

ACCEPTED MANUSCRIPT • OPEN ACCESS

Towards nature-positive engineering: nature-based solutions in attenuating coastal hydrometeorological hazards

To cite this article before publication: Mohammed Sarfaraz Gani Adnan *et al* 2026 *Environ. Res. Lett.* in press <https://doi.org/10.1088/1748-9326/ae3d4d>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2026 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by/4.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

1 Towards nature-positive engineering: nature-based solutions in 2 attenuating coastal hydrometeorological hazards

3
4 Mohammed Sarfaraz Gani Adnan^{1*}, Abiy S. Kebede^{1*}, Kwasi Appeaning Addo², Ashraf Dewan³, Tuhi
5 Ghosh⁴, Christopher J. White⁵, and Philip J. Ward^{6, 7}

6 ¹ Department of Civil and Environmental Engineering, Brunel University of London, Uxbridge, UB8 3PH, United
7 Kingdom

8 ² Department of Marine and Fisheries Sciences, College of Basic and Applied Science, University of Ghana, P.O.
9 Box LG 99, Legon, Accra, Ghana

10 ³ Spatial Sciences Discipline, School of Earth and Planetary Sciences, Curtin University, Perth 6102, Australia

11 ⁴ School of Oceanographic Studies, Jadavpur University, Kolkata 700 032, India

12 ⁵ Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, G1 1XJ, United
13 Kingdom

14 ⁶ Department of Water and Climate Risk, VU Amsterdam, 1081 HV Amsterdam, The Netherlands

15 ⁷ Deltares, Delft, 2629 HV Delft, The Netherlands

16 *Corresponding authors: Mohammed Sarfaraz Gani Adnan (sarfaraz.adnan@brunel.ac.uk) and Abiy
17 S. Kebede (Abiy.Kebede@brunel.ac.uk)

19 Abstract

20 Coastal and deltaic regions are highly vulnerable to hydrometeorological hazards such as storms,
21 flooding, and extreme temperatures—risks that are intensifying under climate change. While hard
22 engineering structures (e.g., levees, seawalls) remain widely used, they can be costly, ecologically
23 disruptive, and may exacerbate hazard complexity. Nature-based solutions (NbS), including mangroves,
24 salt marshes, and other coastal ecosystems, offer sustainable and often cost-effective alternatives or
25 complementarities that can mitigate hazards while delivering ecological and societal co-benefits.
26 However, their effectiveness is difficult to assess due to diverse methodological approaches, site-
27 specific coastal dynamics, and inconsistent reporting indicators. This study synthesises the scientific
28 evidence base on the effectiveness of NbS in reducing hydrometeorological hazards in coastal and
29 deltaic environments and evaluates the robustness of methods used to assess their performance. A
30 systematic review and meta-analysis of 383 peer-reviewed English-language articles published between
31 2008 and 2024 was conducted following Preferred Reporting Items for Systematic Reviews and Meta-
32 Analyses (PRISMA) protocols and the PICO framework. Using an evaluation approach adapted from
33 the Intergovernmental Panel on Climate Change, each study was assessed for evidence robustness, level
34 of agreement, and overall confidence. The meta-analysis provides quantitative estimates of NbS
35 effectiveness and highlights substantial uncertainties arising from ecological variability, methodological
36 inconsistencies, and heterogeneity in hazard indicators (e.g., wave height, flow velocity, water level,
37 temperature) and measurement units. Findings show that NbS effectiveness is highly context dependent

1
2
3 and influenced by site characteristics, ecological dimensions, system configuration, and hazard
4 intensity. The study emphasises the need for standardised, hazard-specific indicators and greater use of
5 integrated methodological approaches to strengthen the reliability and comparability of future
6 assessments. It also identifies opportunities for advancing hybrid or nature-positive engineering
7 solutions that combine NbS with conventional infrastructure to enhance coastal resilience.
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Keywords: Nature-based solutions, performance evaluation, systematic review, level of confidence, nature-positive engineering.

1. Introduction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
55 Nature-positive engineering is an emerging approach that integrates ecological principles into
56 infrastructure design to enhance biodiversity, strengthen ecosystem services, and build climate
57 resilience, while still meeting the functional requirements of traditional engineering (LRF, 2025;
58 Wansbury, 2024). Recent policy developments and regulatory frameworks reflect a paradigm shift
59 toward nature-based solutions (NbS), encouraging their adoption to achieve nature-positive outcomes
60 (Bridges et al., 2024). These outcomes align with the global goal to “*halt and reverse nature loss by
2030 on a 2020 baseline, and achieve full recovery by 2050*” (NPI, 2023). Advancing a nature-positive
61 future offers a wide range of benefits, including the restoration of lost biodiversity and enhanced
62 capacity for climate change mitigation and adaptation (Wansbury, 2024).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
55 Coastal and deltaic regions are characterised by dynamic interactions among river discharge, fluvial
56 sediment input, and marine processes such as waves, tides, and coastal currents (Goodbred Jr and Saito,
57 2011). These regions support fertile soils, socio-ecologically valuable habitats, and economic activities
58 including agriculture, trade, fisheries, energy production, and manufacturing. Approximately 500
59 million people—7% of the global population—reside on just 1% of the Earth’s land area associated
60 with deltas (Paszkowski et al., 2021). Despite their significance, deltaic and coastal areas are highly
61 vulnerable to hydrometeorological hazards, defined as events triggered by atmospheric, hydrological,
62 or oceanographic processes (UNDRR, 2017). Their vulnerability arises from low-lying topography,
63 shallow riverbeds, subsidence, and direct exposure to oceanic disturbances (Ghosh et al., 2019; Syvitski,
64 2008; Vörösmarty et al., 2009). Between 1900 and 2023, hydrometeorological hazards—including
65 storms, floods, droughts, and extreme temperatures—accounted for roughly 83% of global hazards,
66 73% of economic losses, and 76% of fatalities (Guha-Sapir et al., 2023; Lee et al., 2024). Anthropogenic
67 climate change has intensified both the frequency and magnitude of these hazards, a trend projected to
68 continue (Debele et al., 2019; Guerreiro et al., 2018). For example, Guerreiro et al. (2018) identified
69 increasing heatwave days across 571 European cities under the RCP8.5 scenario, alongside expectations
70 of worsening droughts in southern Europe and heightened river flooding in northern Europe.

71
72 Historically, hard engineering structures—such as levees, dykes, and seawalls—have been the dominant
means of protecting coastal populations and assets (Adnan, 2020), with most global coastlines now

1
2
3 73 incorporating some form of engineered intervention (Mamo et al., 2022). However, the limitations of
4 such measures are well documented (Debele et al., 2019). While these structures reduce certain hazard
5 probabilities (e.g., flood frequency) (Merz et al., 2010), their limitations are widely acknowledged. Hard
6 infrastructure can increase residual risk, disrupt hydrological and geomorphological processes, require
7 substantial capital investment, and contribute to long-term vulnerability. For instance, Di Baldassarre
8 et al. (2017) demonstrated that societal responses to hydrological extremes can alter both the magnitude
9 and spatial distribution of flood events. These interventions often disconnect floodplains from sediment
10 flows, altering geomorphology and reducing ecological functionality (Gergel et al., 2002; Hupp et al.,
11 2009; Morrison et al., 2018; Steinfeld and Kingsford, 2013). The “levee effect,” first articulated by
12 White (1942), illustrates how engineered measures may inadvertently increase societal exposure by
13 fostering a false sense of security, ultimately creating infrastructure lock-ins and cycles of escalating
14 investment (Di Baldassarre et al., 2013; Logan et al., 2018).
15
16

17 85 In recent years, NbS—such as mangroves, saltmarshes, coral reefs, and sand dunes—have emerged as
18 cost-effective, sustainable, and adaptive alternatives or complements to traditional engineering. These
19 nature-based measures can reduce hazard impacts by attenuating waves, stabilising shorelines,
20 promoting sedimentation, or moderating climatic extremes (Cohen-Shacham et al., 2016; Debele et al.,
21 2023; Gain et al., 2022; Kumar et al., 2020; Ou et al., 2022; Shah et al., 2023; Sowińska-Świerkosz and
22 García, 2022). The concept of NbS was first introduced by the World Bank in 2008 (MacKinnon et al.,
23 2008) and has evolved across multiple institutions. The International Union for Conservation of Nature
24 (IUCN) defines NbS as “*...actions to protect, sustainably manage, and restore natural or modified
25 ecosystems, that address societal challenges effectively and adaptively, simultaneously providing
26 human well-being and biodiversity benefits*” (Cohen-Shacham et al., 2016). The European Commission
27 (EC) similarly characterises NbS as “*...solutions that are inspired and supported by nature, which are
28 cost-effective, simultaneously provide environmental, social and economic benefits and help build
29 resilience*” (EC, 2015). NbS are increasingly central to global policy frameworks, including the Sendai
30 Framework for Disaster Risk Reduction, the United Nations Sustainable Development Goals (SDGs),
31 the Paris Climate Agreement, Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment
32 Report, the European Union Nature Restoration Regulation, and the UN Decade on Ecosystem
33 Restoration (EU, 2024; IPCC, 2022; Renaud et al., 2016; UN, 2021), and are now viewed as essential
34 components of climate-resilient infrastructure portfolios (Zuniga et al., 2020).
35
36

37 103 However, conceptual and operational ambiguities limit the consistency and scalability of NbS
38 implementation. There remains no universal typology for NbS, and existing classification systems vary
39 widely across disciplinary and institutional contexts (Nehren et al., 2023; Sowińska-Świerkosz and
40 García, 2022). For example, the IUCN outlines eight eligibility criteria for identifying NbS
41 interventions (Cohen-Shacham et al., 2016), whereas the EC applies a set of five screening questions to
42 determine whether an intervention qualifies as NbS (EC, 2015). The United Nations Office for Disaster
43

1
2
3 109 Risk Reduction (UNDRR) organises NbS into four categories related to climate adaptation, climate
4 mitigation, disaster risk reduction, and environmental management (UNDRR, 2021). Academic reviews
5 also propose varied classification frameworks. Debele et al. (2019) reclassified 24 NbS types into green,
6 blue, and hybrid categories, while Castellar et al. (2021) distinguished between NbS units (stand-alone
7 green technologies) and NbS interventions (actions applied to ecosystems). Martin et al. (2020)
8 introduced a three-tiered typology based on risk, spatial scale, co-benefits, and potential disservices.
9 Nehren et al. (2023) further advanced NbS classification by incorporating five attributes—approach,
10 landscape unit, hazard type, ecosystem functions, and specific measures.
11
12
13
14
15

16 117 The methods used to evaluate NbS effectiveness are similarly diverse. Case studies employ numerical
17 modelling (Al-Attabi et al., 2023; Chen et al., 2024; De Dominicis et al., 2023; Fairchild et al., 2021;
18 Toth et al., 2023; Unguendoli et al., 2023; van Zelst et al., 2021), laboratory experiments (Möller et al.,
19 2024; Türker et al., 2019; Van Dang et al., 2023; van Veelen et al., 2021), geospatial analytics (Adnan
21 et al., 2020; Atmaja et al., 2024; Van Coppenolle et al., 2018), cost-benefit analyses (Hynes et al., 2022;
22 Karanja and Saito, 2018; Narayan et al., 2016; Reguero et al., 2018), multi-criteria decision-making (Lu
23 et al., 2023; Qin et al., 2024a), statistical analyses (Anderson et al., 2022; Costanza et al., 2008; Das
24 and Vincent, 2009), and qualitative approaches (Bakhshianlamouki et al., 2023; Van Hespen et al., 2023;
25 Warner et al., 2018). Kumar et al. (2021) categorised these methods into empirical, conceptual, and
26 numerical approaches but highlighted the lack of standardisation across studies evaluating NbS for
27 hazards such as flooding, droughts, heatwaves, landslides, and storm surges.
28
29

