The implied capacity factor (CF) was then derived 
to represent the ratio of simulated annual energy output to the theo
retical output if the system operated at full capacity over the year, as 
illustrated in Eq. (2). This factor signified the physical potential of 
Cairo’s climate for energy generation through rooftop PV. 

PVcapacity = PVeffectivearea × Solarirradiance
(
1,000 W

/
m2)

× PVefficiency (1) 

ImpliedCF = PVenergyoutput[kWh]/(PVcapacity[kW]*8,760 ) (2) 

Additionally, Ladybug tool in GH was used to calculate the total and 
average solar radiation on the PV panels. It was also used to calculate 
sunhours, defined as the annual duration of unobstructed direct sunlight 
incident on a surface, derived from the sun position (solar altitude and 
azimuth) over the year. This metric was referred to as solar access or 
direct sunlight availability in solar and urban planning studies [33,34]
and it can be mathematically expressed by the summation of the sun 
visibility V(t) over time steps (t) in a year, as illustrated in Eq. (3). 

Sunhours =
∑N

t=1
V(t)Δt (3) 

where V(t) is the sun visibility, V(t) = 1, if the sun position at time t is 
unobstructed by shading, and V(t) = 0, if obstructed. Δt is the time 
increment (1 h), and N is the total number of analyzed time steps t.

Sunhours was calculated by estimating the annual average number of 
unblocked sunrays reaching the rooftop PV panels. These sunrays were 
affected mainly by the four main building obstructions from the four 
sides, as well as the parapet wall of 1 m height around the perimeter of 
the roof and stairs core. Sunhours % was then calculated as the per
centage of the average unobstructed sunhours to the total possible 
sunhours, which was derived from the sunpath diagram as shown in 
Fig. 4.

An automated workflow was developed to run the simulation anal
ysis for around 1,000 design iterations, integrating energy performance 
simulations within the parametric environment. The resulting data, 
representing the relationship between design parameters and perfor
mance outcomes, were exported to Excel using the Lunchbox Write to 
Excel component in GH for further analysis.

2.3. Developing regression models

The third step involved data analysis to show the relationship be
tween the assigned building and urban variables and both PV Utilization 

Fig. 2. Building and context design configuration.

Table 1 
Parameters range for building and context.

Building Parameters Context Parameters

Roof Height (m) Length (m) Width (m) Obstruction Angle θ 
(◦) and orientation

Range 6–36 15–45 15–45 0–80 S, W, N, E
Increment 3 5 5 Random
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potential and PV Yield Density. Then, linear and multilinear regression 
models were developed to predict PV performance. Linear regression 
models were selected for two main reasons. The primary objective was 
to develop a simple, interpretable, and easily applicable design tool that 
can be used to predict PV Utilization and Yield Density without 
requiring advanced statistical expertise. In addition, preliminary anal
ysis, which included scatterplots and correlation assessments, indicated 
linear relationships between PV Utilization, Yield Density and building 
and urban parameters.

The first regression model predicted PV Utilization potential (%), 
defined as the ratio of PV energy output to total building energy use. The 
second regression model focused on predicting PV Yield Density, defined 
as the annual energy generated per one meter square of PV panel. These 
models captured PV performance and can be used to make predictions, 
with performance evaluated using Standard Error (SE), Coefficient of 
determination (R2) and adjusted R2 as defined below [35].

Standard error (SE) represents the standard deviation of the pre
diction errors and provides an interpretation of how spread out these 
errors are. A lower SE indicates a better fit between predicted and actual 
values. 

SE =

̅̅̅̅̅̅̅̅
SSE
DFe

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − p − 1
∑n

i=1
(Yi − Ŷ i)

2

√

(4) 

where SSE is the Sum of Squares of Errors, Dfe is the Degree of freedom 

which is n-p-1, p is the number of parameters, yi is the actual or 
simulated value for a given i and ŷi is the predicted value for the same i.

The coefficient of determination or R-squared (R2) quantifies the 
proportion of variance in the dependent variable that is predictable from 
the independent variables. It indicates the model’s goodness of fit, 
showing how well the simulated data explains the predicted values 
when it approaches 1. Adjusted R2 were used when using multilinear 
regression as it provides more indicative results when there are multiple 
variables. R-squared predicted is also calculated which assesses how 
much the model can predict unseen data. 

R2 =
SSR
SST

=

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5) 

R2
adj = 1 −

(
1 − R2

)
(n − 1)

n − k − 1
(6) 

Where SSR is the sum of squares of regression, SST is the sum of squares 
of total, yi is the actual or simulated value for a given I, ŷi is the pre
dicted value for the same I, y is the average of y, n is the total number of 
Samples, and k is the number of variables.

