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Abstract

Hybrid machine learning-assisted modelling techniques have gained increasing attention recently in
many engineering fields. This is due to the challenges associated with pure first-principles and data-
driven models, as the former requires deep phenomenological understanding and might become
infeasible to describe a complex system with, and the latter needs extensive high-quality data and, more
importantly, extrapolates poorly compared to its first principles counterparts. The integration of the two
techniques in a framework will result in an integrated approach that benefits from the two realms by
strengthening extrapolation capabilities, higher prediction accuracy, and less data demanding and more
data-efficient. In this study, a systematic hybrid modelling framework is developed, allowing for the
integration of mechanistic models and machine learning algorithms in parallel and series for modelling
heat transfer systems to predict a desired target variable, as long as the system is not of a dynamic
nature. The framework is developed according to a previous study that enabled the use of machine
learning models for such systems. The application of the hybrid modelling framework in this study is
demonstrated on the prediction of the condensation heat transfer coefficient in a microfin tube. A
laboratory-scale dataset of 5,708 datapoints is used for the validation of the developed framework. The
validation of the model has been carried out in two different scenarios, both assessing the general
prediction and extrapolation capabilities of the developed models in comparison with pure mechanistic
and pure machine learning models. The hybrid models, series and parallel, outperform the mechanistic
model by approximately 60% more accurate predictions and the machine learning model by 25%, while
interpolating. More importantly, while extrapolating, the hybrid models showed approximately 50%
more accurate predictions compared to pure machine learning and 27% more accurate compared to the

mechanistic model.
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1 Introduction

Traditionally, first-principles and mechanistic models have been broadly developed to describe complex
systems, processes, and phenomena mathematically. These models are most often developed by a
combinatorial formal analysis, including experimentation, data observation, and theoretical analysis.
First-principles and mechanistic models are data-efficient tools that allow for reliable predictions within
the search space of the systems, as long as they are based on accurate databases. However, developing
such models requires a deep fundamental understanding of the system and, in most cases, becomes a
time-consuming task. More importantly, in more complex systems, it is rather impossible to develop
such models due to their complex nature. Accordingly, in such situations, data-driven approaches have
been explored as a counterpart to provide more effective solutions for a variety of problems.

Data-driven models have recently received significant attention considering the challenges associated
with first-principles and mechanistic models, and more importantly, due to rapid technological
advancements in computer science, data acquisition, and data availability. These models heavily rely
on data to reveal underlying correlations among different components in a system, necessitating large,
high-quality datasets that in most engineering applications are challenging to collect. For instance, the
process industry typically operates with low variation in operating conditions around specific setpoints
due to production targets, safety constraints, and regulatory compliance. This poses a significant
challenge when employing data-driven approaches for such conditions, as the variations in the data are
minimal. Hence, data-driven models will face a challenge in exploring correlations within a proper
search space. Consequently, the reliability of these models beyond the operational envelope can be
questionable. On the other hand, laboratory-scale experiments offer more flexibility, allowing
controlled variations of process variables. However, generating sufficiently large datasets under such
conditions remains time-consuming and resource-intensive. Additionally, most data-driven models do
not allow for physical interpretation of the predictions, and they are typically associated with poorer
extrapolation capabilities compared to their first-principles counterparts. Nonetheless, their requirement
for less domain knowledge and fewer assumptions, and high prediction accuracy make these models an
attractive candidate for complex systems. One of the most popular classes of data-driven models is
machine learning, which allows for the construction of algorithms capable of learning underlying
features of a dataset. Another class of models has been introduced more recently by integrating data-
driven and mechanistic approaches, called hybrid models, which inherit the advantages of both
approaches and are increasingly gaining attention due to their applicability in various subjects.

In the following, an introduction to hybrid modelling and mechanistic modelling challenges in heat
transfer systems is provided, justifying the application of such a modelling approach in the field of heat
transfer. This study focuses on developing a hybrid machine learning-assisted modelling framework to
assist the mechanistic models in heat transfer systems for a more accurate prediction of the desired

target variable. The application of such a framework is agnostic to the mechanistic model combined as
2
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long as the system of study does not have dynamic characteristics. The application of such modelling
frameworks is validated against laboratory-scale experimental data of condensation in microfin tubes
for the estimation of the heat transfer coefficient. The paper demonstrates that the hybrid model
configurations show more accurate interpolation and extrapolation compared to pure mechanistic and

machine learning models.
1.1 Hybrid Modelling in Process Systems Engineering

Challenges associated with first-principles and data-driven models led to the development of a relatively
recent modelling technique called hybrid modelling. This technique integrates data-driven approaches
with mechanistic models for problems for which neither of the techniques is sufficient to model a
complex system [1]. The integration of the two methods allows one to benefit from the features of both
modelling realms. Therefore, in principle, a hybrid model offers accurate predictions both inside and
outside of the search space, while it does not require as extensive data as data-driven models, and most
certainly does not need a deep understanding of the system and its underlying phenomena compared to
a fully first-principles/mechanistic model. In other words, these models provide a trade-off between a

priori knowledge and data requirement, prediction accuracy, interpretability, and model scalability.

With the recent advancements in machine learning techniques and their computational efficiency,
hybrid machine learning-assisted modelling techniques are becoming an attractive choice over others
[2]. However, one must note that selecting the appropriate modelling approach for a complex system
depends on several factors, such as 1) availability of first-principles models, 2) reliability of those
models, 3) choice of the machine learning model, and 4) complexity level of the integration for the
machine learning and mechanistic components. Figure 1 represents various modelling techniques that
can be employed from a systems engineering perspective. Since machine learning (Model A) and first-
principles models (Model E), the two ends of the spectrum, have already been discussed in detail, in
the following, we focus on summarising the features of each hybrid model configuration and their
current application examples in the literature, with a focus on Process Systems Engineering (PSE), as

summarised in Table 1.
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Model Input

@ / Machine learning

Figure 1: Schematic representation of modelling approaches: (A) Machine learning, (B) Hybrid series with machine
learning as the main predictor, (C) Hybrid series with first principles as the main predictor, (D) Hybrid parallel, and (E)
first-principles model.

Compared to a pure machine learning model, Model B offers to incorporate a priori knowledge into the
machine learning component in the form of soft sensors, while the main predictor remains the machine
learning model. Soft sensors are model-based information that is not measurable by instrumentation.
This configuration has been used in several applications in the field of Chemical and Process
Engineering. A hybrid model using artificial neural networks was employed in 1999 for the industrial
Nylon-6,6 polymerisation process in a twin-screw extruder reactor, predicting the relative viscosity of
the product as a key physical property. The prediction accuracy improved by approximately 50% using
the hybrid configuration compared to the empirical-based mechanistic model, resulting in optimising
the process condition to increase production by 20% [3]. In 2001, this model configuration was applied
to predict pulp delignification of an industrial pulp mill, resulting in a more accurate model compared
to a pure neural network model [4]. A few years later, Model B was applied to an industrial reactive
distillation column for Epichlorohydrin and resulted in lowering the dissolved organic carbon in the
bottom product of the column, which was achieved by reducing the alkalinity of the bottom product by
almost 33% [5].

Another hybrid model configuration that has attracted great attention in several applications is Model
C. This configuration allows the machine learning model to be trained for predicting certain inputs of
the mechanistic model that are not directly measurable (e.g., parameters) or difficult to determine with
domain knowledge. Thereafter, the first-principles/mechanistic model performs the main prediction of
the target variable by using the measured input variables and the output of the machine learning model.
The training can be carried out with two different approaches: 1) A pre-trained machine learning model
and 2) end-to-end training of the ML model, directly predicting the outputs of the combined model [6].
One limitation of this hybrid model is that the end-to-end training usually requires the mechanistic

4
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model to be differentiable. Only under such conditions can both models be optimised together;
otherwise, for non-differentiable mechanistic models, other techniques must be employed for
optimisation [6].

In 2006, the application of such a configuration was successfully demonstrated by integrating an
artificial neural network or ANN (estimating kinetic parameters) with mass balances of the Acetobacter
xylinum cultivation in a stirred tank reactor, resulting in an excellent agreement with cultivation
experimental data [7]. This configuration was also applied for on-line monitoring of Lipase production
by Candida rugosa, which outperformed a fully mechanistic model [8]. More recently, the application
of Model C has found its way into particulate processes with a focus on crystallisation and flocculation
[2,9]. In these studies, an end-to-end training of the model was developed to predict the dynamics of
the particle size distribution (PSD). The developed models accurately predicted the particle size
distributions using an ANN combined with population balance equations. Moreover, in a further study,
computational chemistry calculations were integrated with the developed hybrid model for flocculation,
which allowed for simpler ANN model components (less complex architecture) compared to the

previously developed hybrid model [10].

