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31 19  Abstract

;; 20  Coastal and deltaic regions are highly vulnerable to hydrometeorological hazards such as storms,
;g 21 flooding, and extreme temperatures—risks, that are. intensifying under climate change. While hard
36 22  engineering structures (e.g., levees, seawalls) remain widely used, they can be costly, ecologically
;73 23  disruptive, and may exacerbate hazard complexity. Nature-based solutions (NbS), including mangroves,
39 24 salt marshes, and other coastal ecosystems, offer sustainable and often cost-effective alternatives or
2(1) 25  complementarities that can mitigate, hazards while delivering ecological and societal co-benefits.
fé 26  However, their effectiveness is difficult to assess due to diverse methodological approaches, site-
44 27  specific coastal dynamics, and inconSistent reporting indicators. This study synthesises the scientific
22 28  evidence base on theeffectiveness of NbS in reducing hydrometeorological hazards in coastal and
47 29  deltaic environments and evaluates the robustness of methods used to assess their performance. A
jg 30  systematic review and meta-analysis of 383 peer-reviewed English-language articles published between
g? 31 2008 and 2024 was conducted:following Preferred Reporting Items for Systematic Reviews and Meta-

52 32  Analyses(PRISMA)protocols and the PICO framework. Using an evaluation approach adapted from

33 the Intergovernmental Panel on Climate Change, each study was assessed for evidence robustness, level

gg 34  of agreement, ‘and overall confidence. The meta-analysis provides quantitative estimates of NbS
g? 35 effectiveness and highlights substantial uncertainties arising from ecological variability, methodological
58 36 inconsistencies, and heterogeneity in hazard indicators (e.g., wave height, flow velocity, water level,
Zg 37 temperature) and measurement units. Findings show that NbS effectiveness is highly context dependent



oNOYTULT D WN =

38
39
40
41
42

43
44

45

46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72

AUTHOR SUBMITTED MANUSCRIPT - ERL-123616

and influenced by site characteristics, ecological dimensions, system configuration, and hazard
intensity. The study emphasises the need for standardised, hazard-specific indicators and greater use of
integrated methodological approaches to strengthen the reliability and comparability of future
assessments. It also identifies opportunities for advancing hybrid or nature-positive engineering

solutions that combine NbS with conventional infrastructure to enhance coastal resilience.

Keywords: Nature-based solutions, performance evaluation, systematic review, level,of confidence,

nature-positive engineering.

1. Introduction

Nature-positive engineering is an emerging approach that integrates .ecological principles into
infrastructure design to enhance biodiversity, strengthen ecosystem services,\ and build climate
resilience, while still meeting the functional requirements of traditional engineering (LRF, 2025;
Wansbury, 2024). Recent policy developments and regulatory frameworks reflect a paradigm shift
toward nature-based solutions (NbS), encouraging their adoptionito achieve nature-positive outcomes
(Bridges et al., 2024). These outcomes align with the global goal to “halt and reverse nature loss by
2030 on a 2020 baseline, and achieve full recovery by 2050°(NPL, 2023). Advancing a nature-positive
future offers a wide range of benefits, including the restoration Of lost biodiversity and enhanced

capacity for climate change mitigation and adaptation (Wansbury, 2024).

Coastal and deltaic regions are characterised by dynamicrinteractions among river discharge, fluvial
sediment input, and marine processes such as waves; tides, and coastal currents (Goodbred Jr and Saito,
2011). These regions support fertile soils, socio-ecologically valuable habitats, and economic activities
including agriculture, trade, fisheriesy energy production, and manufacturing. Approximately 500
million people—7% of the global/population—reside on just 1% of the Earth’s land area associated
with deltas (Paszkowski et al.,.2021). Despite their significance, deltaic and coastal areas are highly
vulnerable to hydrometeorological hazards, defined as events triggered by atmospheric, hydrological,
or oceanographic processes (UNDRR; 2017). Their vulnerability arises from low-lying topography,
shallow riverbeds, subsidence,anddirect exposure to oceanic disturbances (Ghosh et al., 2019; Syvitski,
2008; Vorosmarty, et al., 2009). Between 1900 and 2023, hydrometeorological hazards—including
storms, floods, droughts, and extreme temperatures—accounted for roughly 83% of global hazards,
73% of economic lossesyand 76% of fatalities (Guha-Sapir et al., 2023; Lee et al., 2024). Anthropogenic
climate change has,intensified both the frequency and magnitude of these hazards, a trend projected to
continue (Debele‘et al., 2019; Guerreiro et al., 2018). For example, Guerreiro et al. (2018) identified
increasing heatwave days across 571 European cities under the RCP8.5 scenario, alongside expectations

of worsening droughts in southern Europe and heightened river flooding in northern Europe.

Historically, hard engineering structures—such as levees, dykes, and seawalls—have been the dominant

means of protecting coastal populations and assets (Adnan, 2020), with most global coastlines now
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incorporating some form of engineered intervention (Mamo et al., 2022). However, the limitations of
such measures are well documented (Debele et al., 2019). While these structures reduce certain hazard
probabilities (e.g., flood frequency) (Merz et al., 2010), their limitations are widely acknowledgedsHard
infrastructure can increase residual risk, disrupt hydrological and geomorphological processes, require
substantial capital investment, and contribute to long-term vulnerability. For instance, Di Baldassarre
et al. (2017) demonstrated that societal responses to hydrological extremes can alter’both the magnitude
and spatial distribution of flood events. These interventions often disconnect floodplains from sediment
flows, altering geomorphology and reducing ecological functionality (Gergel et al.; 2002; Hupp et al.,
2009; Morrison et al., 2018; Steinfeld and Kingsford, 2013). The “levee eftéct,” first articulated by
White (1942), illustrates how engineered measures may inadvertently increase societal exposure by
fostering a false sense of security, ultimately creating infrastructure lock-ins andeycles of escalating

investment (Di Baldassarre et al., 2013; Logan et al., 2018).

