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A general search is presented for supersymmetric particles (sparticles) in scenarios featuring compressed
mass spectra using proton-proton collisions at a center-of-mass energy of 13 TeV, recorded with the CMS
detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 138 fb−1. Awide
range of potential sparticle signatures are targeted, including pair production of electroweakinos, sleptons,
and top squarks. The search focuses on events with a high transverse momentum system from initial-state-
radiation jets recoiling against a potential sparticle system with significant missing transverse momentum.
Events are categorized based on their lepton multiplicity, jet multiplicity, number of b-tagged jets, and
kinematic variables sensitive to the sparticle masses and mass splittings. The sensitivity extends to higher
parent sparticle masses than previously probed at the LHC for production of pairs of electroweakinos,
sleptons, and top squarks with mass spectra featuring small mass splittings (compressed mass spectra). The
observed results demonstrate agreement with the predictions of the background-only model. Lower mass
limits are set at 95% confidence level on production of pairs of electroweakinos, sleptons, and top squarks
that extend to 325, 275, and 780 GeV, respectively, for the most favorable compressed mass regime cases.
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I. INTRODUCTION

The standard model (SM) is a tremendously successful
theoretical framework that essentially describes all known
phenomena in high-energy physics. With the demonstra-
tion of the existence of the Higgs boson [1,2], the field is at
a crossroads. On the one hand, as of yet, there is no direct
experimental evidence from colliders for new phenomena
beyond the SM, such as the new fundamental particles
envisaged in supersymmetry (SUSY) models [3]. On the
other hand, the very existence of the Higgs boson and the
presence of dark matter in the Universe are compelling
motivations for a model such as SUSY to be realized in
nature; it can stabilize the Higgs boson mass and has the
potential to provide a particle physics explanation for dark
matter [4]. It is therefore crucial to confront such possibil-
ities with experiment. Supersymmetry [5–7] has attracted
much interest as a result of its perceived strong motivation,
its tractability as a weakly coupled theoretical framework
for perturbative calculations and thus predictions, and the
rich set of potential new experimental signatures.

With a wide variety of search results from the LHC
experiments based on the datasets collected in the years
2016–2018, many supersymmetric particle (sparticle) pro-
duction scenarios have been constrained by a number of
searches at the LHC [8–39]. These results are primarily in
the context of simplified model interpretations with the
experimentally most favorable realizations leading to lower
mass limits at the TeV scale and beyond for specific
scenarios. Nevertheless, there is still very strong exper-
imental and phenomenological motivation for a focus on
compressed sparticle mass spectra, where the mass
differences (Δm) between the initially produced (parent)
sparticles and the lightest sparticle (LSP) are small.
Supersymmetry searches are often least sensitive in corri-
dor regions with small mass differences; if SUSY is to be
tested comprehensively, further exploration of these regions
is essential. Phenomenologically, the lowest lying states in
the electroweakino sector (χ̃01; χ̃

�
1 ; χ̃

0
2) may form a nearly

mass-degenerate dominantly Higgsino-like triplet [40].
This scenario is particularly challenging as a result of
the suppressed production cross sections in addition to the
compressed mass spectrum, and is attracting much interest
[41,42]. Furthermore, probing slepton production models
including those with the SUSY partners of the muon
(smuons), could give insight into potential supersymmetric
contributions to the muon g-2 measurements [43–45] as
calculated in for example [46–48].
A general search for sparticles is performed in proton-

proton (pp) collisions at a center-of-mass energy of
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13 TeV by the CMS experiment at the CERN LHC. The
data were collected from 2016 to 2018, with a total
integrated luminosity of 138 fb−1. The focus for this paper
is on SUSY scenarios featuring compressed mass spectra,
with the LSP expected to be the weakly interacting lightest
neutralino, χ̃01. Only R-parity [49] conserving SUSY
scenarios [50], where sparticles are produced in pairs
and the LSP is stable, are considered. We target SUSY
scenarios that include the associated production of a
chargino and neutralino (χ̃�1 χ̃

0
2) and the pair production

of charginos, top squarks, and charged sleptons (selectrons
or smuons). Observed event yields for various event
signatures are also reported in a model-independent manner
that does not assume a particular beyond the SM particle
production model.
Searching for the production and decays of such spar-

ticles appearing in compressed mass spectra is experimen-
tally challenging, as small mass splittings between
sparticles imply that the visible products of those decays
will be of low momentum, and can be difficult to
reconstruct, or even detect. Normally reliable signatures
of SM particles, such as the reconstructed mass of heavy
vector bosons, can be significantly distorted when forced
off shell and produced in such decays, thereby degrading
our ability to detect them. For decays resulting in weakly
interacting massive particles, this can also mean that these
invisible decay products will receive very little momentum
from the decays of their parents, such that the resulting
missing transverse momentum may also be small and
indistinguishable from that of backgrounds. The approach
taken is primarily kinematic, and a wide range of object
multiplicities are used to incorporate the potential decay
signatures of the targeted sparticle systems. Events are
selected with significant initial-state radiation (ISR), where
the high transverse momentum recoil from the ISR can
often lead to measurable missing transverse momentum
associated with sparticle decays in compressed scenarios,
despite each invisible LSP acquiring only a small momen-
tum in the parent rest frame from the parent sparticle decay.
The method adopted is more general than, and comple-
mentary to, previous searches by CMS for signatures of
compressed sparticle mass spectra, such as Ref. [17], which
focused on events with two or three soft leptons.
The paper is organized as follows. The CMS detector and

event reconstruction are described in Sec. II. The SUSY
signal and background process modeling and simulation
are described in Sec. III. The following section (Sec. IV)
describes the selection of physics objects including elec-
trons, muons, jets, b-tagged jets, and b-tagged secondary
vertices for use in the analysis. Section V describes the
kinematic reconstruction of events for this search consid-
ering multilepton final states, corresponding to exactly
0, 1, 2, and 3 leptons (electrons or muons) with jets. The
event selection and categorization (Sec. VI) has two
elements. Firstly, preselection criteria and event clean-up

requirements are applied that remove events that are not
consistent with the compressed phase space of interest for
the analysis. Secondly, events are categorized into mutually
exclusive analysis regions that are defined according to a
combination of object multiplicities in the supersymmetric
or ISR systems. A fit based on control samples in data used
to constrain the background contributions in tests of various
signal hypotheses is described in Sec. VII, including
discussion of the treatment of systematic uncertainties.
Results are given in Sec. VIII and the paper is summarized
in Sec. IX. Tabulated results are provided in the HEPData
record for this analysis [51].

II. THE CMS DETECTOR AND EVENT
RECONSTRUCTION

A central feature of the CMS detector is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic
field of 3.8 T. Within the volume of the solenoid are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each with a barrel
and two endcap sections. Muons are detected using the gas-
ionization chambers embedded in the steel flux-return yoke
outside the solenoid. A detailed description of the CMS
detector, including the definition of the coordinate system
used, can be found in Refs. [52,53].
For this analysis, physics objects, such as jets, electrons,

muons, and missing transverse momentum, are considered.
The reconstruction and identification of individual particles
in an event is performed using the particle-flow algorithm
[54] with an optimized combination of information from
the various elements of the CMS detector. The energy of
photons is directly obtained from the ECAL measure-
ment. Reconstructed energies of electrons are determined
from a combination of the electron momentum at the
primary interaction vertex as determined by the tracker,
the energy of the corresponding ECAL cluster, and the
energy sum of all bremsstrahlung photons spatially
compatible with the origin of the electron track. The
momentum of muons is estimated from the curvature of
the corresponding track. The energy of charged hadrons
is determined from a combination of their momentum
measured in the tracker and the matching ECAL and
HCAL energy deposits, corrected for the response of the
calorimeters to hadronic showers. Finally, the energy of
neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energy.
Hadronic jets are found from these reconstructed par-

ticles and clustered using the infrared- and collinear-safe
anti-kT algorithm [55], implemented with the FastJet pack-
age [56]. Jets in this analysis use the anti-kT distance
parameter of 0.4. Jet momentum is determined as the vector
sum of all particle momenta clustered in the jet. Additional
pp interactions within the same or nearby bunch crossings
(pileup) can contribute additional tracks and calorimetric
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energy deposits to the jet momentum. To mitigate this
effect, tracks identified as originating from pileup vertices
are discarded, and an offset correction is applied to correct
for remaining contributions. Jet energy corrections are
derived from simulation to equalize the average measured
response of jets to that of particle level jets. In situ
measurements of the momentum balance in dijet,
photonþ jet, Z þ jet, and multijet events are used to
account for any residual differences in jet energy scale
between data and simulation [57]. Typical residual
response corrections are less than 3% in the barrel region
and less than 10% in the endcap region. Additional
selection criteria are applied to each jet to remove jets
potentially dominated by anomalous contributions from
various subdetector components or reconstruction failures.
The ultimate jet energy resolution typically ranges from
15% at 10 GeV, 8% at 100 GeV, to 4% at 1 TeV [57].
Themomentum resolution for electronswithpT of 45GeV

from Z → ee decays ranges from 1.7% for barrel electrons
that do not generate showers in the tracker to 4.5% for
showering electrons in the endcaps [58,59]. Muons are
measured in the pseudorapidity range jηj < 2.4, with detec-
tion planes made using three technologies: drift tubes,
cathode strip chambers, and resistive-plate chambers.
Matching muons to tracks measured in the silicon tracker
results in a relative transverse momentum resolution for
muonswith 20 < pT < 100 GeVof 1.3%–2.0% in the barrel
and better than 6% in the endcaps. The pT resolution in the
barrel is better than 10% formuonswithpT up to 1 TeV [60].
The missing transverse momentum (p⃗miss

T ) is defined as
the negative vector sum of the transverse momenta of all
particle-flow candidates in the event and its magnitude is
denoted by pmiss

T . Anomalous high-pmiss
T events can occur

as a result of a variety of reconstruction failures, detector
malfunctions, or noncollision backgrounds. Such events are
rejected by event filters that are designed to identify more
than 85%–90% of the spurious high-pmiss

T events with a
mistagging rate less than 0.1% [61]. The p⃗miss

T is modified
to account for corrections to the energy scale of the
reconstructed jets in the event.
Vertices are reconstructed from tracks according to the

deterministic annealing algorithm [62]. The primary vertex
is taken to be the vertex corresponding to the hardest
scattering in the event, evaluated using tracking informa-
tion alone, as described in Sec. 9.4.1 of Ref. [63]. Events
are required to have at least one reconstructed vertex
with longitudinal position jzj < 24 cm and radial position
r < 2 cm relative to the nominal mean collision point.
Events of interest are selected using a two-tiered trigger

system. The first level, composed of custom hardware
processors, uses information from the calorimeters and
muon detectors to select events at a rate of around 100 kHz
within a time interval of less than 4 ms. The second level,
known as the high-level trigger, consists of a farm of
processors running a version of the full event reconstruction

software optimized for fast processing, and reduces the
event rate to a few kHz before data storage [64,65]. The
data sample for this analysis was collected in 2016–2018
using inclusive pmiss

T triggers with pmiss
T > 120 GeV, cor-

responding to a total integrated luminosity of 138 fb−1 of
pp collisions.

