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A search for flavor violating decays of the Z boson to charged leptons is performed using data from
proton-proton collisions at

ffiffiffi
s

p ¼ 13 TeV collected with the CMS detector at the LHC, corresponding to an
integrated luminosity of 138 fb−1. Each of the decays Z → eμ, Z → eτ, and Z → μτ is considered. The data
are consistent with the backgrounds expected from standard model processes. For the Z → eμ channel the
observed (expected) 95% confidence level upper limit on the branching fraction is 1.9ð2.0Þ × 10−7, which
is the most stringent direct limit to date on this process; the corresponding limits for the Z → eτ and Z → μτ

channels are 13.8ð11.4Þ × 10−6 and 12.0ð5.3Þ × 10−6, respectively. Additionally, the eμ final state is used
to search for lepton flavor violating decays of Z0 resonances in the mass range from 110 to 500 GeV. No
significant excess is observed above the predicted background levels.
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I. INTRODUCTION

The standard model (SM) has been highly successful in
describing nature on the small distance scale. An important
exception is the neutrino sector, where in the SM neutrinos
are massless, while the observation of neutrino flavor
oscillations [1–4] indicates that neutrinos have small but
nonzero masses, and that their individual flavor is not a
conserved quantity. Generation number violation has also
been observed in the quark sector, but not to date among
charged leptons. In an extended version of the SM that
includes neutrino masses, the anticipated rates of charged
lepton flavor violation (CLFV) induced by neutrino mixing
are vanishingly small; e.g., the branching fraction BðZ →
eμÞ ≈Oð10−60Þ [5]. Therefore any observation of a CLFV
process would be direct evidence of physics beyond the
SM (BSM).
Potentially measurable rates of CLFV in various proc-

esses, including Z boson decay, are predicted in BSM
scenarios such as the seesaw mechanism, and supersym-
metry and leptoquark models [6,7]. In addition, new parti-
cles predicted by these and other BSM models may exhibit
CLFV through their decays. The new particles include
additional gauge bosons such as a Z0 boson, which would
generally be expected to be heavier than the Z boson [8].

Axionlike particles have also been suggested as potential
BSM particles that may decay into flavor-violating
states [9,10].
Searches for CLFV have been conducted in low-energy

processes including μ→eγ [11], μ→eee [12], μ−NðA;ZÞ→
e−NðA;ZÞ [13], eþe− → μþðeþÞτ− [14,15], τ → lγ (l ¼ e,
μ) [16], and τ → l0lþl− [17]. Limits from these reactions
lead to indirect constraints on the Z boson branching
fractions BðZ → eμÞ < 10−12, BðZ → eτÞ < 10−7, and
BðZ → μτÞ < 2 × 10−7 [6]. However, direct measurements
of CLFV Z decays are needed to rule out anomalous
couplings or cancellations that could evade these limits
[18]. Searches for such decays have been performed by
experiments at the CERN LEP [19,20] and LHC [21–23]
colliders. Current limits on the branching fractions for
Z → eμ, Z → eτ, and Z → μτ are 2.6 × 10−7 [23], 5.0 ×
10−6 [22], and 6.5 × 10−6 [22], respectively.
This paper presents a search for decays of the Z boson in

the CLFV channels Z → eμ, Z → eτ, and Z → μτ, together
with a scan of the eμ invariant mass over the range 110–
500 GeV to search for potential heavy neutral resonances.
The proton-proton (pp) collision data at

ffiffiffi
s

p ¼ 13 TeV
were collected with the CMS detector in 2016–2018, and
correspond to an integrated luminosity of 138 fb−1. New
multivariate techniques extend the reach beyond previous
results.
The signal extraction makes use of two main variables:

the invariant mass of the (visible) daughters of the Zð0Þ
boson candidate, and a multivariate discriminator, imple-
mented as a boosted decision tree (BDT), that combines
kinematic observables chosen to discriminate signal from
background. For the eμ channel, where the Zð0Þ boson is
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fully reconstructed, we extract the signal yield with a fit to
the eμ mass distributions, relying mainly on the sidebands
to determine the background under the signal peak. These
distributions are taken from separate subsamples that
vary in purity, as measured by the BDT discriminator.
To distinguish signal from background in the eτ and μτ
channels, where the peak in the invariant mass distribution
of the visible Z boson daughters is less sharply defined, we
instead rely primarily on distributions in the BDT dis-
criminant. These distributions are taken from subsamples
defined by ranges in the visible invariant mass chosen
according to the dominance of the signal or of various
backgrounds.
In Sec. II we describe the CMS detector and particle

reconstruction, and in Sec. III the simulation of signal and
background processes. The event selection is given in
Sec. IV, followed by the signal extraction for the Z →
eμ and Z → lτ channels in Secs. V and VI, respectively.
Systematic uncertainties are discussed in Sec. VII, and the
results in Sec. VIII. We conclude with a summary in
Sec. IX. Tabulated results are provided in the HEPData
record for this analysis [24].

II. THE CMS DETECTOR AND EVENT
RECONSTRUCTION

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed
of a barrel and two end cap sections. Forward calorimeters
extend the coverage in pseudorapidity (η) provided by the
barrel and end cap detectors. The ECAL consists of 75 848
lead tungstate crystals, which provide pseudorapidity
coverage of jηj < 1.48 in its barrel region and 1.48 < jηj <
3.00 in the two end cap regions. Preshower detectors
consisting of two planes of silicon sensors interleaved
with a total of three radiation lengths of lead are located in
front of each end cap detector. Muons are measured in gas-
ionization detectors embedded in the steel flux-return yoke
outside the solenoid. A more detailed description of the
CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, is
reported in Refs. [25,26].
The silicon tracker used in 2016 measured charged

particles within the range jηj < 2.5. For nonisolated par-
ticles of transverse momentum pT between 1 and 10 GeV
and jηj < 1.4, the track resolutions were typically 1.5% in
pT and 25–90 ð45–150Þμm in the transverse (longitudinal)
impact parameter [27]. At the start of 2017, a new pixel
detector was installed [28], which provided expanded
acceptance, to jηj < 3.0, and improved transverse impact
parameter resolution of 20–75 μm [29]. The primary vertex
is taken to be the vertex corresponding to the hardest

scattering in the event, evaluated using tracking informa-
tion alone, as described in Sec. 9.4.1 of Ref. [30].
The global event reconstruction (also called particle-flow

event reconstruction [31]) aims to reconstruct and identify
each individual particle in an event, with an optimized
combination of all subdetector information. In this process,
the identification (ID) of the particle type (photon, electron,
muon, charged hadron, neutral hadron) plays an important
role in the determination of the particle direction and
energy. Photons are identified as ECAL energy clusters
not linked to the extrapolation of any charged-particle
trajectory to the ECAL. Electrons are identified as a
primary charged-particle track and potentially many
ECAL energy clusters corresponding to this track extrapo-
lation to the ECAL and to possible bremsstrahlung photons
emitted along the way through the tracker material. Muons
are identified as tracks in the central tracker consistent with
either a track or several hits in the muon system, and
associated with calorimeter deposits compatible with the
muon hypothesis. Charged hadrons are identified as
charged-particle tracks neither identified as electrons, nor
as muons. Finally, neutral hadrons are identified as HCAL
energy clusters not linked to any charged hadron trajectory,
or as a combined ECAL and HCAL energy excess with
respect to the expected charged-hadron energy deposit.
For each event, hadronic jets are clustered from these