Regression models and Pearson correlation analysis were performed 
using Minitab software which is a statistics software for data analytics 
and visualizations, while Microsoft excel was used for graphs genera
tion. SPSS was also used for residual diagnostic and applying robust 

Fig. 3. PV and energy simulation models in Climate Studio in GH.
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standard errors to ensure unbiased inference using heteroscedasticity- 
consistent correction (HC3) [36].

Data processing started with a correlation analysis among all vari
ables to identify the existing relationships and avoid problems of mul
ticollinearity and overfitting in the regression model. Subset regression 
models were applied to find the most influential predictors of PV Utili
zation and Yield Density while reducing redundancy among correlated 
variables such as roof area, length and width [37]. This approach 
allowed for the exploration of different variable combinations, 
providing a manageable set of variables that maintain high predictive 
accuracy while avoiding overfitting and multicollinearity. The problem 
of multicollinearity was detected using Variance Inflation Factor (VIF), 
which is a factor that quantifies how much variance of an estimated 
regression coefficient is increased by linear correlation among inde
pendent variables. VIF of 1 indicates no correlation, while values above 
5 typically suggest a collinearity problem [38].

3. Results and discussion

Results emphasized the significance of considering both building and 
urban parameters for assessing and predicting the energy performance 
of roof-mounted PV panels. The analysis was structured into three sec
tions. Section 3.1 examined the simulated results to give insights into the 
relationship between design variables and PV energy outputs, supported 
by sample data analysis. Sections 3.2 and 3.3 described the regression 
models developed for predicting PV Utilization and PV Yield Density, 
respectively.

3.1. PV simulation analysis

The generated PV energy across all iterations ranged from 13,253 to 
260,694 kWh, corresponding to roof areas of 225  m2 and 2,025  m2, 
floor heights of 6  m and 36  m, sun hours of 60 % and 73 %, and average 
solar radiation levels of 1,668 and 1,815  kWh/m2, respectively. With PV 
capacities ranging from 7.7 to 135.4  kW, the corresponding capacity 

factors ranged between 15 % and 26 %. This range was consistent with 
the reported actual measures of capacity factors by Edalati et al. [39], 
which typically ranged between 10 % and 30 %, reflecting fluctuations 
of weather conditions and daily and monthly variations in solar irradi
ance. Understanding both the installed PV capacity and the implied 
capacity factor indicate the realistic productivity of rooftop PV systems. 
While the described ranges outline the limits of this study, the results 
reflect that Cairo’s climate offers sufficient sunhours and irradiance to 
make rooftop PV an efficient energy source, while also emphasizing the 
importance of accounting for building design variables and local 
obstructions.

3.1.1. Impact of design variables on PV Utilization
To evaluate the contribution of rooftop PV systems to building en

ergy needs, the relationship between PV Utilization and design variables 
was investigated. Among the tested design variables, the roof-to-total 
floor area ratio (RTFA %) exhibited a clear and strong relationship 
with PV Utilization, as shown in Fig. 5. The relationship was approxi
mately linear, with the highest PV Utilization of 125 % reached at an 
effective area of PV panels of 393 m2 mounted on a 768 m2 roof area and 
RTFA of 50 % without surrounding obstructions, except the parapet wall 
and stairs core. In contrast, PV Utilization decreased when obstructions 
were introduced, which is signified by sunhours %. The PV reduction 
rate was more evident at higher RTFA % indicating an interaction be
tween RTFA % and sunhours %. At same building configuration with 
RTFA % of 50 % the introduction of obstruction reduced sunhours to 65 
%, resulting in a notable decline in PV Utilization (from 125 % to 70 %). 
This demonstrated that maximizing rooftop PV potential depends not 
only on the RTFA % but also managing surrounding obstructions and 
shading patterns. Therefore, evaluating the magnitude of this impact is 
crucial for informed decision-making in PV installation.