III. SIGNAL AND BACKGROUND SIMULATION

The SUSY signal and SM background processes are
simulated using Monte Carlo (MC) event generators.
Several different SUSY simplified models are used to
study electroweakino, slepton, and top squark production
and decay [66–68].
Simulated samples are generated either at leading order

(LO) or next-to-leading order (NLO) and use parton
distribution functions (PDF) from either the neural network
based NNPDF3.0 [69] set for 2016 data or the NNPDF3.1
[70] set for 2017 and 2018 data. Hadronization and
showering of events in all generated samples are simulated
using PYTHIA 8.230 [71]; these use the CUETP8M1, CP2,
and CP5 tunes of the underlying-event simulation [72]. All
simulations corresponding to 2016 data use the
CUETP8M1 tune, the CP2 tune is used for signal simu-
lations corresponding to the 2017 and 2018 data, while the
CP5 tune is used for background simulations correspond-
ing to the 2017 and 2018 data. The background events are
passed through a full simulation of the CMS apparatus,
with the response of the detector modeled using the Geant4

[73] simulation toolkit. The detector simulation of signal
samples is performed with the CMS fast simulation pack-
age FastSim [74,75]. Several sets of simulations are proc-
essed so that the version of the CMS event reconstruction
software used matches the run conditions of the collected
datasets. Additional pp collisions from pileup interactions
are simulated and overlaid on the main interaction in the
MC samples, with vertex distributions that reproduce
conditions observed year to year in data. There was a
trigger inefficiency during 2016 and 2017 caused by a
gradual shift in the timing of the inputs of the ECAL first-
level trigger in the region 2.5 < jηj < 3.0. The resulting
efficiency loss is 10%–20% for events triggered by an
electron (a jet) with pT larger than ≈50 ð≈100Þ GeV in the
specified jηj region, and is a function of pT, η, and time.
Correction factors are estimated from the data to model this
effect in simulation.
For the simplified model based signal models, all SUSY

particles other than the electroweakinos, sleptons, or top
squarks under study are assumed to be too massive to affect
the analysis observables. These simulated samples have
sparticle decays with 100% branching fraction to a par-
ticular final state and always include the χ̃01 as the LSP. The
signals are all generated using the MadGraph5_aMC@NLO

(v2.2.2 for 2016 and v2.4.2 for 2017–2018) generator with
LO precision and up to two additional partons at the matrix
element level [76] and interfaced to PYTHIA for sparticle
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decay. The production cross sections are computed at NLO
plus next-to-leading logarithmic precision with all the other
sparticles assumed to be heavy and decoupled using a
number of calculations and computational tools [77–84].
For the direct top squark pair production and decay three

simplified models are explored: T2tt (with top squark decay
via a top quark), T2bW (with the top squark decaying
through an intermediate chargino that subsequently decays
to a W boson and the lightest neutralino), and T2cc (with
top squark decay via a charm quark). A range of top squark
and LSP masses is considered with mass differences
ranging from 6 to 200 GeV. For the T2tt model
when Δm ≤ 80 GeV, where the top quark and the W
boson from the top quark decay would both be off shell, the
decay phase space is modeled as a four-body decay
(t̃ → bff̄ 0χ̃01) whereas for intermediate mass differences,
80 < Δm ≤ 175 GeV, where the top quark must be off
shell but theW boson can be resonant, the stop quark decay
phase space is modeled as a three-body decay (t̃ → bWχ̃01).
For the T2bWmodel, the mass of the intermediate chargino
is set to 1

2
½mðt̃Þ þmðχ̃01Þ�. Example diagrams are shown in

Figs. 1 and 2.
The primary simplified models for electroweakino pro-

duction and decay explored assume that a chargino-neu-
tralino pair χ̃�1 χ̃

0
2 (TChiWZ) or a chargino pair χ̃þ1 χ̃

−
1

(TChiWW) is produced. Each chargino decays to a W
boson and the χ̃01, while the second-lightest neutralino, χ̃

0
2,

decays to a Z boson and the χ̃01, where the χ̃
0
1 is the LSP. The

diagrams for these production and decay processes are
shown in Fig. 3. The TChiWZ model has the χ̃�1 and χ̃02 (the
initially produced parent sparticles) with the same mass.
For the TChiWW model, the χ̃�1 ’s are pair produced.
Interpretations with purely wino- and Higgsino-like χ̃�1
and χ̃02 are included for the TChiWZ model, while the pure
wino-like interpretation is used for TChiWW. A range of
χ̃�1 , χ̃

0
2, and LSP masses is considered with mass differences

ranging from 3 to 200 GeV; consequently the W and Z
bosons are off shell for much of the (mass, Δm) plane
considered.
For slepton pair production, the four charged sleptons of

the first and second generation (i.e., selectrons and
smuons), namely, the superpartners of both lepton chir-
alities (ẽ�L , ẽ

�
R , μ̃

�
L , μ̃

�
R ), are pair produced and decay with a

100% branching fraction to l�χ̃01. These possibilities are
illustrated in Fig. 4. The simplified model where all four
states have the same mass is referred to as the TSlepSlep
model. Mass differences ranging from 3 to 100 GeV are
considered and the generated event samples based on the
TSlepSlep model permit exploration of appropriate combi-
nations of the four states.
An additional model for chargino pair production,

denoted the TChiSlepSnu model, is studied. In this sce-
nario, the chargino decays via an intermediate charged
slepton (el�

L ) or sneutrino, as illustrated in Fig. 5. In this
case, the mass of the intermediate state is set halfway
between the masses of the chargino and the LSP, and it is

FIG. 2. Diagrams for top squark pair production. The upper
panel shows the T2bW model with decay via an intermediate
mass chargino and the lower panel shows the T2cc model with
decay via charm quarks.

FIG. 1. Diagrams for top squark pair production. The upper
panel shows the T2tt model with decay via top quarks and the
lower panel illustrates the four-body phase space used in
modeling the most compressed region.
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assumed that the chargino decays with equal probability to
each slepton and sneutrino flavor (branching fraction of
1=6). Mass differences between the chargino and the

LSP exceeding 50 GeV are considered for this spe-
cific model.
The background samples are partitioned in seven groups:
(1) Z=γ� þ jets: composed of the Z þ jets and Drell–

Yan backgrounds and generated at LO using Mad-

Graph5_aMC@NLO2.6.2.
(2) W þ jets: generated at LO using MadGra-

ph5_aMC@NLO2.6.2.
(3) tt̄X þ jets: tt̄þ jets is generated at LO using Mad-

Graph5_aMC@NLO2.6.2 with the final states separated
into dilepton and single lepton. Also included are
tt̄þ boson processes generated with MadGra-

ph5_aMC@NLO.
(4) ST: this group covers the three single top quark

production processes corresponding to the s-chan-
nel, t-channel, and W-associated production (tW).
The s-, t-channel and leptonic tW processes are
simulated using MadGraph5_aMC@NLO, while the in-
clusive tW samples are simulated at NLO with the
POWHEG v1 generator [85–88].

(5) VV: includes diboson processes. The WW, ZZ, Wγ
production and non-bb̄ Higgs boson decays forWH
and ZH production are generated at NLO precision
with MadGraph5_aMC@NLO using the FxFx merging
scheme [89]. The WZ process, the bb̄ Higgs boson

FIG. 5. Diagrams for pair production of the lightest chargino
with subsequent leptonic decays via an intermediate mass
charged slepton or sneutrino, where l ¼ e, μ, τ. In addition to
the illustrated diagrams, the other two combinations where either
both charginos decay to an intermediate charged slepton or both
charginos decay to an intermediate sneutrino are also included in
this TChiSlepSnu model.

FIG. 3. Diagrams for electroweakino production. The upper
panel shows associated production of the lightest chargino and
second-lightest neutralino (χ̃�1 χ̃

0
2) in the TChiWZ model and the

lower panel shows pair production of the lightest chargino (χ̃þ1 χ̃
−
1 )

in the TChiWW model.

FIG. 4. Diagrams for pair production of charged sleptons with
subsequent decay to l�χ̃01 where l ¼ e, μ.
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decays for WH and ZH production, and Higgs
bosons from gluon-gluon fusion are all generated
with POWHEG v2 [90,91].

(6) VVV: includes triboson processes generated using
MadGraph5_aMC@NLO at NLO.

(7) QCD: quantum chromodynamics (QCD) multijet
background using samples generated with MadGra-

ph5_aMC@NLO. Due to shortcomings in its simula-
tion, this background is accounted for by using an
approach almost fully relying on control samples
in data.

IV. PHYSICS OBJECT RECONSTRUCTION

After the basic event reconstruction described in Sec. II,
physics objects such as electrons, muons, b-tagged jets, and
tagged secondary vertices are reconstructed. Because the
analysis targets compressed SUSY signatures, we prioritize
the identification of objects with as low a pT as can be
efficiently analyzed.
Electrons with pT > 5 GeV and jηj < 2.4 are identified

using a multivariate discriminant based on track quality
variables and the energy distribution in both the ECAL and
HCAL, with the very loose selection initially applied [59].
Candidate electrons must have tracks that have a hit in
every pixel detector layer and which are not associated with
a reconstructed photon conversion vertex. Candidate
muons with pT > 3 GeV and jηj < 2.4 are selected based
on the quality of the tracks both in the tracker and in the
muon system, with the condition that they are matched to
each other and satisfy the loose and soft identification
criteria from Ref. [92]. Initially, loose requirements are
applied on the track quality of the leptons to qualify them
for the analysis. These track quality criteria include require-
ments on the three-dimensional (3D) impact parameter
significance (IP3D=σIP3D < 8), the two-dimensional (2D)
transverse distance of closest approach to the primary
vertex (jdxyj < 0.05 cm), and the longitudinal distance of
closest approach to the primary vertex (jdzj < 0.1 cm).
Electrons and muons that satisfy these preselection

requirements are separated into three mutually exclusive
categories: gold, silver, and bronze. The gold category
represents the most signal-like prompt and isolated leptons,
while the silver category is used to recover efficiency from
isolated secondary leptons from sources such as semi-
leptonic decays of b hadrons. The remaining leptons that do
not qualify as gold or silver, but which satisfy the loose
quality criteria described previously, are classified as
bronze. Gold and silver electrons with pT > 10 GeV are
additionally required to pass the tight identification criteria,
while muons are required to pass the medium identification
selection [92]. Gold and silver leptons must also satisfy
further isolation criteria. Absolute isolation requirements
separate the leptons from jets using the pT sum deposited
by the particle-flow candidates in a cone of radius

ΔR¼0.3 around the lepton, where ΔR≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2þðΔϕÞ2

p
,

and ϕ is the azimuthal angle measured in radians. Mini-
isolation is defined as the pT sum of charged hadron,
neutral hadron, and photon particle-flow candidates within
a cone in η-ϕ space around the lepton, correcting for pileup
using an effective area method [93]. The cone size depends
on the lepton pT and has radius R, defined as

R ¼ 10 GeV
minðmaxðpT; 50 GeVÞ; 200 GeVÞ : ð1Þ

Both absolute and mini-isolation are required to be less
than 4 GeV for gold and silver leptons.
Gold and silver leptons are then differentiated by their

consistency with originating directly from the primary
vertex, with gold categorization requiring a tighter 3D
impact parameter significance, IP3D=σIP3D < 2, with the
criterion reversed for silver leptons.
Electron identification efficiencies range from above

98% for the very loose criteria to 70% for the tight criteria.
The corresponding misidentification rates range from 2% to
3% for tight identification and from 5% to 15% for very
loose identification, depending on the electron’s η [59].
Loose (medium) muons have identification efficiencies
above 99% (95%–99%) with hadron misidentification rates
below 0.5% [92]. The identification and misidentification
efficiencies of these selection criteria are studied using
simulated tt̄þ jets and Z=γ� þ jets samples. In these
samples, lepton candidates are labeled as prompt if there
is a generator lepton within 0.01 in ΔR of the lepton
candidate and the lepton originates from the primary vertex.
Lepton candidates are considered misidentified if there is
no generator-level lepton within 0.01 in ΔR of the lepton
candidate. Figure 6 shows these prompt and misidentified
efficiencies as a function of lepton pT. Further exploration
of the sources of the leptons shows that the gold category is
the most efficient at keeping genuine leptons originating
from prompt sources, while rejecting most misidentified
leptons as well as leptons from nonprompt sources. The
silver category is also very good at rejecting misidentified
leptons and accepting genuine leptons that were produced
from secondary sources (primarily semileptonic b hadron
and τ lepton decays). Finally, bronze leptons consist of
prompt leptons that failed both the gold and silver require-
ments, followed by genuine leptons from nonprompt
sources as well as particles misidentified as leptons.
To account for observed small differences in

reconstruction, identification, and isolation efficiencies
between data and simulation, the simulation is corrected
by factors estimated from data using the “tag-and-probe”
method [92], with both Z boson and J=ψ meson decays.
These factors are derived as a function of pT, η, and data-
taking period, and take into account extrapolations of
vertexing and isolation parameters. Further scale factors
account for differences found between the FastSim signal
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sample simulations and the background samples generated
using the full detector simulation.
Jets found with pT > 20 GeV and jηj < 2.4 are selected

if they pass criteria designed to remove jets dominated by
instrumental effects or reconstruction failures [94].
Additionally, jets are required to be a distance of at least
ΔR ¼ 0.2 from any identified leptons. Jets that pass the
medium working point of the DeepJet tagger [95] are
classified as b jets. The identification efficiency for b
quark jets ranges from 60% to 85%, depending on the jet
pT, with a misidentification rate of about 15% to 25% for
charm quark jets and 1% to 7% for light-quark or gluon
jets. Differences between these efficiencies in data and
simulation are corrected for as functions of jet pT [96].
For compressed SUSY signal events, especially those

originating from top squark decays, low-pT b hadron
decays are an important signature. A soft secondary vertex