reconstructed particles using the infrared- and collinear-
safe anti-kT algorithm [32,33] with a distance parameter of
0.4. Jet momentum is determined as the vectorial sum of all
particle momenta in the jet, and is found from simulation to
be, on average, within 5–10% of the true momentum over
the entire spectrum and detector acceptance.
Additional pp interactions within the same or nearby

bunch crossings (pileup) can contribute additional tracks
and calorimetric energy depositions to the jet momentum.
To mitigate this effect, charged particles identified to be
originating from pileup vertices are discarded, and an offset
correction is applied to correct for remaining contribu-
tions [34].
Jet energy corrections are derived from simulation to

bring the measured response of jets equal, on average, to
that of particle-level jets. In situ measurements of the
momentum balance in dijet, γ þ jets, Z þ jets, and strong
production of jets (QCD multijet) events are used to
account for any residual differences in the jet energy scale
between data obtained with the detector (“data”) and
simulation [35]. The jet energy resolution amounts typi-
cally to 15–20% at 30 GeV, 10% at 100 GeV, and 5% at
1 TeV [35]. Additional selection criteria are applied to each
jet to remove jets potentially dominated by anomalous
contributions from various subdetector component or
reconstruction failures.
Jets associated with b hadron decays are identified within

the tracker acceptance of jηj < 2.5 using the DeepJet deep
neural network ID algorithms [36–38]. We use both tight and
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loose working points of this algorithm. Their efficiencies for
b jets (light-flavor quark and gluon jets) have been measured
in tt̄ events to be 84 (10)% for the loose working point and
52 (0.1)% for the tight working point.
Hadronic tau lepton decays (τh) are reconstructed from

jets using the hadrons-plus-strips algorithm [39], which
combines 1 or 3 tracks with energy deposits in the
calorimeters to identify the various hadronic τ decay
modes. Neutral pions are reconstructed as clusters with
dynamic size in ðη;ϕÞ, from reconstructed electrons and
photons; the size of the dimension in the azimuthal angle
ϕ (“strip”) varies as a function of the pT of the electron or
photon candidate, because of the dispersion in the mag-
netic field. To distinguish between genuine τh decays and
jets originating from the hadronization of quarks or
gluons, and from electrons or muons, we use the
DeepTau algorithm [40]. Information from all individual
reconstructed particles near the τh axis is combined with
properties of the τh candidate and the event. The rate of a
jet to be misidentified as a τh candidate depends on the pT
and quark flavor of the jet. In a data sample enriched in
W þ jets events this misidentification (misID) rate is
measured to be about 0.25%, with an ID efficiency for
genuine τh of 60%, at the working point and kinematic
regime of our signal regions (SRs) [40]. The rate for
electrons (muons) to be misidentified as τh is 2.60 (0.03)%
for a genuine τh ID efficiency of 80 (> 99)%.
The electron momentum is estimated by combining the

energy measurement in the ECAL with the corresponding
momentum measurement in the tracker [41]. The momen-
tum resolution for electrons with pT ≈ 45 GeV from
Z → ee decays ranges from 1.6 to 5%. The resolution is
generally better in the barrel region than in the end caps,
and it also depends on the bremsstrahlung energy emitted
by the electron as it traverses the material upstream of the
ECAL [41,42].
Muons are measured in the range jηj < 2.4, with

detection planes made using three technologies: drift tubes,
cathode strip chambers, and resistive-plate chambers. The
efficiency for the reconstruction and ID of muons is greater
than 96%. Once these muon candidates are matched to
tracks measured in the silicon tracker, the relative pT
resolution for muons with pT up to 100 GeV is 1% in
the barrel and 3% in the end caps. The pT resolution in the
barrel is below 7% for muons with pT up to 1 TeV [43].
The missing transverse momentum vector p⃗miss

T is
computed as the negative vector sum of the transverse
momenta of all the particle-flow candidates in an event; its
magnitude is denoted as pmiss

T . The p⃗miss
T is modified to

account for corrections to the energy scale of the recon-
structed jets in the event. To reduce the dependence of p⃗miss

T
on pileup, we apply the pileup-per-particle-identification
algorithm [44], which weights the particle-flow candidates
entering the p⃗miss

T sum by their probability of originating
from the primary vertex [45].

Events of interest are selected with a two-tiered trigger
system. The first level, composed of custom hardware
processors, uses information from the calorimeters and
muon detectors to select events at a rate of around 100 kHz
within a fixed latency of about 4 μs [46]. The second level,
known as the high-level trigger, comprises a farm of
processors running a version of the full event reconstruction
software optimized for fast processing, and reduces the
event rate to around 1 kHz before data storage [47,48].

III. SIMULATED EVENT SAMPLES

Monte Carlo simulated samples are used to optimize the
analysis and to model various background sources. Events
arising from W þ jets are simulated, for the 2016 (2017–
2018) data taking periods, with the MadGraph5_aMC@NLO

2.2.2 (2.4.2) [49,50] event generator at leading order (LO)
accuracy. Drell-Yan (DY), Wγ, and WWW events are
simulated with the same generators at next-to-LO (NLO)
accuracy. The POWHEG v2.0 [51–60] program at NLO is
used to generate events from tt̄, tW, single top quark, andH
boson production (where H denotes the 125 GeV Higgs
boson), as well as diboson events originating from WW,
WH, or ZH production. The WZ and ZZ events are
generated at LO using the PYTHIA 8.205 [61] package.
The simulated background samples are normalized using
cross section calculations performed at NLO or next-to-
NLO (NNLO) precision [62–66].
Signal processes are generated at LO using PYTHIA. For

each CLFV decay channel (Z → eμ, Z → eτ, or Z → μτ), a
tree-level coupling is added, with no coupling to the other
decay channels. Events for the off-Z mass scan are generated
with PYTHIA, including only the contribution of a vector
boson Z0, and not considering any mixing with the Z boson
or photon. The decay amplitude is calculated using tree-level
couplings to the eμ final state with no other decay channels.
The resonances are generated in the narrow-width approxi-
mation, i.e., with a width of 0.1 GeV, far below the experi-
mental resolution. Events are simulated with masses of 100,
125, 150, 175, 200, 300, 400, and 500 GeV.
In all samples the hadronization, as well as the underlying

event, are modeled with PYTHIA using the CUETP8M1 [67]
(CP5 [68]) tune for the 2016 (2017–18) data-taking years.
The LO (NLO) simulations use theMLM (FxFx) scheme for
matching the products of the matrix-element calculations to
the parton shower simulation [69]. The parton distribution
functions used with the matrix-element generators are taken
from the NNPDF3.0 [70] set at LO or NLO, except for the
WW samples for the 2017–2018 data-taking years where
NNPDF3.1 [71] is used; for PYTHIA the NNPDF2.3LO [72]
set is used.
The CMS detector response is simulated using Geant4

[73]. Simulated samples are reconstructed with the same
software packages as used for collision data. To account
for effects of pileup, minimum-bias events simulated with
PYTHIA are added to the hard-scattering process, with a

SEARCH FOR CHARGED LEPTON FLAVOR VIOLATING Z … PHYS. REV. D 112, 112011 (2025)

112011-3



distribution in the number of vertices matching that in
the data.