To better illustrate this observation with a qualitative illustration, a 
representative data sample of the typical performance shown in Fig. 6
was analyzed to find the relationship between PV Utilization and the 
design variables: RTFA % and sunhours %. It was then quantified 

Fig. 4. Solar radiation analysis using Ladybug in GH.
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through regression analysis of the full dataset to demonstrate the overall 
relationship. This sample was chosen with the same roof area of 625 m2 

to isolate the area effect, which also reflected the mean value of simu
lated roof areas. The roof-to-total floor area (RTFA %) showed a clear 
positive correlation with PV Utilization. The average solar radiation and 
sunhours % were correlated positively with each other; however, they 
did not show a consistent relation with the PV Utilization, unlike RTFA 
%. Discrepancy was shown in Fig. 6 where the PV Utilization increased 
with the decrease of radiation and sunhours %, and vice versa. This 
returned to variables interaction, where RTFA % had more dominant 
influence on PV Utilization. On the other hand, sunhours had a notice
able impact on PV Utilization when comparing cases with the same 
RTFA %, highlighting the significance of the impact of external 
obstruction. For example, by comparing the cases 1 and 7, each having 
the same RTFA of 50 %, the PV Utilization declined by 31 % through the 
effect of obstructions and reduction of sunhours %. In case 1, with no 
obstructions and sunhours of 90 %, average solar radiation reached 

2,224 kWh/m2 and PV Utilization reached 112 %, exceeding the 
building’s energy use by 12 %. When adding obstructions as in case 7, 
with sunhours 61 %, the average solar radiation decreased to 1,700 
kWh/m2, and PV Utilization declined by 31 % (from 112 % to 81%). 
This impact of sunhours % on PV Utilization was less significant at lower 
RTFA %. For instance, in cases number 6 and 12, which had RTFA of 8 
%, and nearly the same sunhours variation (90 % to 64 %) as cases 1 and 
7 (90 % to 61 %), PV Utilization declined by only 5 % (from 20 % to 15 
%). These sample results suggest that the impact of obstructions on PV 
Utilization may vary with RTFA %, with a stronger influence observed at 
higher RTFA % values. Therefore, further analysis on a larger dataset 
was needed to validate and better understand this relationship.

To validate this relationship, cases with the highest and lowest RTFA 
% (50 % and 8 %) were plotted in Fig. 7a to examine the effect of 
sunhours % on PV Utilization. The graph confirms a significant impact of 
surrounding obstructions on PV Utilization at high RTFA of 50 %. The 
trendline showed a steep slope of 1.0834, indicating high sensitivity of 

Fig. 5. The relation between RTFA % and PV Utilization.

Fig. 6. A sample of data showing the relation between PV Utilization and predictable variables.
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PV Utilization to reductions in sunhours. In contrast, this impact 
decreased at low RTFA % of 8 % with the trendline slope decreasing to 
0.2095. To further quantify the relationship, PV Utilization was 
analyzed across the full RTFA % range (50% to 8%) as shown in Fig. 7b. 

The results showed a strong linear relation (R2 of 0.99), where the in
fluence of sunhours on PV Utilization almost doubled (coefficient =
2.099) with each incremental increase in RTFA % as shown in Fig. 7c. 
This highlighted the significant impact of RTFA % on the sensitivity of 

Fig. 7. The relationships between RTFA % and sunhours % on PV Utilization.

Fig. 8. The relation between PV Yield Density and average radiation and Sunhours %.
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PV Utilization to variations in sunhours %, thus signifying the interac
tive effect of building design (RTFA %) and urban morphology (sun
hours %).

3.1.2. Impact of design variables on PV yield density
PV Yield Density was the second metric investigated to evaluate PV 

energy performance. It represented the average PV energy generated per 
square meter of PV area. It ranged from 162 to 274 kWh/m2, with 
average incident radiation on PV panels ranging from 1,297 to 2,251 
kWh/m2 and sunhours % between 40 % and 92 %. These variations in 
PV Yield Density were primarily driven by sunhours %and solar radia
tion, with a clear linear relationship observed between them, as shown 
in Fig. 8.

To visualize and interpret representative results, Table 2 presented 
two configurations of surrounding building obstructions and their 
respective effect on sunhours % and solar radiation and overall PV 
performance. This comparison provided qualitative insights that were 

then quantified through regression analysis. In both scenarios, PV panels 
were installed on a roof area of 875 m2, with an effective PV area of 346 
m2 and RTFA of 17 %. The obstruction angles differed, resulting in 
average annual solar radiation of 1,887 kWh/m2 in the first case and 
1,576 kWh/m2 in the second reflecting mean values across the dataset. 
Correspondingly, the sunhours % (unobstructed sunrays) were reduced 
from 68 % to 55 %. As a result, PV Yield Density decreased by 67 kWh/ 
m2 (from 266 kWh/m2 to 199 kWh/m2). Both PV Yield Density and 
Utilization were affected by surrounding obstructions from the South, 
West, and East orientations, with sunhours % serving as the key medi
ating factor. These findings highlighted the significant influence of 
obstruction angles on solar access and hence on PV performance. To 
further investigate this effect on a larger scale, regression analysis was 
then performed.

Table 2 
The effect of surrounding obstructions on solar radiation and sunhours % on PV performance.