(SV) b-quark-finding deep neural network (DNN) algo-
rithm was developed for this analysis to identify these
decay products. The SV candidates were reconstructed
using the inclusive secondary vertex finder [97]. The pT
and η of the SV are evaluated from the vector sum of the
momenta of the tracks belonging to the SV. It is required
that 2 < pT < 20 GeV, jηj < 2.4 and that the 3D displace-
ment significance with respect to the primary vertex must
exceed 3. The SV must not be matched to any jet with a pT
above 20 GeV within a cone size of ΔR < 0.4, or to any
lepton within a cone size of ΔR < 0.2 where the cone is
centered on the SV momentum.
The SV b tagger is built using the DeepJet framework

[98,99] and a machine-learning algorithm based on the
DeepCSV tagger [100]. Eight variables are used as input for
the SV b-tagger DNN: the pT, η, mass, number of degrees
of freedom, displacements from the primary vertex in both
2D and 3D, 3D displacement significance, and the cosine of
the pointing angle between the primary and secondary
vertices. The discriminant was trained and tested using
simulated tt̄þ jets and W þ jets samples.
A working point for the training sample was chosen for

the analysis, yielding a good balance between rejecting
light-flavor SVs and retaining events corresponding to
compressed SUSY signals. Figure 7 shows the b, c, and
light-quark SV tagging efficiencies as functions of pT.
Averaged over the pT range, the b quark SV tagging
efficiency is approximately 80%. The light-quark misiden-
tification efficiency is about 25% for the pT distribution

FIG. 7. Distributions of the b, c, and light-quark SV tagging
efficiencies, as functions of the SV candidate pT, for the chosen
working point. The SV flavor identities are determined from the
generator-level flavor information and ΔR matching to SV
candidates.

FIG. 6. Efficiencies of lepton candidates satisfying baseline
requirements to be identified in the gold, silver, and bronze
categories for prompt leptons (solid circles) and misidentified
leptons (open squares), evaluated in simulated tt̄þ jets events.
Electrons (muons) are shown in the upper (lower) panel. As the
three categories are mutually exclusive and exhaustive for base-
line leptons, these efficiencies sum to one for each source in each
lepton pT bin.
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found in tt̄þ jets events. Scale factors are derived to take
into account differences between the FastSim signal sample
simulations and the full detector simulation, with values
within 5% of unity. Scale factors which take into account
differences between the data and simulation are found
using the fit to control samples in data described in
Sec. VII.

V. KINEMATIC EVENT RECONSTRUCTION

In order to address the challenges associated with com-
pressed sparticle mass spectra, events are selected based on
significant ISR activity that causes the sparticle system to
recoil resulting in observable pmiss

T from the momentum
received by the invisible sparticles. This event topology is
illustrated in Fig. 8, with Ia=b and Va=b representing the
systems of invisible and visible sparticle decay products,
respectively, associated with the decay chains resulting
from the parent particles Pa and Pb. Analyzing events
according to this generic decay tree, with a variable identity
and number of particles corresponding to Ia=b and Va=b,
allows one to specifically tailor observables to exploit the
features of this scenario using the recursive jigsaw
reconstruction (RJR) [101–103] algorithm. Ideally, this
leads to assignment of the Ia=b and Va=b systems to
individual candidate parent sparticle systems, Pa=b, col-
lectively referred to as the S system, and an accompanying
recoiling ISR system. Correspondingly, the S and ISR
systems are treated as decay products of a singular center-
of-mass (CM) system.
In the SUSY events targeted by this analysis, there are

two types of unknowns: kinematic unknowns resulting
from undetected invisible particles and combinatorial
unknowns associated with the correct assignment and
interpretation of visible particles. Within the decay tree
framework, the kinematic unknowns correspond to the
four-vectors of the two invisible systems Ia and Ib. The

combinatorial unknowns involve determining how the
reconstructed particles (leptons, jets, SVs) are assigned
to the Va, Vb, and ISR groups. Assuming that the
combinatorial assignments have been made, such that
the four-vectors plab

Va=b
and plab

ISR are measured, the kinematic

unknowns associated with the invisible particles are deter-
mined by applying a combination of assumed and mea-
sured constraints, along with algorithmic jigsaw rules (JRs)
[103], which match the structure of the decay tree shown in
Fig. 8. In this case, the masses [104] of the individual
invisible particles (MIa ;MIb ) are assumed to be zero, while
the measured p⃗miss

T is interpreted as the vector sum of their
transverse momenta, with

MIa ¼ 0; MIb ¼ 0; p⃗lab
Ia;T

þ p⃗lab
Ib;T

¼ p⃗miss
T : ð2Þ

With these constraints, the remaining kinematic
unknowns are the total mass of the system of all invisible
particles in the event (mI), the longitudinal momentum of
that system in the lab (plab

I;z ), and the direction of the “decay
axis” corresponding to how the momentum of I is shared
between Ia and Ib. The RJR algorithm proceeds by
parametrizing these unknowns as components of the
velocities relating the reference frames appearing in
Fig. 8. As all of the measured visible four-vectors corre-
spond to the lab frame, the first of the velocities to consider
is β⃗labCM relating the CM frame to the lab frame. Among the
kinematic unknowns, β⃗labCM depends only on mI and plab

I;z ,
meaning these quantities can be determined independently
of others.
The first JR applied is the invisible mass rule [103],

which assigns tomI the smallest Lorentz-invariant quantity
(as a function of measured visible particles’ four-vectors)
that will ensure consistency of the approximate event
reconstruction (no tachyonic particles), with

M2
I ¼ M2

V − 4MVa
MVb

: ð3Þ

This can be qualitatively understood as giving mass to the
invisible particle system resulting from sparticle decays,
based on the mass of the corresponding visible decay
products. This essentially exploits the fact that the ori-
entation of the invisible particles relative to each other is
correlated with that of the visible ones, as both arise from
the same decays depicted in Fig. 8. As the individual
invisible particles have masses constrained to zero, mI is
adjusted for the individual visible system masses, MVa=b

.
The unknown plab

I;z , or equivalently β
lab
CM;z, is assigned via

the invisible rapidity rule [103], by assigning the value of
βlabCM;z which minimizes MCM,

βlabCM;z ¼ argmin
βlabCM;z

MCM: ð4Þ

FIG. 8. Decay tree diagram used to analyze events. Here S
represents the total system of candidate sparticles, with Pa=b

representing pair-produced SUSY parent particles; Ia=b and Va=b

represent the systems of invisible and visible sparticle decay
products, respectively. The S system, along with the recoiling
ISR system, are viewed as decay products of the entire CM
system of the colliding partons with constituent center-of-mass
energy,

ffiffiffî
s

p
.
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This choice has two important consequences. Firstly, it
avoids assigning erroneously high values of MCM with an
incorrect choice, avoiding promoting background events to
appear more interesting than they actually are. Secondly, it
ensures that the analytic expression for MCM (and all
observables following from this choice) is independent of
the true value of βlabCM;z and so longitudinally boost
invariant. In fact these quantities are invariant to transverse
boosts up to order ðβlabCM;TÞ2. The estimator for MCM

becomes the well-known transverse mass of the I and V
systems.
With β⃗labCM assigned, the four-vectors of all the visible

particles can be evaluated in the CM frame, and sub-
sequently the S frame. Determining the remaining kin-
ematic unknowns can now be viewed as assigning β⃗SPa=b

, the
velocities relating the S frame to the rest frames of its
children, conditioned on the previous assignments made
earlier in the decay tree. Using the invisible MinMasses2

rule [103], these velocities are determined according to the
equation,

β⃗SPa
; β⃗SPb

¼ argmin
β⃗SPa ;β⃗

S
Pb

ðM2
Pa

þM2
Pb
Þ; ð5Þ

and subject to the constraints implied by previous choices
and measurements. The practical effect of this choice is
similar to that of the previous longitudinal boost, in that the
mass estimators (or more accurately, this sum) become
independent of the true, unknown, β⃗SPa=b

. With the appli-
cation of this last JR, all of the underconstrained kinematic
quantities associated with invisible particles have been
assigned.
The combinatorial unknowns associated with how vis-

ible objects are assigned to groups in the decay tree
interpretation are determined in a manner similar to their
kinematic analogs, where choices are factorized recursively
according to when they appear in the decay. In this case, the
first partitioning choice is how to split the total collection of
visible, reconstructed objects in the event, VIS, between
the V and ISR systems. As for kinematic quantities, these
assignments are determined by effectively picking the
grouping that minimizes MS and MISR simultaneously.
Explicitly, the combinatorial MinMasses rule [103] pre-
scribes

fV; ISRg ¼ argmax
V;ISR

pCM
S ; ð6Þ

where pCM
S ¼ jp⃗CM

S j ¼ jp⃗CM
ISRj is the momentum of the S

system in theCM, which, withMCM fixed, will increase as
MS and MISR decrease. The maximization is over all the
different ways jets can be exclusively partitioned into Vand
ISR groups.

The next partitioning choice is where the group V is split
into Va and Vb according to the combinatorial
MinMasses2 rule [103], with

fVa;Vbg ¼ argmin
Va;Vb

ðM2
Pa

þM2
Pb
Þ: ð7Þ

The practical effect of choosing partitions of objects based
on mass minimization is similar to exclusive jet clustering,
where the invariant mass is used as a distance metric to
group objects that are traveling in similar directions.
A hierarchy of JRs is defined to remove the combina-

torial dependencies on the kinematics of the invisible
particles, with combinatorial decisions proceeding down
the decay tree and followed by the kinematical ones. With
this prescription applied, an event is fully reconstructed, as
all of the four-vectors of the states shown in Fig. 8 are either
measured or assigned.
Observables are constructed to be sensitive to the mass of

invisible particles in the event, characteristic of the com-
pressed signals being sought. LSPs will receive little
momentum from the decays where they are produced,
and the resulting pmiss

T will be typically negligible. The
massive invisible particles (which are nearly at rest in the S
frame) will receive an out-sized fraction of the momentum
from the ISR kick among the S decay products, as their rest
energy is largest, leading to potentially large pmiss

T . This
mechanism introduces a correlation between the ISR
system and p⃗miss

T , such that

p⃗miss
T ≈ −

mI

mP
p⃗CM
ISR;T: ð8Þ

This relation can be further refined using the RJR recon-
structed quantities and defining the variable RISR as

RISR ¼ jp⃗CM
I · p̂CM

ISRj
jp⃗CM

ISRj
≈
mI

mP
: ð9Þ

The distribution of RISR of a selection of compressed
electroweakino TChiWZ model events is shown in Fig. 9
(left), where it is observed to peak at mI=mP as expected.
With an absence of genuine, massive invisible particles, the
SM backgrounds do not exhibit the same peaking behavior,
with larger values of RISR suppressed, as apparent in Fig. 9
(right). While observables sensitive to the absolute size of
mass splittings in compressed scenarios can struggle to
differentiate between signal and background, the resolution
(and hence discriminating power) of RISR improves with
increasing compression. The peaking behavior of RISR
depends predominantly on the event topology and particle
masses, and is observed to be largely independent of the
final state. Regardless of how particles in these events
decay, RISR depends almost exclusively on the sparticle
masses. The distribution of RISR for the SM backgrounds
also behaves qualitatively similarly in different final states.
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The pISR
T observable quantifies the magnitude of the ISR

kick to the sparticle system (pISR
T ¼ jp⃗CM

ISR;Tj). As one might
naively expect, the more kick, the more distinctive the

peaking behavior of RISR for signals with massive invisible
particles. This behavior is illustrated in Fig. 10, where the
RISR resolution improves for compressed signals with
increasing pISR