In recent years, NbS—such as mangroves, saltmarshes, coral reefsyand sand dunes—have emerged as
cost-effective, sustainable, and adaptive alternatives or compléments to traditional engineering. These
nature-based measures can reduce hazard impacts by attenuating waves, stabilising shorelines,
promoting sedimentation, or moderating climatic extremes (Cohen-Ehacham etal., 2016; Debele et al.,
2023; Gain et al., 2022; Kumar et al., 2020; Ou et al., 2022;Shah et al., 2023; Sowinska-Swierkosz and
Garcia, 2022). The concept of NbS was first introduced by the'World Bank in 2008 (MacKinnon et al.,
2008) and has evolved across multiple institutions: The International Union for Conservation of Nature
(IUCN) defines NbS as “...actions to protectysustainably manage, and restore natural or modified
ecosystems, that address societal challenges effectively and adaptively, simultaneously providing
human well-being and biodiversity benefits ” (Cohen-Shacham et al., 2016). The European Commission
(EC) similarly characterises NbS as “...solutions that are inspired and supported by nature, which are
cost-effective, simultaneously prone environmental, social and economic benefits and help build
resilience” (EC, 2015). NbS are increasingly central to global policy frameworks, including the Sendai
Framework for Disaster Risk Reduction, the United Nations Sustainable Development Goals (SDGs),
the Paris Climate Agreementy Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment
Report, the European Union, Nature Restoration Regulation, and the UN Decade on Ecosystem
Restoration (EU, 2024; IPCC, 2022; Renaud et al., 2016; UN, 2021), and are now viewed as essential

components of climate-resilient infrastructure portfolios (Zuniga et al., 2020).

Howevery conceptual” and operational ambiguities limit the consistency and scalability of NbS
implementation. There remains no universal typology for NbS, and existing classification systems vary
widely across disciplinary and institutional contexts (Nehren et al., 2023; Sowinska-Swierkosz and
Garcia, 2022). For example, the IUCN outlines eight eligibility criteria for identifying NbS
interventions (Cohen-Shacham et al., 2016), whereas the EC applies a set of five screening questions to

determine whether an intervention qualifies as NbS (EC, 2015). The United Nations Office for Disaster

3
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Risk Reduction (UNDRR) organises NbS into four categories related to climate adaptation, climate
mitigation, disaster risk reduction, and environmental management (UNDRR, 2021). Academic reviews
also propose varied classification frameworks. Debele et al. (2019) reclassified 24 NbS types into.green,
blue, and hybrid categories, while Castellar et al. (2021) distinguished between NbS units (stand-alone
green technologies) and NbS interventions (actions applied to ecosystems). Martin et{ al. (2020)
introduced a three-tiered typology based on risk, spatial scale, co-benefits, and potential disservices.
Nehren et al. (2023) further advanced NbS classification by incorporating five attributes=—approach,

landscape unit, hazard type, ecosystem functions, and specific measures.

The methods used to evaluate NbS effectiveness are similarly diverse. Case studies employ numerical
modelling (Al-Attabi et al., 2023; Chen et al., 2024; De Dominicis et al.,.2023; Fairchild et al., 2021,
Toth et al., 2023; Unguendoli et al., 2023; van Zelst et al., 2021), laboratory experi\ments (Moller et al.,
2014; Tirker et al., 2019; Van Dang et al., 2023; van Veelen et al., 2021); geospatial analytics (Adnan
et al., 2020; Atmaja et al., 2024; Van Coppenolle et al., 2018), cost-benefit analyses (Hynes et al., 2022;
Karanja and Saito, 2018; Narayan et al., 2016; Reguero et al., 2018),multi=criteria decision-making (Lu
et al., 2023; Qin et al., 2024a), statistical analyses (Anderson et al., 2022; Costanza et al., 2008; Das
and Vincent, 2009), and qualitative approaches (Bakhshianlamouki e.t al.,2023; Van Hespen et al., 2023;
Warner et al., 2018). Kumar et al. (2021) categorised these methods into empirical, conceptual, and
numerical approaches but highlighted the lack ofstandardisation across studies evaluating NbS for

hazards such as flooding, droughts, heatwaves, landslides;and storm surges.

Despite the rapid growth of NbS research, the evidence base remains fragmented. Most case studies
examine individual NbS interventions aimed at mitigating a single hazard—for example, the use of
mangroves or coral reefs for wave attenuation (Manchefio et al., 2024; Quataert et al., 2015), or urban
green—blue infrastructure for reducing heat stress (Augusto et al., 2020; Nardella et al., 2024). These
studies employ widely varying meétrics.and performance indicators (e.g., wave height reduction,
temperature decrease, floodwatetr retention), making cross-comparison challenging (Kumar et al.,
2021). Existing review articles (Chausson et al., 2020; Debele et al., 2019; Debele et al., 2023; Kumar
et al., 2021; Sudmeier<Rieux et al; 2021) provide systematic qualitative syntheses of NbS performance
but rarely offer quantitative assessments of effectiveness. The few reviews that do quantify NbS impacts
tend to focus on specificthazards or narrowly defined outcomes. For example, Narayan et al. (2016)
performed a cost-benefit assessment of coastal habitats in reducing wave heights, while Ferrario et al.
(2024) and Prado etal: (2024) measured NbS effects on flood-related indicators (e.g., runoff, peak flow)
and extreme temperature metrics (e.g., urban heat island intensity, surface temperature, thermal
comfort). Although these studies provide valuable insights, they capture only a segment of the broad
specttum of hydrometeorological hazard indicators needed to comprehensively assess NbS

effectiveness.
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As a result, despite their recognised benefits, NbS are not yet widely adopted as primary measures for
managing hydrometeorological hazards (Kumar et al., 2020; Vojinovic et al., 2021). Several barriers
include limited science-based understanding of NbS effectiveness (Sudmeier-Rieux et al., 2021), lack
of standardised hazard-specific classifications (Martin et al., 2020), inconsistent evaluation
methodologies (Kumar et al., 2021), and the absence of robust and comparable performance indicators,
metrics, and validation frameworks (Kabisch et al., 2016; Kumar et al., 2021). Moreover, the geographic
variability of NbS effectiveness—particularly across different climatic and ,geomorphological
contexts—remains poorly understood (Narayan et al., 2016). Although the existing literature
demonstrates considerable potential for NbS to mitigate hydrometeorological hazards,»few studies
explicitly evaluate these solutions within a nature-positive engineering framework or directly compare
them with conventional hard structures (Barbour et al., 2022; Du et al., 2020;Stark et al., 2016).
Notably, there remains a dearth of studies assessing NbS as complémentary or/substitute measures
capable of achieving equivalent or superior hazard mitigation outcomes. relative to traditional
engineering. This gap constrains the capacity of planners and engineets. to effectively select, integrate,
and sequence NbS and hard measures within hybrid or transitional strategies essential for long-term

climate resilience (Jordan and Frohle, 2022).