Model D (parallel configuration) is employed when first principles are capable of describing the
system’s behaviour; however, they are prone to errors. Hence, the machine learning component can
learn to correct the predictions by an additive/corrective error term. In 1994, the parallel configuration
was applied to model the fermentation of Penicillin in a fed-batch bioreactor [11] by integrating a Radial
Basis Function Network (RBFN) with the fermentation dynamics, which resulted in accurate dynamic
prediction of the process states compared to a pure data-driven and pure mechanistic approach. Another
study in 2012 applied a parallel configuration for controlling the Cobalt Oxalate synthesis process,
combining mass balances (i.e. population balance equations) with partial least squares (PLS) models
and illustrated a successful control loop for regulating end-point particle size distribution. The study
also compared the prediction of the PSD with the first principles and PLS only, where the hybrid model
predictions showed more stability and higher accuracy by harnessing the extrapolating capabilities of

the population balance equations [12].

Table 1: Summary of the studies on hybrid modelling approaches in the field of Process Systems Engineering

Data-driven No.

Study Application Mechanistic model Model
model layers
Nascimento, Guidici,
Scherbakoff, 1999 [3] Nylon-6,6 extruder process ANN 1 Mass balances B
Aguiar and Filho, 2001 [4] Pulp delignification ANN 1 Mass balances B
Chen et al. 2003 [5] Reactlye d's“"at'(.)n for ANN 1 Mass balances B
Epichlorohydrin
Zuo et al., 2006 [7] Airlift reactor of Acetobacter ANN 1 Mass balances C
xylinum
Lipase production by
Boareto et al., 2007 [8] Candida rugosa ANN 1 Mass balances C
Lactose and pharmaceutical
Nielsen et al. 2021 [2] crystallisation, Silica ANN 4 PBE C
particles flocculation
Nazemzadeh et al., 2021 [9] Silica particle flocculation ANN 4 PBE
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PBE and nano-scale

Nazemzadeh, 2022 [10] Silica particle flocculation ANN (2,3,4) interactions between C
particles
Thompson and Kramer, Fed-batch bioreactor for
1994 [11] Penicillin RBFN 1 Mass balances D

Cobalt oxalate synthesis
process

Zhang etal., 2012 [12] PLS N/A PBE D

1.2 Mechanistic Modelling Challenges in Heat Transfer Systems

Designing efficient, compact, and cost-effective heat exchangers is a must in process engineering, and
up to today, it has always relied on the accuracy and predictive capabilities of traditional mechanistic
models developed since the 1960s. In fact, after World War 11, a huge effort was put into developing
design methods for simple (single-phase) and complex (two-phase and multi-phase) heat transfer
systems. Kern [13] was one of the pioneers in the field, and his handbook is still considered one of the
bibles for heat exchanger design in the process industry. More recently, the work done by Prof. G.
Hewitt culminated in one of the most comprehensive handbooks on heat exchanger design [14] which
is still integrating and updating novel designs and methods.

These traditional methods are based on the estimation of heat transfer coefficients through mechanistic
models, which commonly use specific dimensionless numbers and are regressed on experimental
databases. A classic example of these models is the famous and still widely used Dittus-Boelter [15]
correlation. This correlation is based on a large database comprising hundreds of experiments collected
during single-phase turbulent heat transfer inside several tubes. The model takes full advantage of the
heat and mass analogy, which allows theoretically correlating the Nusselt number to be a power function
of the Reynolds number and Prandtl number. Then, a simple regression permitted the development of
one of the most accurate, widely used, and long-lived heat transfer correlations. The typical accuracy

in the prediction of the heat transfer coefficient is in the range of 10-30% [16,17].

The predictive capabilities of such traditional mechanistic methods depend upon the accuracy of the
experimental database, but also rely on the understanding of the heat and mass transfer mechanisms
underpinning the phenomenon. Thus, the success of the Dittus-Boelter correlation can be attributed to
two main factors: the large and accurate database of experimental data points and the deep knowledge

of the theoretical mechanisms governing heat transfer.

However, in two-phase systems, the complexity of the phenomena increases exponentially, and even
after decades of excellent research activities, the theoretical knowledge on, for example, condensation
and boiling, is still incomplete. For this reason, semi-empirical approaches most of the time fail to

accurately predict the heat transfer performance of such systems.

In any case, several successful attempts to develop accurate and robust semi-empirical correlations have
been proposed in the open literature. Considering condensation heat transfer inside tubes, Righetti et al.

(2016) [18] reviewed several models proposed either for boiling or condensation heat transfer inside

6
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smooth and microfin tubes. The ones proposed by Kim and Mudawar, (2014) [19] exhibited the best
performance in both condensation and boiling inside smooth pipes. Regarding microfin tubes, the model
proposed by Cavallini et al. (2009) [20] for condensation showed the best agreement with the
experimental database. This model is based on more than 40 years of research done by the Cavallini
group and took advantage of the experimental activities carried out and of the previous models
developed and validated on thousands of datapoints. In any case, the absolute average deviation of these
models always ranges between 15%-30%.

As already described by Loyola-Fuentes et al. (2024) [21], the complexity of these phenomena and the
plethora of parameters that play a role in determining the final two-phase behaviour imply an incredible
difficulty in identifying the correlations among those variables. This paper aims to provide a novel
framework for heat transfer modelling, trying to combine mechanistic and machine learning
methodologies to maximise the accuracy given by machine learning tools while maintaining the
predictability guaranteed by mechanistic methods.

1.3 Machine Learning and Hybrid Approaches in Heat Transfer Systems

The challenges in mechanistic modelling of heat transfer systems described in the previous section have
led several researchers to rely on data-driven and, more precisely, machine learning-assisted modelling
of complex heat transfer systems. One must note that the application of hybrid modelling approaches
illustrated in Figure 1 in the field of heat transfer has not been as widely recognised as generally seen
in the PSE community. Most of the efforts have focused thus far on developing purely machine learning
models or Physics-Informed Machine Learning (PIML). Although PIML models can be categorised as
a form of hybrid model, but the ML component is dominating the overall model performance, as the
mechanistic model only imposes some constraints on the ML model in the loss function. The table
below summarises some of the ML-assisted modelling applications in the field of heat transfer.

Table 2: Summary of the studies on ML-assisted modelling approaches in the field of Heat Transfer

Study Application Datma;)(i’rélven Mechanistic model Conwgg)t?fellti on

Modelling pressure drop

Khosravi et al. 2018 [22] during evaporation of RA07C ANN and SVR N/A A
Visualisation-based
Hobold and da Silva 2019 [23] quantification of nucleate PCA’&E‘L\" and N/A A
boiling heat flux
Kwon et al. 2020 [24] '\cﬁ%lgfn g égg?ilncgozr\::ﬁ::f RF regressor N/A A
Peng et al. 2020 [25] Modelling heat conduction in CNN N/A A

complex geometries
Modelling friction factor and
Souayeh et al. 2021 [26] Nusselt number of flow in ANN N/A A

circular tube

Flow pattern classification in KNN, RF, and

heat pipes MLP
d_ThermaI performance of ANN Restrep Reyes model C
irect contact cooling towers
Modelling condensation heat

Loyoal-Fuentes et al. 2022 [27] N/A A
Jayaweera et al. 2022 [28]

N/A / Dimensionless

Loyoal-Fuentes et al. 2024 [21] transfer coefficient in ANN and RF numbers AlB
microfin tubes
Lee et al. 2025 [29] Prediction of condensation XGBoost Degradation Nusselt Physics-
heat transfer coefficient model Informed
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Modelling of critical heat ANN Biais and Bowring

*
flux for boiling systems correlations D

Furlong et al. 2025 [30]

An example of ML modelling in heat transfer is the study by Khosravi et al. (2018) [22], in which they
developed models using ANN and SVM to predict the pressure drop of R407C. Their analysis showed
that ANN outperforms the SVM by having a R? = 0.998. Hobold and da Silva (2019) [23] applied
various models, including PCA, CNN, and MLP, to infer the heat flux of nucleate boiling in pool boiling
problems, using visualisation data. Another example is the study by Kwon et al. (2020) [24], which
compared the RF performance with finite volume modelling of local heat transfer coefficient across 243
cooling channels with different geometries. The study showed similar prediction accuracies between
the RF and the CFD simulation using finite volume methods. Peng et al. (2020) [25] applied
Convolutional Neural Network (CNN) for predicting steady-state heat conduction, resulting in accurate
prediction of the temperature distribution across a random geometry in 2D space and being 3-4 folds
computationally more efficient compared to numerical models offered by OpenFOAM. Another
example is the application of an ANN model to predict the thermal energy transport coefficient and the
thermo-hydraulic efficiency of a circular channel by Souayeh et al. (2021) [26], which resulted in 97%
prediction accuracy. Moreover, Loyola-Fuentes et al. (2022) [27] applied multiple ML models to
classify the two-phase flow patterns across pulsating heat pipes with an accuracy of higher than 75%,

using image data.