IV. EVENT SELECTION

An event is required to pass either a single-electron or
single-muon trigger. To ensure that the trigger is fully
efficient (> 95%) for the events selected for analysis, an
electron (muon) matched to the single-electron (muon)
trigger is required to have pT exceeding a threshold of
29 (25) GeV for data collected in 2016, 35 (28) GeV for
data collected in 2017, and 34 (25) GeV for data collected
in 2018.
For all three search channels we make a selection of

events with two lepton candidates (e, μ, or τh) of different
flavor and opposite charge. These events are sorted into
three separate data channels; eμ [from which the Zð0Þ → eμ,
Z → eτμ, and Z → μτe candidates are selected], eτh, and
μτh. To suppress SM backgrounds that produce pairs of
leptons, events are rejected if they contain additional
electrons or muons, and for the eτh and μτh channels, also
if they contain additional τh candidates. In the search for the
Z → eτ or Z → μτ signal we include both a hadronic τ
decay category (eτh or μτh, respectively) and a different-
flavor leptonic τ decay category (eτμ or μτe). As each
CLFV Z boson decay signal is the target of a separate
search, there is no requirement that the Z → eτμ, Z → μτe,
and Z → eμ samples be nonoverlapping.
To select a light lepton l (e or μ) that is produced in the

decay of a Z boson or tau lepton and not from a hadron
within a quark jet, we construct the relative isolation
variable Ilrel, defined as a function of the lepton’s transverse
momentum pl

T as

Ilrel ¼
P

pcharged
T þmax ½0;Ppneutral

T þPpγ
T −pPU

T �
pl
T

; ð1Þ

where the sums include the particles, excluding the lepton
itself, within a cone of size ΔR≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2 þ ðΔϕÞ2
p

¼
0.4ð0.3Þ about the electron (muon). Here pcharged

T refers to
charged hadrons, pneutral

T to neutral hadrons, pγ
T to photons,

and pPU
T to the estimated neutral contribution from pileup.

Electrons and muons are required to pass a tight isolation
requirement, Ilrel < 0.15.
To select prompt electrons and muons we require their

transverse and longitudinal impact parameters, dxy and dz,
to be less than 0.2 and 0.5 cm, respectively. For further
suppression of the background from nonprompt electrons
(primarily from QCD multijet and W þ jets events), we
require electrons to have pT > 15 GeV. Electron candi-
dates with ECAL clusters in the gap region between the
barrel and end cap (1.444 < jηj < 1.566) are rejected.
The τh candidates are required to have pT > 20 GeV and

jηj < 2.3, with jdzj < 0.2 cm. They are further required to

pass the following working points of the DeepTau tagging
algorithm [40] for the suppression of: muons (“tight”); jets
[“tight” for the SR, “very loose” for the control regions
(CRs) used to estimate the misID background]; and
electrons (“loose,” except “very tight” for the eτh channel
SR to suppress the background from Z → ee where one of
the electrons is misidentified as a τh candidate).
Jets are required to have pT > 20 GeV and jηj < 3.

Where jets are used in the event selection, jets within ΔR <
0.3 of identified leptons are excluded from consideration.
Additional requirements specific to the individual chan-

nels are described in the corresponding sections below.

V. SEARCH FOR Z → eμ

The Z → eμ search uses the eμ data channel, requiring
exactly one electron and one muon candidate. Both leptons
are required to have jηj < 2.4, and pT > 20 GeV in addition
to the trigger threshold requirement noted in Sec. IV above.
The invariant mass meμ of the dilepton system is required to
satisfy 70 < meμ < 110 GeV; this range includes sidebands
around the Z boson mass (91.1880� 0.0020 GeV [74]) for
estimation of the background. The sources of backgrounds
near the Z boson mass are WW, tt̄, DY production of ττ,
nonprompt eμ, and Z → μμ� → μμγ production.
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FIG. 1. Invariant mass of the eμ system for data (points, with
bars denoting statistical uncertainty) and simulated background
(stacked filled histograms) for events passing the baseline
selection. In the legend, “W, multi-V” refers to W þ jets events
having a jet that is misidentified as a lepton, together with
multiple vector boson production. The hatched histogram shows
a hypothetical Z → eμ signal normalized to a branching fraction
of 10−5. The lower panel shows the ratio of the data to simulated
background yields, with the statistical (combined systematic and
statistical) uncertainty in the simulated yield indicated by the
filled (hatched) gray band.
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Events from tt̄ (as well as subdominant single t quark)
production are suppressed by rejecting events with jets that
satisfy the loose b tagging [38]. To suppress the Z → ττ
contribution we require, in addition to the requirements on
the track impact parameters given in Sec. IV, that their
significances satisfy jdxyj=σdxy < 3 and jdzj=σdz < 4.7,
with σdxy and σdz the respective uncertainties. The effi-
ciency reduction from these requirements on the track
impact parameters is ≈5% on the signal, and ≈20% on
those backgrounds that have tau leptons in the final state.
To extract the signal yield we exploit the narrow reso-

nance peak of the signal against a mainly smoothly falling
background in the meμ spectrum. The background shape
arises from the sharply falling dominant contribution of
Z → τeτμ, combined with a nearly flat spectrum from WW,
tt̄, and nonprompt eμ events. The distribution in meμ of the
events surviving the baseline selection described above is
shown in Fig. 1, for the data and for the simulated back-
ground components. The shape of the simulated signal,
normalized to a branching fraction of 10−5, is superimposed.
The final selection in the Z → eμ search makes use of a

BDT trained to distinguish signal from background events.
The signal is then extracted from a fit of signal and
background probability density functions (PDFs) to the
meμ distribution, for three SRs defined as ranges of the
BDT discriminant value.

A. The BDT implementation for Z → eμ

While DY production of τ pairs is one of the main
backgrounds, these events are concentrated in the region
below the signal resonance. In our SRs, both for the Z and
Z0 cases, events from tt̄ and WW production are dominant
at the signal resonance mass. Therefore, a single BDT is
trained using simulated events for the Z → eμ signal and
for the background. The background is represented by the
WW simulation, which is similar to tt̄ after our baseline
selection. We select disjoint training and testing samples,
restricting meμ for the training sample to the Z-boson peak
region, 86–96 GeV, to limit the influence of any correla-
tions of the BDT features with meμ. The BDT algorithm is
implemented with the XGBoost [75] package. The hyper-
parameters of the BDT are optimized with a random grid
search. The input features aim to exploit the difference
between signal and background in pmiss

T and other kin-
ematic variables. For the signal process, the Z boson is
produced predominantly near threshold and decays to
visible daughters, which are roughly collinear and have
similar pT, with little pmiss

T . Backgrounds with leptonically
decayingW bosons give rise to a characteristic distribution
in the transverse mass mT formed from the W daughter
lepton and pmiss

T . The transverse mass mTð1; 2Þ is defined
for a system of two particles (or of two systems of particles)

with transverse momenta pð1;2Þ
T and azimuthal separation

Δϕ as

mTð1; 2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1Þ

T pð2Þ
T ð1 − cosΔϕÞ

q
: ð2Þ

Since the signal extraction in the Z → eμ search treats
the BDTandmeμ as independent variables, we include only
features having small correlations with meμ in the BDT.
From all the features tested, those that have the most
discriminating power are selected:
(1) ptrailing

T =pleading
T ;

(2) peμ
T ;

(3) ηeμ;
(4) mTðpmiss

T ; leadingÞ;
(5) mTðpmiss

T ; trailingÞ;
(6) jΔϕðpmiss

T ; eμÞj; and
(7) pmiss

T .
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The terms “leading” and “trailing” denote the higher- and
lower-pT lepton, respectively.
The resulting distributions in the discriminant value

(BDT score) for the BDT test events in the range
70–110 GeV in meμ are shown for signal and background
in the upper plot of Fig. 2. We see from this plot that
substantial discrimination between signal and background
is achieved.