L 4
To address these critical gaps in the scientific evidence on/NbS effectiveness for hydrometeorological

hazard mitigation in coastal and deltaic regions, this study poses two primary research questions: (1)
What is the current state of evidence on the effectiveness of NbS in mitigating hydrometeorological
hazards in coastal and deltaic regions? (2) How:irebustiis the existing evidence base, and to what extent
does the evidence agree on the effectiveness of NbS in mitigating hydrometeorological hazards? To
answer these questions, this study conducts a state-of-the-art systematic review and meta-analysis of
peer-reviewed, English-language articles published between 2008 and 2024. The review systematically
documents and critically evaluates onrted effectiveness across a wide range of NbS measures and
indicators, generating new evidence to inform nature-positive engineering, climate resilience planning,

and evidence-based policy formulation.
2. Methodology

2.1.  Systematic literature review

2.1.1. Review framework and search protocol

This study conducted a systematic literature review following the Preferred Reporting Items for
Systematic ‘Reviews and Meta-Analyses (PRISMA) protocol (Liberati et al., 2009) and the PICO
framework {(Population(s), Intervention(s), Comparator(s) and Outcome(s)) developed by the
Collaboration for Environmental Evidence (CEE, 2022). The objective was to identify and analyse

research articles related to NbS and their applications in mitigating various hydrometeorological
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hazards. The literature search was performed across four major scientific databases: Scopus, Web of
Science (WoS), GeoRef, and PubMed. Various keyword combinations were applied under four thematic
categories: hazards, NbS, methods, and location. The keywords were carefully selected to address two
primary research questions of this study. Table S1 (Supplementary Data A) provides different

combinations of the keywords used for the literature search.

NbS is a broad and multidisciplinary concept encompassing a wide range of strategies. Various
typologies exist for classifying NbS (Nehren et al., 2023). A total of 22 different(search terms were
considered. The terms selected in this study were based on different NbS measures found in UNDRR
(2021). These measures are linked to five ecosystem types. Selected NbS measures include mangroves,
salt marsh or other coastal wetlands, restoration of reefs, managed realignment, integrated coastal zone
management, sand management, forest conservation, river watershed managem;t, agrobiodiversity,
rainwater harvesting, urban green areas, urban wetlands, and sustainable, drainage systems. Specific
search terms related to these categories were also derived from existing literature (Castellar et al., 2021;
Debele et al., 2019; Gain et al., 2022; Martin et al., 2020; Nehren, et ali;'2023). The search strategy
targeted events associated with storms, floods, extremie  temperatures, droughts, and extreme
precipitation, but each category was operationalized through speciﬁ.c, well-defined search terms rather

than broad hazard labels. Table S1 (Supplementary Data'A) includes specific terms related to hazards.

The search also included terms related to differentimethodological approaches used to assess the
effectiveness of NbS. These included numerical models, empirical approaches, geospatial approaches,
statistical approaches, laboratory experiments, qualitative approaches, cost-benefit analysis, and
vulnerability or risk assessment (Kumar et al.; 2021; Mdller et al., 2014; Mudashiru et al., 2021;
Narayan et al., 2016).

All searches were restricted to studies conducted in coastal and deltaic environments, defined as areas
located within or directly inﬂuenc; by the land—sea interface, including coastal cities, peri-urban
coastal zones, estuaries, bays, lagoons; deltas, and low-lying coastal plains. The literature search was
conducted in Septembet 2025. Boolean operators “AND” and “OR” were utilised to refine the search
across different keyword combinations. The full search strings used for each of the three databases are

provided in Table S2 (Supplementary Data A).
2.1.2. Eligibility criteria

The selection of articles was primarily guided by the PICO framework (CEE, 2022), which has been
widely applied in recent systematic reviews to establish eligibility criteria (de Lemos et al., 2024;
Ferrario et al., 2024; Sudmeier-Rieux et al., 2021). Using this framework, the following inclusion

criteriaswere defined:

Page 6 of 30
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* Population: The study must address exposure to hydrometeorological hazards, including
impacts on populations, assets, infrastructure, or coastal areas.

* Intervention: The study must focus on NbS as interventions for mitigating
hydrometeorological hazards in coastal and deltaic regions.

= Comparator: The study must compare NbS interventions with either a baseline scenario (e.g,
“as-is” or do-nothing approaches) or other intervention types.

*  Qutcome: The study must assess the effectiveness of NbS in reducing hazard,impacts or

minimising risk exposure.

Beyond the PICO criteria, additional inclusion parameters were established. Onlyspeer-reviewed
articles, published in English between 1 January 2008 and 31 December 2024, were considered. This
time frame was chosen because the concept of NbS was first introduced. by the?’Vorld Bank in 2008
(MacKinnon et al., 2008). Review papers, conference proceedings, opinion pieces, perspectives, and
book chapters were excluded from the selection. A comprehensivedist of inclusion and exclusion criteria

is provided in Table 1.

Table 1. Inclusion and exclusion criteria used to select studies. The criteria were identified by

adopting and modifying the guidelines from the CEE (2022): v

Question Inclusion criteria Exclusion criteria

elements

Population = Studies addressing elements exposed> = Evidence related to NbS
to hydrometeorological'hazards, interventions that do not address
including populations; infrastructure, any hydrometeorological hazards.
assets, and coastal or deltaic.areas. » Evidence concerning

= Studies focusing,on hydrometeorological hazards

hydrometeorological.hazards such as without any connection to NbS
storms, floods, extreme temperatures, interventions.

droughts, and extreme precipitation. =  Studies discussing NbS in relation
> to animal, bird, plant species, or
marine habitats.

* Geological studies on hazards such
as earthquakes and landslides.

»  Studies on man-made hazards.

Intervention = [ Studies evaluating NbS interventions = Studies examining the impact of
aimed at reducing the impacts of hydrometeorological hazards on
hydremeteorological hazards. NbS interventions (e.g., the effects

of storms on mangroves).

» Studies that do not assess NbS
effectiveness in mitigating
hydrometeorological hazards.

Comparator = Studies comparing NbS interventions = None
with baseline scenarios (“as is” or do-
nothing approaches) or alternative
intervention strategies.

Methodology = Studies employing NbS evaluation = Studies lacking NbS evaluation
methods. methods.
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Location = Studies conducted in coastal or Studies not related to coastal or
deltaic regions. deltaic regions.

Outcomes = Studies measuring the extent of NbS Studies that do not assess the
impacts on hydrometeorological impacts of NbS on
hazards. hydrometeorological hazards:

Study = Peer-reviewed articles published in Articles published before IfJanuary

English between 1 January 2008 and
31 December 2024.

2008 or after 31 December 2024.
Articles in languages other than

English.

= Review papers, conference
proceedings, opinion pieces,
perspectives, and book chapters.