On the other hand, hybrid and PIML modelling have received little attention in this field, and the
research on these frameworks is not as widespread as one might expect compared to purely mechanistic
and machine learning modelling. For instance, Jayaweera et al. (2022) [28] applied Model C in this
study to predict the thermal performance of the direct contact countercurrent cooling tower, using an
ANN combined with Restrep Reyes model, predicting cooling water outlet temperature. An ANN was
used to predict the volumetric mass transfer coefficient to be used in the mechanistic model in an end-
to-end training loop, resulting in predictions with an R? = 0.99. In another study, Loyola-Fuentes et al.
(2024) [21] developed an ML modelling framework for non-dynamic heat transfer data. In that study,
different machine learning-based models were used to predict the condensation heat transfer coefficient,
where in one case, dimensionless numbers were used instead of measured variables as inputs for
predicting the condensation heat transfer coefficient (HTC) in microfin tubes, creating a framework
similar to Model B in Figure 1. The model showed comparable results against the model with measured
variables as inputs (Model A). The best model candidate of Model B in that study had a prediction error
of 685 W /m?2K, while the pure machine learning model had a prediction error of 511 W /m?K. The
difference in the accuracy is only 2.8% of the average HTC of the testing set (HTC,ye = 6,132
W /m2K). The study also showed that Model B has higher accuracy extrapolating beyond the range of
training data. Using a hybrid model compared to the pure machine learning one resulted in predictions
with an error of 1,819 W /m?K, while this metric for the pure ML model was 12,426 W /m?K.
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Lee et al. (2025) [29] recently applied a PIML model using XGBoost informed by the Degradation
Nusselt model to predict the condensation heat transfer coefficient. The study showed that the developed
PIML model is associated with stronger extrapolation capabilities compared to the pure XGBoost
model. In another example, Furlong et al. (2025) [30] developed a parallel hybrid model (Model D) to
predict the critical heat flux in a boiling system. However, the model training in that study did not use
an end-to-end training loop, meaning that an ANN model was trained to predict the deviation between
experimental critical heat flux and the predictions from a mechanistic model. Then, the pre-trained
model was used on an unseen dataset to adjust the mechanistic model in seugnce. One must note that
the literature review above is by no means a comprehensive review of the ML/hybrid modelling works
in heat transfer, but it provides recent examples of such modelling approaches in this field. As can be
seen, the application of hybrid modelling is rather limited in this field compared to the PSE community.
This study aims to further develop upon the framework developed by Loyola-Fuentes et al. (2024) [21]

to accommodate choosing various hybrid modelling approaches for non-dynamic heat transfer data.
1.4 Model Training Algorithms

In general, while training a model, including machine learning, mechanistic or hybrid, the problem is

formulated as an optimisation, to minimise the loss function (£) by training model parameters:

9°Pt = argmin L(I) (1)
9

Normally used loss functions for regression problems are £,, norm functions, where £; and £, are the

most commonly used functions (equivalent to absolute error and squared error, respectively).

L= ||e||n=HZei
i

)

1
n
n

Where e, in a regression problem, is the error of the predictions of the target variable (y).

Regardless of the modelling approaches employed, in optimisation problems, the training algorithms
can be categorised into two: 1) gradient-based and 2) gradient-free methods. One must note that the use
of each algorithm heavily depends on the problem type, computational time constraints and
differentiation properties of the model.

The majority of hybrid model studies have been employing gradient-based methods, including 1)
Broyden-Fletcher-Goldfarb-Shanno (BFGS) [31-34] used by Qi et al. (1999) [35] in modelling a fixed-
bed reactor, 2) Levenberg-Marquardt (LM) [36] used by Lauret, Boyer, and Gatina, (2001) [37] for
modelling the Sucrose crystal growth rate, and 3) Adaptive Moment Estimation (Adam), which has
gained great attention due to its efficiency in training neural networks and fast convergence in several

9
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complex problems. Moreover, it has been employed by several researchers in different applications
[2,9,38,39]. Gradient-free methods have also been used in hybrid modelling, for instance, evolutionary
programming in a model-based optimisation of biosurfactant production in a fed-batch culture [40] and
particle swarm optimisation for modelling a sugar crystallisation process [41].

When applying gradient-based methods, three approaches are normally utilised to determine the
gradients of the loss function: 1) Symbolic Differentiation (SD), 2) Numerical Differentiation (ND),
and 3) Automatic Differentiation (AD). Traditionally, the first two approaches have been employed in
several gradient-based optimisation problems. In many complex problems, the use of symbolic
differentiation becomes rather impossible as formulating the differentiation analytically is not feasible.
In problems where deriving the differentiation analytically is possible, the approach offers precise
solutions. On the other hand, numerical differentiation provides an approximate solution by applying
finite difference methods, which are prone to numerical errors and require high computational time
[42]. The challenges associated with the first two methods led to the development of the AD method
for complex and large models, addressing computational costs, implementation challenges, and

accuracy of the derivative evaluations [42,43].

In automatic differentiation, the complex functions of interest are degraded into small arithmetic
operations, including addition, subtraction, multiplication, division, etc., for which the derivatives are
rather easy to calculate. Thereafter, a computational graph is built upon those arithmetic operations
resembling the actual function of interest, as shown in Figure 2. The derivatives of the error are then
calculated using the chain rule through a forward pass, followed by a back-propagation. Coupling AD
with back-propagation gives a significant advantage over the ND methods as the number of parameters
increases in the model [42,43]. In the past decade, several packages have been developed for this
application, including Autodiff for PyTorch [44] by Facebook Al Research Lab, GradientTape in
Tensorflow [45] by Google Brain Team, and more recently Grad in for JAX [46] developed by Google
Brain and DeepMind. In this study, all the models are built using the Tensorflow AD package.

y1 = filx,th) Y2 = f2001,72) ¥a = f2(y2, ¥a) Yn = fo(¥n-1,0n)
i i i Ynor = fao1(Pnoz On 1)| n o
aL df, 6_‘/‘2 aL af, % oL af, 6f4 aL afy aL
Ofn s Oy Vndlns "8 8 0f O Vudfus A
9L _ oL dfn  O0fy £ oL dfy 92 9L _ 9L df, df5 oL ﬂdi
5191 df Afyoy 08 By Afdf_y 8, %5 A, Afy "'ﬁ!&‘a dﬂ Ay A0y
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Figure 2: Schematic representation of (A) forward pass of the model, followed by (B) back-propagation calculating the
gradients of the parameters with respect to the predicted error (e) in a computational graph using automatic differentiation.

2 Systematic Hybrid Modelling Framework

The hybrid modelling framework developed in this study is founded on a framework previously
developed by Loyola-Fuentes et al. (2024) [21], with changes applied in model training/testing data
split and training loop, depending on the hybridisation strategy. The modelling framework allows the
user to select the desired hybrid model configuration illustrated in Figure 1, agnostic to the first-
principles or mechanistic model, as long as the mechanistic model is differentiable and not dynamic.
The current modelling framework requires major adaptations to the data pre-processing and data
splitting steps to be applicable to dynamic systems. Figure 3 represents the overview of the framework
with the flow of data for each step, showing the adaptations taken from the framework developed by
Loyola-Fuentes et al. (2024) [21]. Most of the steps are identical to the aforementioned framework, and
the details of such steps can be found in that study. The changes applied to Step 3. Selection of
Training/Validation and Testing Data provide the opportunity to split the data more effectively, leading
to a more efficient training of the developed models. Moreover, changes in Step 4. Model
Configuration, Training/Validation and Testing offer the user the opportunity to train different model
configurations (i.e. pure machine learning or hybrid) for exploring potential model structures, predicting

the desired target variables.