30 128 Despite the rapid growth of NbS research, the evidence base remains fragmented. Most case studies
31 examine individual NbS interventions aimed at mitigating a single hazard—for example, the use of
32 mangroves or coral reefs for wave attenuation (Mancheño et al., 2024; Quataert et al., 2015), or urban
33 green-blue infrastructure for reducing heat stress (Augusto et al., 2020; Nardella et al., 2024). These
34 studies employ widely varying metrics and performance indicators (e.g., wave height reduction,
35 temperature decrease, floodwater retention), making cross-comparison challenging (Kumar et al.,
36 2021). Existing review articles (Chausson et al., 2020; Debele et al., 2019; Debele et al., 2023; Kumar
37 et al., 2021; Sudmeier-Rieux et al., 2021) provide systematic qualitative syntheses of NbS performance
38 but rarely offer quantitative assessments of effectiveness. The few reviews that do quantify NbS impacts
39 tend to focus on specific hazards or narrowly defined outcomes. For example, Narayan et al. (2016)
40 performed a cost-benefit assessment of coastal habitats in reducing wave heights, while Ferrario et al.
41 (2024) and Prado et al. (2024) measured NbS effects on flood-related indicators (e.g., runoff, peak flow)
42 and extreme temperature metrics (e.g., urban heat island intensity, surface temperature, thermal
43 comfort). Although these studies provide valuable insights, they capture only a segment of the broad
44 spectrum of hydrometeorological hazard indicators needed to comprehensively assess NbS
45 effectiveness.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 144 As a result, despite their recognised benefits, NbS are not yet widely adopted as primary measures for
4 managing hydrometeorological hazards (Kumar et al., 2020; Vojinovic et al., 2021). Several barriers
5 include limited science-based understanding of NbS effectiveness (Sudmeier-Rieux et al., 2021), lack
6 of standardised hazard-specific classifications (Martin et al., 2020), inconsistent evaluation
7 methodologies (Kumar et al., 2021), and the absence of robust and comparable performance indicators,
8 metrics, and validation frameworks (Kabisch et al., 2016; Kumar et al., 2021). Moreover, the geographic
9 variability of NbS effectiveness—particularly across different climatic and geomorphological
10 contexts—remains poorly understood (Narayan et al., 2016). Although the existing literature
11 demonstrates considerable potential for NbS to mitigate hydrometeorological hazards, few studies
12 explicitly evaluate these solutions within a nature-positive engineering framework or directly compare
13 them with conventional hard structures (Barbour et al., 2022; Du et al., 2020; Stark et al., 2016).
14 Notably, there remains a dearth of studies assessing NbS as complementary or substitute measures
15 capable of achieving equivalent or superior hazard mitigation outcomes relative to traditional
16 engineering. This gap constrains the capacity of planners and engineers to effectively select, integrate,
17 and sequence NbS and hard measures within hybrid or transitional strategies essential for long-term
18 climate resilience (Jordan and Fröhle, 2022).
19
20

21 160 To address these critical gaps in the scientific evidence on NbS effectiveness for hydrometeorological
22 hazard mitigation in coastal and deltaic regions, this study poses two primary research questions: (1)
23 161 What is the current state of evidence on the effectiveness of NbS in mitigating hydrometeorological
24 162 hazards in coastal and deltaic regions? (2) How robust is the existing evidence base, and to what extent
25 163 does the evidence agree on the effectiveness of NbS in mitigating hydrometeorological hazards? To
26 164 answer these questions, this study conducts a state-of-the-art systematic review and meta-analysis of
27 165 peer-reviewed, English-language articles published between 2008 and 2024. The review systematically
28 166 documents and critically evaluates reported effectiveness across a wide range of NbS measures and
29 167 indicators, generating new evidence to inform nature-positive engineering, climate resilience planning,
30 168 and evidence-based policy formulation.
31
32

45 170 2. Methodology

46 171 2.1. Systematic literature review

47 172 2.1.1. *Review framework and search protocol*

48 173 This study conducted a systematic literature review following the Preferred Reporting Items for
49 Systematic Reviews and Meta-Analyses (PRISMA) protocol (Liberati et al., 2009) and the PICO
50 framework (Population(s), Intervention(s), Comparator(s) and Outcome(s)) developed by the
51 Collaboration for Environmental Evidence (CEE, 2022). The objective was to identify and analyse
52 research articles related to NbS and their applications in mitigating various hydrometeorological
53
54
55
56
57
58
59
60

1
2
3 178 hazards. The literature search was performed across four major scientific databases: Scopus, Web of
4 Science (WoS), GeoRef, and PubMed. Various keyword combinations were applied under four thematic
5 categories: hazards, NbS, methods, and location. The keywords were carefully selected to address two
6 primary research questions of this study. Table S1 (Supplementary Data A) provides different
7 combinations of the keywords used for the literature search.
8
9 182

10
11 183 NbS is a broad and multidisciplinary concept encompassing a wide range of strategies. Various
12 typologies exist for classifying NbS (Nehren et al., 2023). A total of 22 different search terms were
13 considered. The terms selected in this study were based on different NbS measures found in UNDRR
14 (2021). These measures are linked to five ecosystem types. Selected NbS measures include mangroves,
15 salt marsh or other coastal wetlands, restoration of reefs, managed realignment, integrated coastal zone
16 management, sand management, forest conservation, river watershed management, agrobiodiversity,
17 rainwater harvesting, urban green areas, urban wetlands, and sustainable drainage systems. Specific
18 search terms related to these categories were also derived from existing literature (Castellar et al., 2021;
19 Debele et al., 2019; Gain et al., 2022; Martin et al., 2020; Nehren et al., 2023). The search strategy
20 targeted events associated with storms, floods, extreme temperatures, droughts, and extreme
21 precipitation, but each category was operationalized through specific, well-defined search terms rather
22 than broad hazard labels. Table S1 (Supplementary Data A) includes specific terms related to hazards.
23
24 194
25
26 195 The search also included terms related to different methodological approaches used to assess the
27 effectiveness of NbS. These included numerical models, empirical approaches, geospatial approaches,
28 statistical approaches, laboratory experiments, qualitative approaches, cost-benefit analysis, and
29 vulnerability or risk assessment (Kumar et al., 2021; Möller et al., 2014; Mudashiru et al., 2021;
30 Narayan et al., 2016).
31
32 199
33
34 200 All searches were restricted to studies conducted in coastal and deltaic environments, defined as areas
35 located within or directly influenced by the land–sea interface, including coastal cities, peri-urban
36 coastal zones, estuaries, bays, lagoons, deltas, and low-lying coastal plains. The literature search was
37 conducted in September 2025. Boolean operators “AND” and “OR” were utilised to refine the search
38 across different keyword combinations. The full search strings used for each of the three databases are
39 provided in Table S2 (Supplementary Data A).
40
41 205
42
43 206 **2.1.2. Eligibility criteria**
44
45
46 207 The selection of articles was primarily guided by the PICO framework (CEE, 2022), which has been
47 widely applied in recent systematic reviews to establish eligibility criteria (de Lemos et al., 2024;
48 Ferrario et al., 2024; Sudmeier-Rieux et al., 2021). Using this framework, the following inclusion
49 criteria were defined:
50
51 210
52
53
54
55
56
57
58
59
60

- 211 ▪ **Population:** The study must address exposure to hydrometeorological hazards, including
212 impacts on populations, assets, infrastructure, or coastal areas.
- 213 ▪ **Intervention:** The study must focus on NbS as interventions for mitigating
214 hydrometeorological hazards in coastal and deltaic regions.
- 215 ▪ **Comparator:** The study must compare NbS interventions with either a baseline scenario (e.g.,
216 “as-is” or do-nothing approaches) or other intervention types.
- 217 ▪ **Outcome:** The study must assess the effectiveness of NbS in reducing hazard impacts or
218 minimising risk exposure.

219 Beyond the PICO criteria, additional inclusion parameters were established. Only peer-reviewed
220 articles, published in English between 1 January 2008 and 31 December 2024, were considered. This
221 time frame was chosen because the concept of NbS was first introduced by the World Bank in 2008
222 (MacKinnon et al., 2008). Review papers, conference proceedings, opinion pieces, perspectives, and
223 book chapters were excluded from the selection. A comprehensive list of inclusion and exclusion criteria
224 is provided in Table 1.

225 **Table 1.** Inclusion and exclusion criteria used to select studies. The criteria were identified by
226 adopting and modifying the guidelines from the CEE (2022).

31 Question 32 elements	33 Inclusion criteria	34 Exclusion criteria
33 Population	<ul style="list-style-type: none"> 34 ▪ Studies addressing elements exposed 35 to hydrometeorological hazards, 36 including populations, infrastructure, 37 assets, and coastal or deltaic areas. 38 ▪ Studies focusing on 39 hydrometeorological hazards such as 40 storms, floods, extreme temperatures, 41 droughts, and extreme precipitation. 	<ul style="list-style-type: none"> 42 ▪ Evidence related to NbS 43 interventions that do not address 44 any hydrometeorological hazards. 45 ▪ Evidence concerning 46 hydrometeorological hazards 47 without any connection to NbS 48 interventions. 49 ▪ Studies discussing NbS in relation 50 to animal, bird, plant species, or 51 marine habitats. 52 ▪ Geological studies on hazards such 53 as earthquakes and landslides. 54 ▪ Studies on man-made hazards.
55 Intervention	<ul style="list-style-type: none"> 56 ▪ Studies evaluating NbS interventions 57 aimed at reducing the impacts of 58 hydrometeorological hazards. 	<ul style="list-style-type: none"> 59 ▪ Studies examining the impact of 60 hydrometeorological hazards on 61 NbS interventions (e.g., the effects 62 of storms on mangroves). 63 ▪ Studies that do not assess NbS 64 effectiveness in mitigating 65 hydrometeorological hazards.
66 Comparator	<ul style="list-style-type: none"> 67 ▪ Studies comparing NbS interventions 68 with baseline scenarios (“as is” or do- 69 nothing approaches) or alternative 70 intervention strategies. 	<ul style="list-style-type: none"> 71 ▪ None
72 Methodology	<ul style="list-style-type: none"> 73 ▪ Studies employing NbS evaluation 74 methods. 	<ul style="list-style-type: none"> 75 ▪ Studies lacking NbS evaluation 76 methods.

Location	<ul style="list-style-type: none"> Studies conducted in coastal or deltaic regions. 	<ul style="list-style-type: none"> Studies not related to coastal or deltaic regions.
Outcomes	<ul style="list-style-type: none"> Studies measuring the extent of NbS impacts on hydrometeorological hazards. 	<ul style="list-style-type: none"> Studies that do not assess the impacts of NbS on hydrometeorological hazards.
Study	<ul style="list-style-type: none"> Peer-reviewed articles published in English between 1 January 2008 and 31 December 2024. 	<ul style="list-style-type: none"> Articles published before 1 January 2008 or after 31 December 2024. Articles in languages other than English. Review papers, conference proceedings, opinion pieces, perspectives, and book chapters.

228 2.1.3. Screening process

229 The screening process of the article was conducted following the PRISMA protocol. Figure S1
 230 (Supplementary Data A) provides an overview of the article screening process, detailing the number of
 231 articles reviewed at each stage. The initial search retrieved 4,012 articles from Scopus ($n = 1,649$), WoS
 232 ($n = 1,327$), GeoRef ($n = 961$) and PubMed ($n = 75$). After removing 1,111 duplicate records, 2,901
 233 articles proceeded to a two-stage screening process. In the first stage, the titles, abstracts, and keywords
 234 of the articles were screened based on the predefined inclusion and exclusion criteria (Table 1). At this
 235 stage, 2,500 records were excluded for failing to meet the criteria. The remaining 401 articles and two
 236 additional articles identified through snowballing (i.e., references obtained during the initial screening)
 237 advanced to full-text evaluation. Following a detailed full-text review, 20 more articles were excluded
 238 for three major reasons: (1) review articles, and/or (2) did not evaluate the impact of NbS, and/or (3)
 239 unrelated to hydrometeorological hazards. These aspects were not evident in the title, abstract, or
 240 keywords, necessitating exclusion at this stage. Using this approach, a total of 383 articles were selected
 241 for evaluation and analysis.