T . Conversely, the SM backgrounds have
increasingly suppressedRISR distributions as pISR

T grows, as
seen for the tt̄þ jets background in Fig. 10. In this analysis,
pISR
T is used to define signal-enriched and control regions

(CRs) by exploiting this behavior.
Additional observables sensitive to information inde-

pendent from RISR and pISR
T , which reflect the R-parity-

conserving decay topology, can be constructed by further
resolving the decay kinematics inside the sparticle decay
system S “perpendicular” to the axis of the ISR boost. Two
additional approximate reference frames are defined rela-
tive to the S frame according to,

βSV ¼ argmin
βSV

ðΛβSV
pS
VÞ0; βSI ¼ argmin

βSI

ðΛβSI
pS
IÞ0; ð10Þ

where βSV and βSI are the velocities (restricted along the

direction of the boost β⃗CMS ) relating the S frame to the
respective reference frames. The V and I systems are at rest
along the β̂CMS axis, and ðΛβSV

pS
VÞ0 is the energy of the

visible system in this frame after the Lorentz transformation
ΛβSV

, which is minimized. As opposed to simply projecting

the four-vectors pS
Va=b

and pS
Ia=b

individually into the plane

perpendicular to the β̂CMS boost direction, projecting the
entire V and I groups maintains information along this axis
and is insensitive to the previous inexact approximation.
From the “perpendicular” four-vectors in the two S-

adjacent frames, defined as

pS
Va=b;⊥ ¼ ΛβSV

pS
Va=b

; pS
Ia=b;⊥ ¼ ΛβSI

pS
Ia=b

; ð11Þ

observables can be constructed,

M2
Pa=b;⊥ ¼ ðpS

Va=b;⊥ þ pS
Ia=b;⊥Þ2;

M2
S;⊥ ¼ ðpS

Va;⊥ þ pS
Vb;⊥ þ pS

Ia;⊥ þ pS
Ib;⊥Þ2: ð12Þ
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FIG. 10. Distributions of pISR
T vs RISR in events with 0 leptons for simulated top squark signals in the T2tt model with parent mass of

500 GeV and a LSP mass of 400 GeV (left), LSP mass of 480 GeV (center), and tt̄þ jets background (right).
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While representing some independent information, the
masses MPa=b;⊥ and MS;⊥ are not entirely uncorrelated.
As the reconstruction in the S frame is executed by
choosing several unknowns by minimizing M2

Pa
þM2

Pb
,

a summary mass variable, M⊥, is defined from a combi-
nation of these masses as

M⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Pa;⊥ þM2
Pb;⊥

2

s
; ð13Þ

such that it is related to the average (of squares) of the
individual mass estimators for each sparticle parent.
The distribution of M⊥ is shown in Fig. 11 for com-

pressed top squark signals and the SM backgrounds. As the
individual invisible particle masses are set to zero in the
reconstruction, their expected contribution to M⊥ is not

accounted for, meaning that M⊥ is not sensitive to the
massesmPa=b

but rather to the mass splittingsmPa=b
−mIa=b .

The resulting M⊥ distributions for signal events exhibit a
kinematic endpoint at mPa=b

−mIa=b (modulo resolution
effects), while backgrounds have falling distributions
sensitive to the mass scale of particles appearing in the
events.
The RISR and M⊥ variables are shown in Fig. 12 for

various signal and background processes. The compressed
SUSY signals appear as 2D “bumps” in the RISR vs M⊥
plane, with the location dictated by the sparticle masses.
Simultaneously, backgrounds are dispersed over the larger
RISR and M⊥ phase space, with larger values of RISR
suppressed for increasingly large M⊥.
An additional variable, complementary toM⊥, is defined

from a different combination of the “perpendicular”
masses,

γ⊥ ¼ 2M⊥
MS;⊥

: ð14Þ

The observable γ⊥ is sensitive to the asymmetry of the S
system decay, taking larger values (closer to 1) when the
event is maximally imbalanced (invisible particles recoiling
together against visible). While the observable is not as
powerful a discriminant as RISR or M⊥, it tends to larger
values for signals relative to backgrounds and is also used
in the event categorization. It is particularly effective
against certain, otherwise difficult backgrounds, such as
nonresonant SMWW → 2l2ν production, where the decay
topology mimics that of R-parity-conserving SUSY.
The analysis proceeds by counting objects (leptons, jets,

b-tagged jets, and b-tagged SVs) that were assigned to
either the sparticle S system or the ISR system with the
RJR reconstruction. Any leptons reconstructed in the event
are automatically assigned to the S system in the event
interpretation, while jets and SVs can appear as either
coming from sparticles or ISR. One of the most important
object counting observables is the multiplicity of jets
assigned to the S system, NS

jet. While the distribution of

NS
jet exhibits large variations depending on the level of

compression of the signal model, the distribution of NISR
jet ,

the number of jets assigned to the ISR system in each
event, is more uniform between differing signal masses
and, more relevantly, is more similar to backgrounds.
Furthermore, NS

jet is a powerful discriminant when signals
have mass splittings large enough to produce multiple
above-threshold jets in sparticle decays. For this analysis,
the only requirement on NISR

jet is that there is at least one jet
assigned to the ISR system. For both signal and back-
ground, larger RISR and smallerM⊥ are typically associated
with lower NS

jet, with much weaker correlations for signals
than for SM backgrounds.
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FIG. 11. Distributions of M⊥ in one lepton final states for
simulated events: compressed T2tt signal events with a parent top
squark mass of 500 GeV and LSP masses ranging from 325 to
480 GeV (upper) and the SM backgrounds (lower).
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The analysis also categorizes events according to the
number of jets that are tagged as coming from b quarks in
each of the S and ISR systems, NS

b tag and NISR
b tag, respec-

tively. The tt̄þ jets background often leads to at least one
b-tagged jet in the ISR system; this arises from cases
where b-tagged jets from the top quark decays get assigned
erroneously to the ISR system. This observation is used in
the analysis by separating events with NISR

b tag ≥ 1 from those
with none in order to isolate tt̄þ jets contributions. Also,
requiring large NS

b tag and NISR
b tag ¼ 0 selects a large fraction

of top squark signal events, while rejecting most of the
Z=γ � þjets and tt̄þ jets backgrounds.
The final object multiplicity observable used in the

analysis is the number of soft, stand-alone SVs assigned
to the S system, NS

SV. The SV multiplicity is nearly
identical among the different background events, with
top squark signals having a higher probability of observing

NS
SV ≥ 1. In addition to categorizing based on the presence

or absence of an SV in the S system, the jηj distribution of
identified SVs also serves as a useful discriminant. SVs
associated with sparticle decays tend to be more central
than those from background processes, especially back-
grounds such as W þ jets where genuine bottom quarks
usually arise from radiation or misidentification, as illus-
trated in Fig. 13. The analysis uses the observable jηSSVj,
defined as the maximum absolute value of the η found for
those SVs in the S system to categorize events with SVs
into central (jηSSVj < 1.5) and forward regions, with the
latter acting as a CR for constraining the SV reconstruction
efficiencies and kinematics with data.

VI. EVENT SELECTION AND CATEGORIZATION

The analysis of data begins with preselection require-
ments that remove events that are not consistent with the
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compressed phase space of interest. Events are then
categorized into mutually exclusive analysis regions that
are defined according to a combination of object multi-
plicities assigned to the S and ISR systems as well as
categorization based on kinematic variables. The events
falling in each region are further binned in 2D in the
primary sensitive variables, RISR and M⊥, with bin boun-
daries common among regions with the same lepton and
NS

jet multiplicities. This analysis implements a fitting
approach based on control samples in data (described in
Sec. VII) to model background, accounting for differences
in lepton flavor and source in the rates of their contribu-
tions, while also considering potential kinematic data/
simulation deviations associated with the leptons, jets,
and SVs. Some of the categories effectively act as back-
ground-dominated CRs used to constrain both the

normalization and shape of the RISR and M⊥ bin yields
in signal-sensitive ones. A subset of these analysis bins
(over many categories) are identified as having negligible
expected signal yields (for all of the signal models
considered in this analysis, through explicit evaluation)
and are designated as control regions for use in blinded fits
to data and model independent interpretations.
Events are selected from the pmiss

T trigger datasets for
each year by requiring that the offline pmiss

T > 150 GeV
and applying the pmiss

T related event filters [61]. These
events must have at least one visible object assigned to the
S system and at least one jet assigned to the ISR system.
To provide a moderate ISR kick, only events with pISR

T >
250 GeV are retained and it is further required that RISR >
0.5 thus primarily targeting signals with LSP masses
exceeding about half the parent sparticle mass. A
jΔϕp⃗miss

T ;V j < π=2 requirement ensures that the visible
and invisible systems associated with sparticle decays
are pointing in the same transverse hemisphere. A further
event filter requirement is used to remove events that are
poorly modeled in simulation. The magnitude of the vector
sum of the transverse momentum of the center of mass
frame (pCM

T ) and the azimuthal angle between the center of
mass system and the invisible system (ΔϕCM;I) are defined.
Larger values of pCM

T tend to come from out-of-acceptance
noise or misreconstruction of physics objects, including
pmiss
T , while ΔϕCM;I will peak near 0 or π if there are

misreconstructed events in data. Events are removed if
pCM
T > 200 GeV or ΔϕCM;I is near 0 or π (with a pCM

T -
dependent requirement). To account for inoperable HCAL
endcap sectors during 2018 data taking, events are also
discarded from the 2018 dataset, if there are any leptons or
jets passing the respective object selections and within the
(−3.2 < η < −1.2, −1.77 < ϕ < −0.67) region. Events
with lepton pairs having invariant masses consistent with
J=ψ meson decays are rejected.
Categorization of events can be imagined with a hier-

archical ordering using a notation, NLltype
lqualNJ

NsvS
NbS X

kin
NbISR,

that indicates the reconstruction category of the event, with
NL corresponding to the number of reconstructed leptons;
0, 1, 2, and 3, with events containing more than three
reconstructed leptons discarded. These categories are
further subdivided by lepton flavor, charge, and
reconstruction quality (gold, silver, bronze), appearing as
superscripts and subscripts of NL, respectively. The next
tier of categorization is by NS

jet (NJ), the multiplicity of
reconstructed jets assigned to the S system in each event.
Depending on the region, there are then further subdivi-
sions according to the number of b-tagged jets observed in
the S and ISR systems (NbS and NbISR), or the number of
SVs assigned to S (NsvS), which are further split into SV
central and forward categories (svc and svf, respectively).
Finally, some categories have additional subdivisions
according to the kinematic variables pISR

T and γ⊥, with
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FIG. 13. Distributions of max jηSSVj in final states with 0 leptons
and ≥ 1 SVs associated with the S system, for simulated SM
background events (upper) and various top squark signal models
(lower).
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each variable being used to define a “low” signal-depleted
region (denoted by p−; γ−, respectively) and a “high”
signal-enriched region (denoted by pþ; γþ, respectively),
leading to potentially four such separate subdivisions
(p− γ−, p− γþ, pþ γ−, and pþ γþ). The cases where
the four kinematic subdivisions are employed are denoted
by “p� γ�” in the category definition tables. In all cases,
γ− corresponds to γ⊥ < 0.5 and γþ corresponds
to γ⊥ > 0.5.
There are 84 exclusive zero lepton (0L) categories

defined as outlined in Table I. Within each of these
categories, events are counted in bins of RISR and M⊥,
with the definition of theNS

jet -dependent bin boundaries for
all of the 0L regions listed in Table II. In the limit of
extreme mass spectrum compression it is still possible to
reconstruct soft SVs, therefore, dedicated 0L categories that
require the presence of soft SVs associated with the S
system are introduced for regions with lower S jet multi-
plicities. For larger NS

jet, there are regions ranging from two
jets (2J) to five jets (5J) that target intermediate mass
splittings in models such as T2tt and T2bW. The 0L
categories with higher S object multiplicities and bins with
lower RISR values are very good at providing constraints for
QCD multijet and other backgrounds.
The categorization of the one-lepton (1L) regions is the

most expansive in the analysis with 178 exclusive regions,
as they are applicable to a wide range of signals. Additional
CRs are defined based on the lepton reconstruction quality,
allowing for further background constraints among regions,
particularly allowing for the shapes and normalization of
various types of lepton contributions to be measured from
data. Depending on NS

jet, 1L events can be categorized by
either the lepton flavor, or charge [to better control
WðlνÞ þ jets backgrounds], or both. As in 0L, the 1L
categories include dedicated regions requiring tagged SVs,
which are most relevant for the most compressed signals
also having soft heavy-flavor decays. The 1L category
definitions are listed in Table III. The RISR −M⊥ bin

definitions within each of these regions are shown in
Table IV.
For the two lepton (2L) final-state categorization, the

gold regions are defined as having two gold leptons.
Similarly, silver categorization requires one gold and one
silver or both silver, while bronze only includes the gold-
bronze and silver-bronze cases. The 2L categories with
gold leptons are signal rich, while the silver and bronze
ones are important for constraining nonprompt- and mis-
identified-lepton backgrounds. Figure 14 shows an exam-
ple RISR −M⊥ distribution with the bin boundaries overlaid
for the 2L, 0 S-jet category. The 2L category definitions are
presented in Table V. Depending on the NS

jet multiplicity,
different combinations of lepton charge and flavor are used
to further split categories. In the 2L category with 0 S jets,
the gold category includes separate regions for each of the
lepton flavor combinations, while the region requiring a
soft SV tag integrates over lepton flavor and charge. There
is also a same-sign (SS) lepton category, which is integrated
over the lepton flavor.
Categories are established for cases where the dilepton

pair is consistent with a “Z�” candidate, specifically when
there are one or two S jets present. Here, these Z�
candidates, have opposite-sign (OS) leptons with same
flavor (SF) also in the same S-system hemisphere. The

TABLE II. RISR andM⊥ bin definitions for 0L regions for each
NS

jet multiplicity. The highest (5J) is inclusive (NS
jet ≥ 5). The

lower RISR bins denoted as “CR” are used as control regions.