Step 1

Step 2

Raw experimental Selected features

data set (D) Data Pre- Pre-processed data Features and Target (Dx)

. . processing (D) Variable Selection Selected target variable
Pre-processing functions (ﬁy)
@
L Step 3 Step 4
Select((e% fc;atures . — (Diain, pirain) Model Trained model candidate
X — sssiener | (D, Dyaty Configurations, SV ROt [ uER
raining/Validation i Y L e . .
Selected target and Testing Data (DEFS!, Dist) UECEICENES | List of metrics
variable (D,) 2 ML model h () and Testing (ctrain gval giest)
ML model architecture
Step 5 L Model Step 6
redictionsy
ML model A(#) Hyperparameter . P . i Performance Best model candidate
) : List of metrics
Adjusted Tuning i Assessment

I:tramJ Lvul‘Ltcst
hyperparameters ¢ )

Figure 3: Modelling framework overview, adapted from [21], with main changes in Step 3 and Step 4

In Step 1, the data is pre-processed according to a priori knowledge of the system, data collection
protocols, and any data analysis pipeline that the user finds suitable. It is essential at this stage to identify
outliers, the range of the data for each variable that aligns with the physics of the problem, and to remove

repeating datapoints from the dataset to avoid introducing biases to the model training/validation, and
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testing steps. A feature importance analysis shall be carried out in Step 2 to identify the most relevant
variables, similar to the approach taken by Loyola-Fuentes et al. (2024) [21] (e.g. Recursive Feature
Elimination with Cross-Validation (RFECV)). Steps 3 and 4 are described in the following with more
details, as they are quite different from the original modelling framework:

Step 3: Selection of Training, Validation, and Test Data

Now that the features and the target variables are identified and selected, the data shall be split in Step
3 of the workflow. The performance of the developed model highly depends on the data splitting
strategy [47]. The common practice in machine learning modelling suggests splitting datasets into
binary splits of training and testing sets. However, in this study, the data is split into three sets of
training, validation, and test sets. During training of the model, in each iteration (epoch), the optimised
model parameters are validated against a set of unseen data (validation) to assess the model's
generalisation after each step. This would normally avoid overfitting and memorising patterns in the
data. The following algorithm should be followed to prepare the ternary splits.

Algorithm 3. Data split into training, validation, and test sets:

1. Split the data first into total training (including validation) and test data using common practices
in the literature. A random split of 70/30% or 80/20% is usually recommended using the Pareto
principle [48]:

Divtar: D totar Dyfotar

1_) test: (z_))t(est’ ]_)jt/est)

Note: One may choose a non-random data splitting strategy to assess the model performance,
similar to the approach used in [21], where a systematic splitting method was employed to assess
the extrapolability of the developed model. In this study, in addition to a random split, a similar
systematic approach is used to analyse the extrapolation capabilities of the hybrid models.

2. Within the total training set obtained, split the data randomly by using 90/10%, 80/20% into
training and validation sets. It is essential to split the data randomly in this step to prevent
introducing biases in the training step.

5train: (5§rain, 5§rain)
ﬁval: (2_))1(%11’2_);7&11)
Step 4: Model Configuration, Training/Validation and Testing

In this step, the model configuration should be selected according to the availability of high-quality data
and the mechanistic model. The user can employ different hybrid model configurations to compare their
performance assessment and select the one associated with the best performance. In most applications,

a deep understanding of the mechanistic model is required to decide the appropriate configuration.

12
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Hence, it is highly recommended to apply all configurations and choose the one with more accurate
predictions and generalisation capabilities.

Maodel Training and Fitting

Y = arg min L(F, Yipe)
Training/Validation
Data (1)
Model Training and Fitting
X
Z=f(X,P) 9 = z in L($,y
— N 9 = argmin L(}, Yirue)
Training/Validation 9 =hX29) o
Data (D)
Ytrue
Hybrid Model Series
{Model C)

Model Training and Fitting

X

— ’ & = arg min L{F, Yirue )
Training/Validation . i
Data (D)
ytr‘ue
g
LI
Hybrid Model
Parallel (Model D)

Model Training and Fitting

X

p—- = argmin L
Training/Validation B
Data (D)
Yirue

Figure 4: Conceptual illustration of training loop for model configurations shown in Figure 1: (A) Pure ML — Model A,
(B) Hybrid Series — Model B, (C) Hybrid Series — Model C, and (D) Hybrid Model — Model D
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Algorithm 4. Selecting model configuration, training/validation and testing:

1.

Choose the desired ML model h(X,9). Examples are Random Forest (RF), Artificial Neural
Networks (ANN), Support Vector Machine (SVM), etc.
Where h represents the ML model, X the input data, and 9 model parameters.
Select the training and validation method from the following approaches, described in detail in
[21]:

a. Holdout

b. K-fold cross-validation

c. Ensemble
Select the model configuration from Figure 1, based on the following guidelines:

a. If Model A(pure ML model) is to be used, model training is formulated as follows:

y = h(X,9)
9Pt = argmin £(3, Yerue)

b. Else, if Model B is selected for predicting the target variable, the mechanistic model
and domain knowledge are used to generate soft sensors (Z) to be used instead/with
actual input variables to train the ML model:

Z=fXP)
y =h(X,Z,9)

9oprt — argmin LY, ¥ true)
9

c. Else, if Model C is chosen, the machine learning model is trained to predict the set of
parameters (P) of the mechanistic model, responsible for predicting the target variable:

P = h(X,9)

y=fXP)

9ot — argmin LY, ¥ true)
9

d. Else, if Model D, predict the target variable with the mechanistic model, while training
the ML model to predict an additive correction term (¢) to adjust the predictions against
the actual measured target variables:

£=h(X0)
y=fX,P)+¢

9oprt — argmin LY, ¥ yrue)
J

Where h represents the ML model with 9 as its hyperparameters, while f is the

mechanistic model with P as its parameters.
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4. Carry out a prediction on the test dataset for the trained models in the previous steps for

performance assessment in Step 6.

This study focuses on a hybrid modelling framework that integrates mechanistic and machine learning
model components for predicting the desired target variable, using various model configurations. To
compare the results of the models, the same neural network architecture (i.e., number of hidden layers,
number of neurons per hidden layer, and hidden layer activation functions) can be used to provide a fair
basis of comparison across different configurations, or the hyperparameters of each neural network can
be tuned in every model configuration and select the best model across the tuned ones. In this case, the
first option was chosen, as the purpose of this study is to highlight the importance of the model
configuration (interactions between first principles and machine learning maodels), rather than the use
of the best possible ML model architecture. The changes in other hyperparameters, such as the number
of neurons in the outlet layer, depend on the model configuration itself, which further leads to changes
in the output layer activation function. Finally, different learning rates are needed because of the
different model configurations and their corresponding vanishing/exploding gradient rates during the
training stage. As stated in the preceding study of the current paper, Step 5 is rather optional to tune the
hyperparameters of the developed model, but it helps to avoid unnecessarily complex models for the
system under study. Thereafter, in Step 6, the developed models in Step 3 are compared against each
other in terms of their prediction and learning curves using the error metrics such as Mean Absolute
Error (MAE), Mean Squared Error (MSE), and other similar metrics. In addition to these metrics, the
percentage of points outside of a fixed threshold (e.g., 20%) of the experimental values (¥). More details

of the framework can be found in the study by Loyola-Fuentes et al. (2024) [21].

The main advantage of the framework developed in this study over other existing models in the
literature lies in the integration of the state-of-the-art ML and differentiable mechanistic models for
modelling non-dynamic heat transfer data, agnostic to the system. The framework provides the
possibility of training various model configurations, and the user is required to select the model that
explains the variation of the data the most. Moreover, the framework is designed as such to provide the
opportunity for an end-to-end training of the hybrid models, which is more efficient compared to using
a pre-trained ML model.

3 Application Example: Condensation Heat Transfer Coefficient in Microfin Tubes
3.1 Background in Microfin Tubes

Over the past four decades, the utilisation of enhanced surfaces to boost condensation heat transfer
within horizontal channels has become standard practice. Consequently, microfin tubes, as an
engineering innovation that enhances thermal exchange, are extensively employed in heat transfer
devices for various HVAC and cooling systems. Indeed, since their conception by Fujie et al. (1975)

[20] microgrooved tubes have garnered considerable interest due to their capacity to deliver substantial
15
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improvements in heat transfer (80-180%) with only a modest rise in pressure loss (20-80%) when
compared to a comparable smooth tube under identical operating parameters. They achieve enhanced
thermal exchange through (i) expanding the effective heat transfer surface; (ii) generating heightened
turbulence within the liquid layer; and (iii) leveraging surface tension phenomena to promote

condensate removal [20]. Common microfin tubes are characterised by fin tip diameter (dy), number of

fins (nf), helix angle (B), apex angle (a) and fin height (k).

These characteristics are illustrated in Figure 5, which presents a fundamental configuration of a
microfin tube. Typically, they have an internal diameter ranging from 3 to 15 mm, featuring a single
array of 40-70 fins with a helical inclination (£) varying from 0° to 30°, fin depth (k) between 0.1 and
0.25 mm, and triangular or trapezoidal fin profiles with an apex angle (y) spanning from 25° to 90°. The
heat transfer coefficient during condensation within microfin tubes is dependent on the complex
interactions among the tube’s parameters (e.g., geometry, operational parameters, flow regime, etc.)

and heat transfer mechanisms (e.g., forced convection, temperature gradients, etc.).

Figure 5: Basic design of a microfin tube reprinted with permission from [20]. © 2009 Elsevier.