2.1.3. Screening process
~

The screening process of the article was conducted following the PRISMA protocol. Figure S1
(Supplementary Data A) provides an overview of the article screening process; detailing the number of
articles reviewed at each stage. The initial search retrieved 4,012 articles from Scopus (n = 1,649), WoS
(n = 1,327), GeoRef (n = 961) and PubMed (n = 75). Aftergemoving 1,111 duplicate records, 2,901
articles proceeded to a two-stage screening process. In the first stage, the titles, abstracts, and keywords
of the articles were screened based on the predefined inclusion and gxclusion criteria (Table 1). At this
stage, 2,500 records were excluded for failing to meet the criteria. The remaining 401 articles and two
additional articles identified through snowballing (i.e:, references obtained during the initial screening)
advanced to full-text evaluation. Following a detailed full-text review, 20 more articles were excluded
for three major reasons: (1) review articles; and/ory(2) did not evaluate the impact of NbS, and/or (3)
unrelated to hydrometeorological ,hazards. These, aspects were not evident in the title, abstract, or
keywords, necessitating exclusion at this,stage. Using this approach, a total of 383 articles were selected

for evaluation and analysis.

2.2. Data extraction andh)ding

Bibliographic informationswas recorded for each of the retained studies, and data were extracted on the
various aspects as summarised.in Table 2. The extracted data facilitated both qualitative and quantitative
analyses, allowing for a comprehensive assessment of the effectiveness of NbS measures in mitigating
hydrometeorological hazards. After extracting the data, different variables were recoded to facilitate the
analysis. For instance, specific NbS terms found in the literature were grouped under 13 NbS measures.
Hazard-related terms were grouped under hydrological, meteorological, and hydrometeorological (if
both hydrological and meteorological hazards were considered) categories following the EM-DAT

classification.system (Table 2).

Page 8 of 30
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Table 2. Summary of extracted variables and associated coding strategy. Bibliographic information of

383 articles is provided in Supplementary Data B.

Variables Description Analysis used
Publication Year in which the article was published. Descriptive
year statistics
NbS Specific NbS interventions examined in the article. Multiple = Meta-analysis,
measures responses were recorded. Table S3 (Supplementary Data A) descriptive

provides further details on different NbS measures. statistics,
confidence level
analysis

Hazard Hydrometeorological hazards examined in the article, including Descriptive

type hydrological and meteorological hazards. Table. S4 statistics
(Supplementary Data A) provides further details 6nmeach of these
categories.

Role of NbS NbDS interventions were categorised into three roles: alternative, Descriptive
compliment, safeguard. Alternative refers to NbS gsed in place statistics
of traditional structural measures. Complement refers to NbS
deployed alongside structural measures to enhance overall
system effectiveness. Safeguard denotes:NbS implemented for
hazard protection without. explicit. reference to, or integration
with, structural measures (Zuniga et al., 2020).

Case study Classification of case studies into: (1) real-world studies, and (2) Descriptive

type hypothetical studies (e.g., laboratory experiments). statistics

Methods Methods used.inythe study. Multiple responses were recorded Descriptive
based on [the /method categories listed in Table Sl statistics,
(Supplementary Data’A). confidence level

analysis

Country Country or countries where the case study was conducted. Descriptive
Multiple_responses were recorded when applicable. For statistics
hypothetical studies, “No country” was recorded.

Effect Hazard-related indicators used to evaluate NbS effectiveness = Meta-analysis

indicators (e.g., wave height, flow velocity). Studies without measurable
hazard indicators (primarily qualitative studies) were recorded as
“No indicator.”

Effectsize =~ Magnitude of change (reduction or increase) in effect indicators ~ Meta-analysis

resulting from NbS interventions.
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Effect unit  Units used to express each effect indicator (e.g., percent Meta-analysis
reduction, metres, degree Celsius (°C)).

Validation Indicates whether a study validated its results. Recorded as Descriptive
Yes/No. statisties,

confidence level
analysis

Validation Validation metrics reported (e.g., root mean squared error, aMetazanalysis,

results coefficient of determination (R?)). confidence level

analysis

Agreement Degree of consistency in the article’s findings regarding., the Descriptive
effectiveness of NbS in mitigating hydrometeorological'hazards  statistics,
in coastal or deltaic regions. Articles were grouped into/ confidence level
agreement, inconclusive, and non-agreement, assigned scores,of analysis
1, 2, and 3, respectively.

Robustness  Robustness refers to the overall quality, reliability, and.strength Descriptive
of evidence presented in each study. Articles.were categorised as statistics,
low, medium, or robust based on multiple criteria,’ncluding the confidence level
clarity of mechanistic underStanding, strength of theoretical analysis
underpinning, availability and “quality, of data, suitability of
modelling approaches,sipresence “of validation, and expert
assessment. The detailed procedure for assigning robustness
levels is outlined4n:Section 2.3.1.

2.3.  Data analyses ~

2.3.1. Assessing level of confidence

To examine the scientific eévidence on the effectiveness of NbS in mitigating hydrometeorological
hazards and the assessmentimethods used, this study used an evaluation framework based on the
Intergovernmental Panel on Climate Change (IPCC) AR5 guidance note on the consistent treatment of
uncertainties (Mastrandrea et al., 2010; Mastrandrea et al., 2011). As explained by Sudmeier-Rieux et

al. (2021), the ‘evaluation framework comprised of three steps:

a) Robustness of evidence
A combination'of qualitative and quantitative approaches was applied to score robustness of evidence
in each article. First, a multi-metric scoring approach was followed. The data extraction stage extracted
various metrics used to validate the results, including root mean square error (RMSE), mean absolute

error (MAE), mean bias error (MBE), absolute Bias, reported R?/NSE/kappa statistic/skill, Brier Skill
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Score (BSS), Scatter Index (SI/SCI), and p-values. Two complementary scoring approaches were
applied: (i) a quantile-based approach, in which study-specific metric values were classified into low,
medium, or high robustness based on the 33" and 67" percentiles across all studies, and (ii) an absolute-
threshold approach for percentage-based metrics (e.g., RMSE%), assigning scores 1-3 according te
predefined cutoffs (e.g., low 30%, medium 10%). For each study, the maximum score across all
available metrics was taken as the final robustness value. Studies with missing métrics were assessed
individually. For instance, Xu et al. (2023) compared modelled wave heights with measured data, and
found good agreement between them. Although no validation metric was reported, the agreement
between model and observation was deemed to be robust. However, if no attempt to validate was made,
the information was judged to be low in robustness (Mastrandrea et al., 2011; Sudmeier-Rieux et al.,

2021). ~

b) Level of agreement
This step assessed whether the reviewed articles provided <censistent evidence regarding the
effectiveness of NbS in mitigating hydrometeorological hazards in,coastal or deltaic regions. Articles
were categorised into three groups: agreement, inconclusivéyand non-agreement, with assigned scores

of 1, 2, and 3, respectively. R

» Agreement indicated strong and consistent evidence supporting NbS effectiveness. For
instance, De Dominicis et al. (2023) found that a 600 m patch of mangroves could provide a
surge attenuation up to 1.4 m.