Geo. parameters Length Width No. of Floors
Roof-to-Total 

Floor Area 
(RTFA%)

25 35 6 17

Obstruction Angles 
(°)

South East North West

0 79 77 0

South East North West

69 50 0 69
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3.2. Regression model for predicting PV utilization

The first step in the multi regression involved examining Pearson 
correlation between design variables as shown in Fig. 9. PV Utilization 
showed a high positive correlation with both the number of floors (0.8) 
and the roof-to-total floor area RTFA % (0.89) indicating their potential 
effectivness in the regression model. However, these two dependant 
variables were also highly negatively correlated with each other 
(− 0.88), which indicated multicollinearity. In addition, the multi 
regression model showed a moderate Variance Inflation Factor (VIF) of 
4.33, indicating the potential of unreliable coefficient estimates. To 
address this, a linear regression model was done for RTFA % given its 
higher correlation value with PV potential. The model yielded adjusted 
R2 of 78.82 % and predicted R2 of 78.64 %, with standard error of 8.88 
%. However, this model, graphically represented in Fig. 10, accounted 
only for the building configuration without taking into consideration the 
urban context and its shading impact.

To get a more comprehensive model, a subset regression analysis was 

Fig. 9. A correlation analysis between all variables.

Fig. 10. A simple linear regression model for predicting PV Utilization.
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then performed using the 13 independent variables: average solar ra
diation, total solar radiation, Sunhours %, number of floors, building 
length, width, roof area, total floor area, roof-to-total floor area RTFA %, 
South, East, North, and West angles. This approach minimized infor
mation loss and facilitated a comparative analysis of various subsets of 
predictor variables. The optimal subset was selected aiming to maximize 
adjusted R2 adjusted while minimizing overfitting and multicollinearity.

In the subset regression analysis presented in Table 3, a total set of 25 
models were explored, each composing of a different combination of 
variables (X) ranging from 1 to 13 providing the two best performing 
models for each variable number. This allowed comparing and selecting 
the lowest number of independent variables that maintain a high pre
dictive power to avoid overfitting. A notable improvement was found in 
model accuracy by adding the average radiation as a second variable 
with the RTFA %. Despite its low individual correlation with the PV 
Utilization (p < 0.2), it increased the adjusted R2 to 92.1 % and pre
dicted R2 to 92 %, while decreasing standard error to 5.44 %.

When replacing average radiation with sunhours %, a slight differ
ence was observed, where both variables demonstrated high predictive 
performance as highlighted in Table 4. These variables reflected the 
influence of urban context and the associated shading effects. The sec
ond model, using sunhours %, was advantaged despite performing 
slightly lower compared to the average radiation model, as sunhours % 
can be claculated direclty without the need for simulation, unlike the 
solar radiation. They can be simply estimated by identifying the number 
of sunrays passing through the surrounding building obstructions and 
reaching the rooftop.

When adding more variables, the model’s performance was not 
found to have a significant increase. It peaked with an adjusted R2 of 94 
% and predicted R2 of 93.9 % when at least 10 variables were included 
as highlighted in Table 3. With this large number of variables, a problem 
of overfitting and multicollinearity may occur, particularly among 
correlated variables like length, width and roof area which require 
another method like using Principle Component Regression (PCR) to 
reduce model complexity [40].

Therfore, the two-variable regression model (RTFA % and sunhours 
%) was selected, achieving adjusted R2 of 91.8 % and predicted R2 of 
91.7 %, and a standard error of 5.53 %. The variation inflation factor 
(VIF) was low at 1.08 confirming the absence of multicollinearity be
tween the two variables. The regression coefficients of the two variables 
demonstrated the relative impact of each variable showing a higher 
impact for the RTFA % of coefficient 1.61, while sunhours % of coeffi
cient 0.51 (p < 0.001). The ANOVA results showed that the regression 
model is highly significant (F = 5,598.257, p < 0.001), indicating that 
the predictor variables (RTFA % and Sunhours %) explain a large pro
portion of the variance in PV Utilization as shown in Table 4.

When observing the residual plot, heteroscedasticity was indicated, 
as the variance of residuals changed across the range of predicted values. 
At lower predicted values the residuals were tightly clustered, while at 
higher predicted values, the residuals showed a fanning pattern with 
large positive and negative deviations. Accordingly, robust standard 
errors were applied to ensure unbiased inference using 
heteroscedasticity-consistent correction (HC3) which adjusts the stan
dard errors by giving more weight to observations with large influential 
points without changing the coefficients. The resulting 95 % confidence 
intervals were narrow, and all coefficients remained highly significant 
(p < 0.001), indicating stable and reliable parameter estimates as shown 
in Table 5.