242 2.2. Data extraction and coding

243 Bibliographic information was recorded for each of the retained studies, and data were extracted on the
 244 various aspects as summarised in Table 2. The extracted data facilitated both qualitative and quantitative
 245 analyses, allowing for a comprehensive assessment of the effectiveness of NbS measures in mitigating
 246 hydrometeorological hazards. After extracting the data, different variables were recoded to facilitate the
 247 analysis. For instance, specific NbS terms found in the literature were grouped under 13 NbS measures.
 248 Hazard-related terms were grouped under hydrological, meteorological, and hydrometeorological (if
 249 both hydrological and meteorological hazards were considered) categories following the EM-DAT
 250 classification system (Table 2).

1
2
3 252 **Table 2.** Summary of extracted variables and associated coding strategy. Bibliographic information of
4 253 383 articles is provided in Supplementary Data B.
5
6

Variables	Description	Analysis used
Publication year	Year in which the article was published.	Descriptive statistics
NbS measures	Specific NbS interventions examined in the article. Multiple responses were recorded. Table S3 (Supplementary Data A) provides further details on different NbS measures.	Meta-analysis, descriptive statistics, confidence level analysis
Hazard type	Hydrometeorological hazards examined in the article, including hydrological and meteorological hazards. Table S4 (Supplementary Data A) provides further details on each of these categories.	Descriptive statistics
Role of NbS	NbS interventions were categorised into three roles: alternative, compliment, safeguard. Alternative refers to NbS used in place of traditional structural measures. Complement refers to NbS deployed alongside structural measures to enhance overall system effectiveness. Safeguard denotes NbS implemented for hazard protection without explicit reference to, or integration with, structural measures (Zuniga et al., 2020).	Descriptive statistics
Case study type	Classification of case studies into: (1) real-world studies, and (2) hypothetical studies (e.g., laboratory experiments).	Descriptive statistics
Methods	Methods used in the study. Multiple responses were recorded based on the method categories listed in Table S1 (Supplementary Data A).	Descriptive statistics, confidence level analysis
Country	Country or countries where the case study was conducted. Multiple responses were recorded when applicable. For hypothetical studies, “No country” was recorded.	Descriptive statistics
Effect indicators	Hazard-related indicators used to evaluate NbS effectiveness (e.g., wave height, flow velocity). Studies without measurable hazard indicators (primarily qualitative studies) were recorded as “No indicator.”	Meta-analysis
Effect size	Magnitude of change (reduction or increase) in effect indicators resulting from NbS interventions.	Meta-analysis

1	Effect unit	Units used to express each effect indicator (e.g., percent reduction, metres, degree Celsius (°C)).	Meta-analysis
2	Validation	Indicates whether a study validated its results. Recorded as Yes/No.	Descriptive statistics, confidence level analysis
3	Validation results	Validation metrics reported (e.g., root mean squared error, coefficient of determination (R^2)).	Meta-analysis, confidence level analysis
4	Agreement	Degree of consistency in the article's findings regarding the effectiveness of NbS in mitigating hydrometeorological hazards in coastal or deltaic regions. Articles were grouped into <i>agreement</i> , <i>inconclusive</i> , and <i>non-agreement</i> , assigned scores of 1, 2, and 3, respectively.	Descriptive statistics, confidence level analysis
5	Robustness	Robustness refers to the overall quality, reliability, and strength of evidence presented in each study. Articles were categorised as <i>low</i> , <i>medium</i> , or <i>robust</i> based on multiple criteria, including the clarity of mechanistic understanding, strength of theoretical underpinning, availability and quality of data, suitability of modelling approaches, presence of validation, and expert assessment. The detailed procedure for assigning robustness levels is outlined in Section 2.3.1.	Descriptive statistics, confidence level analysis

254 255 2.3. Data analyses

256 2.3.1. Assessing level of confidence

257 To examine the scientific evidence on the effectiveness of NbS in mitigating hydrometeorological
258 hazards and the assessment methods used, this study used an evaluation framework based on the
259 Intergovernmental Panel on Climate Change (IPCC) AR5 guidance note on the consistent treatment of
260 uncertainties (Mastrandrea et al., 2010; Mastrandrea et al., 2011). As explained by Sudmeier-Rieux et
261 al. (2021), the evaluation framework comprised of three steps:

262 a) Robustness of evidence

263 A combination of qualitative and quantitative approaches was applied to score robustness of evidence
264 in each article. First, a multi-metric scoring approach was followed. The data extraction stage extracted
265 various metrics used to validate the results, including root mean square error (RMSE), mean absolute
266 error (MAE), mean bias error (MBE), absolute Bias, reported R^2 /NSE/kappa statistic/skill, Brier Skill

Score (BSS), Scatter Index (SI/SCI), and *p*-values. Two complementary scoring approaches were applied: (i) a quantile-based approach, in which study-specific metric values were classified into low, medium, or high robustness based on the 33rd and 67th percentiles across all studies, and (ii) an absolute-threshold approach for percentage-based metrics (e.g., RMSE%), assigning scores 1–3 according to predefined cutoffs (e.g., low 30%, medium 10%). For each study, the maximum score across all available metrics was taken as the final robustness value. Studies with missing metrics were assessed individually. For instance, Xu et al. (2023) compared modelled wave heights with measured data, and found good agreement between them. Although no validation metric was reported, the agreement between model and observation was deemed to be robust. However, if no attempt to validate was made, the information was judged to be low in robustness (Mastrandrea et al., 2011; Sudmeier-Rieux et al., 2021).

b) Level of agreement

This step assessed whether the reviewed articles provided consistent evidence regarding the effectiveness of NbS in mitigating hydrometeorological hazards in coastal or deltaic regions. Articles were categorised into three groups: agreement, inconclusive, and non-agreement, with assigned scores of 1, 2, and 3, respectively.

- Agreement indicated strong and consistent evidence supporting NbS effectiveness. For instance, De Dominicis et al. (2023) found that a 600 m patch of mangroves could provide a surge attenuation up to 1.4 m.
- Inconclusive meant that the findings varied, with studies showing mixed results regarding NbS performance. For example, Zhao and Chen (2016) found that the presence of vegetation reduced water level, while increasing flow velocity, on average.
- Non-agreement suggested that the studies did not support the effectiveness of NbS in mitigating coastal hydrometeorological hazards. For instance, French (2008) reported that managed realignment increase peak velocity and discharge by up to 35% and 32%, respectively, concluding that such measure could be questionable in estuarine contexts.

c) Level of confidence

The final step involved evaluating the overall level of confidence in the findings. It provides a qualitative synthesis of the evaluation of evidence and agreement in one metric (Mastrandrea et al., 2010; Mastrandrea et al., 2011). This was determined by combining the robustness and agreement scores for each article. Therefore, the level of evidence scores were plotted against the level of agreement. The outcomes were categorised into nine confidence level. Figure S3 (Supplementary Data A) shows a matrix of the levels of confidence based on combinations of evidence and agreement.

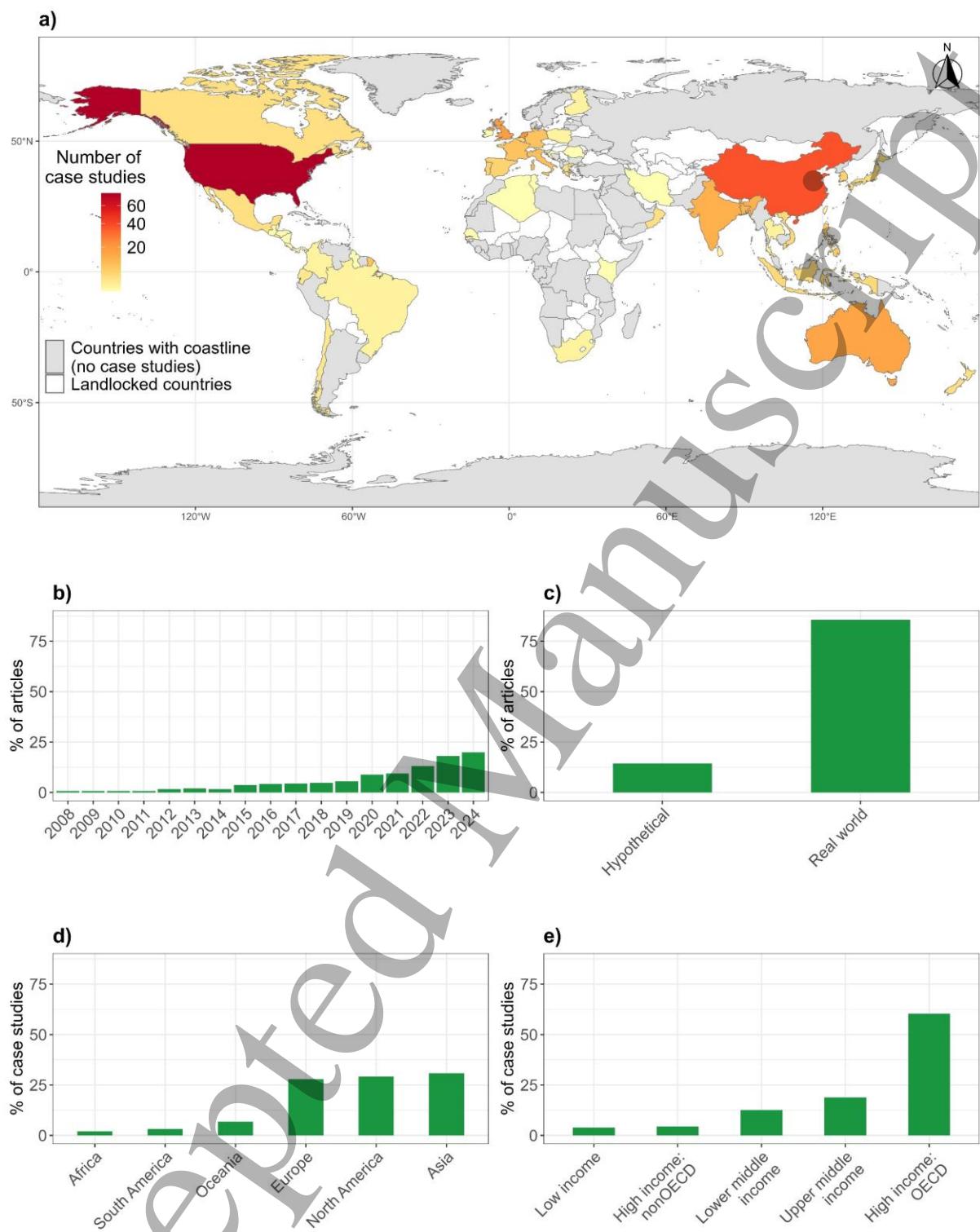
2.3.2. *Meta-analyses*

A quantitative synthesis was performed for studies reporting continuous effect sizes of NbS on hydrometeorological hazard indicators. These indicators included percentage reduction (%), absolute changes in physical parameters (e.g., surge height or flood depth in meters), temperature change (°C), and in some cases monetary losses (million USD). Because studies reported effects using different units and measurement approaches, separate meta-analyses were conducted for each unit category to ensure conceptual and statistical consistency.

Random-effects models were fitted using the restricted maximum likelihood (REML) estimator to account for variability in true effects across studies (Borenstein et al., 2010). This approach is appropriate given the large, expected heterogeneity arising from differences in ecosystem settings, hazard types, modelling frameworks, and data sources. In several cases, primary studies did not report sampling variances or standard errors. When this occurred, approximate variances were derived from the dispersion of observed effect sizes within the dataset, following a conservative approach that assigns equal variance to studies with missing information. Although this procedure increases uncertainty in heterogeneity estimates, it allows inclusion of a broader evidence base while maintaining transparency.