» Inconclusive meant that the findingsivaried, with studies showing mixed results regarding NbS
performance. For example, Zhao and Chen (2016) found that the presence of vegetation
reduced water level, while increasing flow velocity, on average.

» Non-agreement suggested that the studies did not support the effectiveness of NbS in mitigating
coastal hydrometeorologicals hazards. For instance, French (2008) reported that managed
realignment increase peak velocity and discharge by up to 35% and 32%, respectively,
concluding that such measure could be questionable in estuarine contexts.

¢) Level of confidence

The final step inyolved evaluating the overall level of confidence in the findings. It provides a
qualitative synthesis of the<evaluation of evidence and agreement in one metric (Mastrandrea et al.,
2010; Mastrandrea et al., 2011). This was determined by combining the robustness and agreement
scores fof each article. Therefore, the level of evidence scores were plotted against the level of
agreement. The outcomes were categorised into nine confidence level. Figure S3 (Supplementary Data

A) shows a matrix of the levels of confidence based on combinations of evidence and agreement.
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2.3.2. Meta-analyses

A quantitative synthesis was performed for studies reporting continuous effect sizes of NbS on
hydrometeorological hazard indicators. These indicators included percentage reduction (%), absolute
changes in physical parameters (e.g., surge height or flood depth in meters), temperature change (°C),
and in some cases monetary losses (million USD). Because studies reported effects using different units
and measurement approaches, separate meta-analyses were conducted for each unit category to ensure

conceptual and statistical consistency.

Random-effects models were fitted using the restricted maximum likelihood"(REML))estimator to
account for variability in true effects across studies (Borenstein et al., 2010). This approach is
appropriate given the large, expected heterogeneity arising from differences.insecosystem settings,
hazard types, modelling frameworks, and data sources. In several cases, primary studies did not report
sampling variances or standard errors. When this occurred, approximate variances were derived from
the dispersion of observed effect sizes within the dataset, following a conservative approach that assigns
equal variance to studies with missing information. Although this precedure increases uncertainty in

heterogeneity estimates, it allows inclusion of a broader evidence base while maintaining transparency.

Influential data points were identified using Cook’s distance, and sgnsitivity analyses were performed
by comparing models before and after removing eutliers. Observations with Cook’s distance greater
than 0.5 were treated as influential and removed from subsequent analyses (Cook and Weisberg, 1982).
Forest plots were produced to visualizeindividual \study estimates and pooled effects with 95%
confidence intervals. Between-study heterogeneity was evaluated using the I? statistic and the between-

study variance (72), as provided by the metafor R package (Viechtbauer, 2010).

To compare NbS strategies, the meta-analysis,results were further examined by grouping effect sizes
according to NbS categories and! the,indicators they influenced. This allowed assessment of how
different NbS measures perform across multiple hazard-related metrics and units (e.g., % reduction,
meters, °C, monetary units, or %inerease), providing a comprehensive evaluation of their protective

effectiveness.
3. Results

3.1. Identified case studies and their spatial distributions

Out of the 383 articles, the majority (86%; n = 328) focused on real-world case studies, while the
remaining were hypothetical or conceptual studies. In total, these articles included 341 real-world case
studies (as some articles included multiple case studies) across 60 countries. The United States had the
highest.number of case studies (n = 76), accounting for 22% of the total. This was followed by China
(n.= 37), the Netherlands (n = 21), the United Kingdom (n = 18), and Australia (n = 16), with the

remaining countries having 173 case studies (Figure 1a).
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A notable upward trend in research activity was observed over time. As shown in Figure 1b, studies on
the effectiveness of NbS in mitigating hydrometeorological hazards have increased since 2008,
following the introduction of the NbS concept by the World Bank (MacKinnon et al., 2008). Notably,
approximately 69% (rn = 265) of the selected articles were published since 2020.

There was a clear spatial disparity in the distribution of case studies across continents. Asia accounted
for the highest proportion of studies (31%), followed closely by North America (29%) and Europe
(28%). In contrast, Africa was the least represented, with only six case studies identified (Figure 1d).
Further analysis examined case study distribution based on the income levels of countries. The majority
(60%; n = 205) were conducted in high-income countries, particularly those [classified‘as members of
the Organisation for Economic Co-operation and Development (OEED). Upper/middle-income
countries accounted for 19% (n = 64) of case studies, while low-income countr;s hosted the fewest

(4%; n = 13), with the majority of these conducted in Bangladesh (n =12) (Figure 1e).

13



oNOYTULT D WN =

QuuuuuuuuuubdbbdDDdDDDDMDMNDEDMNDWWWWWWWWWWRNNNNNNNNNN= =2 2 29299230999
VWO NOOCULLhAWN-_rOCVONOOCTULDWN—_,rOCVOONOOCULDDWN=—_,rOUOVUONOOCULPMNWN—_ODOVUONOUVPSD WN =0

AUTHOR SUBMITTED MANUSCRIPT - ERL-123616 Page 14 of 30

e

Number of
case studies

i
40
20

Countries with coastline
(no case studies)
Landlocked countries

50°Sq

- =7
S, S =
=== =
—_——
120°W 60°W
b)
751
0
2
3]
£ 504
©
kS
R 25
0._____—_------
® O ORI D 550 A DO DN 5 S
PP RN AP N2 0> X2 N0 K NN 9P o o P N
BB S B S S B S A S & 8
o
¥ o
d) e)
0 751 0 751
] o
ks} T
2 2
504 .50
@ @
) 7]
8 8
5 251 5 25
2 ES
e - W
»? g (00 o b\e' 6\0 %
6‘?}\ ¥ & ; 00200 6‘\60@0 @bo‘& (’06‘:/00
kS O A0 e o)
o S &€ SR
Vi e 2 R P

verview of the articles analysed in this study. a) Geographical distribution of the case
continuous colours representing countries with coastline where case studies were
d grey indicating no case studies found; b) Year-wise publication trend; c) Types of case
dies (hypothetical and real-word); d) Distribution of case studies by continent; and e) Distribution of

e studies by income groups of the countries.