NS
jet RISR M⊥ (GeV) Nbins

0J [0.95, 0.985] CR ½0;∞Þ 4
[0.985, 1] [0, 5] or [5, 10] or ½10;∞Þ

1J [0.8, 0.9] CR ½0;∞Þ 6
[0.9, 0.93] CR ½0;∞Þ
[0.93, 0.96] [0, 20] or ½20;∞Þ
[0.96, 1] [0, 15] or ½15;∞Þ

2J [0.65, 0.75] CR ½0;∞Þ 6
[0.75, 0.85] CR ½0;∞Þ

[0.85, 0.9] ½0;∞Þ
[0.9, 0.95] [0, 20] or ½20;∞Þ
[0.95, 1] ½0;∞Þ

3J [0.55, 0.65] CR ½0;∞Þ 6
[0.65, 0.75] CR ½0;∞Þ
[0.75, 0.85] ½0;∞Þ
[0.85, 0.9] [0, 50] or ½50;∞Þ
[0.9, 1] ½0;∞Þ

4J [0.55, 0.65] CR ½0;∞Þ 5
[0.65, 0.75] CR ½0;∞Þ
[0.75, 0.85] [0, 80] or ½80;∞Þ
[0.85, 1] ½0;∞Þ

5J [0.5, 0.6] CR ½0;∞Þ 5
[0.6, 0.7] CR ½0;∞Þ
[0.7, 0.8] [0, 150] or ½150;∞Þ
[0.8, 1] ½0;∞Þ

TABLE I. Category definitions for 0L regions for each NS
jet

multiplicity. The highest (5J) is inclusive (NS
jet ≥ 5). There are 84

exclusive categories in total for the 0L regions.

NS
jet NS

b tag NISR
b tag NS

SV Kin pISR
T (GeV)

0J 1 or ≥2 svc or svf ½350;∞Þ
1J ≥ 1 svc or svf ½400;∞Þ

0 or 1 0 or ≥1 0 p− or pþ [400, 550] or ½550;∞Þ
2J 0 or 1 0 or ≥1 p� γ� [350, 500] or ½500;∞Þ

≥2
3J 0 or 1 0 or ≥1 p� γ� [350, 500] or ½500;∞Þ

≥2
4J 0 or 1 0 or ≥1 p� γ� [350, 500] or ½500;∞Þ

≥2
5J 0 or 1 0 or ≥1 p− or pþ [350, 500] or ½500;∞Þ

≥2
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“noZ” categorization is for OS, different-flavor (DF)
events, or OS-SF events with the leptons appearing in
different hemispheres. These regions also have an SS
dilepton category, with all three of these classes integrated
over lepton flavor. For all of the 2L silver and bronze
regions, leptons are separated by flavor (ee, μμ, or eμ) in
order to better serve as CRs capable of disentangling the
contributions from different nonprompt-lepton sources and
processes. Bin boundaries in RISR and M⊥ for all the 2L
regions are summarized in Table VI.

For the three-lepton (3L) categories, the gold categories
are defined such that all three leptonsmust have gold quality.
The subsplittings for these include eventswith 0 or≥ 1S-jet,
the presence of a Z� candidate, no Z boson, or three same-
sign leptons. Throughout the 3L category there is no b-
tagged jet counting and no other splitting of categories based
on pISR

T , γ⊥, or the presence of SVs. The 3L silver category
includes gold-gold-silver and gold-silver-silver combina-
tions for the individual lepton quality, while the 3L bronze
category includes gold-gold-bronze and gold-silver-bronze
quality combinations. The subcategorization for all lepton
quality criteria in 3L is the same. The definitions of the 3L
analysis regions are presented in Table VII. There are noM⊥
bins in the 3L categories (one integrated bin), only bins in
RISR, with bin boundaries for 3Lwith 0 S jet and 3Lwith 1 S
jet categories summarized in Table VIII.
While the signal model-dependent results involve a

simultaneous fit to all of the bins and categories included
in this analysis, a subset of CR bins are identified in order to
both study the fit model in data prior to the unblinding of
signal-sensitive regions, and also to derive model-indepen-
dent upper limits on a subset of bin/category combinations.
To be included as a CR bin, there must be less than 1%
signal contamination (relative to expected backgrounds) for
any of the signals considered in the analysis. The CR bins
account for 648 out of the total, 2443 bins, encompassing
62% of the expected SM background events. In general, the
chosen CR bins are at lower values of RISR, where expected
signal-to-background is significantly less favorable. A
simultaneous fit of the CR bins is able to constrain all
of the nuisance parameters with data.

TABLE III. Category definitions for 1L regions for each NS
jet multiplicity. The highest (4J) is inclusive (NS

jet ≥ 4). There are a total of
178 categories for the 1L regions.

NS
jet Lep qual Lep cat NS

b tag NISR
b tag NS

SV Kin pISR
T (GeV)

0J Gold lþ or l− ≥1 svc or svf ½350;∞Þ
Silver or bronze e or μ

Gold eþ or e− or 0 or ≥1
μþ or μ− 0 p− or pþ [350, 500] or ½500;∞Þ

Silver or bronze e or μ

1J Gold ≥1 svc or svf ½350;∞Þ
Silver or bronze e or μ

Gold lþ or l− 0 or 1 0 or ≥1 0 p�γ� [350, 500] or ½500;∞Þ
Silver or bronze e or μ

2J Gold 0 or 1 0 or ≥1
≥ 2 p�γ� [350, 500] or ½500;∞Þ

Silver or bronze e or μ

3J Gold 0 or 1 0 or ≥1
≥2 p�γ� [350, 500] or ½500;∞Þ

Silver or bronze e or μ
4J Gold 0 or 1 0 or ≥1

≥2 p�γ� [350, 500] or ½500;∞Þ
Silver or bronze e or μ

TABLE IV. RISR andM⊥ bin definitions for 1L regions for each
NS

jet multiplicity. The highest (4J) is inclusive (NS
jet ≥ 4). The

lower RISR bins denoted as “CR” are used as control regions.

NS
jet RISR M⊥ (GeV) Nbins

0J [0.96, 0.98] CR [0, 10] or ½10;∞Þ 5
[0.98, 1] [0, 5] or [5, 10] or ½10;∞Þ

1J [0.85, 0.9] CR [0, 30] or ½30;∞Þ 5
[0.9, 0.95] [0, 20] or ½20;∞Þ
[0.9, 0.95] ½0;∞Þ

2J [0.8, 0.85] CR [0, 70] or ½70;∞Þ 5
[0.85, 0.9] [0, 50] or ½50;∞Þ
[0.9, 1] ½0;∞Þ

3J [0.65, 0.75] CR [0, 100] or ½100;∞Þ 5
[0.75, 0.85] [0, 80] or ½80;∞Þ
[0.85, 1] ½0;∞Þ

4J [0.6, 0.7] CR [0, 180] or ½180;∞Þ 5
[0.7, 0.8] [0, 150] or ½150;∞Þ
[0.8, 1] ½0;∞Þ
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To derive model-independent limits, combinations of the
previously defined “signal” bins are combined into seven
“superbins,” defined in Table IX. Five of the superbins were
derived by systematically examining the expected signal
significance for clusters of bins from admixtures of signals
corresponding to five groupings of top squark, electro-
weakino, and slepton pair models with low and intermedi-
ateΔm. To look for b-enriched signals similar to those from
top squark pair decays, there are three superbins for low
Δm and one for medium Δm. One of these low-Δm
superbins was defined with only low-momentum SV
candidates. One superbin is defined targeting signal models

with sparticle decays to W or Z bosons, such as TChiWZ
and TChiWW. For signals consistent with compressed
slepton decays with Δm < 10 GeV, another superbin is
similarly defined to feature two leptons with OS-SF. An
additional superbin is defined for 3L final states.

VII. BACKGROUND AND SIGNAL FIT MODEL

A maximum likelihood fit is performed simultaneously
to all of the 2443 RISR=M⊥ bins in the 392 categories, as
defined in the previous section. The fit model is imple-
mented with the Combine statistical analysis tool [105] based
on the RooFit [106] and RooStats frameworks [107]. In the fit
model, the likelihood is modeled as a product of Poisson
probability distributions, one for each bin, with a rate
parameter equal to the total expected event yield in that bin,
calculated as the sum of contributions from different
processes. The primary dependence on simulation in the
background modeling is associated with the nominal initial
values of these process-dependent bin yields (accounting
for all previously described scale factors and corrections).
The modeling of different background contributions in

the fit (e.g., W þ jets, tt̄X þ jets) is further subdivided by
number and type of nonprompt leptons in defining the
individual modeled processes. The nominal normalization
for each process is modified by a collection of nuisance
parameters, with each applied to one or (typically) more
processes in a given category or bin, multiplying yields by a
scale factor that is profiled in the maximum likelihood fit.
This means that, for example, dibosons with one electron
coming from a heavy-flavor decay and dibosons with two
nonprompt muons are modeled as different processes with
separate bin-dependent yields. This allows for a single
nuisance parameter to modify the event yield of all
diboson-associated processes or, independently, the yield
of all events with nonprompt electrons from a single
nonprompt source.
The nuisance parameters modeled in the fit are either

externally constrained or constrained with data. Externally
constrained parameters are associated with auxiliary mea-
surements, performed using datasets independent of those
considered in this analysis, from which prior uncertainties
are correspondingly derived [57,96]. These prior uncer-
tainties, modeled as lognormal distributions, further multi-
ply the likelihood such that externally constrained
parameters are informed by both auxiliary measurements
and the dataset selected in this analysis. Alternatively,
parameters are freely floating in the fit, constrained instead
using categorization and kinematic sidebands correspond-
ing to CRs in data.
Data from all three years (2016–2018) are fit simulta-

neously in all categories and bins, with nuisances modeled
as either common to all years or independent. There are
numerous systematic uncertainties for which the parame-
ters are determined in the fit. Each of the systematic
uncertainty contributions, along with details of their

FIG. 14. Distributions of RISR vs M⊥ for a TChiWZ signal
sample with a parent mass of 300 GeV and a LSP mass of
290 GeV (upper) and the corresponding total SM background
(lower) for the 2L, 0 S-jet category. The dashed lines show the bin
edges for this particular jet multiplicity.
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number, year-by-year implementation, and size range, are
summarized in Table X.