Influential data points were identified using Cook's distance, and sensitivity analyses were performed by comparing models before and after removing outliers. Observations with Cook's distance greater than 0.5 were treated as influential and removed from subsequent analyses (Cook and Weisberg, 1982). Forest plots were produced to visualize individual study estimates and pooled effects with 95% confidence intervals. Between-study heterogeneity was evaluated using the I^2 statistic and the between-study variance (τ^2), as provided by the metafor R package (Viechtbauer, 2010).

To compare NbS strategies, the meta-analysis results were further examined by grouping effect sizes according to NbS categories and the indicators they influenced. This allowed assessment of how different NbS measures perform across multiple hazard-related metrics and units (e.g., % reduction, meters, °C, monetary units, or % increase), providing a comprehensive evaluation of their protective effectiveness.


3. Results

3.1. Identified case studies and their spatial distributions

Out of the 383 articles, the majority (86%; $n = 328$) focused on real-world case studies, while the remaining were hypothetical or conceptual studies. In total, these articles included 341 real-world case studies (as some articles included multiple case studies) across 60 countries. The United States had the highest number of case studies ($n = 76$), accounting for 22% of the total. This was followed by China ($n = 37$), the Netherlands ($n = 21$), the United Kingdom ($n = 18$), and Australia ($n = 16$), with the remaining countries having 173 case studies (Figure 1a).

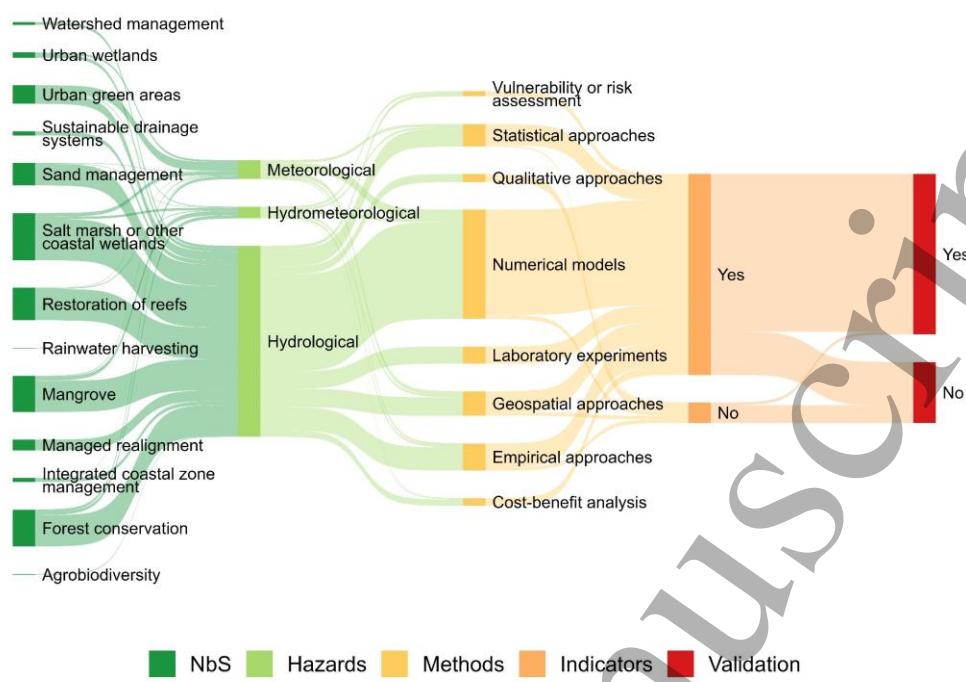
1
2
3 336 A notable upward trend in research activity was observed over time. As shown in Figure 1b, studies on
4 the effectiveness of NbS in mitigating hydrometeorological hazards have increased since 2008,
5 following the introduction of the NbS concept by the World Bank (MacKinnon et al., 2008). Notably,
6 approximately 69% ($n = 265$) of the selected articles were published since 2020.
7
8

9
10 340 There was a clear spatial disparity in the distribution of case studies across continents. Asia accounted
11 for the highest proportion of studies (31%), followed closely by North America (29%) and Europe
12 (28%). In contrast, Africa was the least represented, with only six case studies identified (Figure 1d).
13
14 343 Further analysis examined case study distribution based on the income levels of countries. The majority
15 (60%; $n = 205$) were conducted in high-income countries, particularly those classified as members of
16 the Organisation for Economic Co-operation and Development (OECD). Upper middle-income
17 countries accounted for 19% ($n = 64$) of case studies, while low-income countries hosted the fewest
18 (4%; $n = 13$), with the majority of these conducted in Bangladesh ($n = 12$) (Figure 1e).
19
20
21
22

Figure 1. Overview of the articles analysed in this study. a) Geographical distribution of the case studies, with continuous colours representing countries with coastline where case studies were conducted, and grey indicating no case studies found; b) Year-wise publication trend; c) Types of case studies (hypothetical and real-word); d) Distribution of case studies by continent; and e) Distribution of case studies by income groups of the countries.

354 **3.2. NbS interventions in managing hydrometeorological hazards**355 **3.2.1. NbS interventions**

356 Existing studies examined a wide range of NbS measures to assess their effectiveness (Figure 2, Table
357 S3 (Supplementary Data A)). Salt marshes and other coastal wetlands represented the largest share of
358 cases (21%), followed by mangroves (17%) and forest conservation measures (16%), which include
359 vegetation, swamp forests, and natural habitats. In contrast, only a single study evaluated the
360 effectiveness of rainwater harvesting. Figure S2a (Supplementary Data A) shows the distribution of
361 cases across different NbS types.


362 This study also assessed the functional role of NbS in the reviewed literature. NbS were predominantly
363 implemented as safeguarding measures in coastal and deltaic regions, accounting for 73% of the 383
364 articles. Additionally, 19% of studies examined NbS as complementary measures alongside hard
365 engineering structures, while 8% considered them as alternative measures (Figure S2b, Supplementary
366 Data A).

367 **3.2.2. Hydrometeorological hazards**

369 Hydrological hazards (e.g., floods, wave action, surge) were the most common, representing 86% ($n =$
370 330) of all cases. Meteorological hazards, including extreme temperatures, heatwaves, strong winds,
371 and meteorological droughts, accounted for 9%. The remaining 5% of articles assessed both hazard
372 types (Figure S2c, Supplementary Data A). NbS measures such as salt marshes, mangroves, forest
373 conservation, reef restoration, sand management, and managed realignment were primarily applied to
374 hydrological hazards, whereas NbS related to urban ecosystems—particularly urban green areas—were
375 mainly tested for meteorological hazards (Figure 2).

376

377

Figure 2. Sankey diagram showing the interactions among NbS measures, hydrometeorological hazards, methodological approaches, use of indicators, and validation status. Coloured bands represent sub-categories within each group, highlighting the connections and flow of relationships across different dimensions.

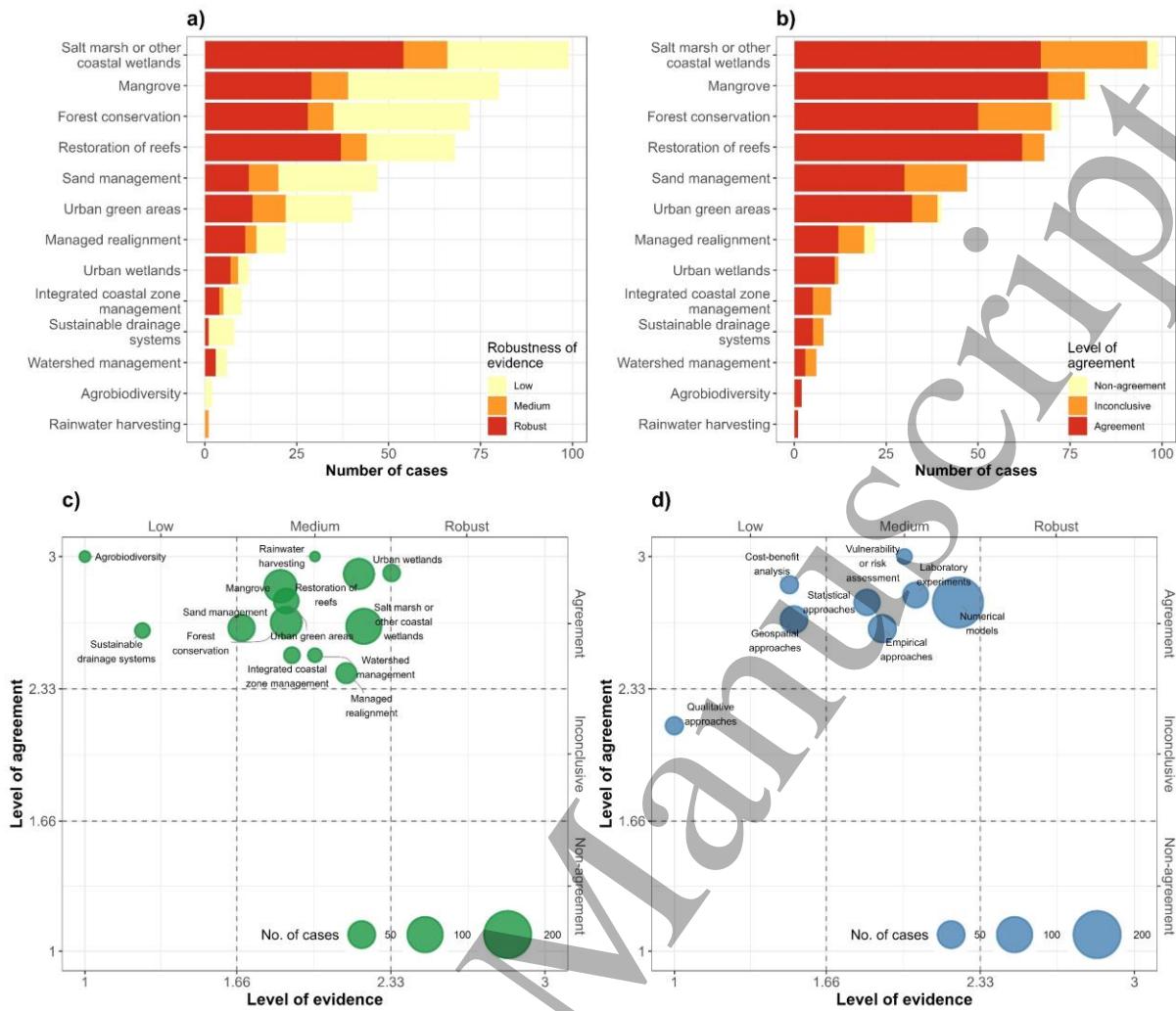
3.2.3. Methods to evaluate the impacts of NbS

After identifying relevant NbS measures, this study evaluated the strengths and limitations of methodological approaches used to assess their hazard-mitigation performance. Numerical modelling was the most widely applied method, constituting 51% of all approaches. Empirical approaches accounted for 11.5%, followed by geospatial (11%), statistical (9.5%), and laboratory-based methods (9%). Cost-benefit analyses, qualitative methods, and vulnerability or risk assessments were less common (3%, 3%, and 2%, respectively) (Figure 2, Figure S2e (Supplementary Data A)). Hydrological studies predominantly relied on numerical modelling, followed by empirical, geospatial, statistical, and laboratory approaches. Numerical models were also frequently used in meteorological studies. A comprehensive list of modelling approaches identified is provided in Table S8 (Supplementary Data A).