14



Page 15 of 30

oNOYTULT D WN =

354

355

356
357
358
359
360
361

362
363
364
365
366

367
368

369
370
371
372
373
374
375

376

AUTHOR SUBMITTED MANUSCRIPT - ERL-123616

3.2. NbS interventions in managing hydrometeorological hazards

3.2.1. NbS interventions

Existing studies examined a wide range of NbS measures to assess their effectiveness (Figure 2, Table
S3 (Supplementary Data A)). Salt marshes and other coastal wetlands represented the largest share of
cases (21%), followed by mangroves (17%) and forest conservation measures (16%), which. include
vegetation, swamp forests, and natural habitats. In contrast, only a single study evaluated the
effectiveness of rainwater harvesting. Figure S2a (Supplementary Data A) shows the distribution of

cases across different NbS types.

This study also assessed the functional role of NbS in the reviewed literaturesNbS were predominantly
implemented as safeguarding measures in coastal and deltaic regions, accounting\for 73% of the 383
articles. Additionally, 19% of studies examined NbS as complementary measures alongside hard
engineering structures, while 8% considered them as alternative measures (Figure S2b, Supplementary

Data A).

3.2.2. Hydrometeorological hazards

Hydrological hazards (e.g., floods, wave action, surge) wete the mo.st common, representing 86% (n =
330) of all cases. Meteorological hazards, including extreme temperatures, heatwaves, strong winds,
and meteorological droughts, accounted for 9%. The remaining 5% of articles assessed both hazard
types (Figure S2c, Supplementary Data’ A)uNbS measures such as salt marshes, mangroves, forest
conservation, reef restoration, sand management, and managed realignment were primarily applied to
hydrological hazards, whereas NbS related to urban ecosystems—particularly urban green areas—were

mainly tested for meteorological hazards (Figure 2).

A S

15



oNOYTULT D WN =

377

378
379

380
381
382

383

384
385
386
387
388
389
390
391
392

393

394
395
396
397

AUTHOR SUBMITTED MANUSCRIPT - ERL-123616

—— Watershed management
=== Urban wetlands

Vulnerability or risk
I Urban green areas assessmen

—_ §y§‘§',?§b'e Yrainage Statistical approaches

B Sand management Meteorological Qualitative approaches

Hydrometeorological
Salt marsh or other
coastal wetlands
. Yes
Numerical models
Yes

. Restoration of reefs

: i Hydrological
Rainwater harvesting 4 J Laboratory experiments

l Mangrove Geospatial approaches

. Managed realignment

No

No

Empirical approaches ~
- Integrated coastal zone

management
Cost-benefit analysis

I Forest conservation

Agrobiodiversity

B nbs Hazards Methods Indicators . Validation

Figure 2. Sankey diagram showing the interactions among NbS measures, hydrometeorological
hazards, methodological approaches, use of indicators, and yalidation status. Coloured bands represent
sub-categories within each group, highlighting the.connections and flow of relationships across different

dimensions.

3.2.3. Methods to evaluate the impacts of NbS

After identifying relevant NbS dneasures, this study evaluated the strengths and limitations of
methodological approaches used to.assess, their hazard-mitigation performance. Numerical modelling
was the most widely applied method, constituting 51% of all approaches. Empirical approaches
accounted for 11.5%, followed by g}ospatial (11%), statistical (9.5%), and laboratory-based methods
(9%). Cost—benefit analyses, qualitative methods, and vulnerability or risk assessments were less
common (3%, 3%, and 2%jyrespectively) (Figure 2, Figure S2e (Supplementary Data A)). Hydrological
studies predominantly relied on numerical modelling, followed by empirical, geospatial, statistical, and
laboratory approaches. Numerical models were also frequently used in meteorological studies. A

comprehensivelist of modelling approaches identified is provided in Table S8 (Supplementary Data A).
3.2.4. ndicatorsfor assessing NbS interventions

Indicatorsiplay a key role in quantifying the effectiveness of NbS interventions. Approximately 91% of
thearticles used at least one indicator, whereas 9% did not employ any specific metrics (Figure 2, Figure
S2d (Supplementary Data A)). In total, 44 unique indicators were identified (Table S5, Supplementary
Data A). Wave height was the most frequently used indicator (24.4%), followed by water level (15.7%),

16

Page 16 of 30



Page 17 of 30

oNOYTULT D WN =

398
399

400

401
402
403
404

405
406
407
408
409
410
411
412

413
414
415
416
417

AUTHOR SUBMITTED MANUSCRIPT - ERL-123616

economic damage (8%), flood extent (7%), and flow velocity (5.4%). Meteorological studies primarily

used temperature as an indicator, which accounted for 5.2% of all cases.

3.3. Level of confidence in NbS interventions and methods used

As outlined in Section 2.3.1, the level of confidence in each article was assessed using robustness and
agreement criteria. Validation of methods was a key factor in determining robustness. Overall, 71.5%

of the reviewed articles reported some form of validation (Figure 2, Figure S2f (Supplementary Data

A)).

With respect to specific NbS interventions, studies on salt marshes or other coastal wetlands exhibited
the highest number of cases with robust evidence, followed by those focused.onreefs, mangroves, and
forest conservation (Figure 3a). Models used in these studies were generaﬁ? validated against
observational data and demonstrated good levels of agreement. In terms'of agreement alone, mangrove-
related studies showed the highest number of cases, followed,by salt marshes, reefs, and forest
conservation (Figure 3b). When plotting robustness against agreement,only urban wetlands reached a
“very high” confidence level. Agrobiodiversity and sustainable drainagessystems demonstrated medium

confidence, while the remaining 10 NbS measures showedthigh confidence (Figure 3c).
4
Confidence levels also varied across methodological approaches. As shown in Figure 3d, none of the

methods achieved very high confidence. Fivey approaches—numerical modelling, laboratory
experiments, vulnerability or risk assessments, empirical approaches, and statistical approaches—fell
within the high-confidence category. Studies using.cost-benefit analyses or geospatial approaches were

classified as medium confidence, while qualitative approaches showed low—medium confidence.
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420  Figure 3. Level of confidence in NbS, for attenuating hydrometeorological hazards. a) Number of
421  reviewed articles categorised by the robustness of evidence for each NbS measures; b) Number of
422 reviewed articles categorised bysthelevel of agreement for each NbS measures; ¢) Average confidence
423  levels across different NbS measures; and d) Average confidence levels across different methodological
424 approaches. To aid interpretationrof panels c) and d), a confidence matrix based on combinations of
425  evidence and agreement.levelsiis provided in Figure S3 (Supplementary Data A).
426 3.4. Effectiveness of NbS measures
427 3.4.1. Degree'of effectiveness
428  Among the 383 articles, quantitative information on NbS effects was found in 241 articles. Across the
429 44 indicators identified (see Section 3.2.4), eight different units were used to express effectiveness:
430  percentage reduction, degrees Celsius (°C), metres (m), monetary value (USD), cubic metres (m?),
431  fatalities, percentage increase, and metres per second (m/s). Percentage reduction was the most
482, common, applied in 73% of cases. Figure 4 presents the mean percentage reduction achieved by
438, different NbS measures across various indicators. Overall, mean effects ranged from a 9% reduction in
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water levels by implementing managed realignment to an 88.5% reduction in eroded volume from reef
restoration. Most reported effects were related to hydrological hazard mitigation. Meteorological
studies reported an average 21% reduction in temperature for urban green areas. However, this was
based on a single study as most of the meteorological studies used actual temperature reduction.(in °C)

as an indicator.