Although the Cavallini et al. (2009) [20] model offers good predictive capabilities, but the new
requirements of the refrigeration and air conditioning sector in terms of controls and energy cost
minimisation call for a novel class of models that could increase the accuracy of prediction while
maintaining the reliability and stability of traditional ones. Loyola-Fuentes et al. (2024) [21] explored
the main capabilities of machine learning tools in estimating condensation heat transfer coefficients,
showing their limitations in terms of predictability. This work aims to take a step forward by attempting
to demonstrate that the hybridisation of machine learning tools can improve the overall accuracy and
predictability of mechanistic models, enabling advanced features in the design of smart heat exchangers.

16



CoO~NOOOPWNPE

OO OUUUIUUUUIVIOUSDAADNDMAADNDAWWWWWWWWWONNNNNNNNNNRERRRRRRRER
ORWMWNPRPOOONONPRONRPOOOVNOURWNROOONONRARONROOONOUIAWONRPOO®O®NOUNAWNRO

3.2 Mechanistic Model

The Cavallini et al. (2009) [20] model was developed by regressing the empirical constants on 558
experimental data points selected among more than 4000 available in the whole database. These
experimental datapoints were those presenting low experimental uncertainty, available temperature
difference, different tube geometries and operative fluids. The selected data points were: 1) 186
datapoints by Cavallini et al. [49-51] for R22 and R407C inside a horizontal microfin tube and for
R134a and R410A, 2) 96 points by Haraguchi (1994) [52] for R134a and R123, 3) 106 datapoints by
Kedzierski and Gonclaves (1997) [53] for R32, 4) 52 datapoints by Miyara et al. (2002) [54] for R410A,
5) 39 by Kim et al. (2002) [54] for R22 and R410A, 6) 20 by Zilly et al. (2003) [55] for CO-, 7) 32 by
Colombo et al. (2006) [56] for R134a, and 8) 17 by Uchida et al. (1997) for R22 [57].

The condensation heat transfer coefficient is defined with reference to the heat transfer area of the
smooth tube with tube diameter (D) equal to the fin tip diameter of the microfin tube according to the
following equation:
q 1
= 3
HTC = — 3)

The condensation HTC is estimated by combining the heat transfer coefficient for the AT independent

zone (HT C,) and the one for AT dependent zone (HTCp,) using the following equation:

1
HTC = [HTC} + HTC3)3 (4)

The first term in Eqg. (4) corresponds to the forced convective heat transfer coefficient and can be
determined as the product of the HTC for a smooth tube (HTC4s) by a function (4) of the geometry
enhancement factor (R,,) and the Froude number (Fr) [58] using Egs. (5)-(11). The term C acts to lower
the heat transfer coefficient when the fin number (n,) is greater than the optimal value (n,,,) for the

given diameter.

HTCA = A - C ) HTCAS

(5)
pL 0.3685 U 0.2363 ”V B

HTC,s = HTC;, |1 + 1.128x°%817 (—) (—) (1 — —) pr01

s Lo [ Pv Hy Hi g (6)
/1L Gdf 0.8 oa
HTC,p = 0'023d_f<f> Prf )
— b _ c
A=1+aFr°(R,—1) ®)
GZ
Fr=—— 9
gds(pL — pv) 9)
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2h X ng (1 - sin(%)) 1

r ndf cos (%) (10)
* cos(B)
c=1 if(M) >0.8
’;g
C= <M> if (M) <08 (11)
g ng

Tlopt - edf + f

The HTC of the AT dependent zone (HTCp) can be determined from Egs. (12-(17(17) by using the
parameter C in Eq. (11), the geometry enhancement factor (R,) and calculating the HTC of the AT
dependent zone for smooth tube (HT Cps) [58].

HTCp = Clgx"(R, — D*CI™ + 1]HTCpg + C(1 — x™)R,HTC,

(12)
025
HTCoe = 0.725 [A%pL(pL — pv)ghLy
ps = 03321
1—x HLdeT (13)
1+0741(=%)
CGi=1ifjy =)y
Co=Jo/ly ithy <Ji (14)
J xG
V= 0.5
[g9dspv (oL — )] =
1
-3 3
* . -3
Jy =06 (4-3Xt1t'1“ m 1> +2.5 ] (16)
- )
e Uy PL x (0

Where J, is the dimensionless vapour velocity, J;; represents the transition vapour velocity, and X;; is
the Martinelli parameter. The empirical parameters in Egs. (8), (11), and (12) have to be estimated by
training the model over the collected experimental dataset. The model is valid for tubes with helical fins
having a fin height to diameter ratio h¢/D less than 0.04. This model should be applied to halogenated
refrigerants and carbon dioxide with reduced pressure 0.1 < P,..; < 0.67, vapour quality 0 < x < 1 and

mass velocity ranging between 90 < G < 900 kg m? s,
3.3 Dataset

The data set for condensation in microfin tubes used in this paper is a larger data set in addition to the
data used by Loyola-Fuentes et al. 2024 [21] consisting of 4,122 data points used in the preceding
18
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studies [20] (Batch 1) and an additional 1,586 datapoints (Batch 2) from other studies in this area [59—
72], resulting in 5,708 datapoints in total. The added experimental data points include: new refrigerants,
among those: low GWP fluids R1234yf and R1234ze, R513, R1123/R32 mixture, additional microfin
tubes with smaller diameters, from 2.17 mm up to 5.21, and add more data for traditional

Hydrofluorocarbon (HFC) fluids. Table 3 shows the experimental input variables and their ranges.

Table 3: Experimental input data to the models

Variable Symbol Units Range Variable Symbol Units Range
Vapour _ ) Heat of 1
quality x [0.02 - 1] vaporisation hy J kg [8.5E4 — 2.93E5]
Refrigeran 21 B Reduced _ B
t mass flux G kgm™s [54.97 — 1529.46] pressure Preq [0.01-0.63]
Liquid _3 Surface o . B
density oL kgm [867.26 — 1480.84] temperature T, c [-25.0 - 74.11]
Liquid Surface to
thermal AL WmK?! [0.05 - 0.14] wall temp. T,—T, °C [0.23 -18.07]
cond. difference
Liquid Fin tip
-1lp-1 _ 2 _
heat_ Cp, Jkg™'K [881.02 — 2280.9] diameter dr m [1.98E-3 - 1.6E-2]
capacity
Liquid u Pas [8.18E-5-4.33E-4]  Fin height h m [1.00E-4 — 6.35E-4]
viscosity L ' : s : '
Liquid
surface o, Nm™! [1.45E-3 - 1.7E-2] Helix angle B ° [0-40.0]
tension
Vapour _3 _ o _
density Py kgm [6.99 — 166.95] Apex angle y [0-90.0]
Vapour
11 o 3 Number of _ B
thermal Ay W m™K [8.6E-3 — 2.6E-2] fins per tube ng [10 - 82]
cond.
Vapour
heat Cpy JkgTlK? [615.61 — 2587.86] Tube length Lg m [0.15-6.4]
capacity
Vapour = f
viscosity Uy Pas [1.03E-5 - 1.81E-5]

3.4 Approach

In this study, a thorough approach is used to analyse the performance of the various modelling
configurations introduced in two different scenarios and subsequent sub-scenarios, listed in Table 4: 1)
Scenario |: Testing interpolation capabilities, and 2) Scenario Il: Testing extrapolation capabilities.
Scenario | allows for splitting the data randomly using common practices of ML models using the Pareto
Principle, as suggested in Step 3 of the framework. By randomly splitting data into training/validation
and testing sets, the test set will contain datapoints that are within the range of the training data.
However, in Scenario |1, the data is split systematically by considering a certain range of mass flux (G)
in the training and validation, while holding out the rest for the test set. Details of such a splitting
strategy can be found in Table 5. Mass flux is selected as the variable for splitting the data since 1) it is
usually a manipulated variable in experimental analysis, and 2) it is an important feature based on the
RFECV results, shown later in this study. In this scenario, the extrapolation capabilities of the developed
models are evaluated. Moreover, in each scenario, different model configurations, shown in Figure 1,

are developed to predict the condensation HTC in microfin tubes.
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Table 4: Summary of the scenarios considered for the application example

Scenario Description

1A Random data split, pure machine learning (Model A)

IC Random data split, hybrid-series model (Model C)

ID Random data split, hybrid-parallel model (Model D)

IE Random data split, pure mechanistic model (Model E)
1A Systematic data split, pure machine learning (Model A)
[e} Systematic data split, hybrid-series model (Model C)
11D Systematic data split, hybrid-parallel model (Model D)
IE Systematic data split, pure mechanistic model (Model E)

Table 4 provides a summary of the scenarios analysed in this study, with their description, while it
should be mentioned that for a pure mechanistic approach (Model E), the parameters of the model are
estimated over the dataset under study, using the original parameters as the initial guess. The trained
mechanistic model is then used in parallel with the ML model to configure Model D (hybrid-parallel).
In Model C, the ML component assists in estimating the mechanistic model parameters within an

integrated training loop.