3.3. Regression model for predicting PV yield density

PV Yield Density is the second objective investigated in this study, 
indicating the annual PV energy output per square meters. Results 
showed high positive correlations with average radiation (1.00) and 
sunhours % (0.95), and high negative correlation with South (− 0.82) 
and West angle (− 0.74), as well as a moderate negative correlation with Ta

bl
e 

3 
A

 s
ub

se
t r

eg
re

ss
io

n 
m

od
el

 fo
r 

PV
 U

til
iz

at
io

n 
po

te
nt

ia
l u

si
ng

 1
3 

in
de

pe
nd

en
t v

ar
ia

bl
es

.

N
o.

 o
f 

V
ar

ia
bl

es
R

- 
Sq

R
-S

q 
(a

dj
)

R
-S

q 
(p

re
d)

SE
A

ve
ra

ge
 R

ad
ia

ti
on

 
kW

h/
m

2
To

ta
l R

ad
ia

ti
on

 
kW

h
Su

nh
ou

rs
 

%
N

o.
 o

f 
Fl

oo
rs

Le
ng

th
W

id
th

R
oo

f 
A

re
a

To
ta

l F
lo

or
 

A
re

a
R

TF
A

 
%

So
ut

h
Ea

st
N

or
th

W
es

t

1
78

.8
78

.8
78

.6
8.

88
​

​
​

​
​

​
​

​
X

​
​

​
​

1
63

.8
63

.8
63

.6
11

.6
2

​
​

​
X

​
​

​
​

​
​

​
​

​
2

92
.1

92
.1

92
.0

5.
44

X
​

​
​

​
​

​
​

X
​

​
​

​
2

91
.8

91
.8

91
.7

5.
53

​
​

X
​

​
​

​
​

X
​

​
​

​
3

92
.8

92
.8

92
.7

5.
17

X
​

​
​

​
​

​
​

X
​

​
X

​
3

92
.7

92
.7

92
.6

5.
23

X
​

​
​

​
​

​
​

X
​

X
​

​
4

93
.1

93
.1

93
.0

5.
07

X
​

​
X

​
​

​
​

X
​

X
​

​
4

93
.1

93
.1

93
.0

5.
07

X
​

​
X

​
​

​
​

X
​

​
X

​
5

93
.5

93
.5

93
.4

4.
93

X
X

​
X

​
​

​
​

X
​

X
​

​
5

93
.5

93
.4

93
.3

4.
94

X
​

​
X

​
​

X
​

X
​

X
​

​
6

93
.7

93
.6

93
.5

4.
87

X
​

​
X

X
X

​
​

X
​

X
​

​
6

93
.6

93
.6

93
.5

4.
88

X
X

​
X

​
​

​
​

X
X

X
​

​
7

93
.9

93
.8

93
.7

4.
79

X
​

​
X

X
X

X
​

X
​

X
​

​
7

93
.8

93
.7

93
.6

4.
83

X
X

​
X

X
X

​
​

X
​

X
​

​
8

93
.9

93
.9

93
.8

4.
77

X
​

​
X

X
X

X
​

X
X

X
​

​
8

93
.9

93
.9

93
.7

4.
78

X
​

​
X

X
X

X
​

X
​

X
​

X
9

94
.0

93
.9

93
.8

4.
74

X
​

X
X

X
X

X
​

X
​

X
​

X
9

94
.0

93
.9

93
.8

4.
76

X
​

​
X

X
X

X
​

X
X

X
X

​
10

94
.0

94
.0

93
.9

4.
74

X
​

X
X

X
X

X
​

X
​

X
X

X
10

94
.0

93
.9

93
.8

4.
74

X
​

X
X

X
X

X
​

X
X

X
​

X
11

94
.0

94
.0

93
.8

4.
73

X
​

X
X

X
X

X
X

X
​

X
X

X
11

94
.0

94
.0

93
.8

4.
74

X
​

X
X

X
X

X
​

X
X

X
X

X
12

94
.0

94
.0

93
.8

4.
74

X
​

X
X

X
X

X
X

X
X

X
X

X
12

94
.0

94
.0

93
.8

4.
74

X
X

X
X

X
X

X
X

X
​

X
X

X
13

94
.0

94
.0

93
.8

4.
74

X
X

X
X

X
X

X
X

X
X

X
X

X

F. Fathy et al.                                                                                                                                                                                                                                    Solar Energy 307 (2026) 114364 

11 



Table 4 
The selected multi regression model results for the PV Utilization and ANOVA analysis.