3.2.4. Indicators for assessing NbS interventions

Indicators play a key role in quantifying the effectiveness of NbS interventions. Approximately 91% of the articles used at least one indicator, whereas 9% did not employ any specific metrics (Figure 2, Figure S2d (Supplementary Data A)). In total, 44 unique indicators were identified (Table S5, Supplementary Data A). Wave height was the most frequently used indicator (24.4%), followed by water level (15.7%),

1
2
3 398 economic damage (8%), flood extent (7%), and flow velocity (5.4%). Meteorological studies primarily
4 399 used temperature as an indicator, which accounted for 5.2% of all cases.
5
6


7 400 3.3. Level of confidence in NbS interventions and methods used 8

9 401 As outlined in Section 2.3.1, the level of confidence in each article was assessed using robustness and
10 402 agreement criteria. Validation of methods was a key factor in determining robustness. Overall, 71.5%
11 403 of the reviewed articles reported some form of validation (Figure 2, Figure S2f (Supplementary Data
12 404 A)).
13
14

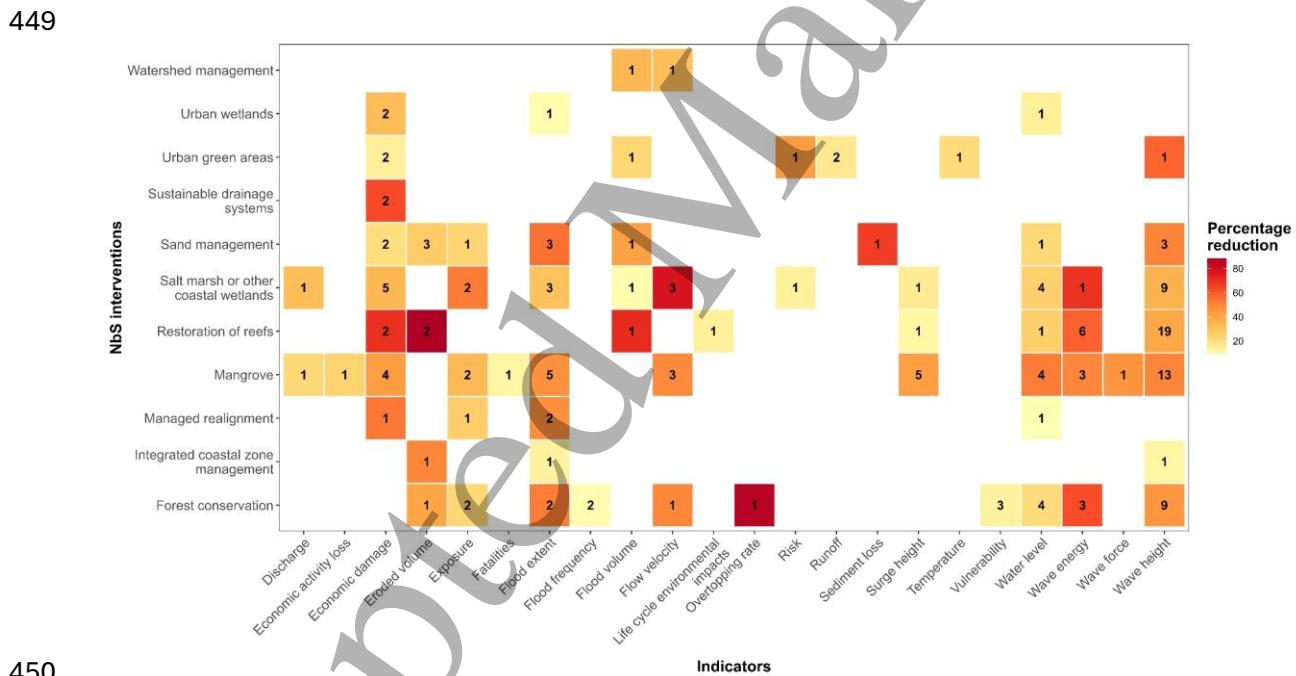
15 405 With respect to specific NbS interventions, studies on salt marshes or other coastal wetlands exhibited
16 406 the highest number of cases with robust evidence, followed by those focused on reefs, mangroves, and
17 407 forest conservation (Figure 3a). Models used in these studies were generally validated against
18 408 observational data and demonstrated good levels of agreement. In terms of agreement alone, mangrove-
19 409 related studies showed the highest number of cases, followed by salt marshes, reefs, and forest
20 410 conservation (Figure 3b). When plotting robustness against agreement, only urban wetlands reached a
21 411 “very high” confidence level. Agrobiodiversity and sustainable drainage systems demonstrated medium
22 412 confidence, while the remaining 10 NbS measures showed high confidence (Figure 3c).
23
24

25 413 Confidence levels also varied across methodological approaches. As shown in Figure 3d, none of the
26 414 methods achieved very high confidence. Five approaches—numerical modelling, laboratory
27 415 experiments, vulnerability or risk assessments, empirical approaches, and statistical approaches—fell
28 416 within the high-confidence category. Studies using cost–benefit analyses or geospatial approaches were
29 417 classified as medium confidence, while qualitative approaches showed low–medium confidence.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

418

419

Figure 3. Level of confidence in NbS for attenuating hydrometeorological hazards. a) Number of reviewed articles categorised by the robustness of evidence for each NbS measures; b) Number of reviewed articles categorised by the level of agreement for each NbS measures; c) Average confidence levels across different NbS measures; and d) Average confidence levels across different methodological approaches. To aid interpretation of panels c) and d), a confidence matrix based on combinations of evidence and agreement levels is provided in Figure S3 (Supplementary Data A).

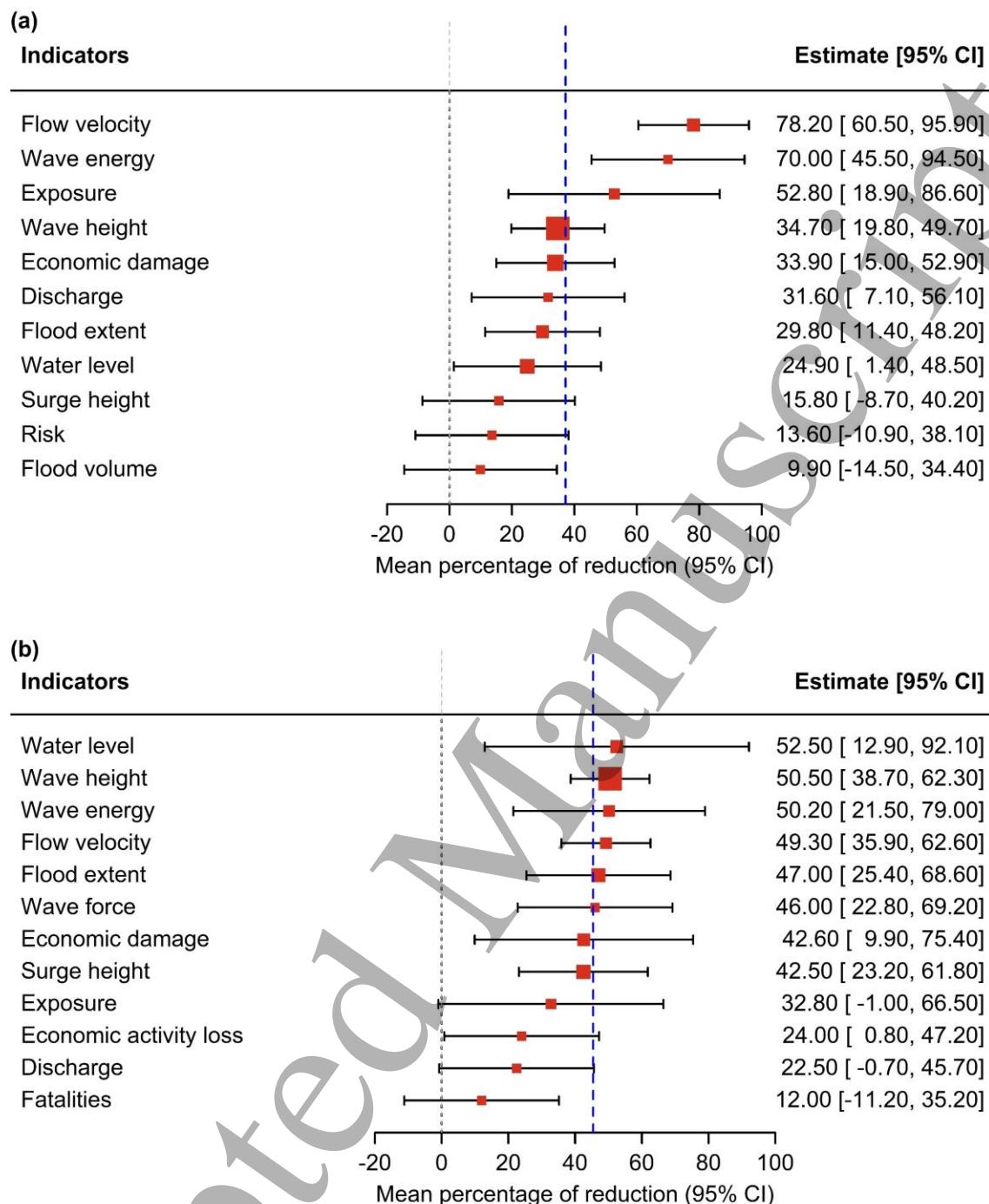

426 3.4. Effectiveness of NbS measures

427 3.4.1. Degree of effectiveness

428 Among the 383 articles, quantitative information on NbS effects was found in 241 articles. Across the
 429 44 indicators identified (see Section 3.2.4), eight different units were used to express effectiveness:
 430 percentage reduction, degrees Celsius (°C), metres (m), monetary value (USD), cubic metres (m³),
 431 fatalities, percentage increase, and metres per second (m/s). Percentage reduction was the most
 432 common, applied in 73% of cases. Figure 4 presents the mean percentage reduction achieved by
 433 different NbS measures across various indicators. Overall, mean effects ranged from a 9% reduction in

434 water levels by implementing managed realignment to an 88.5% reduction in eroded volume from reef
 435 restoration. Most reported effects were related to hydrological hazard mitigation. Meteorological
 436 studies reported an average 21% reduction in temperature for urban green areas. However, this was
 437 based on a single study as most of the meteorological studies used actual temperature reduction (in °C)
 438 as an indicator.

439 Twenty-four studies reported the effects of NbS in reducing surge height, water level, or wave height in
 440 metres. Sand management (e.g., dunes) showed the highest mean surge-height reduction of 3.4 m,
 441 followed by mangroves at 1.4 m. Reef restoration yielded the highest mean reductions for both water
 442 level (1.9 m) and wave height (1.4 m) (Figure S4, Supplementary Data A). Fifteen articles reported
 443 temperature reduction outcomes—primarily for urban green areas and forest conservation—with an
 444 average reduction of 1.55 °C (Figure S5, Supplementary Data A). Twelve studies used monetary units
 445 (USD) to assess coastal protection, economic damage reduction, and related benefits across six NbS
 446 measures (Figure S6, Supplementary Data A). Six studies reported percentage increases in benefit–cost
 447 (BC) ratio, economic benefits, housing prices, resilience, or tidal prism linked to five NbS measures
 448 (Figure S7, Supplementary Data A).


450

451 **Figure 4.** Mean percentage reduction in hydrometeorological hazard indicators achieved by different
 452 NbS interventions. Each cell reports the number of studies evaluating a given NbS–indicator
 453 combination.