Themeμ distribution for theWW background test sample
confirms that no structure is introduced by the training. To
check this conclusion in data, we construct a CR enriched
in tt̄ (and WW) events by applying the SR selection but
replacing the veto on any loose b-tagged jet with a
requirement of one tight b-tagged jet. The lower plot in
Fig. 2 shows themeμ shape for events in this CR for each of
the BDT thresholds used to define the BDT binning. The
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prediction to the uncertainty in the data, and the gray band shows the spread of the background estimates from the separate families of
parametric functions.
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distribution is seen to be free of structure within uncer-
tainties. The BDT-score ranges chosen to define the SRs are
0.3–0.7, 0.7–0.9, and 0.9–1.0. This binning optimized the
sensitivity of the simultaneous fit to themeμ distributions in
all of the SRs.

B. Fit model for Z → eμ

For the events within one of the BDT score categories,
parametric functions ofmeμ are defined to describe the signal
and backgrounds in that category. The parameters of these
functions are then determined from a fit to the binned data
distribution, performed simultaneously in all categories.
The Z → eμ signal distribution is described by a double-

sided Crystal Ball function [76,77]. This function has a
Gaussian core with independent power law tails defined
such that the function is continuous and differentiable at all
points. Its parameters are determined from a fit to simulated
signal events, and fixed in the fit to the data.
The nonresonant background spectrum is modeled by

analytic functions obtained directly from fits to the data,
which removes from the model any dependence on simu-
lation. The forms of these functions are established with fits
to the data in the meμ sidebands, defined as 70 < meμ <
86 GeV and 96 < meμ < 110 GeV. Rather than choosing a
single function that best fits the data sidebands for each
region, we employ the “discrete profiling” method [78] in
which an envelope of all well-fitting functions considered are
included in the background model. The fit is then free to
choose the background function that minimizes the like-
lihood at each point of the fit, profiling over the discrete
nuisance parameter that represents the function choice.
Each of the individual functions included in the back-

ground model envelope is constructed from a broad,
low-mass Gaussian component to represent the tail of the
Z → ττ spectrum, and an additional function, chosen
through statistical tests based on CRs in data, for the
nonresonant processes. This function has the form

fðxÞ ¼ fggðxjμ; σÞ þ ð1 − fgÞhnðxjθ⃗Þ; ð3Þ

where g is the Gaussian PDF with mean μ and standard
deviation σ, fg its fraction in the model, and hn is the nth-

order PDF of the function family h with parameters θ⃗. The
free parameters in the fit to the data are fg, μ, σ, and θ⃗. The
hn function is chosen from among the Chebychev poly-
nomial, exponential sum, or power law sum families. The
background functions that pass a χ2-probability test for fit
consistency, pðχ2Þ > 1%, are added to the model, and an
F-test [79], pðχ2n − χ2nþ1;ΔndÞ < 5%, is performed to deter-
mine the maximum function order for each family. HereΔnd
is the number of degrees of freedom added by a step to the
next higher-order function. Tests performed with large
numbers of simulated background events confirm that the
(zero) signal strength extracted from the fit is free of bias.

The model in Eq. (3) does not adequately describe the
background from Z → μμ� → μμγ events, which occur in
cases where a muon loses a significant fraction of its energy
to final-state radiation, thereby failing to reach the muon
detectors, and the resulting photon is misidentified as an
electron. This gives rise to a broad peak below the Z mass
region that is not differentiated by the BDT since the
background comes from true Z boson decays. Therefore,
this background needs to be accounted for separately in the
final fit. It is modeled with a double-sided Crystal Ball
function, determined from fits to simulated Z → μμ events
that are reconstructed as Z → eμ. We find satisfactory
agreement between the simulation and data in a sample of
pairs reconstructed as eμ, but having the same sign (SS) of
charge. These events have a large fraction of electron
candidates from misID background and exhibit a shape
similar to that of the opposite-sign background.
The background model envelope from the fit to the

meμ sidebands is shown in Fig. 3 for each BDT category.
The data points in blue in the figure are not revealed or used
for the determination of the background shape.

C. Application to the Z0 mass scan

For the eμ final state, a scan for new neutral resonances
Z0 above the Z boson mass is also performed, using the
same strategy and selection as in the Z → eμ search. The
extended-range meμ distribution in data and simulation is
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FIG. 4. Invariant mass of the eμ system for data (points) and
simulated background (stacked filled histograms), for events that
pass the baseline selection except for that selection’s upper limit
on the invariant mass. The lower panel shows the ratio of the data
to simulated yields, with the statistical (combined systematic and
statistical) uncertainty in the simulated yield indicated by the
filled (hatched) gray band.
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shown in Fig. 4. The most important difference in pro-
cedure for this scan is that a sliding window in meμ is used
for successive scan points. With this strategy, potential
masses of Z0 are explored from 110 to 500 GeV, the upper
limit being chosen because there are not enough events for
a reliable fit above that value. The size of each fit range is
computed as twenty standard deviations of the mass
resolution for the signal point considered. The low end
of the lowest fit range is 95 GeV, which evades the Z → μμ
and Z → ττ background components, and thus allows the
model to be simplified to just the function family h of
Eq. (3). For each mass point we define two BDT bins,
0.3–0.7 and 0.7–1.0, combining the upper two bins used for
the Z → eμ search because of their smaller populations.

VI. SEARCH FOR Z → eτ AND Z → μτ

The Z → eτ and Z → μτ searches each consider had-
ronic and leptonic τ-daughter categories. In addition to the
common selection described in Sec. IV, in all four catego-
ries we require 40 < mlτ < 170 GeV, where mlτ is the
invariant mass of the system comprising a prompt light-
lepton candidate and the visible daughter(s) of a tau lepton.
To reduce backgrounds from ττ, W þ jets, WW, and tt̄
production, we also require mTðτ; pmiss

T Þ=mlτ < 0.8 and
mTðlτ; pmiss

T Þ < 70ð90Þ GeV, in the hadronic (leptonic)
final-state categories.
To further reduce the ττ background, the prompt light

lepton candidate must satisfy pT > 28ð20Þ GeV in the
hadronic (leptonic) final-state categories. Events are
rejected if they contain b-tagged jets, based on the tight
(loose) working point of the b jet ID for the hadronic
(leptonic) τ-decay categories, to suppress backgrounds
from t quark processes. The QCD multijet background
becomes significant at low electron pT in the Z → eτμ
category, and so we require pe

T > pμ
T in that category.

Additionally, the light leptons are required to have jηlj <
2.2ð2.4Þ in the hadronic (leptonic) τ decay categories, for
compatibility with the ττ background estimation method
described in Sec. VI A 1 below.
The search strategy for final states involving a tau lepton

needs to take into account that the Z boson can be only
partially reconstructed because of the neutrino(s) in the
τ decay. The signal and background spectra in mlτ are less
distinct than those of meμ. Here the background compo-
nents are modeled separately, using data in CRs to the
extent possible. New variables derived from the visible
daughters are developed to approximate the mass of the
Z boson. These and other discriminating variables are again
combined into a BDT to optimize the signal extraction.

A. Background estimates for the Z → eτ and
Z → μτ channels

The Z→eτ and Z→μτ searches rely on signal and back-
ground templates (binned PDFs). The dominant background

sources are ττ production and those arising from misidenti-
fied leptons. Other sources are leptonic W boson decays,
such as those from WW and tt̄ processes.