A. Externally constrained systematic uncertainties

Uncertainties in the collected integrated luminosity are
split by year, with correlations corresponding to common

systematic uncertainty sources [108–110]. The uncertainty
in the simulations of background processes resulting from
missing higher-order corrections is estimated by varying
the renormalization and factorization scales by a factor of
two, with each of the two scales taken to be the same in
each variation [111,112]. Systematic uncertainties associ-
ated with the modeling of parton distribution functions are
estimated using 100 variations provided with the NNPDF
sets, while the effect of the uncertainty in the value of the
strong coupling constant is estimated by varying the value
αSðmZÞ ¼ 0.1180 by �0.0015 [113]. Simulated events are
reweighted such that the distribution of the number of

TABLE V. Category definitions for 2L regions for eachNS
jet multiplicity. The highest (2J) is inclusive (NS

jet ≥ 2). There is a total of 115
exclusive 2L categories.

NS
jet Lep qual Lep cat NS

b tag NISR
b tag NS

SV kin pISR
T (GeV)

0J Gold or silver ≥ 1 svc or svf ½250;∞Þ
Or bronze

Gold eþe− or μþμ− 0 or ≥ 1 0 p�γ� [250, 350] or ½350;∞Þ
or e�μ∓

SS ½250;∞Þ
Silver or bronze ee or μμ or eμ

1J Gold Z� or no Z (OS) 0 or 1 0 or ≥ 1 p�γ� [250, 350] or ½350;∞Þ
SS ½350;∞Þ

Silver or bronze ee or μμ or eμ
2J Gold Z� or no Z (OS) 0 or ≥ 1 0 or ≥ 1 p�γ� [250, 350] or ½350;∞Þ

SS ½350;∞Þ
Silver or bronze ee or μμ or eμ

TABLE VI. RISR and M⊥ bin definitions for 2L regions for
eachNS

jet multiplicity. The highest (2J) is inclusive (NS
jet ≥ 2). The

lower RISR bins denoted as “CR” are used as control regions.

NS
jet RISR M⊥ (GeV) Nbins

0J [0.6, 0.7] CR [0, 50] or ½50;∞Þ 10
[0.7, 0.8] CR [0, 40] or ½40;∞Þ
[0.8, 0.9] [0, 30] or ½30;∞Þ
[0.9, 0.95] [0, 20] or ½20;∞Þ
[0.95, 1] [0, 15] or ½15;∞Þ

1J [0.5, 0.6] CR [0, 100] or ½100;∞Þ 10
[0.6, 0.7] CR [0, 80] or ½80;∞Þ
[0.7, 0.8] [0, 60] or ½60;∞Þ
[0.8, 0.9] [0, 40] or ½40;∞Þ
[0.9, 1] [0, 30] or ½30;∞Þ

2J [0.5, 0.65] CR [0, 100] or ½100;∞Þ 7
[0.65, 0.75] CR [0, 80] or ½80;∞Þ
[0.75, 0.85] [0, 60] or ½60;∞Þ
[0.85, 1] ½0;∞Þ

TABLE VIII. RISR and M⊥ bin definitions for 3L regions for
eachNS

jet multiplicity. The highest (1J) is inclusive (NS
jet ≥ 1). The

lower RISR bins denoted as “CR” are used as control regions. An
additional control region with 0.5 ≤ RISR < 0.6 is also used with
the 0 S-jet region.

NS
jet RISR M⊥ (GeV) Nbins

0J [0.6, 0.7] CR ½0;∞Þ 4
[0.7, 0.8] CR ½0;∞Þ
[0.8, 0.9] ½0;∞Þ
[0.9, 1] ½0;∞Þ

1J [0.55, 0.7] CR ½0;∞Þ 3
[0.7, 0.85] ½0;∞Þ
[0.85, 1] ½0;∞Þ

TABLE VII. Category definitions for the 3L regions for each NS
jet multiplicity. The highest (1J) is inclusive

(NS
jet ≥ 1). There is a total of 15 exclusive 3L categories.

NS
jet Lep qual Lep cat pISR

T (GeV)

0J Gold or silver or bronze Z� or no Z or l�l�l� ½250;∞Þ
1J Gold or silver or bronze Z� or no Z or l�l�l� ½250;∞Þ
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additional pileup interactions matches that observed over
the different data-taking periods, with associated systematic
uncertainties evaluated by varying the total inelastic cross
section within measured uncertainties [114].
Differences between simulation and data in the efficien-

cies of lepton identification requirements for prompt leptons
are evaluated using the tag-and-probe method applied to Z
boson and J=ψ meson events, as described in Sec. IV.
Independent scale factors and corresponding uncertainties
are derived for electrons and muons, for each of the three
data-taking years, and are separated by loose selection,
identification, isolation, and impact parameter requirements.
Uncertainties in the jet energy scale and resolution are
modeled independently for each of the three data-taking
periods [115,116], with the effects of changes to the

momentum of jets propagated to the pmiss
T . Similar year-

independent nuisance parameters associated with the effects
of unclustered energy on pmiss

T are included. The scale
factors associated with differences for b jet tagging between
simulation and data have corresponding nuisance parame-
ters separated by source (heavy-flavor and light-flavor quark
or gluon jets) and by year, with an additional parameter for
each source accounting for correlations between years.
The efficiency as a function of pmiss

T to pass the trigger
requirements has been measured with data collected using
single-lepton reference triggers, and is compared to that
found using background sample simulations to derive scale
factors and corresponding uncertainties. These factors
include variations depending on HT (the scalar sum of
the pT of all jets with pT > 20 GeV and jηj < 5.0 in the

TABLE IX. List of categories and M⊥=RISR bins corresponding to each model-independent superbin.

Label Lepton ID Nlep NS
jet NS

b=SV pISR
T γ⊥ NISR

b tag M⊥ (GeV) RISR

b jets μ− 1 0 0 High Incl 0 [0, 10] [0.98, 1]

Low-ΔM 1l

b jets OS-DF 2 0 0 High High 0 [0, 15] [0.95, 1]

Low-Δm 2L OS-SF 2 0 0 High High 0 [0, 15] [0.95, 1]
Z=noZ 2 1 0 High High 0 [0, 30] [0.85, 1]

Z 2 ≥2 0 High High 0 ½0;∞� [0.9, 1]

SV � � � 0 0 ≥2 Low Low ≥1 ½5;∞� [0.985, 1]
l− 1 0 ≥1 Low Low ≥1 [0, 10] [0.98, 1]
l� 1 1 ≥1 Low Low ≥1 ½0;∞� [0.95, 1]
ll 2 0 ≥1 Low Low ≥1 [0, 15] [0.95, 1]

b jets � � � 0 4 1 High Incl 0 ½0;∞� [0.85, 1]

Moderate-Δm � � � 0 4 2 High Incl ≥1 ½0;∞� [0.85, 1]
� � � 0 ≥5 1 High Low 0 ½0;∞� [0.8, 1]
� � � 0 ≥5 ≥2 High Low ≥1 ½0;∞� [0.8, 1]
l 1 2 1 High High 0 ½0;∞� [0.9, 1]
l 1 2 2 High High ≥1 ½0;∞� [0.9, 1]
l 1 3 1 High High 0 ½0;∞� [0.85, 1]
l 1 3 ≥2 High High ≥1 ½0;∞� [0.85, 1]
l 1 ≥4 1 High High 0 ½0;∞� [0.8, 1]
l 1 ≥4 ≥2 High High ≥1 ½0;∞� [0.8, 1]
Z 2 1 ≤1 High High 0 ½0;∞� [0.9, 1]
Z 2 ≥2 ≤1 High High 0 ½0;∞� [0.85, 1]

NoZ 2 1 ≤1 High High 0 ½0;∞� [0.9, 1]
NoZ 2 ≥2 ≤1 High High 0 ½0;∞� [0.85, 1]

Electroweak OS-SF 2 0 0 High High 0 [0, 15] [0.95, 1]
Z 2 1 0 High Incl 0 ½0;∞� [0.9, 1]
Z 2 ≥2 0 High Incl 0 ½0;∞� [0.85, 1]
Z 3 0 0 Low Incl ≥1 ½0;∞� [0.9, 1]
Z 3 ≥1 0 Low Incl ≥1 ½0;∞� [0.85, 1]

2L OS-SF OS-SF 2 0 0 High Incl 0 [0, 15] [0.95, 1]

3L Z 3 0 0 Low Incl ≥1 ½0;∞� [0.9, 1]
Z 3 ≥1 0 Low Incl ≥1 ½0;∞� [0.85, 1]

NoZ 3 0 0 Low Incl ≥1 ½0;∞� [0.9, 1]
NoZ 3 ≥1 0 Low Incl ≥1 ½0;∞� [0.85, 1]
SS 3 Incl 0 Low Incl ≥1 ½0;∞� [0.9, 1]
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event), the number and flavor of leptons, as well as the S jet
multiplicity.
Uncertainties arising from differences between the

fast simulation used for signal processes and the full
Geant4-based simulation used for background processes
are accounted for through a set of additional nuisance para-
meters. These uncertainties cover reconstructed leptons,
b-tagged jets, SVs, and pmiss

T .

B. Systematic uncertainties determined from data

In order to account for data/simulation modeling
differences that are not covered by the externally con-
strained systematic uncertainties included in the fit model, a
collection of scale factor parameters obtained from control
samples in data is included. Mismodeling can result from
unaddressed topology-dependent effects in the derivation
of prior constraints or from inherent shortcomings in the
simulation. The large number and types of event categories
included in the fit allows for these factors to be constrained
directly from data, using a high-dimensional collection of
sidebands associated with kinematic, object quality, and
multiplicity categorizations.
Background processes are separated into several groups

that are treated with common systematic uncertainties:
W þ jets, tt̄X þ jets, Z=γ� þ jets, single top quark, diboson
(including Higgs to diboson final states), rare backgrounds,

and QCD multijets. Each of these groups of processes is
associated with a set of normalization parameters, which
are determined directly from data, primarily using the
effectively signal-free CR bins. The number of parameters
for each group of processes depends on their relative
importance to the analysis, and how well they
can be constrained by CRs. The dominant backgrounds,
W þ jets and tt̄X þ jets, have a separate scale factor for
each lepton and S jet multiplicity category. The QCD
background also has normalization factors, which are split
by number of leptons and S jets. Intermediate backgrounds,
Z=γ� þ jets, dibosonþ Higgs boson, and single top
quark, have one factor per lepton multiplicity. The tribo-
son/rare backgrounds group has a single scale factor that
maps to all subprocesses. The result is that major back-
grounds have independent normalizations, constrained by
data control regions, for each lepton and S jet multiplicity,
allowing for data/simulation discrepancies specific to the
modeling of that process to be evaluated from data without
assumptions about how they could appear in different
categories.
Kinematic requirements on pISR

T and γ⊥ are used to
define categorizations expected to result in signal enriched
and background dominated regions at higher and lower
values, respectively. The analysis applies data-driven,
kinematic category scale factors which are common to
all background processes, with independent factors for pISR

T

TABLE X. Summary of systematic uncertainties for the full fit. The number of nuisance parameters is listed, with details as to how
they are partitioned by data-taking period. The range of the parameter impact variation postfit is given in the final column.