Regression Equation
PV Utilization (%) = − 37.51 + 0.5075 Sunhours % + 1.6110 RTFA %

Model Summary
SE R-sq R-sq(adj) R-sq(pred)
5.53 91.81% 91.79% 91.71%

ANOVA
​ df SS MS F Significance F
Regression 2.000 342,538.651 171,269.326 5,598.257 0.000
Residual 999.000 30,562.737 30.593 ​ ​
Total 1,001.000 373,101.389 ​ ​ ​

Table 5 
Residual plot and robust standard errors of PV Utilization model.

Residual plot

Parameter Estimates with Robust Standard Errors
Dependent Variable: PV Utilization
Parameter Coefficient (β) Robust Std. Errora t P- value 95% Confidence Interval

Lower Bound Upper Bound
Intercept − 37.549 1.583 –23.715 <0.001 − 40.656 − 34.442
RTFA % 1.614 0.030 53.270 <0.001 1.554 1.673
Sunhours % 0.508 0.017 29.636 <0.001 0.474 0.542

a. HC3 method.

Table 6 
The best subset regression analysis for PV Yield Density.

No. of Variables R-Sq R-Sq (adj) R-Sq (pred) SE Sunhours % South East West

1 90.6 90.5 90.5 9.88 X ​ ​ ​
1 67.0 67.0 66.9 18.49 ​ X ​ ​
1 55.2 55.2 55.0 21.54 ​ ​ ​ X
1 27.7 27.7 27.5 27.35 ​ ​ X ​
2 94.8 94.8 94.8 7.33 X X ​ ​
2 94.2 94.2 94.2 7.75 X ​ X ​
2 90.6 90.5 90.5 9.89 X ​ ​ X
2 85.7 85.7 85.6 12.17 ​ X X ​
3 97.1 97.1 97.1 5.47 X ​ X X
3 96.2 96.2 96.2 6.28 X X ​ X
3 95.1 95.1 95.1 7.10 X X X ​
3 86.2 86.2 86.1 11.95 ​ X X X
4 98.0 98.0 98.0 4.55 X X X X
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East angle (− 0.53). Notably, these variables were also correlated with 
each other, indicating the occurrence of multicollinearity. As shading- 
related variables were the dominant drivers of PV Yield Density, the 
regression model focused on obstruction angles and sunhours % while 
excluding other variables with weak contributions and low correlation 
to ensure statistically robust and meaningful predictors. The average 

radiation was intentionally excluded as it requires simulation process to 
obtain its value. The focus of this phase was on finding the influence of 
building and urban morphology parameters on PV Yield Density using 
variables accessible at the early design stage. Linear regressions were 
then performed using each of the remaining variables individually, as 
well as in the best subsets, as shown in Table 6. Model performance was 
evaluated aiming to maximize adjusted R2 while minimizing VIF.

The highest R2 was achieved when including all variables, reaching 
98 %. However, the model showed critically high VIF of 14.72, as shown 
in Table 7, indicating severe multicollinearity and thus unreliable co
efficient estimates. The simple linear model with sunhours % as the 
independent variable explains 90.5 % of the variability in PV Yield 
Density, with an intercept of 75.8 and a coefficient of 2.14 for sunhours 
%. However, adding the South angle to the model increased R2 by 4.3 %. 
This improvement can be attributed to the critical role of South orien
tation in Cairo, as rooftop PV panels oriented South receive the highest 
solar radiation due to exposure to high altitude sun angles, thereby 
improving prediction accuracy. Moreover, sunhours % act as a medi
ating factor for obstructing angles around the building, improving 
model’s predictive accuracy compared to using obstruction angles 
alone. When only the South, West and East obstruction angles were 
included, the prediction model reached a maximum R2 of 86.2 % as 
shown in Table 6. In contrast, using sunhours % alone increased accu
racy with 4.4 %, reaching R2 of 90.6%. This signified the practical value 
of incorporating sunhours %, even as a derived parameter, to enhance 
model prediction for rooftop PV design. Accordingly, the best compro
mise between model fit and multicollinearity was obtained with a two- 
variable model (sunhours % and South angle), as illustrated in Table 8, 
which reached R2 of 94.8 % and VIF of 2. Sunhours % had the strongest 
effect with a coefficient of 1.611, followed by South angle with coeffi
cient of 0.508 (p < 0.001). The ANOVA results showed that the 

Table 7 
Multi regression model for PV Yield Density using all four variables showing 
high VIF.

Term Coefficient VIF

Constant 1.83 ​
South Angle − 0.19727 4.38
East 0.3351 5.69
West 0.37595 4.45
Sunhours % 2.9650 14.72

Table 8 
The selected multi regression model for PV Yield Density and ANOVA analysis.