1. Background from ττ

The production of tau lepton pairs, most importantly
from DY Z → ττ, is a background in all of the Z → lτ
channels. Neutrinos associated with the decays of both tau
leptons contribute to pmiss

T , and the visible invariant mass
spectrum of the dilepton system peaks below the Z boson
mass, with a high-side tail. The τ candidate in a Z → eτ or
Z → μτ signal event would be kinematically identical to
one from the Z → ττ decay, while the prompt lepton would
have generally higher pT than the daughter from a leptoni-
cally decaying τ lepton in the Z → ττ event, and there
would be no contribution to pmiss

T from that leg of the
Z boson decay.
The SM processes that produce tau lepton pairs are

identical to those that produce muon pairs, and the latter are
very cleanly reconstructed in the detector. Therefore we use
an “embedding” technique [80] to model ττ backgrounds,
except for H → ττ production, which is treated separately.
In this method, we remove the recorded detector deposits
associated with the muons from a data sample of muon pair
production, and substitute those derived from simulated ττ
events, matching the kinematic properties of the simulated
tau lepton with those of the muon it replaces. The result is a
hybrid data sample where the τ decay and reconstruction
are simulated, but the τ production kinematics and the rest
of the event (pileup, pmiss

T , jets, etc.) are taken directly from
data. This approach significantly reduces simulation uncer-
tainties, where the only remaining simulation-based uncer-
tainties are those related to the decay and reconstruction of
the tau leptons.

2. The τh misID background

The background from jets misidentified as τh (j → τh) is
estimated in the μτh and eτh channels using a “misID-
factor” method, similar to those used in Refs. [81,82]. The
method uses an application region (AR) enriched in j → τh
events, which has the same kinematic selection as the SR
but with an inverted jet-suppression ID (“antijet-ID”)
requirement (very loose and not tight, using working points
of the discriminator [40]). Shape-dependent transfer factors
(TFs) are used to relate the rate of the j → τh events in the
AR to an estimate of the corresponding background rate in
the SR.
Since the TFs depend on properties that might be

experimentally inaccessible (e.g., the underlying parton
flavor), and depend on the background process (e.g.,
W þ jets, QCD multijets), they are measured separately
for each background source. An overall TF is then
evaluated by combining these factors weighted by the
process composition in the CR:

A. HAYRAPETYAN et al. PHYS. REV. D 112, 112011 (2025)

112011-8



fðβ⃗Þ ¼
X

p∈ processes

cpðβ⃗Þfpðβ⃗Þ:

The parameters β⃗ are derived from the kinematic properties
of the τh and prompt l candidates along with pmiss

T , and the
functions f, fp, and cp are, respectively, the overall TF to
be evaluated for a given event in the AR, the TF for process
p, and the expected composition fraction of process p in
the AR.
The process-dependent TFs fp are measured forW þ jets,

QCD multijet, and tt̄ background. The W þ jets TFs are
measured in a high-mTðlτ; pmiss

T Þ region, and the QCD
multijet TFs are measured in a region with SS lτh pairs and
0.05 < Ilrel < 0.15. The tt̄ TFs are determined using simu-
lation, as there is not a suitable measurement region in data.
These measurement regions are referred to as the determi-
nation regions. The weights cp are estimated as functions of
mTðlτ; pmiss

T Þ, using simulated j → τh events for W þ jets
and tt̄; for QCD multijet background we use an SS data CR,
correcting for non-QCD contributions in this CR by sub-
tracting their simulated yields.
The fp TFs are measured as functions of the τh candidate

pT independently for each of four τh identified decay
modes, one- or three-prong with zero or one π0. There are
also subleading kinematic dependencies in the TFs.
Corrections for these are derived by comparing the obser-
vation with the estimate in the tight antijet-ID subset of the
determination region. This is done for the light-lepton pT,
the τh jηj, and jΔϕðl; pmiss

T Þj. Additional corrections to
account for the CR selection bias are measured in alternate
CRs and applied as functions of Ilrel, mlτ, and the BDT
score defined in Sec. VI C.

3. Light-lepton misID background

Electron and muon candidates in the eτμ and μτe
selections arising from misID of other particles are esti-
mated using a method similar to the j → τh estimation. This
background arises mainly fromW þ jets events, where one
lepton comes from the W boson and one is a misidentified
jet or a nonprompt lepton originating from a jet, and from
QCD multijet events, where each lepton is either a mis-
identified jet or a nonprompt lepton originating from a jet.
The AR for the light-lepton misID background is the

same as the SR, except with an SS selection. The deter-
mination regions for the TFs are the same as for the SRs
and ARs, except with a loose isolation requirement
(0.15 < Iμrel < 0.50) on the muon candidate. The TFs are
measured as functions of ΔRðe; μÞ separately in categories
of 0, 1, and> 1 jets. Subleading corrections to the ðpe

T; p
μ
TÞ

distribution are measured in this determination region, and
CR bias corrections for the ðpe

T; p
μ
TÞ and BDT score

(Sec. VI C) distributions are measured in a loose electron
isolation region.

4. Backgrounds estimated from simulation

The background from leptonic W decays in tt̄ and WW
production is relevant in all search channels, though it is
most impactful at high mass in the eμ data channel, and is
estimated from simulation. The embedded ττ samples
already include the small contribution from tt̄ and WW
decays to ττ, and so these are omitted from the simulated
background model. The remaining tt̄ and WW background
processes are kept small by the event selection, which
exploits several properties that distinguish them from
signal. Both tt̄ and WW have large pmiss

T associated with
each lepton leg, unlike the signal processes, and the tt̄ back-
ground is significantly suppressed by the veto of events
with b-tagged jets.
There are also small background contributions from

other diboson and triboson processes, but these have small
cross sections and are suppressed by the rejection of events
with additional light leptons. The H → ττ and H → WW
processes are also modeled with simulation, because these
processes yield too few μμpmiss

T events in data for appli-
cation of the τ embedding method.
Photons misidentified as electrons and light leptons

misidentified as τh candidates are also modeled using
simulated samples. The background from DY Z → ee
and Z → μμ events where one light lepton is misidentified
as a τh candidate must be carefully separated from the
signal as the prompt-lepton candidate leg is identical to that
of the CLFV Z signal.

B. Discriminating variables for Z → eτ and Z → μτ

Because of the neutrinos in the τ decay, the invariant
mass of the visible daughters in the Z → lτ channels is a
less effective discriminating variable than in the construc-
tion of Z → eμ against the backgrounds, of which Z → ττ
is the largest. However, we can exploit the facts that since
the decaying boson is much more massive than the τ, the
τ is typically produced with a significant Lorentz boost,
leading to a highly collimated decay, and that one of the
Z boson daughters for the signal decay is a light lepton
unaccompanied by neutrinos. We utilize two different
approaches to take advantage of these features.

1. Collinear mass estimate

The first approach is the collinear mass mcol, derived
with the collimated τ decay approximation, in which
p⃗miss
T projected onto the visible tau lepton p⃗T equals the

p⃗T of the neutrino(s). With the further assumption that the
neutrino three-momentum lies along the three-momentum
of the visible τ daughter(s), we then obtain the neutrino
four-vector,

pν ¼ p⃗miss
T · p̂vis

T

pvis
T

pvis; ð4Þ
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where pvis is the four-momentum of the visible τ
daughter(s), andpvis

T and p̂vis
T are the magnitude and direction

unit vector of its transverse momentum components, respec-
tively. The sign of p⃗miss

T ⋅ p̂vis
T indicates whether the neutrino

vector is parallel or antiparallel to the visible τ daughter’s
momentum. The collinear mass is then the mass of the pl þ
pvis þ pν ¼ pl þ pτ system. The mcol distribution is shown

in Fig. 5 for the Z → μτ search. The true Δϕ between the
visible τ decay products and the associated neutrinos is
typically small, but because of uncertainties in the pmiss

T
reconstruction this angle can be larger than π=2, leading to
antiparallel neutrino configurations.