Source Number of parameters Uncertainty (%)

Externally constrained

Integrated luminosity 1/year (3) 1.5–2.5
Factorization/normalization scales, PDF, and Q2 8 0–11
Pileup 1/year (3) 1–7
pmiss
T trigger 2/year (6) 1–3

Electron & muon efficiency 8/year (24) 1
Jet energy scale and resolution 2/year (6) 0–10
pmiss
T unclustered energy 1/year (3) 0–6

pmiss
T trigger 2/year (6) 1–3

b jet efficiency 2þ 2/year (8) 0–3
Fast simulation corrections 7/year (21) 1–10
Monte Carlo event count 1=bin 1–15
Constrained with data

W þ jets normalization 16 1–12
tt̄X þ jets normalization 16 2–20
QCD multijet normalization 15 5–30
Z=γ� þ jets, dibosonþ Higgs boson normalization 5 2–10
Single top quark, triboson/rare normalization 4 5–30
pISR
T and γ⊥ 28 1–10

Lepton category normalization 21 5–10
Misidentified and nonprompt leptons 36 3–12
b-tagged jet category normalization 68 1–10
SV tagging efficiency 3 1–10
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and γ⊥ categories that are also independently determined
for different lepton and S jet multiplicities.
Lepton flavor, charge, quality, and configuration provide

some of the most powerful types of categorization included
in the analysis. There are scale factors modeled as common
to all the processes in the analysis, which can account for
data/simulation discrepancies in their relative rates that
affect all processes in similar ways. This could follow from,
for example, higher-order correlations between hadronic
activity and lepton isolation, or mismodeling of event
kinematics that modifies how leptons are clustered into
hemispheres.
The analysis additionally measures scale factors for

both electrons and muons that modify the rates of lepton
candidates coming from either heavy-flavor (HF) decays
or misidentified/nonprompt leptons from non-heavy-fla-
vor (LF) decays, and also for changes in the M⊥=RISR
distributions for processes associated with these lepton
sources. One set of factors scales all processes with an
associated lepton, while two additional sets are specific to
the lepton isolation and impact parameter requirements
that define the various regions. In addition to normaliza-
tion parameters, the fit also includes nuisance parameters
that can change distribution shapes for nonprompt lepton
backgrounds. Generic variations in RISR and M⊥ are
parametrized in “up” and ”down” templates calculated
separately for RISR and M⊥ bins, where each bin is
multiplied by a sliding fraction, which has the effect of
skewing the kinematic distributions higher or lower. A
nominal prior of 5% maximum variation is applied,
leading to up to 10% relative variations in the highest
and lowestM⊥=RISR bins in a given category. These shape
variations are implemented with separate factors for each
lepton flavor and independently for each lepton and S jet
multiplicity category. These constraints rely on the
assumption that any such kinematic discrepancies in
modeling of these background processes should be
largely independent of the lepton quality, such that the
bronze regions are used to predominantly constrain
shape parameters common with gold for a given
process.
To take into account uncertainties appearing due to the

assignment of b-tagged jets to the S or the ISR system,
there are scale factors to specifically account for data/
simulation differences in relative categorization frequen-
cies, in addition to the constrained efficiency scale factors
previously described. Top quark and non-top-quark back-
grounds are modeled with separate scale factors. For the
SVs, signal events will tend to have more central (jηj ≤ 1.5)
SV candidates resulting from real bottom or charm quarks,
so scale factors are defined independently for central and
forward SV categories.
The background fit model was studied using a full CR fit

(also split by data-taking period), a fit also including all
bronze lepton categories, and finally in a fit to all of the bins

and categories included in the analysis over the entire
dataset. The quality of these background-only fits was
primarily assessed by considering the distribution of data/
fit-model residuals in each bin in the analysis. Each fit is
observed to give a reasonably consistent description of
event yields in data.
The fit quality for the full fit to the entire dataset is

assessed more quantitatively by considering the distribution
of the post-fit tail probability computed for each fit bin. The
significance of an excess or deficit per bin is evaluated
using the one-sided upper-tail Poisson probability. This
probability is corrected [117] for bias associated with
double-counting n ¼ nobs such that the average expected
probability for background-only is 0.5 and the correspond-
ing one-sided upper- and lower-tail probabilities sum to
unity. The pseudodata based evaluation integrates the
upper-tail probability over the post-fit uncertainty in the
background event yield per bin using a Gaussian posterior
model; the method is closely related to the ZN procedure of
Ref. [118]. The resulting background-averaged probability
(pseudo p-value) for consistency with the background-only
hypothesis is then expressed in signed Gaussian quantiles
as a z-score.
For the considered dataset, under the simplifying

assumptions of independent bins and neglecting the small
expected reduction in variance associated with the fit to
data, this postfit z-score distribution is expected to be
approximately Gaussian with a mean of zero and a standard
deviation of 1.0. The distribution of the observed postfit z-
scores per bin is shown in Fig. 15 and is compared with the
Gaussian distribution inferred from the sample mean and
standard deviation. The observed distribution is consistent
with a Gaussian having a mean of zero and a standard
deviation 12% larger than unity. The characteristics of the
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FIG. 15. Distribution of postfit z-scores for the full dataset
background-only fit. The superimposed Gaussian model uses the
observed mean and standard deviation.
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FIG. 16. Postfit distributions of data with the background-only fit model for the full dataset in the 0L region (upper) and 1L region
(lower). Bins are split by RISR along with NS

jet. Yields are integrated over all other subcategorizations andM⊥. The subpanels below the
panels show the data minus fit model scaled by the postfit model uncertainty. This uncertainty neglects correlations among the individual
fitted bin event yields.
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ten most outlying bins have been examined; it is found that
all but one is a CR bin.

VIII. RESULTS

The maximum likelihood fit over 2443 bins in 392
categories is performed using the full dataset. Event yields

in data are observed to be in statistically good agreement
with the background-only fit model within the uncertainties
included in the fit model. Summaries of these data yields,
integrated over categories and bins of M⊥, are shown in
Figs. 16 and 17 for the 0L, 1L, 2L, and 3L regions.
Event yields in data are compared to the background-

only fit model for 0L and 1L final states in Fig. 18 for
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FIG. 17. Postfit distributions of data with the background-only fit model for the full dataset in the 2L region (upper) and 3L region
(lower). Bins are split by RISR along with lepton categorization. Yields are integrated over all other subcategorizations and M⊥. The
subpanels below the panels show the data minus fit model scaled by the postfit model uncertainty. This uncertainty neglects correlations
among the individual fitted bin event yields.
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FIG. 18. Postfit distributions of data with the background-only fit model for the full dataset. (Upper) 0L and 1L gold regions with
larger jet multiplicities. (Lower) 0L 5J regions separated by b-tagged jet multiplicities in the S and ISR systems. Bins are split by RISR
with yields integrated over all other subcategorizations andM⊥. The subpanels below the panels show the data minus fit model scaled by
the postfit model uncertainty. This uncertainty neglects correlations among the individual fitted bin event yields. Expected yields for
example signal models are superimposed.
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FIG. 19. Postfit distributions of data with the background-only model for the full dataset. (Upper) 2L 0J gold regions separated by
lepton flavor and charge. (Lower) Central b-tagged SV regions in 0L, 1L, and 2L final states. Bins are split by RISR with yields integrated
over all other subcategorizations and M⊥. The subpanels below the panels show the data minus fit model scaled by the postfit model
uncertainty. This uncertainty neglects correlations among the individual fitted bin event yields. Expected yields for example signal
models are superimposed.
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FIG. 20. Postfit distributions of data with the background-only model for the full dataset for the highest RISR bin in each analysis
category. (Upper) 0L 0J and 1J regions. (Lower) 0L 2J and 3J regions. The subpanels below the panels indicate the postfit z-score for
each bin.
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FIG. 21. Post fit distributions of data with the background-only model for the full dataset for the highest RISR bin in each analysis
category. (Upper) 0L 4J and ≥ 5 J regions. (Lower) 1L 0J regions with a gold lepton. The subpanels below the panels indicate the postfit
z-score for each bin.
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FIG. 22. Postfit distributions of data with the background-only model for the full dataset for the highest RISR bin in each analysis
category. (Upper) 1L 1J and 2J regions with a gold lepton. (Lower) 1L 3J and ≥ 4 J regions with a gold lepton. The subpanels below the
panels indicate the postfit z-score for each bin.
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categories with higher S jet multiplicities and also separated
by b-tagged jet categorization. These categories are
designed to be particularly sensitive to signal models with
larger numbers of jets following from sparticle decays,
including heavy-flavor quarks following from intermediate
top quark decays, as is the case for sparticle production of
top squarks and gluinos. Such signals would appear as
excesses in the high-RISR bins; no such excesses are
observed in this dataset.
Similarly, comparisons of data and background-only fit

model event yields for regions with two gold leptons and no
S jets and categories containing one or more central SV
candidates are shown in Fig. 19. Overall, no significant
deviations between the background model and data are
observed, particularly those consistent with patterns
expected from the presence of signals with electroweaki-
nos, sleptons, or top squarks.
Event yields in data are also compared to the back-

ground-only fit model for all 0L, 1L, and 2L categories for
the most compressed bin (the one with the highest RISR and
lower M⊥) for the gold regions in Fig. 20 (0L), Fig. 21 (0L
and 1L), Fig. 22 (1L) and Figs. 23 and 24 (2L) amounting
to 294 independent bins. Each panel also shows the
observed postfit z-score for the bin. Again, the data and
the background-only fit model are generally in reasonable
agreement and with no significant excess over the back-
ground-only fit model that could be an indication for a
compressed signal.

We proceed to interpret results as constraints on
potential signals using both model-dependent and model-
independent interpretations. In order to constrain signal
models outside of the collection considered in this analysis,
aggregations of signal-sensitive bins in different final state
categories, or superbins (defined in Sec. VI) are considered.
Upper limits at 95% confidence level (CL) for the signal
strength (S95%UL ) are calculated for each of these superbins
using the modified frequentist CLs method [119,120]. The
distribution of the expected number of events in each
superbin is evaluated from the generation of pseudoexperi-
ments from the background-only fit model, taking into
account the posterior covariance of all nuisance parameters.
From these distributions, the mean expected background,
Npred

bkg , standard deviation, σðNpred
bkg Þ, and signal event num-

ber upper limits, S95%UL , are calculated, as summarized in
Table XI for each of the eight superbins.
Model-dependent interpretations are calculated by per-

forming signal-plus-background model fits for each con-
sidered scenario, independently for each simulated
combination of sparticle masses. Using these signal-plus-
background fits, along with the background-only fit to data,
a profile likelihood ratio test statistic is used to evaluate
upper limits on each of these model points. These are then
interpolated among model points to fill in the complete
sparticle mass plane. The model-dependent results re-
present upper exclusion limits at 95% CL on the product
of the cross section and branching fractions for top squark,

FIG. 23. Postfit distributions of data with the background-only model for the full dataset for the highest RISR bin in each analysis
category of the 2L 0J regions with gold leptons. The subpanels below the panels indicate the postfit z-score for each bin.
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FIG. 24. Postfit distributions of data with the background-only model for the full dataset for the highest RISR bin in each analysis
category. (Upper) 2L 1J regions with gold leptons. (Lower) 2L ≥ 2 J regions with gold leptons. The subpanels below the panels indicate
the postfit z-score for each bin.
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neutralino/chargino, and slepton processes. The asymptotic
approximation of the modified frequentist approach is used
to calculate these confidence levels with the profile like-
lihood ratio test statistic [119–121].
Figure 25 shows the limits found for top squark pair

productionwith the decay t̃ → tχ̃01 (theT2ttmodel) in the left
panel and for t̃ → bχ̃þ1 with χ̃þ1 → Wþχ̃01 decay (the T2bW
model) in the right panel. Figure 26 shows the limits found
for top squark pair production with the decay t̃ → cχ̃01 (the
T2cc model). The T2tt limits are generally stronger than the
previous limits fromCMS andATLAS for these compressed
models with Δm < 200 GeV [13,17–20,35].
Limits on theTChiWZmodel are presented inFig. 27, using

both wino-like and Higgsino-like cross sections. These limits
are generally stronger than the previous limits from CMS and
ATLAS for these compressed models with Δm < 80 GeV
[8,10,11,21,37]. For 3 < Δm < 50 GeV, the observed
95% CL lower mass limit on Higgsino-like chargino-neu-
tralino production exceeds 163GeV. For 8 < Δm < 65 GeV,
the observed 95%CL lowermass limit onwino-like chargino-
neutralino production exceeds 300GeV; this can be compared
with the combined lower mass limit exceeding 200 GeV in
thisΔm range in [37], and a similar combined lowermass limit
exceeding 215 GeV in [24].
Figure 28 shows the experimental upper limits on

chargino pair production for the decays associated with
the TChiWW model and the TChiSlepSnu model.
The TChiWW results exclude charginos with masses
less than 120 GeV and mass differences exceeding
5 GeV at 95% CL for wino cross sections and
Bðχ̃�1 → W � χ̃01Þ ¼ 1. These TChiWW results on direct
chargino pair production extend beyond the mass scales
probed by the CERN LEP experiments that established
95% CL chargino lower mass limits around 100 GeV
generally also for wino-like couplings and mass differences

exceeding 5 GeV [122–125]. The generally applicable
combined lower limit on the chargino mass from LEP is
derived as 103.5 GeV [3]. The TChiSlepSnu results are
very competitive in the compressed mass regime reaching
masses as high as 490 GeV using wino cross sections for
this model that features favorable leptonic branching
fractions. This complements other direct chargino pair
results with the same decay assumptions such as [126]

FIG. 25. Top squark pair production. Observed upper limits at
95% CL on the product of the cross section and relevant
branching fractions are shown using the color scale where
the top squark mass is on the x axis and the mass difference
between the top squark and the LSP is on the y axis. The
expected lower mass limits (magenta line) together with their
�1σ uncertainties (magenta dashed lines) and the observed
lower mass limits (black line) are indicated for 100% branching
fractions. The upper panel shows the results for the T2tt
model with limits on σðt̃ ¯̃tÞB2ðt̃ → tχ̃01Þ. The lower panel
shows the results for the T2bW model with limits on
σðt̃ ¯̃tÞB2ðt̃ → bχ̃þ1 ÞB2ðχ̃þ1 → Wþχ̃01Þ.