Twenty-four studies reported the effects of NbS in reducing surge height, water level, or,wave height in
metres. Sand management (e.g., dunes) showed the highest mean surge-height reduction of 3.4 m,
followed by mangroves at 1.4 m. Reef restoration yielded the highest mean reductions, for both water
level (1.9 m) and wave height (1.4 m) (Figure S4, Supplementary Data A)./Fifteen atticles reported
temperature reduction outcomes—primarily for urban green areas and forest conservation—with an
average reduction of 1.55 °C (Figure S5, Supplementary Data A). Twelve studiealsed monetary units
(USD) to assess coastal protection, economic damage reduction, and related benefits across six NbS
measures (Figure S6, Supplementary Data A). Six studies reported percentage increases in benefit—cost

(BC) ratio, economic benefits, housing prices, resilience, or tidal prism linked to five NbS measures

(Figure S7, Supplementary Data A).
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Figure 4. Mean percentage reduction in hydrometeorological hazard indicators achieved by different
NbS interventionsiEach cell reports the number of studies evaluating a given NbS—indicator

combination.
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3.4.2. Uncertainties in the estimates

The meta-analyses revealed substantial uncertainty in the estimated protective effects of different NbS
measures against hydrological hazards. Figure 5 summarises the mean percentage reduction achieved
by salt marshes or other coastal wetlands and by mangroves. In both cases, the random-effects models
indicated varying levels of heterogeneity (I?) and between-study variance (1?), depending on the
indicator (Tables S6-S7, Supplementary Data A). For salt marshes and other coastal wetlands, [*ranged
from moderate (36.2% for flow velocity) to substantial (73.8% for exposure).. Mangrove-related
estimates showed considerably higher heterogeneity, with I? values ranging from 70.4% (wave height)
to 91.4% (water level). These levels of dispersion suggest that observed variation largely reflects real

differences in study conditions rather than random sampling error.
~

Such variability likely arises from ecological and geomorphological differences among sites, variation
in vegetation structure and maturity, hydrodynamic contrasts, differences in'physical attributes such as
mangrove-belt width, and inconsistencies in indicator measurement and' reporting. Consequently,
pooled effect sizes should be interpreted as broad central estimates actoss highly diverse systems rather
than precise or universally transferable values. While the REML estimator effectively accommodates
this variability, the wide confidence intervals and /elevated z>4values underscore the persistent
uncertainty surrounding the magnitude of the risk-reduction benefits provided by these NbS. Additional
forest plots for other NbS types are presented in Figures S8—S13 (Supplementary Data A). Studies
assessing urban green areas for meteorological hazard mitigation (e.g., temperature reduction) also

showed high uncertainty, with an I? value 0f:76.7% (Figure S14, Supplementary Data A).
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Figure 5. Forgst plots showing the mean percentage reduction achieved by (a) salt marshes or other
coastal wetlandsiand (b) mangroves across different hydrological hazard indicators. Red dots represent

the pooled mean gffect for each indicator, with dot size proportional to the number of contributing

studiessHorizontal lines indicate the 95% confidence intervals associated with
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4. Discussion

This study provides a systematic review and meta-analysis aimed at establishing a scientific evidence
base on the effectiveness of NbS in mitigating hydrometeorological hazards in coastal and deltaic
regions. A total of 383 peer-reviewed English-language articles published since 2008 were<analysed.
The distribution of case studies was uneven, with most research concentrated in high-income OECD
and upper-middle-income countries across Europe, Asia, and North America. Representation fronmvlow-
income and lower-middle-income countries—particularly in the global™ south, where
hydrometeorological hazard exposure is high—remains limited (Chausson et al., 2020). Although the
absence of studies in landlocked countries is expected due to the coastal focus of the review, many
coastal nations exposed to severe hazards lack published evidence on the efficacy,of NbS. Despite 179
countries having coastlines (https://worldpopulationreview.com/), case studies w;e found in only 60,
indicating a substantial geographic gap. While interpreting these resultsj care.should be given as this
study relied solely on peer-reviewed English literature; therefore, relevant grey literature and non-

English studies may not be captured.

Most studies evaluated the effectiveness of NbS in mitigating hydrological hazards—including floods,
storm surges, and wave action. This aligns with the long-standing focus on coastal protection in NbS
research (Barbier et al., 2013; Costanza et al.,.2008; Das and Vincent, 2009; Del Valle et al., 2020;
Ferrario et al., 2014; Manchefio et al., 2024; Sheng et.al., 2022; Stark et al., 2015; Zhang et al., 2012).
Salt marshes and mangroves, in particular, have been widely studied and are well established as
effective natural barriers in both global north. and south\(Das and Vincent, 2009; Du et al., 2020; Liu et
al., 2019; Menéndez et al., 2020; Seujip et al., 2024; Sheng et al., 2022; Zhang et al., 2012). By contrast,
the role of NbS in mitigating meteorological hazards—such as extreme temperatures and droughts—
remains underexplored, despite their increasing sensitivity to climate change and their implications for
water security (Debele et al., 2019)s¢ritical infrastructure (Leal Filho et al., 2024), and human health
(Lithi et al., 2023; Matthews et al., 2025).