2. The tau lepton momentum scale variables α1;2

Another approach is to use collinear approximations for
the τ decays along with assumptions [83] that the Z boson
is on shell and produced at threshold, i.e., that the Z boson
daughters’ pT vanishes. The latter constraint implies equal-

ity of the Z daughters’ pT, p
ð1Þ
T ¼ pð2Þ

T . This relation can be
restated in terms of the four-momentum pðiÞ of the tau
lepton and that of its daughters, defined as pvis;i ¼ pðiÞ=αi:

α1p
vis;1
T ¼ α2p

vis;2
T : ð5Þ

The on-shell Z boson assumption combined with four-
momentum conservation in the decay provides a second
relation between the αi:

m2
Z ¼ m2

1 þm2
2 þ 2pð1Þ · pð2Þ ≈ 2pð1Þ · pð2Þ

¼ 2α1α2pvis;1 · pvis;2: ð6Þ
From these equations we find

α1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
pvis;ð2;1Þ
T

pvis;ð1;2Þ
T

!
m2

Z

2pvis;1 · pvis;2

vuut : ð7Þ

For the signal decay Z → lτ we have α1 ¼ αl ¼ 1,
whereas for the Z → ττ background we have in general
αi > 1 for both Z boson daughters. Figure 6 shows these
estimates for Z → μτh, where for the signal events αμ is
centered at one, as expected, and provides considerable
discrimination against both Z → ττ and τh misID
backgrounds.

C. The BDTs for the Z → eτ and Z → μτ decay channels

A BDT is trained for each final state of each signal, for a
total of four BDTs (Z → eτh, Z → eτμ, Z → μτh, and
Z → μτe). The ROOT TMVA toolkit [84] is used for this
training. The BDTs are constructed with input features that
describe the kinematic properties of the Z boson candidate
and of pmiss

T :
(1) mlτ;
(2) mcol;
(3) αl and ατ;
(4) pl

T=p
τ
T;

(5) plτ
T ;

(6) Δϕlτ;
(7) mTðl; pmiss

T Þ;
(8) Δϕðτ; pmiss

T Þ; and
(9) pjet

T .
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FIG. 5. The μτh (upper) and μτe (lower)mcol distributions, for the
data (black markers with bars showing the statistical uncertainties)
and the simulated backgrounds (filled stacked histograms). The
hatched blue histogram shows the shape of the signal, normalized
to a branching fraction of 10−3, for comparison. The lower panel
shows the ratio of the data to simulated yields, with the statistical
(combined systematic and statistical) uncertainty in the simulated
yield indicated by the filled (hatched) gray band.
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The leading jet pT is included here, as b quark initiated jets
in tt̄ decays that either fail the b tagging or are beyond the b
tagging region of jηj < 2.4 typically have higher pT than
jets associated with the signal process.

The BDT training uses ττ simulations rather than the
embedding samples. Data events from the loose antijet ID
(SS) region are used in the training to model the j → τh
(nonprompt eμ) background in the hadronic (leptonic) τ

categories. Events used for training, whether simulated
events or CR data, are excluded from use in the background
template estimates, where the remaining events or data are
scaled to compensate for the removed events. To improve
the discrimination against rare Z → ll background events
in which one of the leptons is misidentified as one of a
different flavor, these events are given a larger weight in the
training. The BDT score distribution OðxÞ is transformed
using the signal BDT score cumulative distribution function
pðxÞ ¼ R x−∞ Oðx0Þdx0= Rþ∞

−∞ Oðx0Þdx0 to produce a useful
shape that is less impacted by changes in the underlying
machine-learning technique or hyperparameters.

D. The Z → eτ and Z → μτ mass categories

Several of the backgrounds in the Z → eτ and Z → μτ
search have large systematic uncertainties that impact the
search sensitivity. These are:
(1) ττ embedding uncertainties;
(2) j → τh and nonprompt eμ estimates from data; and
(3) Z → ll → lτh misID rate uncertainties.
To improve background uncertainty constraints and

isolate background- or signal-enriched regions, the Z →
eτ and Z → μτ fits are split into the mlτ mass regions
described in Table I. The leptonic τ signal decays typically
have lower mass than the τh decays because of the extra
neutrino produced, which leads to differences in the ττ
region selection. Additionally, Z → ll is a significant
background only in the hadronic channels, so there is no
CR for these processes in the leptonic channels. Events with
low transformed BDT score are removed from the final
analysis, and the transformed BDT binning is chosen to
ensure that each bin contains an adequate number of events
for the final fit.

VII. SYSTEMATIC UNCERTAINTIES

The main sources of systematic uncertainty arise from the
simulation (e.g., simulated object reconstruction efficiency
or energy scale), from the background model uncertainties
(e.g., validity of the model in the SR), and statistical
uncertainties because of limited event counts in the simu-
lated samples and CRs. These uncertainties are discussed in
the following paragraphs and summarized in Table II.

In the Z → eμ search, the most significant sources are
the purely statistical uncertainties from the parameters of
the background functions in the fit. These are followed by
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FIG. 6. Distributions of μτh signal and estimated backgrounds
in αμ (upper), ατ (lower), for the data (black markers with bars
showing the statistical uncertainties) and the simulated back-
grounds (filled stacked histograms). The hatched blue histogram
shows the shape of the signal, normalized to a branching fraction
of 10−3, for comparison. The lower panel shows the ratio of the
data to simulated yields, with the statistical (combined systematic
and statistical) uncertainty in the simulated yield indicated by the
filled (hatched) gray band.

TABLE I. Regions in mlτ for the Z → μτ and Z → eτ fits.

mlτ bounds [GeV]

Region Z → lτh Z → lτl

ττ [40, 60] [40, 50]
Signal-like [60, 85] [50, 100]
Z → ll [85, 100] � � �
misID (j → τh and Nonprompt eμ) [100, 170] [100, 170]
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uncertainties arising from the discrete collection of back-
ground functions included in the envelope. The signal
model uncertainties are negligible compared with those of
the background model.
The largest sources of systematic uncertainty in the

Z → eτ and Z → μτ searches are the statistical uncertain-
ties in the background model templates and the light-lepton
energy scale uncertainties. The model-template statistical
uncertainties arise largely from the Z → ee and Z → μμ
simulation samples used to estimate the l → τh back-
grounds, along with those from the nonprompt eμ back-
ground estimate based on CRs in the data, where the
subtraction of prompt leptons from the data has a large
statistical uncertainty. The statistical uncertainties in the
j → τh and embedded ττ estimates are much smaller
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FIG. 7. For the Z → eμ search, the invariant mass fit results for
the BDT score ranges 0.3–0.7 (upper), 0.7–0.9 (middle), and
0.9–1.0 (lower). In each plot, the upper panel shows the data
(points with bars showing the statistical uncertainties) together
with the fit distribution curve (red) and its separate signal (blue
dotted) Z → μμ (yellow dash-dotted) and continuum background
(purple dashed) components, and the lower panel shows the
deviations of the data from the fit function divided by the data
uncertainty.

TABLE II. Sources of uncertainty and their impacts on the
measured branching fraction, for each of the Z decay channels,
and on the product of the production cross section and branching
fraction for the Z0 resonance scan. The uncertainty ranges for the
Z0 resonance scan are ordered from the lowest to the highest Z0
mass point. Entries to which the specified uncertainty does not
apply are denoted with “� � �.”