Regression Equation
PV Yield Density 

(kWh/m2)
=120.07–0.291 South Angle + 1.68 Sunhours %

Model Summary
SE R-sq R-sq(adj) R-sq(pred)
7.33812 94.81% 94.80% 94.78%

ANOVA
​ df SS MS F Significance F
Regression 2 981,956.9 490,978.4 9,117.856 0
Residual 999 53,794.17 53.848 ​ ​
Total 1001 1035,751 ​ ​ ​

Table 9 
Residual plot and robust standard errors of PV Yield Density model.

Residual plot

Parameter Estimates with Robust Standard Errors
Dependent Variable: PV Yield Density kWh/m2

Parameter Coefficient (β) Robust Std. Errora t P-value 95% Confidence Interval
Lower Bound Upper Bound

Intercept 120.108 2.218 54.141 <0.001 115.755 124.461
Sunhours % 1.679 0.025 67.797 <0.001 1.631 1.728
South − 0.291 0.012 –23.392 <0.001 − 0.315 − 0.266

a. HC3 method.
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regression model was highly significant (F = 9,117.856, p < 0.001), 
indicating that the predictor variables (Sunhours % and South angle) 
explain a large proportion of the variance in PV Yield Density. Robust 
standard errors were applied using HC3 to ensure unbiased statistical 
inference, and the 95 % confidence intervals showed narrow bounds, 
indicating stable coefficient estimates as shown in Table 9.

This model can be applied in the early design phase to estimate the 
Yield Density potential of installing PV panels on the roof based on 
surrounding contextual parameters. It supports the decision making by 
indicating the required PV area to be installed to achieve a target energy 
output. Beyond building energy use, this model provides an overview of 
roof potential under varying shading patterns and relates the energy 
generated to the PV area or number of panels installed.

To conclude, in both regression models for PV Utilization and PV 
Yield Density, sunhours % was found to be a critical predictor of PV 
performance. Sunhours % was derived from the sun path diagram and 
obstructions causing shade on the PV panels, like the stairs core and 
parapet wall. In this study, such elements blocked between 2 % and 11 % 
of the sunrays reaching the PV panels, depending on the roof area. More 
substantial reductions in sunhours % were caused by external sur
rounding obstructions with values decreasing to as low as 40 % in cases 

of high obstruction angles in the South, East and West.
To estimate the sunhours % without the need of specific tools for 

sunpath, it was advantageous to develop a mathematical model that 
calculates sunhours % from obstruction angles or street width and 
building and obstruction height difference. An additional regression 
model was therefore developed to obtain the sunhours % from the 
obstruction angles of South, East and West, while excluding the north 
which had a negligible effect on reducing sunhours %. The resulting 
model achieved a high adjusted R2 of 93.19 % and SE 3.7 % as expressed 
in the equation below. 

Sunhours% =91.573 − 0.16264 South(θ) − 0.25959 East(θ)
− 0.16825 West(θ)

(7) 

θ = arctan
(

Height difference
Street Width

)

×
180

π (8) 

The regression model explained a high proportion of variance in 
sunhours % as indicated by a highly significant F-statistic (F =
4,564.431), with low residual mean square (MS = 12.89) signifying 
limited unexplained variance as shown in Table 10. To address hetero
scedasticity, identified in the non-constant variance shown in the re
sidual plot (Table 11), HC3 robust standard errors were applied. The 
estimates showed that obstruction angles had a statistically significant 
effect on Sunhours % (p < 0.001). The East obstruction angle showed the 
strongest reduction effect with a coefficient of − 0.260, followed by the 
West (− 0.168) and South (− 0.163). This suggested that obstructions 
from the South have the lowest impact on annual sun exposure for the 
studied rooftop configurations, which is consistent with Cairo’s solar 
path, where the sun has high altitude angles in the southern sky, while 
lower altitude angles in the East and West making solar access more 

Table 10 
ANOVA of sunhours % model.

ANOVA

df SS MS F Significance F

Regression 3 190,159.7 63,386.57 4,564.431 0
Residual 998 13,859.3 13.88707 ​ ​
Total 1001 204,019 ​ ​ ​

Table 11 
Residual plot and robust standard errors of sunhours % model.