Table 5: Scenario | and 1l data splitting strategy and details

Scenario  Training/Validation Split Testing Split Strategy Variable Training/Validation
[%6] [%6] Range
| 90/10 20 Random - -
1 90/10 18 Systematic G G € [50,600]kgm2s~!

4 Model E — Mechanistic Model

In this section, the parameters in the mechanistic model described above are optimally estimated using
the new dataset to have a fair basis of comparison across all proposed models. Moreover, as discussed
in the previous section, Model E provides the mechanistic component in Model D, which uses the
correction term to adjust the prediction from the mechanistic model, aiming for a more accurate
prediction. To estimate the parameters of the mechanistic model, the built-in TensorFlow’s optimisation
algorithm is employed and is carried out in a computer with Intel® Core™ Ultra 7 155H, 1400 MHz
CPU using Python.

Table 6 provides the details of the optimisation algorithm utilised for the estimation of parameters of
the mechanistic model, which are later used in scenarios IE and IIE. In both scenarios, the Adam
optimisation algorithm is employed with 0.01 as the learning rate. For training the model, a batch size
equivalent of 10 datapoints is selected as the sample size in each iteration (epoch) for a total number of
200 epochs (i.e. iterations).

Table 6: Parameter estimation settings for the mechanistic model

Parameter Values
Batch size 10
Epochs 200
Optimisation Algorithm Adam
Learning Rate 0.01
Number of Parameters 11

20



CoO~NOOOPWNPE

OO OUUUIUUUUIVIOUSDAADNDMAADNDAWWWWWWWWWONNNNNNNNNNRERRRRRRRER
ORWMWNPRPOOONONPRONRPOOOVNOURWNROOONONRARONROOONOUIAWONRPOO®O®NOUNAWNRO

Table 7 shows that for both scenarios IE and IIE, new parameters have been estimated that are, in most
cases, aligned with the ones in the model proposed by Cavallini et al. (2009) [20]. Since the original
parameters are used as an initial guess, it helped the algorithm to optimise the parameters in a reasonable
time, resulting in 102 s for Scenario IE and 144 s for Scenario IIE. More details of the results are
provided in the Performance Assessment section, together with the machine learning and hybrid model

configurations.

Table 7: Parameters of the mechanistic model in 1) Cavallini et al. (2009) [20], 2) Scenario IE, and 3) Scenario IIE.

Model a b c d e f s h k m n

Cavallini  1.119 -0.3821 0.3586 1.904 4064.4 23.257 24 0.1206 1.466 0.6875 0.087
etal.

IE 1.175 -0.2228 0.5267 3.08 4064.22 28.287 24072 03791  0.8256 0.68 0.0869
1E 1.0709 -0.3029 0.3236  2.9839  4064.54 28.404 2.52 0.349 0.999 0.68 0.0869

5 Application of the Regression Framework to the Case Study

In this section, a step-by-step application of the framework, detailed in Section 2 is followed by the
results of the model predictions and the assessment of their performance. It must be noted that, in
addition to the ML and hybrid ML models, the mechanistic model performance is also analysed and

compared to the other model configurations.
5.1 Data Pre-processing

As described in the framework, the data set must be screened, and proper filtering functions have to be
employed to prepare the data set for modelling purposes, including outliers, data violating the physics
of the problem, etc. In this case study, the only filtering procedure taken is to keep the data
corresponding to an HTC of less than 24,000 W /m?K, to maintain consistency with the results of
Cavallini et al. (2009) [20]. As a result of this filtering procedure, the number of datapoints reduces
from 5,708 to 5,646, equivalent to 99% of the total data. According to the quality of the collected data,

no further filtering function was used.
5.2 Features and Target Variables Selection

Across all models, the same input variables described in Table 3 are used to predict the condensation
HTC in both scenarios. Following the selection of input and target variables, a feature importance
analysis is carried out using recursive feature elimination (RFECV) with 5-fold cross-validation. This
is done via the Random Forest regressor from the Scikit-learn library in Python. Figure 6 demonstrates
the results of such analysis over the filtered data, showing vapour quality (x), mass flux (), and fin tip
diameter (ds) as the most important variables with approximately 0.4, 0.22, and 0.14 as their score,

respectively, followed by liquid thermal conductivity (4;), wall temperature (Ts —Ty,), and the
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remaining input variables with an importance of smaller than 0.05, showing that they are irrelevant for
the prediction of HTC. The results of the dataset used in this study are rather comparable with the study
of Loyola-Fuentes et al. (2024) [21], in which the first two important variables remain the same.
However, the third important variable in that study was liquid thermal conductivity, and the fin tip
diameter appeared as a rather irrelevant variable. It is expected that the liquid and vapour-related
physical properties have different importance scores. For instance, the thermal conductivity of the liquid
phase is far more important than the vapour phase. This is expected and can be explained as in film-
wise condensation of a vapour phase on a cold surface, the liquid phase imposes a larger thermal
resistance compared to the vapour phase. This is also seen in the mechanistic model used in this study,
as Ay is not used in the determination of the condensation heat transfer coefficient, while A is used in
Equations (7) and (13). Moreover, considering the fin tip diameter, the results confirm what had already
been proposed by Cavallini et al (2009) [20] when developing the mechanistic model. In fact, it is well
known that the heat transfer performance increases as the inner diameter of the pipe decreases.
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Figure 6: Feature importance analysis on the input variables for the prediction of HTC.

To have a deeper understanding of the results in comparison with the study of Loyola-Fuentes et al.
(2024) [21], the distribution of the most important variables for the prediction of HTC (i.e., x, G, df)
are analysed for the two batches of data: 1) Batch 1, including data from [21] and 2) Batch 2: new data
added in this study. Figure 7 illustrates the distribution of the three most important variables across the
two batches of data, showing rather similar vapour quality across the two batches, which is expected as
the experiments shall cover the entire range of the variable between 0 and 1, ensuring that several
possible condensation mechanisms and flow characteristics are covered. For mass flux, in Batch 2, a
wider distribution is observed, while having an average G =~ 350 kg/m?s in Batch 1 and G =~

400 kg/m?s in Batch 2. The major change lies in the fin tip diameter, as Batch 2 contains a distribution
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of fin tip diameters with an average of d; ~ 0.0035 m, while this variable shows a rather narrow
distribution in Batch 1 with df ~ 0.0085 m as the average value. It is reasonable to assume that, due
to the very narrow distribution in Batch 1, this variable was not identified as relevant in [21] using the
RFECV method, while it is determined as the third important variable for the prediction of HTC in the
combined dataset used in this study. This shows the importance of having a wide range of data per
feature when dealing with data-driven models.
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5.3 Selection of Training, Validation and Testing Data

Considering the two scenarios discussed above, two different splitting strategies have been taken into
account to assess both interpolation and extrapolation capabilities of the developed models. In Scenario
I, as shown in Table 5, the dataset is randomly split into a total training (including training and
validation) and testing sets by 80/20%, while the total training data is split by 90/10% into training and
validation sets afterwards. However, in Scenario Il, the data is split into total training and testing sets
by having a similar ratio to the first scenario (82/18%), using G as the dividing variable, comprising the
total training data with 50 < G < 600 kg/m?s and G > 600 kg/m?s as the test set, see Figure 8 for
visual illustration of the data split. Thereafter, the total training data is randomly split by a ratio of
90/10% into training and validation sets.