Uncertainty
source

BðZ → eμÞ
[10−8]

BðZ → eτÞ
[10−6]

BðZ → μτÞ
[10−6]

σðpp → Z0 þ XÞ×
BðZ0 → eμÞ [fb]

Electron and
muon ID and
trigger

0.1 0.3 0.1 0.1–0.01

Electron energy
scale

0.2 3.5 0.2 0.6–0.01

Muon energy
scale

0.1 0.1 0.9 0.3–0.01

Tau ID � � � 0.3 0.2 � � �
Tau energy scale � � � 0.4 0.4 � � �
ðe; μÞ → τh � � � 0.4 0.1 � � �
Jet energy, pmiss

T 0.3 0.8 0.2 0.1–0.01
b tagging < 0.1 0.2 0.2 < ð0.1–0.01Þ
Pileup 0.1 0.2 0.1 < ð0.1–0.01Þ
Integrated
luminosity

0.3 0.1 0.1 0.1–0.01

Theory 0.1 0.5 0.2 0.1–ð< 0.01Þ
Parametric
background

7.9 � � � � � � 0.3–0.06

Envelope 2.5 � � � � � � 0.1–0.04
Z → μμ yield 0.5 � � � � � � � � �
Embedding
energy resolution

� � � 1.1 0.2 � � �

Embedding
normalization

� � � 1.5 0.2 � � �

j → τh � � � 2.8 0.9 � � �
Nonprompt eμ � � � 2.7 0.4 � � �
Template event
counts

< 0.1 3.1 1.5 0.1–ð< 0.01Þ

Total systematic 8.3 5.7 2.2 0.8–0.08
Statistical 5.6 1.9 1.6 1.9–0.18
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because of their larger CR populations. The impact of the
electron and muon energy scale uncertainties is large
because the pT of the prompt l is highly discriminating
against leptonic Z → ττ decays, as well as being incorpo-
rated into several of the variables in the BDTs [dilepton
mass and pT, collinear mass, αi, mTðl; pmiss

T Þ, and the
pT ratio]. The uncertainties in the background estimate
from CRs in data are also significant, mainly because of
the corrections for the kinematic variation in the TF

measurement regions and the statistical uncertainties in
these measurement regions.
The normalization of the simulated signal and minor

background yields depends on the integrated luminosity,
pileup corrections, and the theoretical modeling. The inte-
grated luminosities for the 2016, 2017, and 2018 data-taking
years have individual uncertainties of 1.2–2.5% [85–87],
while the overall uncertainty for the 2016–2018 period is
1.6%. To evaluate the uncertainty associated with the pileup
reweighting, we vary the value of the total inelastic cross
section by 5% [88]. Uncertainties arising from the theoretical
model include the cross sections, the parton distribution
functions, and the renormalization and factorization scales.
These uncertainties are propagated to the observed signal
yields and are summarized in the row labeled “Theory” in
Table II.
All uncertainties are included in the maximum likelihood

fit to extract the branching fractions, which is implemented
with the Combine statistical analysis package [89]. For an
uncertainty that does not contain shape information, the
uncertainty is implemented as a rate uncertainty with a log-
normal PDF. Uncertainties that impact the shape of
the signal or background model are handled differently in
the Z → eμ and Z → lτ searches. In the Z → eμ search, the
effect is split into a rate uncertainty and an impact on the pure
shape effect. A nuisance parameter is added as a shift in the
corresponding model parameter drawn from a Gaussian PDF
centered on zero and with a width defined by the systematic
source’s effect on that model parameter. In the Z → eτ and
Z → μτ searches, shape uncertainties are introduced via
“continuous morphing” [90] parametrized by upward and
downward uncertainty templates. In the case of the Z → eμ
background envelope, the discrete background function
index parameter is treated as a free parameter. The fit selects

[0.3, 0.7] [0.7, 0.9] [0.9, 1] Combined
BDT bin

0

0.5

1

1.5

610
)

 e
(ZB

 (13 TeV)1138 fb

CMS
95% CL upper limit

Observed
Expected

 1 std. deviation
 2 std. deviation

FIG. 8. Upper limits at 95% CL on the branching fraction
BðZ → eμÞ, for each BDT score range and for the final combined
fit. The observed limits are denoted by the markers, while the
expected limits with their 68% and 95% uncertainties are denoted
by the horizontal dashed lines and green and yellow bands,
respectively.

TABLE III. The measured branching fraction with its significance (signif.) and observed and expected 95% CL upper limits, for each
of the Z → eμ, Z → eτ, and Z → μτ decay channels. The prior best published limits are also given for comparison. Included are results
for the separate BDT bins for Z → eμ and the separate τ decay subchannels for Z → eτ and Z → μτ.

Channel Branching fraction Signif. [σ] Observed (expected) limit Prior (expected) limit

Z → eμ −0.1þ1.0
−1.0 × 10−7 −0.1 1.9ð2.0þ0.8

−0.6 Þ × 10−7 2.6ð2.4Þ × 10−7 [23]
0.3 < BDT < 0.7 −3.4þ2.8

−2.6 × 10−7 −1.2 5.7ð8.2þ2.5
−2.0 Þ × 10−7 � � �

0.7 < BDT < 0.9 0.4þ1.5
−1.4 × 10−7 þ0.3 3.2ð2.9þ1.2

−0.8 Þ × 10−7 � � �
0.9 < BDT < 1.0 0.0þ1.5

−2.0 × 10−7 þ0.0 3.0ð3.0þ1.2
−0.8 Þ × 10−7 � � �

Z → eτ 3.2þ6.1
−6.0 × 10−6 þ0.5 13.8ð11.4þ4.7

−3.2 Þ × 10−6 5.0ð6.0Þ × 10−6 [22]
Z → eτh 6.3þ8.4

−8.2 × 10−6 þ0.8 21.3ð16.1þ6.7
−4.6 Þ × 10−6 8.1ð8.1Þ × 10−6 [22]

Z → eτμ 1.2þ7.9
−8.1 × 10−6 þ0.2 16.2ð15.3þ6.1

−4.2 Þ × 10−6 7.0ð8.9Þ × 10−6 [22]

Z → μτ 7.5þ2.7
−2.7 × 10−6 þ2.7 12.0ð5.3þ2.1

−1.5 Þ × 10−6 6.5ð5.3Þ × 10−6 [22]
Z → μτh 7.2þ2.8

−2.8 × 10−6 þ2.5 11.9ð5.6þ2.2
−1.6 Þ × 10−6 9.5ð6.1Þ × 10−6 [22]

Z → μτe 7.5þ7.1
−7.9 × 10−6 þ1.0 19.5ð14.4þ5.1

−3.8 Þ × 10−6 7.2ð10.0Þ × 10−6 [22]
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the background function that maximizes the likelihood at
any given point, profiling this discrete nuisance param-
eter [78].