TABLE XI. Event counts observed in data, Nobs, in each of the
model-independent bins, compared with the mean expected
background predictions from the CR fit, Npred

bkg , their correspond-

ing standard deviations, σðNpred
bkg Þ, and the upper limits at 95% CL

on the signal strength (S95%UL ) in event counts. All superbins are
mutually exclusive except the b jets low-Δm case which
aggregates the b jets low-Δm 1L, b jets low-Δm 2L, and SV
superbins.

Region Nobs Npred
bkg σðNpred

bkg Þ S95%UL

b jets low-Δm 1L 50 65.8 21.4 9.5
b jets low-Δm 2L 16 10.3 3.9 14.6
SV 38 37.2 8.5 17.8
b jets low-Δm 104 115.5 22.3 16.2
b jets moderate-Δm 83 108.1 18.2 9.9
Electroweak 26 30.2 5.5 9.6
2L OSSF 12 10.2 4.5 9.9
3L 21 25.2 5.0 9.0
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that probe to higher chargino masses but only for large
mass splittings.
The model exclusion results for chargino-neutralino

production and chargino pair production are summarized
in Fig. 29.
Figures 30 and 31 show the experimental upper limits on

the product of the cross section and branching fraction
squared for direct slepton pair production in the (mass,
mass-difference) plane using a color scale. A particular
focus is given to compressed mass spectra, where this
analysis contributes substantially with respect to previous

LHC analyses with
ffiffiffi
s

p ¼ 13 TeV datasets performed by
ATLAS and CMS [8,10,11,38], and generally extends the
regions probed by prior results from the LEP experiments
[123,127–129]. Figure 30 illustrates the results for selec-
tron and smuon channels combined assuming degenerate
selectron and smuon masses, while Fig. 31 has the results
separately for selectrons and smuons. Additionally, in both
figures the three different model exclusion lines for 100%
branching fraction show the 95% CL exclusion regions for

FIG. 26. Top squark pair production. Observed upper limits at
95% CL on the product of the cross section and branching
fraction squared, σðt̃ ¯̃tÞB2ðt̃ → cχ̃01Þ (upper), are shown using the
color scale where the top squark mass is on the x axis and the
mass difference between the top squark and the LSP is on the y
axis. The expected lower mass limits (magenta line) together with
their �1σ uncertainties (magenta dashed lines) and the observed
lower mass limits (black line) are indicated for 100% branching
fractions. Observed and median expected limits for top squark
pair production at 95% CL (lower) for the three decay modes
investigated.

FIG. 27. Chargino-neutralino production. Observed upper lim-
its at 95% CL on the product of the cross section and the two
branching fractions, σðχ̃�1 χ̃02ÞBðχ̃�1 → W�χ̃01ÞBðχ̃02 → Zχ̃01Þ, are
shown using the color scale where the χ̃�1 =χ̃

0
2 mass is on the x axis

and the mass difference between the χ̃�1 =χ̃
0
2 and the LSP is on the

y axis. For these results, based on the TChiWZ simplified model,
the χ̃�1 and χ̃02 masses are set equal. The expected lower mass
limits (magenta line) together with their �1σ uncertainties
(magenta dashed lines) and the observed lower mass limits
(black line) are indicated for 100% branching fractions for
wino-like cross sections (upper) and for Higgsino-like cross
sections (lower).
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pair production of only the superpartners of the left-handed
leptons, only the superpartners of the right-handed leptons,
and for both superpartners (where the two chirality partners
are assumed mass degenerate). Figures 32 and 33 show the
95% CL mass exclusion regions for each of the three
production possibilities under the 100% branching fraction
assumption. Each figure shows separate model exclusion

lines for the three possible slepton flavor combinations
(selectrons only, smuons only, and both light-flavor
sleptons).
These results are stronger and more comprehensive than

previously reported by the LHC experiments for com-
pressed masses; they include separate results for selectrons
and smuons, and separate and combined results for the
supersymmetric partners of the left- and right-handed
charged leptons.

FIG. 28. Chargino pair production. The upper panel shows the
observed upper limits at 95% CL on the product of the cross
section and the branching fraction squared, σðχ̃þ1 χ̃−1 ÞB2ðχ̃�1 →
W�χ̃01Þ are shown using the color scale where the χ̃�1 mass is on
the x axis and the mass difference between the χ̃�1 and the LSP is
on the y axis. The expected lower mass limits (magenta line)
together with their �1σ uncertainties (magenta dashed lines) and
the observed lower mass limits (black line) are indicated for
100% branching fractions for wino-like cross sections. The lower
panel shows the results for chargino pair production with decays
as in the TChiSlepSnu model with democratic decay via an
intermediate sneutrino or charged slepton ðl̃�

L Þ with mass half-
way between the chargino and the lightest neutralino. These
model predictions also assume wino-like cross sections.

FIG. 29. Summary of the model exclusion results on chargino-
neutralino production and chargino pair production. Solid lines
are 95% CL observed limits and dashed lines are the correspond-
ing median expected limits. The upper panel shows the results for
mass differences exceeding 50 GeV and the lower panel for mass
differences below 50 GeV.
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IX. SUMMARY

A general search has been presented for supersymmetric
particles (sparticles) in proton-proton collisions at a center-
of-mass energy of 13 TeV with the CMS detector at the
LHC using a data sample corresponding to an integrated
luminosity of 138 fb−1. A wide range of potential sparticle
signatures are targeted including production of pairs of
electroweakinos, sleptons, and top squarks. The search is
focused on events with a high transverse momentum
system from initial-state-radiation jets recoiling against a
potential sparticle system with significant missing trans-
verse momentum. Events are categorized based on their
lepton multiplicity, jet multiplicity, b tags, and kinematic
variables sensitive to the sparticle masses and mass split-
tings. The sensitivity extends to higher parent sparticle
masses than previously probed at the LHC for production
of pairs of electroweakinos, sleptons, and top squarks for
compressed mass spectra. The results on pair production of
charginos and sleptons in the compressed mass regime
extend well beyond the canonical 100 GeV sparticle mass
scale previously explored at LEP. The observed results
demonstrate reasonable agreement with the predictions of
the background-only model and model-independent event
count upper limits for seven mutually exclusive event
selections are reported. Competitive 95% CL lower mass
limits are set on sparticle pair production, especially in the

compressed mass regime, with mass differences between
the lightest and parent sparticle as low as 3 GeV being
tested.
Top squark mass limits for three decay models are

presented in the plane of the top squark mass and the
mass difference. Limits on the decay via a top quark extend

FIG. 31. Slepton pair production. Observed 95% CL upper
limits on the cross section times branching fraction squared for
direct selectron pair production (upper) and smuon pair produc-
tion (lower) followed by decay of both sleptons to the corre-
sponding lepton and neutralino (color scale). The limits are
shown as a function of the slepton mass and the mass difference
between the slepton and the lightest neutralino for the three
different simplified possibilities of only RR, only LL, and both
RR and LL where it is assumed that the R and L masses are
identical. The regions to the left of the lines denote the regions
excluded for a branching fraction of 100%. Median expected
limits for 100% branching fraction are delimited by the dashed
lines.

FIG. 30. Slepton pair production. Observed 95% CL upper
limits on the product of the cross section and branching fraction
squared for direct slepton pair production followed by decay of
both sleptons to the corresponding lepton and neutralino (color
scale). Slepton elL=R indicates the scalar supersymmetric partner
of left- and right-handed electrons and muons. The limit is shown
as a function of the slepton mass and the mass difference between
the slepton and the lightest neutralino. The regions to the left of
the lines denote the regions excluded for a branching fraction of
100%. The median expected exclusion regions for 100% branch-
ing fraction are delimited by the dashed lines.
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to 780 GeV with a mass of 750 GeV excluded at 95% CL
or higher for mass differences between 60 and 175 GeV;
the most stringent exclusion is at a mass difference of
150 GeV. Limits on the decay via a bottom quark and an
intermediate chargino extend to 620 GeV with a mass of
550 GeV excluded at 95% CL or higher for mass
differences between 35 and 140 GeV; the most stringent
exclusion is at mass differences of between 50 and 90 GeV.
Limits on the decay via a charm quark extend to 660 GeV
with a mass of 520 GeV excluded at 95% CL or higher for
mass differences between 10 and 60 GeV; the most
stringent exclusion is at a mass difference of 20 GeV.
The 95% CL lower mass limits on chargino-neutralino

production assuming heavy sleptons extend to 325
(175) GeV for wino (Higgsino) cross sections, where the
most stringent mass limits are set for mass differences of 50
(10) GeV. The limits with wino cross sections exceed
300 GeV for the broad range of mass differences between 8
and 65 GeV, while the limits with the Higgsino cross
section assumption exceed 163 GeV for mass differences
between 3 and 50 GeV. For chargino pair production,
95% CL lower mass limits are obtained for wino cross
sections and decay via a W boson. These extend to
200 GeV with the most stringent mass limit set for a mass
difference of 5 GeV while masses exceeding 120 GeV are

excluded for all mass differences above 5 GeV. Related
chargino pair production limits for the case of decays via
sleptons and sneutrinos and with wino cross sections
extend to 490 GeV for a mass difference of 55 GeV.

FIG. 33. Slepton pair production. Observed 95% CL exclusion
regions for direct pair production of the superpartners of the left-
handed leptons (upper) and direct pair production of the super-
partners of the right-handed leptons (lower) followed by decay of
both sleptons to the corresponding lepton and neutralino with
100% branching fraction. The limits are shown as a function of
the slepton mass and the mass difference between the slepton and
the lightest neutralino. The regions to the left of the lines denote
the excluded regions. Median expected limits are displayed with
dashed lines.

FIG. 32. Slepton pair production. Observed and median ex-
pected limits for direct slepton pair production at 95% CL.
Slepton elL=R indicates the scalar supersymmetric partner of left-
and right-handed electrons and muons. The limit is shown as a
function of the slepton mass and the mass difference between the
slepton and the lightest neutralino. The corresponding selectron
only and smuon only results of Fig. 31 are shown too assuming a
100% branching fraction.
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The 95% CL lower mass limits on pair production of
charged sleptons extend to 168 GeV (slepton partner of
right-handed lepton only), 240 GeV (slepton partner of
left-handed lepton only), and 270 GeV (both sleptons mass
degenerate) for the most favorable mass splitting of around
5 GeV for the case of mass-degenerate first- and second-
generation sleptons. Slepton masses exceeding 110, 175,
and 200 GeV for all mass splittings ranging from 3 to
80 GeV are excluded at 95% CL or higher for the same
three cases, respectively. Similar results are also presented
separately for selectrons and smuons assuming that the
other slepton is not produced. For selectrons (smuons), the
most stringent 95% CL lower mass limits are set at 160,
230, 250 GeV (145, 195, 240 GeV) for mass differences
around 5 GeV for the three cases and with sensitivity to a
broad range of mass differences from 3 to 100 GeV.
We gratefully acknowledge the computing centers and
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81bUniversità di Pavia, Pavia, Italy

82aINFN Sezione di Perugia, Perugia, Italy
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yyAlso at Università degli Studi Guglielmo Marconi, Roma, Italy.
zzAlso at Scuola Superiore Meridionale, Università di Napoli ’Federico II’, Napoli, Italy.
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