1600
1400

1200

.
00 400 600

800 1000 1200 1400 1600
G [kg/m?s]

2

Training/Validation Testing
Figure 8: Distribution of mass flux (G) considering the data split for Scenario Il

5.4 Model Configuration, Training/Validation, and Testing

At this stage, the models are trained, validated and tested for the scenarios listed in Table 4, using the
training loops described in Step 4 of the modelling framework. The machine learning selected for this
application is an Artificial Neural Network (ANN) with the hyperparameters listed in Table 8. The
ANN models all have two hidden layers, apart from the input and the output layer, each having 32
neurons with ReL U as the activation function. The output layer activation function needs to be decided
according to the model configuration. It must be noted that only the input features are normalised for

the training/validation stage, and the target variable is predicted without scaling.
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Table 8: List of hyperparameters for the ANN model, shared in all model configurations

Hyperparameter Values
Number of hidden layers 2

Number of neurons per hidden layer [32, 32]
Activation function per hidden layer [ReLU, ReLU]
Batch size 10

Epochs 200

Loss MAE
Optimiser Adam

e Scenario |

In Scenario | (random data splitting strategy), the models are trained and validated according to the
training loops described in the framework and illustrated in Figure 4. The output layer activation
function and learning rate depend on the selected model configuration and the inherent nature of the
neural network outputs. In other words, the behaviour of the activation function shall be consistent with
the predicted variable by the neural network. In case of vanishing/exploding gradients, learning rate and
the output layer activation function can be adjusted. For model C, these are adjusted to avoid exploding
and vanishing gradients in the training stage and for Model A and Model D, the output layer activation
function to ensure that the output of the ANN model fits the purpose of prediction. For instance, the
output of the ANN in model D is an additive error (&), which can take negative or positive values.
Hence, a linear activation function is selected for the output layer that allows for both values as the
output of the ANN model. For Model C, 0.001 is used as the learning rate and Softplus as the output
layer activation function to avoid vanishing gradients in the training loop. The learning rate for the other
models (A, C, and D) is 0.01, as this relatively high rate showed a reasonable learning curve for these
models. An important difference among the models is the number of parameters, as this depends on the
architecture of the ANN component for Models A, C, and D. All models share the same architecture in
terms of the number of hidden layers and their neurons. However, the output layer is different for Model
C, as its output layer has 11 neurons (equal to the number of parameters of the mechanistic model),
while Models A and D have a single output for predicting the HTC and ¢, respectively. In doing so, the
total number of parameters for the models is 1,921 for Model A and D, 2,251 for Model C, and 11 for

the mechanistic model. The summary of the parameters described above is provided in Table 9.

Table 9: Hyperparameters, computational time, number of parameters, and losses for models in Scenario I.

Model A Model C Model D Model E
Training Computational Time [s] 135 180 130 102
Number of parameters 1,921 2,251 1,921 11
Learning rate 0.01 0.001 0.01 0.01
Last layer activation function ReLU Softplus Linear -
Training loss [W/m?K] 559 400 504 1,297
Validation loss [W /m?K] 719 565 659 1,414

25



CoO~NOOOPWNPE

OO OUUUIUUUUIVIOUSDAADNDMAADNDAWWWWWWWWWONNNNNNNNNNRERRRRRRRER
ORWMWNPRPOOONONPRONRPOOOVNOURWNROOONONRARONROOONOUIAWONRPOO®O®NOUNAWNRO

Figure 9 illustrates the training and validation curves for all models in this scenario. The learning curve
for model E is different from the other models, as the mechanistic model is able to learn very fast at the
initial epochs (up to epoch 25), but the model does not learn much afterwards, as both training and
validation losses flatten around 1,297 and 1,414 W /m?K, respectively. This suggests that the original
parameters as the initial guess for Model E are rather close to the optimised values. Details can be found
in Table 7. On the other hand, the other models' learning curves provide evidence that the training has
been more effective. Model A's learning curve is quite steep, with an initial loss value starting at 6,000
W /m?K and reaching 1,000 W /m?K already in the first 20 iterations, showing that the pure ML model
is quite far from a trained model when starting the training loop, and it reaches 559 and 719 W /m?K
by the end of training for the training and validation sets, respectively. However, it can be clearly seen
that the hybrid models (Models C and D) start from much lower loss values compared to Model A. This
shows that the mechanistic model integrated with the ANN assists the model to initialise more
reasonably, while facilitating more efficient training and validation of the models. Model D final
training and validation losses are 504 and 659 W /m?K, slightly more accurate than Model A. The final
training and validation losses of Model C are 400 and 565 W /m?K respectively, the lowest among all
trained models.
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Figure 9: Training and validation curves of Scenario | for models A) Pure ML model, C) Hybrid — series, D) Hybrid —
parallel, and E) Pure mechanistic.

Analysing the training/validation curve of Model D, reveals that the training curve has not yet reached
a plateau after 200 epochs, which may indicate that the training has not been sufficient, and the model
may require more iterations to be fully trained. However, the validation curve shows otherwise, as it

has reached a plateau. This means that by further training the model, the two curves deviate further

26



CoO~NOOOPWNPE

OO OUUUIUUUUIVIOUSDAADNDMAADNDAWWWWWWWWWONNNNNNNNNNRERRRRRRRER
ORWMWNPRPOOONONPRONRPOOOVNOURWNROOONONRARONROOONOUIAWONRPOO®O®NOUNAWNRO

from each other, and it can be an indication of overfitting. Hence, 200 epochs appear to have been
sufficient for this application. However, larger number of epochs can be explored if found necessary.

e Scenario Il

In the second scenario, the same model architecture as in Scenario | has been implemented. Similarly,
Model C in this scenario has a lower learning rate compared to the other models and employs Softplus
as the output activation function to avoid vanishing gradients in the training loop. Table 9 shows these
hyperparameters together with the computational time required for training, and the corresponding

training and validation losses.

Table 10: Hyperparameters, computational time, number of parameters, and losses for models in Scenario I1.

Model A Model C Model D Model E
Computational Time [s] 141 150 112 144
Number of parameters 1,921 2,251 1,921 11
Learning rate 0.01 0.001 0.01 0.01
Last layer activation function ReLU Softplus Linear -
Training loss [W/m?K] 518 359 465 1301
Validation loss [W/m?K] 555 467 517 1288

The learning curves illustrated in Figure 10 are relatively similar to the one presented for Scenario 1.
However, in Model E it can be seen that the validation loss is approximately 1,288 W /m?K, while the
training loss is slightly higher 1,301 W /m?2K. Although this difference is not significant, it shows that
the mechanistic model is prone to underfitting. On the contrary, the other models' behaviour is rather
similar to their counterparts in Scenario I. This behaviour would indicate that a similar performance can
be expected from all models in both scenarios. Nevertheless, the training and validation data across the
two scenarios are different. To draw a proper conclusion on the models’ performance in both scenarios,

it is necessary to assess the model prediction on a completely unseen data set (i.e. testing set).
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Figure 10: Training and validation curves of Scenario Il for models A) Pure ML model, C) Hybrid — series, D) Hybrid —
parallel, and E) Pure mechanistic.

5.5 Performance Assessment

The performance of the developed models is assessed by analysing the prediction errors over training,
validation, and test data sets together with their out-of-range data points for both scenarios. These values
are reported for pure ML, hybrid, and pure mechanistic models. The evaluation of the results is carried

out separately for each scenario in the following.
e Scenario |

The prediction error of the models in this scenario on the test set, presented in Table 11, clearly indicates
that the ML model and both hybrid configurations outperform the mechanistic model by having
approximately 55% more accurate predictions and significantly reducing the out-of-range datapoints by
almost 28%. The main reason behind this improvement is the strong interpolation capabilities of the
ML component used in models A, C, and D. Figure 11 illustrates the parity plot of the models in this
scenario for the test set, in which the superiority of these models over Model E, the mechanistic model.
It must be noted that a similar observation was made by Loyola-Fuentes et al. (2024) [21], that showed
the pure ML model with grid search has approximately 50% more accurate predictions, while the

number of data points out of a 20% error range was reduced by 25%.

Table 11: Model performance results for Scenario I, including MAE and out-of-range data
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MAE Training

%0O0ut-of-Range

Model (Validation) Training MAE Tezsting %0ut-of-Range
[W/m?K] (Validation) [W/m*K] Testing
Model A (??g:g) (181'?’5) 693.5 125
Model C ?ggse)s (8?3) 516.6 83
Model D (ggg:g) (172'% 595.3 101
Model & L0149 (03) 13573 382

The metrics on the test set in Model C and Model D, and their corresponding parity plots in Figure 11

show that Model C outperforms Model D, which is expected as the hybrid series configuration allows

the model to map the mechanistic model parameters to the input variables efficiently. Hence, these

parameters will become dependent upon those variables, maintaining the main functional form in the

mechanistic mode. While in the hybrid parallel configuration, those parameters are fixed for the entire

dataset, and an error term corrects the prediction of the mechanistic model. The hybrid model

configurations (Models C and D) demonstrate slightly more accurate predictions on the test set

compared to Model A. However, one might argue that the difference is less than 180 W /m?K (2.5% of

the average HTC, 7,094.8 W /m?K) in the test set, and such a small improvement cannot be justified

considering the implementation challenges of a hybrid model. Hence, Model A (pure ML) might be

sufficient for predicting the HTC if a systematic data split is not to be used.
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Figure 11: Parity plots of the HTC for A) Pure ML, C) Hybrid-series, D) Hybrid-parallel, and E) Pure mechanistic
models in Scenario I.