VIII. RESULTS

The branching fraction is extracted from a maximum
likelihood fit of the background plus signal model to the
data distribution in meμ, for the Z → eμ search, or in the
BDT discriminant, for the Z → lτ searches.
For the Z → eμ search, the parameters of the background

model developed from themeμ sidebands (Sec. V B) are free

in the fit to the full distributions. The distributions for
separate fits in each BDT region are shown along with the
data in Fig. 7. No excess of events beyond the SM expect-
ation is observed. We set upper limits on the branching
fraction following the modified frequentist construction CLs
[91–93] implemented with the CMS statistical analysis tool
Combine [89]. The observed and expected upper limits are
shown in Fig. 8 and Table III from the fits in each BDT score
category and for the joint fit combining all categories, along
with the 68% and 95% uncertainties. The observed limit of
BðZ → eμÞ < 1.9 × 10−7 represents the most stringent
direct limit to date on this process.
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FIG. 9. Transformed BDT score distributions for the Z → eτh channels in the meτ ranges: (upper left) 40–60 GeV, “ττ”; (upper right)
60–85 GeV, “signal-like”; (lower left) 85–100 GeV, “Z → ll”; (lower right) 100–170 GeV, “misID.” In each plot, the upper panel shows
the data (points), the total yield from the signalþ background fit (red open histogram), the signal component (blue open histogram), and
the background components (stacked filled histograms). The middle panel shows the ratio to the background of the data (points with bars
showing the statistical uncertainty in the data) and the combined signalþ background (blue dotted histogram). The shaded band shows the
systematic uncertainty in the background estimate. The lower panel shows the pull defined in the text (light-blue filled histogram).
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The transformed BDT score distributions in the invariant
mass and tau lepton final-state categories are shown in
Figs. 9 and 10 for the Z → eτ search and in Figs. 11 and 12
for the Z → μτ search. The pull appearing in the distribu-
tions in the lower panels for each BDT bin is the difference
between the observed and fit yields divided by the
uncertainty

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2obs − σ2fit

p
. The minus sign in the definition

of this uncertainty accounts for the correlation between the
observed and fit yields, which arises because the observed
yield is included in the fit [94]. The large pulls that appear
in some bins in the lower row of Fig. 9 reflect non-Gaussian

uncertainties in one or more of the nuisance parameters.
The observed yield in the eτ (μτ) channel is consistent with
the SM background prediction at the 0.5ð2.7Þσ level. The
observed and expected 95% CL upper limits on the
branching fractions for Z → eτ and Z → μτ are shown
in Fig. 13 and Table III, along with the 68% and 95%
uncertainties in the expected limit.
Figure 14 shows the eμ mass scan fit results for two

example mass points. No statistically significant excess is
observed over the SM background. We report 95%CL upper
limits on the production cross section σðpp → Z0 þ XÞ
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FIG. 10. Transformed BDT score distributions for the Z → eτμ channels in themeτ ranges: (upper left) 40–50 GeV, “ττ”; (upper right)
50–100 GeV, “signal-like”; (lower) 100–170 GeV, “misID.” In each plot, the upper panel shows the data (points), the total yield from the
signalþ background fit (red open histogram), the signal component (blue open histogram), and the background components (stacked
filled histograms). The middle panel shows the ratio to the background of the data (points with bars showing the statistical uncertainty in
the data) and the combined signalþ background (blue dotted histogram). The shaded band shows the systematic uncertainty in the
background estimate. The lower panel shows the pull defined in the text (light-blue filled histogram).

SEARCH FOR CHARGED LEPTON FLAVOR VIOLATING Z … PHYS. REV. D 112, 112011 (2025)

112011-15



times the branching fraction BðZ0 → eμÞ to the eμ final
state. The observed and expected limits for the entire mass
scan in the eμ final state are shown in Fig. 15. All observed
deviations from the background-only hypothesis have
local p-values greater than 1%. The global p-value is
greater than 39% after accounting for the look-elsewhere
effect [95].
The search presented here for CLFV Z boson decays

represents an approximately 20% improvement in sensi-
tivity to the direct Z → eμ decay process, with respect to
the best previous search [23]. The Z → μτ search has

similar sensitivity as the prior limit, coming mainly from
the Z → μτh channel. The observed Z → μτ limit is weaker
than the expected one, mainly because of the 2.5σ excess
we find in the Z → μτh channel. The Z → eτ search
presented here is limited by high electron trigger thresh-
olds, lower electron identification efficiencies, and large
rates of j → τh and e → τh backgrounds, as compared with
the Z → μτ search, and the Z → eτ search in Ref. [22].
Additionally, the electron energy scale has much larger
uncertainties in the ττ embedding simulation that signifi-
cantly impacts the Z → eτ search sensitivity.
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FIG. 11. Transformed BDT score distributions for the Z → μτh channels in themμτ ranges: (upper left) 40–60 GeV, “ττ”; (upper right)
60–85 GeV, “signal-like”; (lower left) 85–100 GeV, “Z → ll”; (lower right) 100–170 GeV, “misID.” In each plot, the upper panel
shows the data (points), the total yield from the signalþ background fit (red open histogram), the signal component (blue open
histogram), and the background components (stacked filled histograms). The middle panel shows the ratio to the background of the data
(points with bars showing the statistical uncertainty in the data) and the combined signalþ background (blue dotted histogram). The
shaded band shows the systematic uncertainty in the background estimate. The lower panel shows the pull defined in the text (light-blue
filled histogram).
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As seen in Fig. 15, the Z0 → eμ search yields an expected
95% CL upper limit on σðpp → Z0 þ XÞBðZ0 → eμÞ of
4 fb at 110 GeV and 0.4 fb at 500 GeV, with an
approximately exponential relation between the mass and
the expected sensitivity. The observed limits are consistent
with these. Searches for Z0 → eμ over various mass ranges

above 200 GeV have been reported by ATLAS [96,97] and
CMS [98,99]. Where the ranges overlap, the present limits
represent an improvement of at least a factor of five over
these, and are either the first or the most stringent expected
limits to date on the Z0 → eμ process within the covered
mass range.
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FIG. 12. Transformed BDT score distributions for the Z → μτe channels in themμτ ranges: (upper left) 40–50 GeV, “ττ”; (upper right)
50–100 GeV, “signal-like”; (lower) 100–170 GeV, “misID”. In each plot, the upper panel shows the data (points), the total yield from the
signalþ background fit (red open histogram), the signal component (blue open histogram), and the background components (stacked
filled histograms). The middle panel shows the ratio to the background of the data (points with bars showing the statistical uncertainty in
the data) and the combined signalþ background (blue dotted histogram). The shaded band shows the systematic uncertainty in the
background estimate. The lower panel shows the pull defined in the text (light-blue filled histogram).
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IX. SUMMARY

A search is presented for flavor violating decays of the
Z boson to charged leptons, and for the presence of a
heavier vector boson Z0 exhibiting such decays. The data
from proton-proton collisions at

ffiffiffi
s

p ¼ 13 TeV were col-
lected with the CMS detector at the LHC, and correspond to
an integrated luminosity of 138 fb−1. The specific decay
modes considered are Zð0Þ → eμ, Z → eτ, and Z → μτ. No
significant excess of events over backgrounds from stan-
dard model processes is observed. Observed (expected)

upper limits of 1.9 × 10−7, 1.38 × 10−5, and 1.20 × 10−5

(2.0 × 10−7, 1.14 × 10−5, and 0.53 × 10−5) at 95% confi-
dence level are set on the branching fractions for Z → eμ,
Z → eτ, and Z → μτ, respectively. The limit for Z → eμ is
the most restrictive to date, while for Z → μτ the sensitivity
in terms of the expected limit is the same as that of the
previous best limit. All of these limits are consistent with
expectations from the standard model, and with constraints
inferred from low-energy experimental limits. For Z0 boson
masses in the range 110–500 GeV, upper limits are set on
the cross section times the branching fraction to eμ that
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FIG. 13. Observed and expected 95% CL upper limit by category, as well as for the final combined fit, for the Z → eτ (upper) and
Z → μτ (lower) searches. The observed limits are denoted by the markers, while the expected limits with their 68% and 95%
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range from 0.3 to 7 fb, and are the most restrictive to date
for this mass range. Future studies can benefit from
additional data, since even the systematic uncertainties
arise mainly from statistical ones in control samples.
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40IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

41Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France
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78bUniversità di Catania, Catania, Italy

79aINFN Sezione di Firenze, Firenze, Italy
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