This study assessed whetherthe reviewed literature agreed on the hazard-mitigating potential of various
NbS measures. While most:studies supported their effectiveness, some reported mixed or negative
outcomes—particularly for managed realignment. For example, French (2008) documented increased
peak velocity and discharge. in an estuarine system following managed realignment, and Bennett and
Karunarathna (2020) found negligible effects on flood levels in Wales. Pontee (2015) similarly reported
increased water levels in parts of the Steart Estuary due to altered tidal propagation following
embankment_breaching. These examples underscore the need for scientific understanding of site-
specific hydfedynamics when designing and implementing large-scale interventions such as managed

realignment:
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Assessing the level of agreement alone provides an incomplete picture of NbS performance. Therefore,
this study evaluated the robustness of evidence using combined qualitative and quantitative criteria.
Most NbS categories demonstrated high confidence levels, reflecting medium robustness and high
agreement. However, significant variability in robustness scores was observed for agrobiodiversity and
sustainable drainage systems. Some studies presented highly robust evidence (Barbour et al.; 2022; Qin
et al., 2024b), whereas others provided limited support due to methodological or data constraints (Dang
et al., 2021; Sohn et al., 2020). Limited ground observations for model validation, combined with
inherent uncertainties in numerical modelling (Hall and Solomatine, 2008), likely‘contribute to overall

medium or low robustness scores.

Effectiveness of NbS is highly context dependent and influenced by numeérous factors, including site
characteristics, ecological dimensions (e.g., mangrove belt width), system conﬁ;uration (e.g., dune—
canal combinations), and hazard intensity. As a result, several studies reported-mixed or inconclusive
findings. For example, Marsooli et al. (2016) found that salt marshes can reduce peak water velocity
but may slightly increase water levels under certain vegetation'conditionsyEvidence also indicates that
hybrid approaches combining NbS with engineered structures can enhance effectiveness (Barbour et
al., 2022; Du et al., 2020; Liu et al., 2019). Yet, only a limited numb.er of studies have explored NbS as
complementary measures, partly because the lack of standardised criteria prior to the IUCN NbS
standards (introduced in 2020) hindered their classification and assessment (Sowinska-Swierkosz and
Garcia, 2022). Quantifying the performance of complementary solutions—such as tidal river
management integrated with embankments—temains challenging and typically requires multi-method
approaches (Adnan et al., 2020; Barbour et al.;;2022; Du et al., 2020; Liu et al., 2019). Due to these
challenges, most of the studies have evaluated NbS in isolation as safeguard measures (Al-Attabi et al.,
2023; Barbier et al., 2013; Beck gt al., 2018) rather than as integrated components of broader risk

management strategies.
g g ~N

A major challenge in evaluating’and communicating NbS effectiveness is the lack of standardised
indicators and the considerable uncertainty surrounding results. Hydrological studies frequently rely on
indicators such as wave height, current velocity (Castagno et al., 2022; Manchefio et al., 2024; Méller
et al., 2014), flooddepth, and flood extent (Karamouz et al., 2022; Montgomery et al., 2022), measured
in different units'(e.g., metres, m/s, percentage reduction), while meteorological studies use temperature
(°C) (Arrar et al.,22024; Lin and Zhang, 2024; Spyrou et al., 2024). The indicators used are closely
linked tofthe methodological approach; numerical hydrological modelling often prioritises hazard
intensity metrics (Kumar et al., 2021). However, inconsistent or non—hazard-specific indicators make
cross-study comparisons difficult. As shown in the meta-analysis, considerable heterogeneity persists
across. NbS/ measures, arising from ecological variability, geomorphological differences, and

inconsistent reporting practices. This highlights the need for consistent, transparent, and hazard-specific
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indicators to strengthen the evidence base and facilitate comparability (Kabisch et al., 2016; Kumar et

al., 2021).

Finally, combining multiple methodological approaches generally yielded higher confidence levels.
Integrating numerical models with geospatial approaches improved understanding of tidal river
management (Adnan et al., 2020) and mangrove systems (Azeez et al., 2022). When{cost—benefit
analysis was combined with numerical models, the robustness of evidence increased (Du et al., 2020;
Karamouz and Heydari, 2020). Similarly, numerical models paired with empirical observations
strengthened reliability (Lu et al., 2023; Rahman et al., 2017). Despite these advantages, relatively few
studies employ such integrated frameworks, suggesting a need for methodological diversification to

improve accuracy and spatial resolution in NbS assessments.
5. Limitations and future research directions

There is growing recognition of the value of NbS in attenuatinig hydrometeorological hazards. Yet,
significant knowledge gaps remain regarding their effectiveness across different hazard indicators. This
study synthesised the scientific evidence base through a systematic review and meta-analysis of peer-

reviewed literature, assessing both performance and methodologicalrobustness of NbS interventions.

The following limitations should be considered'when interpreting the findings. First, the review used
four major databases. Relevant studies indexed elsewhere—such as Compendex—were not included.
Second, the analysis was restricted te, peer-reviewed “English-language publications, excluding
potentially relevant grey literature and non-English studies. Inclusion of these sources might alter the
geographic distribution of studiesand diversify the.evidence base. Third, the reported effectiveness of
NbS may be subject to uncertainties. Although the meta-analysis produced average values (e.g.,
percentage reductions in hazard indicators), effectiveness is highly dependent on local conditions,
proximity to hazard sources, évent Characteristics (regular vs. extreme), and dimensions of the NbS
measures. Despite these limitations, this study provides the first comprehensive synthesis of NbS

effectiveness across a wide range of hydrometeorological hazard indicators.

Future research should further investigate the potential of NbS as complementary measures alongside
conventional engineered structures. Evaluating hybrid or nature-positive engineering solutions—
including their cost-effectiveness, long-term resilience, and ecological co-benefits—would enhance
understanding of theirole in strengthening coastal resilience (Cohen-Shacham et al., 2016). More
effective communication frameworks are also needed to translate scientific evidence into actionable
guidance forpolicymakers and stakeholders, promoting the integration of NbS into climate adaptation

and disasterrisk reduction strategies (Banerjee et al., 2023; Debele et al., 2019; Kumar et al., 2021).

Coastal and deltaic regions often experience multiple or compound hazards, such as tidal surges

coinciding with high river flows, with cascading impacts (Lee et al., 2024). Yet, few studies evaluate
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NbS through a multi-hazard lens (Debele et al., 2019; Debele et al., 2023). Integrating NbS into multi-
hazard risk assessment frameworks would capture the interconnected nature of hydrometeorological
hazards and provide more realistic estimates of their effectiveness. Developing standardised,
transparent, and hazard-specific indicators is essential for improving comparability and stakeholder
understanding. These indicators should be easily interpretable and facilitate engagement across

governance levels.

Overall, future research can help advance more resilient, adaptive, and sustainable (coastal and deltaic
communities, solidifying the role of NbS in global climate adaptation, disaster risk,reduction, and
sustainable development. By identifying key trends, methodological gaps, and challenges, the findings

of this review offer valuable insights for researchers, practitioners, and policymakers.
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