1
2
3 457 **3.4.2. Uncertainties in the estimates**
4
5

6 458 The meta-analyses revealed substantial uncertainty in the estimated protective effects of different NbS
7 459 measures against hydrological hazards. Figure 5 summarises the mean percentage reduction achieved
8 460 by salt marshes or other coastal wetlands and by mangroves. In both cases, the random-effects models
9 461 indicated varying levels of heterogeneity (I^2) and between-study variance (τ^2), depending on the
10 462 indicator (Tables S6–S7, Supplementary Data A). For salt marshes and other coastal wetlands, I^2 ranged
11 463 from moderate (36.2% for flow velocity) to substantial (73.8% for exposure). Mangrove-related
12 464 estimates showed considerably higher heterogeneity, with I^2 values ranging from 70.4% (wave height)
13 465 to 91.4% (water level). These levels of dispersion suggest that observed variation largely reflects real
14 466 differences in study conditions rather than random sampling error.
15
16

17 467 Such variability likely arises from ecological and geomorphological differences among sites, variation
18 468 in vegetation structure and maturity, hydrodynamic contrasts, differences in physical attributes such as
19 469 mangrove-belt width, and inconsistencies in indicator measurement and reporting. Consequently,
20 470 pooled effect sizes should be interpreted as broad central estimates across highly diverse systems rather
21 471 than precise or universally transferable values. While the REML estimator effectively accommodates
22 472 this variability, the wide confidence intervals and elevated τ^2 values underscore the persistent
23 473 uncertainty surrounding the magnitude of the risk-reduction benefits provided by these NbS. Additional
24 474 forest plots for other NbS types are presented in Figures S8–S13 (Supplementary Data A). Studies
25 475 assessing urban green areas for meteorological hazard mitigation (e.g., temperature reduction) also
26 476 showed high uncertainty, with an I^2 value of 76.7% (Figure S14, Supplementary Data A).
27
28
29
30
31
32
33
34
35

477
478 **Figure 5.** Forest plots showing the mean percentage reduction achieved by (a) salt marshes or other
479 coastal wetlands and (b) mangroves across different hydrological hazard indicators. Red dots represent
480 the pooled mean effect for each indicator, with dot size proportional to the number of contributing
481 studies. Horizontal lines indicate the 95% confidence intervals associated with each estimate.

484 4. Discussion

485 This study provides a systematic review and meta-analysis aimed at establishing a scientific evidence
486 base on the effectiveness of NbS in mitigating hydrometeorological hazards in coastal and deltaic
487 regions. A total of 383 peer-reviewed English-language articles published since 2008 were analysed.
488 The distribution of case studies was uneven, with most research concentrated in high-income OECD
489 and upper-middle-income countries across Europe, Asia, and North America. Representation from low-
490 income and lower-middle-income countries—particularly in the global south, where
491 hydrometeorological hazard exposure is high—remains limited (Chausson et al., 2020). Although the
492 absence of studies in landlocked countries is expected due to the coastal focus of the review, many
493 coastal nations exposed to severe hazards lack published evidence on the efficacy of NbS. Despite 179
494 countries having coastlines (<https://worldpopulationreview.com/>), case studies were found in only 60,
495 indicating a substantial geographic gap. While interpreting these results, care should be given as this
496 study relied solely on peer-reviewed English literature; therefore, relevant grey literature and non-
497 English studies may not be captured.

498 Most studies evaluated the effectiveness of NbS in mitigating hydrological hazards—including floods,
499 storm surges, and wave action. This aligns with the long-standing focus on coastal protection in NbS
500 research (Barbier et al., 2013; Costanza et al., 2008; Das and Vincent, 2009; Del Valle et al., 2020;
501 Ferrario et al., 2014; Mancheño et al., 2024; Sheng et al., 2022; Stark et al., 2015; Zhang et al., 2012).
502 Salt marshes and mangroves, in particular, have been widely studied and are well established as
503 effective natural barriers in both global north and south (Das and Vincent, 2009; Du et al., 2020; Liu et
504 al., 2019; Menéndez et al., 2020; Seujip et al., 2024; Sheng et al., 2022; Zhang et al., 2012). By contrast,
505 the role of NbS in mitigating meteorological hazards—such as extreme temperatures and droughts—
506 remains underexplored, despite their increasing sensitivity to climate change and their implications for
507 water security (Debele et al., 2019), critical infrastructure (Leal Filho et al., 2024), and human health
508 (Lüthi et al., 2023; Matthews et al., 2025).

509 This study assessed whether the reviewed literature agreed on the hazard-mitigating potential of various
510 NbS measures. While most studies supported their effectiveness, some reported mixed or negative
511 outcomes—particularly for managed realignment. For example, French (2008) documented increased
512 peak velocity and discharge in an estuarine system following managed realignment, and Bennett and
513 Karunarathna (2020) found negligible effects on flood levels in Wales. Pontee (2015) similarly reported
514 increased water levels in parts of the Steart Estuary due to altered tidal propagation following
515 embankment breaching. These examples underscore the need for scientific understanding of site-
516 specific hydrodynamics when designing and implementing large-scale interventions such as managed
517 realignment.

1
2
3 518 Assessing the level of agreement alone provides an incomplete picture of NbS performance. Therefore,
4 this study evaluated the robustness of evidence using combined qualitative and quantitative criteria.
5
6 520 Most NbS categories demonstrated high confidence levels, reflecting medium robustness and high
7 agreement. However, significant variability in robustness scores was observed for agrobiodiversity and
8 sustainable drainage systems. Some studies presented highly robust evidence (Barbour et al., 2022; Qin
9 et al., 2024b), whereas others provided limited support due to methodological or data constraints (Dang
10 et al., 2021; Sohn et al., 2020). Limited ground observations for model validation, combined with
11 inherent uncertainties in numerical modelling (Hall and Solomatine, 2008), likely contribute to overall
12 medium or low robustness scores.
13
14

15 527 Effectiveness of NbS is highly context dependent and influenced by numerous factors, including site
16 characteristics, ecological dimensions (e.g., mangrove belt width), system configuration (e.g., dune–
17 canal combinations), and hazard intensity. As a result, several studies reported mixed or inconclusive
18 findings. For example, Marsooli et al. (2016) found that salt marshes can reduce peak water velocity
19 but may slightly increase water levels under certain vegetation conditions. Evidence also indicates that
20 hybrid approaches combining NbS with engineered structures can enhance effectiveness (Barbour et
21 al., 2022; Du et al., 2020; Liu et al., 2019). Yet, only a limited number of studies have explored NbS as
22 complementary measures, partly because the lack of standardised criteria prior to the IUCN NbS
23 standards (introduced in 2020) hindered their classification and assessment (Sowińska-Świerkosz and
24 García, 2022). Quantifying the performance of complementary solutions—such as tidal river
25 management integrated with embankments—remains challenging and typically requires multi-method
26 approaches (Adnan et al., 2020; Barbour et al., 2022; Du et al., 2020; Liu et al., 2019). Due to these
27 challenges, most of the studies have evaluated NbS in isolation as safeguard measures (Al-Attabi et al.,
28 2023; Barbier et al., 2013; Beck et al., 2018) rather than as integrated components of broader risk
29 management strategies.
30
31

32 542 A major challenge in evaluating and communicating NbS effectiveness is the lack of standardised
33 indicators and the considerable uncertainty surrounding results. Hydrological studies frequently rely on
34 indicators such as wave height, current velocity (Castagno et al., 2022; Mancheño et al., 2024; Möller
35 et al., 2014), flood depth, and flood extent (Karamouz et al., 2022; Montgomery et al., 2022), measured
36 in different units (e.g., metres, m/s, percentage reduction), while meteorological studies use temperature
37 (°C) (Arrar et al., 2024; Lin and Zhang, 2024; Spyrou et al., 2024). The indicators used are closely
38 linked to the methodological approach; numerical hydrological modelling often prioritises hazard
39 intensity metrics (Kumar et al., 2021). However, inconsistent or non-hazard-specific indicators make
40 cross-study comparisons difficult. As shown in the meta-analysis, considerable heterogeneity persists
41 across NbS measures, arising from ecological variability, geomorphological differences, and
42 inconsistent reporting practices. This highlights the need for consistent, transparent, and hazard-specific
43

1
2
3 553 indicators to strengthen the evidence base and facilitate comparability (Kabisch et al., 2016; Kumar et
4
5 554 al., 2021).

6
7 555 Finally, combining multiple methodological approaches generally yielded higher confidence levels.
8
9 556 Integrating numerical models with geospatial approaches improved understanding of tidal river
10
11 557 management (Adnan et al., 2020) and mangrove systems (Azeez et al., 2022). When cost-benefit
12
13 558 analysis was combined with numerical models, the robustness of evidence increased (Du et al., 2020;
14
15 559 Karamouz and Heydari, 2020). Similarly, numerical models paired with empirical observations
16
17 560 strengthened reliability (Lu et al., 2023; Rahman et al., 2017). Despite these advantages, relatively few
18
19 561 studies employ such integrated frameworks, suggesting a need for methodological diversification to
562 improve accuracy and spatial resolution in NbS assessments.

20 563 5. Limitations and future research directions

21
22 564 There is growing recognition of the value of NbS in attenuating hydrometeorological hazards. Yet,
23
24 565 significant knowledge gaps remain regarding their effectiveness across different hazard indicators. This
25
26 566 study synthesised the scientific evidence base through a systematic review and meta-analysis of peer-
27
28 567 reviewed literature, assessing both performance and methodological robustness of NbS interventions.

29
30 568 The following limitations should be considered when interpreting the findings. First, the review used
31
32 569 four major databases. Relevant studies indexed elsewhere—such as Compendex—were not included.
33
34 570 Second, the analysis was restricted to peer-reviewed English-language publications, excluding
35
36 571 potentially relevant grey literature and non-English studies. Inclusion of these sources might alter the
37
38 572 geographic distribution of studies and diversify the evidence base. Third, the reported effectiveness of
39
40 573 NbS may be subject to uncertainties. Although the meta-analysis produced average values (e.g.,
41
42 574 percentage reductions in hazard indicators), effectiveness is highly dependent on local conditions,
43
44 575 proximity to hazard sources, event characteristics (regular vs. extreme), and dimensions of the NbS
45
46 576 measures. Despite these limitations, this study provides the first comprehensive synthesis of NbS
47
48 577 effectiveness across a wide range of hydrometeorological hazard indicators.

49
50 578 Future research should further investigate the potential of NbS as complementary measures alongside
51
52 579 conventional engineered structures. Evaluating hybrid or nature-positive engineering solutions—
53
54 580 including their cost-effectiveness, long-term resilience, and ecological co-benefits—would enhance
55
56 581 understanding of their role in strengthening coastal resilience (Cohen-Shacham et al., 2016). More
57
58 582 effective communication frameworks are also needed to translate scientific evidence into actionable
59
60 583 guidance for policymakers and stakeholders, promoting the integration of NbS into climate adaptation
584 and disaster risk reduction strategies (Banerjee et al., 2023; Debele et al., 2019; Kumar et al., 2021).