Residual plot

Parameter Estimates with Robust Standard Errors
Dependent Variable: Sunhours %

Parameter Coefficient (β) Robust Std. Errora t P-Value 95% Confidence Interval
Lower Bound Upper Bound

Intercept 91.573 0.120 764.262 <0.001 91.338 91.808
South − 0.163 0.005 − 30.719 <0.001 − 0.173 − 0.152
East − 0.260 0.005 − 56.999 <0.001 − 0.269 − 0.251
West − 0.168 0.006 − 30.540 <0.001 − 0.179 − 0.157

a. HC3 method.
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sensitive to obstructions. The model intercept of 91.57 % represented 
the expected annual sunhours % in the absence of external obstructions, 
while the remaining 8.43 % reduction was attributed to shading from 
the parapet wall and stairs core.

The developed predictive regression models provide rapid and 
resource-efficient estimates of PV Utilization and PV Yield Density with 
the least possible resources. They address a key limitation in previous 
research by providing simple, practical calculations that capture the 
impact of building and urban morphology using basic geometric pa
rameters of building length, width, height, surrounding building 
heights, orientation and street widths. Using these models, sunhours %, 
RTFA %, and obstruction angles can be derived and then used to predict 
PV Utilization and Yield Density. These models bridge a critical gap by 
providing straightforward, early-stage assessment of rooftop PV poten
tial. Moreover, the regression equations have been integrated into a 
user-friendly web-based tool that allows users to obtain results instantly 
without making any calculation, which is accessible through this link: 
Solar Potential Tool ⋅ Streamlit.

4. Conclusions

Climate change and global warming require urgent attention from all 
entitles and individuals as all share the responsibility in addressing their 
causes and mitigate their consequences. This global problem urges 
everyone to contribute to achieving sustainable development goals, 
particularly in advancing renewable energy adoption. In cities like 
Cairo, where solar radiation is abundant, it is essential to assess the 
potential benefits and utilization of solar energy through the available 
technologies. Roof-mounted PV panels are one of the most widely 
deployed solutions. However, their effectiveness can vary based on cli
matic, urban, technical and economic factors.

This study makes a significant contribution by integrating urban and 
environmental parameters within a parametric modelling framework, 
enabling the evaluation of rooftop PV performance in terms of Utiliza
tion potential and Yield Density. The novelty lies in bridging architec
tural design considerations with quantitative PV performance 
simulation, offering a methodology that can inform early-stage design 
decisions to maximize renewable energy potential. The developed 
regression models are designed to be user-friendly, providing straight 
forward insights into how building geometry and shading from external 
obstructions influence PV potential and subsequent energy savings. This 
dimension is often overlooked despite having a great influence on the 
performance of rooftop mounted PV panels. Accounting for these factors 
through regression models highlights the importance of orientation and 
shading control in design and planning decisions for maximizing the 
benefits of solar potential. Key findings include: 

• PV systems can supply up to 125 % of a building’s total energy re
quirements at a Roof-to-Total Floor Area (RTFA %) of 50 % with no 
external obstructions and sunhours of 91 %.

• By decreasing sunhours to 65 % for the same building configuration, 
PV Utilization decreased from 125 % to 70 %, signifying the impact 
of obstructions.

• The effect of sunhours % is diminished at lower RTFA % signifying 
the major role of RTFA % in determining PV Utilization potential.

• As rooftops occupy a larger proportion of building area (High RTFA 
%), PV systems become more sensitive to reductions in sunhours %. 
For every increase in RTFA %, the sensitivity of PV Utilization to 
sunhours % doubles, emphasizing their interdependence.

• Sunhours % is a key predictor for both PV Utilization and PV Yield 
Density acting as a mediating variable that captures the influence of 
obstruction angles. Its inclusion significantly enhances the model’s 
predictive accuracy compared to models based only on obstruction 
angles.

• The South obstruction angle is the most influential supplementary 
variable when combined with sunhours %, improving the PV Yield 

Density model R2 from 90.5 % to 94 % without introducing problems 
of multicollinearity.

• The sunhours % model indicates that 91.57 % of sunrays reach the 
rooftops in the absence of obstructions, excluding shading from 
building’s parapet wall and stairs core.

These findings reinforce the need to consider urban morphology and 
environmental parameters as integral components of rooftop PV plan
ning and design, providing a quantitative foundation for future decision- 
making frameworks aimed at maximizing solar energy potential in 
dense urban contexts. It can provide urban planners, architects, and 
policymakers with evidence-based insights to guide the design of 
building codes, incentive schemes, and rooftop planning policies that 
align both environmental and spatial factors to accelerate renewable 
energy adoption. Although, the study is confined to the hot arid climate 
of Cairo, Egypt, future research could extend this methodology to other 
climatic contexts allowing for broader applicability across different 
urban settings. In addition, machine learning techniques could be 
employed to further enhance prediction accuracy and scalability.
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