585 Coastal and deltaic regions often experience multiple or compound hazards, such as tidal surges
586 coinciding with high river flows, with cascading impacts (Lee et al., 2024). Yet, few studies evaluate

1
2
3 587 NbS through a multi-hazard lens (Debele et al., 2019; Debele et al., 2023). Integrating NbS into multi-
4 hazard risk assessment frameworks would capture the interconnected nature of hydrometeorological
5 hazards and provide more realistic estimates of their effectiveness. Developing standardised,
6 transparent, and hazard-specific indicators is essential for improving comparability and stakeholder
7 understanding. These indicators should be easily interpretable and facilitate engagement across
8 governance levels.
9
10
11
12

13 593 Overall, future research can help advance more resilient, adaptive, and sustainable coastal and deltaic
14 communities, solidifying the role of NbS in global climate adaptation, disaster risk reduction, and
15 sustainable development. By identifying key trends, methodological gaps, and challenges, the findings
16 of this review offer valuable insights for researchers, practitioners, and policymakers.
17
18
19

20 597 **Acknowledgements**
21
22

23 598 This study was funded by the Leverhulme Trust through an Early Career Fellowship awarded to MSGA
24 599 [grant reference ECF-2023-074]. ASK acknowledges support from the IUCN Global EbA Fund through
25 600 the project 'Upscaling Mangrove Restoration for Coastal Hazard Reduction in a Deltaic Environment:
26 601 Prioritizing Restoration Efforts for Nature-based Solutions in the Volta Delta'. CJW acknowledges
27 602 funding from the European Union's Horizon Europe programme under the project 'Multi-hazard and
28 603 risk informed system for enhanced local and regional disaster risk management (MEDiate)' project
29 604 [grant agreement No. 101074075].
30
31
32
33

34 605 **References**
35
36

37 606 Adnan, M., The legacy of polders: Diagnosing complex flooding processes and adaptation options in
38 607 the coastal region of Bangladesh. School of Geography and the Environment, Vol. Doctor of
39 608 Philosophy (DPhil). University of Oxford, Oxford, United Kingdom, 2020.
40 609 Adnan, M. S. G., et al., 2020. The potential of tidal river management for flood alleviation in south
41 610 western Bangladesh. *Science of the Total Environment*. 731, 138747.
42 611 Al-Attabi, Z., et al., 2023. The impacts of tidal wetland loss and coastal development on storm surge
43 612 damages to people and property: A Hurricane Ike case-study. *Scientific Reports*. 13, 4620.
44 613 Anderson, C. C., et al., 2022. Green, hybrid, or grey disaster risk reduction measures: what shapes
45 614 public preferences for nature-based solutions? *Journal of Environmental Management*. 310,
46 615 114727.
47 616 Arrar, H. F., et al., 2024. Coupling of different nature base solutions for pedestrian thermal comfort in
48 617 a Mediterranean climate. *Building and Environment*. 256, 111480.
49 618 Atmaja, T., et al., 2024. Advancing Coastal Flood Risk Prediction Utilizing a GeoAI Approach by
50 619 Considering Mangroves as an Eco-DRR Strategy. *Hydrology*. 11, 198.
51 620 Augusto, B., et al., 2020. Short and medium-to long-term impacts of nature-based solutions on urban
52 621 heat. *Sustainable Cities and Society*. 57, 102122.
53 622 Azeez, A., et al., 2022. Multi-decadal changes of mangrove forest and its response to the tidal dynamics
54 623 of thane creek, Mumbai. *Journal of Sea Research*. 180, 102162.
55 624 Bakhshianlamouki, E., et al., 2023. A participatory modelling approach to cognitive mapping of the
56 625 socio-environmental system of sandy anthropogenic shores in the Netherlands. *Ocean &
57 626 Coastal Management*. 243, 106739.
58 627 Banerjee, S., et al., 2023. Securing the sustainable future of tropical deltas through mangrove
59 628 restoration: Lessons from the Indian Sundarban. *One Earth*. 6, 190-194.
60

1
2
3 629 Barbier, E. B., et al., 2013. The value of wetlands in protecting southeast Louisiana from hurricane
4 630 storm surges. *PloS one*. 8, e58715.
5 631 Barbour, E. J., et al., 2022. The unequal distribution of water risks and adaptation benefits in coastal
6 632 Bangladesh. *Nature Sustainability*. 5, 294-302.
7 633 Beck, M. W., et al., 2018. The global flood protection savings provided by coral reefs. *Nature
8 634 communications*. 9, 2186.
9 635 Bennett, W. G., Karunarathna, H., 2020. Coastal flood alleviation through management interventions
10 636 under changing climate conditions. *International journal of disaster resilience in the built
11 637 environment*. 11, 187-203.
12 638 Borenstein, M., et al., 2010. A basic introduction to fixed-effect and random-effects models for meta-
13 639 analysis. *Research synthesis methods*. 1, 97-111.
14 640 Bridges, T., et al., 2024. Innovating through nature-positive engineering: How can we move forward?
15 641 *The International Journal of Marine and Coastal Law*. 1, 1-10.
16 642 Castagno, K. A., et al., 2022. How much marsh restoration is enough to deliver wave attenuation coastal
17 643 protection benefits? *Frontiers in Marine Science*. 8, 756670.
18 644 Castellar, J. A., et al., 2021. Nature-based solutions in the urban context: Terminology, classification
19 645 and scoring for urban challenges and ecosystem services. *Science of the Total Environment*.
20 646 779, 146237.
21 647 CEE, Guidelines and Standards for Evidence synthesis in Environmental Management. Version 5.1 In:
22 648 A. S. Pullin, et al., Eds.). *Collaboration for Environmental Evidence (CEE)*, 2022.
23 649 Chausson, A., et al., 2020. Mapping the effectiveness of nature-based solutions for climate change
24 650 adaptation. *Global change biology*. 26, 6134-6155.
25 651 Chen, W., et al., 2024. What-if nature-based storm buffers on mitigating coastal erosion. *Science of The
26 652 Total Environment*. 928, 172247.
27 653 Cohen-Shacham, E., et al., 2016. Nature-based solutions to address global societal challenges. IUCN
28 654 International Union for Conservation of Nature.
29 655 Cook, R. D., Weisberg, S., 1982. Criticism and influence analysis in regression. *Sociological
30 656 methodology*. 13, 313-361.
31 657 Costanza, R., et al., 2008. The value of coastal wetlands for hurricane protection. *Ambio*. 241-248.
32 658 Dang, N. A., et al., 2021. Ecosystem service modelling to support nature-based flood water management
33 659 in the Vietnamese Mekong River Delta. *Sustainability*. 13, 13549.
34 660 Das, S., Vincent, J. R., 2009. Mangroves protected villages and reduced death toll during Indian super
35 661 cyclone. *Proceedings of the National Academy of Sciences*. 106, 7357-7360.
36 662 De Dominicis, M., et al., 2023. Mangrove forests can be an effective coastal defence in the Pearl River
37 663 Delta, China. *Communications Earth & Environment*. 4, 13.
38 664 de Lemos, G. L., et al., 2024. Nature-based Solutions experiences: a Systematic Literature Review for
39 665 public policies. *Nature-Based Solutions*. 100121.
40 666 Debele, S. E., et al., 2019. Nature-based solutions for hydro-meteorological hazards: Revised concepts,
41 667 classification schemes and databases. *Environmental Research*. 179, 108799.
42 668 Debele, S. E., et al., 2023. Nature-based solutions can help reduce the impact of natural hazards: A
43 669 global analysis of NBS case studies. *Science of the Total Environment*. 902, 165824.
44 670 Del Valle, A., et al., 2020. Mangroves protect coastal economic activity from hurricanes. *Proceedings
45 671 of the National Academy of Sciences*. 117, 265-270.
46 672 Di Baldassarre, G., et al., 2017. Drought and flood in the Anthropocene: feedback mechanisms in
47 673 reservoir operation. *Earth System Dynamics*. 8, 225-233.
48 674 Di Baldassarre, G., et al., 2013. Socio-hydrology: conceptualising human-flood interactions. *Hydrology
49 675 and Earth System Sciences*. 17, 3295-3303.
50 676 Du, S., et al., 2020. Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai. *Global
51 677 Environmental Change*. 61, 102037.
52 678 EC, Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing
53 679 cities: Final report of the horizon 2020 expert group on 'nature-based solutions and re-naturing
54 680 cities'. European Commission (EC): Directorate-General for Research and Innovation, 2015.
55 681 EU, Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on
56 682 nature restoration and amending Regulation (EU) 2022/869. In: E. U. (EU), (Ed.), Document
57 683 32024R1991, 2024.

1
2
3 684 Fairchild, T. P., et al., 2021. Coastal wetlands mitigate storm flooding and associated costs in estuaries.
4 685 Environmental Research Letters. 16, 074034.
5 686 Ferrario, F., et al., 2014. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.
6 687 Nature communications. 5, 1-9.
7 688 Ferrario, F., et al., 2024. Evaluating Nature-based Solutions as urban resilience and climate adaptation
8 689 tools: A meta-analysis of their benefits on heatwaves and floods. Science of the Total
9 690 Environment. 175179.
10 691 French, J., 2008. Hydrodynamic modelling of estuarine flood defence realignment as an adaptive
11 692 management response to sea-level rise. Journal of Coastal Research. 1-12.
12 693 Gain, A. K., et al., 2022. Overcoming challenges for implementing nature-based solutions in deltaic
13 694 environments: insights from the Ganges-Brahmaputra delta in Bangladesh. Environmental
14 695 Research Letters. 17, 064052.
15 696 Gergel, S. E., et al., 2002. Consequences of human-altered floods: levees, floods, and floodplain forests
16 697 along the Wisconsin River. Ecological applications. 12, 1755-1770.
17 698 Ghosh, A., et al., 2019. Risk of extreme events in delta environment: A case study of the Mahanadi
18 699 delta. Science of the Total Environment. 664, 713-723.
19 700 Goodbred Jr, S. L., Saito, Y., Tide-dominated deltas. Principles of tidal sedimentology. Springer, 2011,
20 701 pp. 129-149.
21 702 Guerreiro, S. B., et al., 2018. Future heat-waves, droughts and floods in 571 European cities.
22 703 Environmental Research Letters. 13, 034009.
23 704 Guha-Sapir, D., et al., EM-DAT: The CRED/OFDA International Disaster Database – www.emdat.be.
24 705 In: UCLouvain, (Ed.), Brussels, Belgium, 2023.
25 706 Hall, J., Solomatine, D., 2008. A framework for uncertainty analysis in flood risk management
26 707 decisions. International Journal of River Basin Management. 6, 85-98.
27 708 Hupp, C. R., et al., 2009. Floodplain geomorphic processes and environmental impacts of human
28 709 alteration along coastal plain rivers, USA. Wetlands. 29, 413-429.
29 710 Hynes, S., et al., 2022. Estimating the costs and benefits of protecting a coastal amenity from climate
30 711 change-related hazards: Nature based solutions via oyster reef restoration versus grey
31 712 infrastructure. Ecological Economics. 194, 107349.
32 713 IPCC, Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC Sixth Assessment Report,
33 714 2022.
34 715 Jordan, P., Fröhle, P., 2022. Bridging the gap between coastal engineering and nature conservation? A
35 716 review of coastal ecosystems as nature-based solutions for coastal protection. Journal of Coastal
36 717 Conservation. 26, 4.
37 718 Kabisch, N., et al., 2016. Nature-based solutions to climate change mitigation and adaptation in urban
38 719 areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action.
39 720 Ecology and society. 21.
40 721 Karamouz, M., Heydari, Z., 2020. Conceptual design framework for coastal flood best management
41 722 practices. Journal of Water Resources Planning and Management. 146, 04020041.
42 723 Karamouz, M., et al., 2022. Flood modeling in coastal cities and flow through vegetated BMPs:
43 724 Conceptual design. Journal of Hydrologic Engineering. 27, 04022022.
44 725 Karanja, J. M., Saito, O., 2018. Cost–benefit analysis of mangrove ecosystems in flood risk reduction:
45 726 a case study of the Tana Delta, Kenya. Sustainability Science. 13, 503-516.
46 727 Kumar, P., et al., 2020. Towards an operationalisation of nature-based solutions for natural hazards.
47 728 Science of the Total Environment. 731, 138855.
48 729 Kumar, P., et al., 2021. Nature-based solutions efficiency evaluation against natural hazards: Modelling
49 730 methods, advantages and limitations. Science of the Total Environment. 784, 147058.
50 731 Leal Filho, W., et al., 2024. An assessment of priorities in handling climate change impacts on
51 732 infrastructures. Scientific Reports. 14, 14147.
52 733 Lee, R., et al., 2024. Reclassifying historical disasters: From single to multi-hazards. Science of the
53 734 Total Environment. 912, 169120.
54 735 Liberati, A., et al., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses
55 736 of studies that evaluate health care interventions: explanation and elaboration. Annals of
56 737 internal medicine. 151, W-65-W-94.
57
58
59
60

1
2
3 738 Lin, C., Zhang, S., 2024. Impact of Green Roofs and Walls on the Thermal Environment of Pedestrian
4 739 Heights in Urban Villages. *Buildings*. 14, 4063.
5 740 Liu, X., et al., 2019. Is China's coastal engineered defences valuable for storm protection? *Science of
6 741 the Total Environment*. 657, 103-107.
7 742 Logan, T., et al., 2018. Hard-adaptive measures can increase vulnerability to storm surge and tsunami
8 743 hazards over time. *Nature Sustainability*. 1, 526-530.
9 744 LRF, Nature-positive Engineering. Lloyd's Register Foundation (LRF), London, United Kingdom,
10 745 2025.
11 746 Lu, P., et al., 2023. Scenario-based performance assessment of green-grey-blue infrastructure for flood-
12 747 resilient spatial solution: A case study of Pazhou, Guangzhou, greater Bay area. *Landscape and
13 748 Urban Planning*. 238, 104804.
14 749 Lüthi, S., et al., 2023. Rapid increase in the risk of heat-related mortality. *Nature communications*. 14,
15 750 4894.
16 751 MacKinnon, K., et al., Biodiversity, climate change, and adaptation: nature-based solutions from the
17 752 World Bank portfolio. The World Bank, 2008.
18 753 Mamo, L. T., et al., 2022. Beyond coastal protection: A robust approach to enhance environmental and
19 754 social outcomes of coastal adaptation. *Ocean & Coastal Management*. 217, 106007.
20 755 Mancheño, G. A., et al., 2024. Integrating mangrove growth and failure in coastal flood protection
21 756 designs. *Scientific Reports*. 14, 7951.
22 757 Marsooli, R., et al., 2016. Three-dimensional hydrodynamic modeling of coastal flood mitigation by
23 758 wetlands. *Coastal Engineering*. 111, 83-94.
24 759 Martin, E. G., et al., 2020. An operationalized classification of Nature Based Solutions for water-related
25 760 hazards: From theory to practice. *Ecological Economics*. 167, 106460.
26 761 Mastrandrea, M. D., et al., 2010. Guidance note for lead authors of the IPCC fifth assessment report on
27 762 consistent treatment of uncertainties.
28 763 Mastrandrea, M. D., et al., 2011. The IPCC AR5 guidance note on consistent treatment of uncertainties:
29 764 a common approach across the working groups. *Climatic Change*. 108, 675-691.
30 765 Matthews, T., et al., 2025. Mortality impacts of the most extreme heat events. *Nature Reviews Earth &
31 766 Environment*. 1-18.
32 767 Menéndez, P., et al., 2020. The global flood protection benefits of mangroves. *Scientific reports*. 10,
33 768 4404.
34 769 Merz, B., et al., 2010. Fluvial flood risk management in a changing world. *Natural Hazards and Earth
35 770 System Sciences*. 10, 509-527.
36 771 Möller, I., et al., 2014. Wave attenuation over coastal salt marshes under storm surge conditions. *Nature
37 772 Geoscience*. 7, 727-731.
38 773 Montgomery, J., et al., 2022. The role of mangroves in coastal flood protection: the importance of
39 774 channelization. *Continental shelf research*. 243, 104762.
40 775 Morrison, R. R., et al., 2018. Spatial relationships of levees and wetland systems within floodplains of
41 776 the Wabash Basin, USA. *JAWRA Journal of the American Water Resources Association*. 54,
42 777 934-948.
43 778 Mudashiru, R. B., et al., 2021. Flood hazard mapping methods: A review. *Journal of hydrology*. 603,
44 779 126846.
45 780 Narayan, S., et al., 2016. The effectiveness, costs and coastal protection benefits of natural and nature-
46 781 based defences. *PloS one*. 11, e0154735.
47 782 Nardella, L., et al., 2024. Modeling regulating ecosystem services along the urban-rural gradient: A
48 783 comprehensive analysis in seven Italian coastal cities. *Ecological Indicators*. 165, 112161.
49 784 Nehren, U., et al., 2023. Towards a typology of nature-based solutions for disaster risk reduction.
50 785 *Nature-Based Solutions*. 3, 100057.
51 786 NPI, The Definition of Nature Positive. Nature Positive Initiative (NPI), 2023.
52 787 Ou, X., et al., 2022. Integrated multi-hazard risk to social-ecological systems with green infrastructure
53 788 prioritization: A case study of the Yangtze River Delta, China. *Ecological Indicators*. 136,
54 789 108639.
55 790 Paszkowski, A., et al., 2021. Geomorphic change in the Ganges-Brahmaputra-Meghna delta. *Nature
56 791 Reviews Earth & Environment*. 2, 763-780.

1
2
3 792 Pontee, N. I., Impact of managed realignment design on estuarine water levels. Proceedings of the
4 793 Institution of Civil Engineers-Maritime Engineering, Vol. 168. Thomas Telford Ltd, 2015, pp.
5 794 48-61.
6 795 Prado, H. A., et al., 2024. Designing nature to be a solution for climate change in cities: A meta-analysis.
7 796 *Science of The Total Environment*. 954, 176735.
8 797 Qin, P., et al., 2024a. How Do Structural Safety, Ecological Functions and Social Development
9 798 Influence Construction of Ecological Seawalls for Coastal Protection and Sustainability? *Water*
10 799 *Resources Management*. 38, 1807-1824.
11 800 Qin, X., et al., 2024b. SEA for better climate adaptation in the face of the flood risk: Multi-scenario,
12 801 strategic forecasting, nature-based solutions. *Environmental Impact Assessment Review*. 106,
13 802 107495.
14 803 Quataert, E., et al., 2015. The influence of coral reefs and climate change on wave-driven flooding of
15 804 tropical coastlines. *Geophysical Research Letters*. 42, 6407-6415.
16 805 Rahman, M. M., et al., 2017. Experimental and numerical modeling of tsunami mitigation by canals.
17 806 *Journal of Waterway, Port, Coastal, and Ocean Engineering*. 143, 04016012.
18 807 Reguero, B. G., et al., 2018. Comparing the cost effectiveness of nature-based and coastal adaptation:
19 808 A case study from the Gulf Coast of the United States. *PloS one*. 13, e0192132.
20 809 Renaud, F. G., et al., 2016. Ecosystem-based disaster risk reduction and adaptation in practice. Springer.
21 810 Seujip, M. S., et al., 2024. Impact of mangrove on tidal propagation in a tropical coastal lagoon.
22 811 *Environmental Earth Sciences*. 83, 52.
23 812 Shah, M. A. R., et al., 2023. Quantifying the effects of nature-based solutions in reducing risks from
24 813 hydrometeorological hazards: Examples from Europe. *International journal of disaster risk reduction*. 93, 103771.
25 814 Sheng, P. Y., et al., 2022. Coastal marshes provide valuable protection for coastal communities from
26 815 storm-induced wave, flood, and structural loss in a changing climate. *Scientific Reports*. 12,
27 816 3051.
28 817 Sohn, W., et al., 2020. How effective are drainage systems in mitigating flood losses? *Cities*. 107,
29 818 102917.
30 819 Sowińska-Świerkosz, B., García, J., 2022. What are Nature-based solutions (NBS)? Setting core ideas
31 820 for concept clarification. *Nature-Based Solutions*. 2, 100009.
32 821 Spyrou, C., et al., 2024. Green Roofs as a Nature-Based Solution to Mitigate Urban Heating During a
33 822 Heatwave Event in the City of Athens, Greece. *Sustainability*. 16, 9729.
34 823 Stark, J., et al., 2016. Coastal flood protection by a combined nature-based and engineering approach:
35 824 Modeling the effects of marsh geometry and surrounding dikes. *Estuarine, Coastal and Shelf*
36 825 *Science*. 175, 34-45.
37 826 Stark, J., et al., 2015. Observations of tidal and storm surge attenuation in a large tidal marsh. *Limnology*
38 827 and *Oceanography*. 60, 1371-1381.
39 828 Steinfeld, C., Kingsford, R. T., 2013. Disconnecting the floodplain: earthworks and their ecological
40 829 effect on a dryland floodplain in the Murray–Darling Basin, Australia. *River Research and*
41 830 *Applications*. 29, 206-218.
42 831 Sudmeier-Rieux, K., et al., 2021. Scientific evidence for ecosystem-based disaster risk reduction.
43 832 *Nature Sustainability*. 4, 803-810.
44 833 Syvitski, J. P., 2008. Deltas at risk. *Sustainability science*. 3, 23-32.
45 834 Toth, L. T., et al., 2023. The potential for coral reef restoration to mitigate coastal flooding as sea levels
46 835 rise. *Nature Communications*. 14, 2313.
47 836 Türker, U., et al., 2019. Impact of nearshore vegetation on coastal dune erosion: assessment through
48 837 laboratory experiments. *Environmental Earth Sciences*. 78, 1-14.
49 838 UN, United Nations Decade on Ecosystem Restoration 2021-2030. United Nations (UN) Environment
50 839 Programme
51 840 Food and Agriculture Organization of the United Nations (FAO), 2021.
52 841 UNDRR, Sendai Framework Terminology on Disaster Risk Reduction. United Nations Office for
53 842 Disaster Risk Reduction (UNDRR). 2017.
54 843 UNDRR, Words into Action: Nature-based Solutions for Disaster Risk Reduction. United Nations
55 844 Office for Disaster Risk Reduction (UNDRR), Geneva, Switzerland, 2021.
56 845

1
2
3 846 Unguendoli, S., et al., 2023. A modeling application of integrated nature based solutions (NBS) for
4 coastal erosion and flooding mitigation in the Emilia-Romagna coastline (Northeast Italy).
5 Science of The Total Environment. 867, 161357.
6 847 Van Coppenolle, R., et al., 2018. Contribution of mangroves and salt marshes to nature-based mitigation
7 of coastal flood risks in major deltas of the world. Estuaries and coasts. 41, 1699-1711.
8 849 Van Dang, H., et al., 2023. Physical model comparison of gray and green mitigation alternatives for
9 flooding and wave force reduction in an idealized urban coastal environment. Coastal
10 Engineering. 184, 104339.
11 851 Van Hespen, R., et al., 2023. Mangrove forests as a nature-based solution for coastal flood protection:
12 Biophysical and ecological considerations. Water Science and Engineering. 16, 1-13.
13 854 van Veelen, T. J., et al., 2021. Modelling wave attenuation by quasi-flexible coastal vegetation. Coastal
14 Engineering. 164, 103820.
15 856 van Zelst, V. T., et al., 2021. Cutting the costs of coastal protection by integrating vegetation in flood
16 defences. Nature communications. 12, 6533.
17 858 Viechtbauer, W., 2010. Conducting meta-analyses in R with the metafor package. Journal of statistical
18 software. 36, 1-48.
19 860 Vojinovic, Z., et al., 2021. Effectiveness of small-and large-scale Nature-Based Solutions for flood
20 mitigation: The case of Ayutthaya, Thailand. Science of The Total Environment. 789, 147725.
21 862 Vörösmarty, C. J., et al., 2009. Battling to save the world's river deltas. Bulletin of the Atomic Scientists.
22 864 65, 31-43.
23 865 Wansbury, C., Briefing: Time for transformation—the opportunity for civil engineering to contribute to
24 a nature-positive future. Proceedings of the Institution of Civil Engineers-Civil Engineering,
25 Vol. 177. Emerald Publishing Limited, 2024, pp. 150-153.
26 866 Warner, J. F., et al., 2018. Cutting dikes, cutting ties? Reintroducing flood dynamics in coastal polders
27 in Bangladesh and the netherlands. International journal of disaster risk reduction. 32, 106-112.
28 869 White, G. F., Human adjustment to floods: a geographical approach to the flood problem in the United
29 States. The University of Chicago, 1942.
30 871 Xu, D.-s., et al., 2023. Numerical modelling of the physical response of coral reef Sandy island to sea
31 level rise by considering seasonal patterns. Ocean & Coastal Management. 245, 106860.
32 873 Zhang, K., et al., 2012. The role of mangroves in attenuating storm surges. Estuarine, Coastal and Shelf
33 Science. 102, 11-23.
34 875 Zhao, H., Chen, Q., 2016. Modeling attenuation of storm surge over deformable vegetation: Parametric
35 study. Journal of Engineering Mechanics. 142, 06016006.
36 877 Zuniga, M. C. S., et al., 2020. Increasing infrastructure resilience with nature-based solutions (NbS).
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60