15000 20000

+20%

15000 20000

29



CoO~NOOOPWNPE

OO OUUUIUUUUIVIOUSDAADNDMAADNDAWWWWWWWWWONNNNNNNNNNRERRRRRRRER
ORWMWNPRPOOONONPRONRPOOOVNOURWNROOONONRARONROOONOUIAWONRPOO®O®NOUNAWNRO

Moreover, the performance of the models is assessed with a sensitivity analysis similar to the one carried
out by Loyola-Fuentes et al. (2024) [21] varying the vapour quality (x) for various mass flux (G) values
of R134a. As illustrated in Figure 12, all models show that with increasing vapour quality and mass
flux, the predicted HTC increases, a behaviour that is expected from the physics of the system and the

experimental data.
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Figure 12: Estimation of the HTC for a single tube using A) Pure ML, C) Hybrid-series, D) Hybrid-parallel, and E) Pure
mechanistic models in Scenario I.

Now that the sensitivity of all the developed models in this scenario is aligned with the system's
expected behaviour, it is essential to understand which model resembles the actual behaviour more
closely. To this aim, the heat transfer enhancement factor (EF) is analysed for the experimental data
collected for R134a. The EF is defined as the ratio between the measured HTC for the microfin tube
and the equivalent HTC of the smooth tube predicted by the mechanistic model. The mechanistic model
considers the geometry enhancement factor (R,,), and it sets a transition between the gravity-controlled
and the forced convective-controlled condensation with a criterion defined on the basis of the refrigerant
two-phase flow pattern observations. Thus, the EF can also reveal the significance of the transition
between flow patterns across different mass fluxes. The heat transfer enhancement factor for R134a in
the microfin tubes is illustrated in Figure 13 using the collected experimental data, showing that this
parameter is relatively constant for G = 400 kg/m?s and G = 800 kg/m?s. Thus, considering that the
geometry enhancement factor is approximately 1.63, it can be stated that for G = 400 kg/m?s, the heat
transfer EF is merely due to the geometry of microfin tubes, while the EF lies below the geometrical

enhancement factor for G = 800 kg/m?s, which can be an indication of a sub-optimal geometry that
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favours more pressure drop than enhancement in heat transfer. However, the EF shows a completely
different behaviour for G = 100 kg/m?s and G = 200 kg/m?s compared to higher mass fluxes. A
plausible explanation for this particular behaviour can be the two-phase flow patterns as discussed by
Cavallini et al. (2006) [73] and Doretti et al. (2013) [74]. In fact, the microfin tubes promote an earlier
transition from stratified flow (i.e. gravity-dominated heat transfer) to the more effective annular flow
(i.e. forced convective condensation). As described by Cavallini et al. (2006) [73] and Doretti et al.
(2013) [74], this transition occurs at around 200 kg /m? s and, at these operating conditions, the microfin
tubes present the maximum heat transfer enhancement. This is confirmed by the EF profiles reported in
Figure 13, in which it can be clearly seen that at G = 200 kg/m?s there is a steep increase in the EF
for x = 0.5, with a maximum value of EF = 2.6. This should translate into a steeper increase of the

HTC for x > 0.6, while increasing the mass flux from 100 to 200 kg/m?s, compared to other mass flux

values.
275 = G100 o
e G200
250 - 4 G400 K ¢
G800
225 .
— ®
o200 wh
L
175 ] @A 4: A‘. :
A o *. | < > > >
150 4 T 3 e >
148 Ll >
1.25 | L
> e > > >
02 03 04 05 06 07 08 09

x[]
Figure 13: Heat transfer enhancement factor versus vapour quality for 100, 200, 400, and 800 kg/m?s mass flux with
R134a as the refrigerant.

As can be seen in Figure 12, Model E (Mechanistic model) shows that the HTC increases with a
relatively similar rate, while increasing G. Model D illustrates that for G = 200 kg/m?s, the heat
transfer coefficient reaches plateau when x > 0.6, close to the values predicted for ¢ = 100 kg/m?s.
This is not expected due to the much higher EF observed for G = 200 kg/m?s. On the other hand, in
this configuration, the HTC sensitivity result for G > 300 kg/m?s is as expected, considering that a
smoother linear behaviour is observed. Although Model A captures the effect of flow pattern transition
for low mass flux, the HTC for larger mass fluxes do not show a consistent behaviour. Among the
model candidates presented in Figure 12 only Model C has properly resembled the expected behaviour

of the phenomenon, including the impact of the two-phase flow pattern transition. It can be stated that
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machine learning improved the capability of the mechanistic model to adhere to the non-linear
behaviour of the two-phase heat transfer phenomenon.

e Scenario Il

In this scenario, comparing the performance metrics of the test set with training and validation indicates
that, as expected, the mechanistic model (Model E) extrapolates quite. However, this is not the case for
Models A, C, and D, which have an ML component. In these models, the error on the training and
validation is much lower than the error on the test, especially for Model A. This is an indication of
overfitting the training datapoint, as it only enables the model to learn the variations in the data for G <
600 kg/m?s during the training loop. The parity plot of Model A in Figure 14 also shows that the model
tends to systematically underestimate HTC > 8,000 W/m?K, leaving almost 43% of the data outside
the range of +20% error in total. Moreover, by using a pure ML model, the error increases by
approximately 55% and the out-of-range data by almost 23%. Hence, the mechanistic model is superior
to the pure ML model. The main advantage of the hybrid configurations lies in this scenario, as they
clearly improve the extrapolation capabilities of the pure ML, while maintaining the prediction
accuracy. Among the models developed in this scenario, Model C remains the best candidate as it offers
the lowest testing error of 1,092.1 W/m?2K and 12.9% out-of-range data. However, one must note that
the difference between Model D and Model C is not significant at all. Their parity plots in Figure 14
and their metrics are shown in Table 12 are evidence to this observation. In the following, the sensitivity
analysis assists in selecting the best model candidate more effectively.

Table 12: Model performance results for Scenario 11, including MAE and out-of-range data

T OIS e, ouna
[W/m?2K] (Validation) [W/m?K] Testing
Model A égﬁjé) (186?7) 2,346 429
Model C (igg’:g) (g:g) 1,002.1 129
Model D (‘5‘*;"6‘:8) (;:‘3") 1,269.8 145
Model E (ggg:g) é;:g) 1,508.7 20.1
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Figure 14: Parity plots of the HTC for A) Pure ML, C) Hybrid-series, D) Hybrid-parallel, and E) Pure mechanistic
models in Scenario 2.

Figure 15 represents the sensitivity analysis results for Scenario 1. Although a different set of data is
used for training and validation in this scenario, Model E shows similar behaviour to Scenario I, by
neglecting the effect of the two-phase flow pattern transition. Moreover, it is clear from the analysis
that Model A systematically underestimates the HTC, since the profiles at high mass flow rates almost
overlap, exhibiting similar condensation heat transfer coefficients. The sensitivity results of these two
models are additional evidence that neither of them is a proper model candidate for this scenario. On
the other hand, Models C and D can capture the effect of EF for G = 200 kg/m?s, with Model D as a
more reasonable candidate. In our opinion, since Model C is more flexible, the effect of EF for low
mass fluxes is propagated into larger mass fluxes as well. The effect is due to the selection of training
data, which is dominated by low mass fluxes. However, Model D has a harder constraint that prevents
this propagation, as represented in Figure 15, as it uses the mechanistic model with its optimised
parameters in parallel with the ML component.
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Figure 15: Estimation of the HTC for a single tube using A) Pure ML, C) Hybrid-series, D) Hybrid-parallel, and E) Pure
mechanistic models in Scenario 2.

6 Conclusions

In this study, a systematic hybrid modelling framework has been developed, complementing the
developed ML framework for regression of heat transfer data by Loyola-Fuentes et al. (2024) [21],
allowing for the selection of various model configurations based on the availability of a mechanistic
model and data. The framework has been validated against experimental data of condensation heat
transfer coefficient in microfin tubes, by analysing the prediction accuracy and behaviour of the
developed models, both for interpolation and extrapolation purposes. It has been demonstrated that in
both scenarios, the hybrid models outperformed the mechanistic and pure ML counterparts. However,
the proper hybrid configuration depended upon the splitting strategy. In Scenario |, when interpolating,
Model C (hybrid series) showed slightly higher accuracy by 2.5% of the average HTC compared to
Model D (hybrid parallel). However, the sensitivity analysis showed that Model C captured the physics
of the system (i.e. EF effect for G < 200 kg/m?s) much more effectively than the other candidate.
Nevertheless, in Scenario I, this effect was captured more robustly in Model D, although this model
had a slightly larger error compared to the hybrid series one. Such behaviour was justified considering
that the hybrid series is more flexible compared to the hybrid parallel configuration, as the latter used
the optimised mechanistic model in parallel with the ML model. It must be concluded that the hybrid
models, in general, outperformed the mechanistic and machine learning models. However, selecting the
right configuration is subject to implementation and analysis of the results. As future work, to expand

the applicability of the developed modelling framework to dynamic systems such as fouling deposition

34



CoO~NOOOPWNPE

OO OUUUIUUUUIVIOUSDAADNDMAADNDAWWWWWWWWWONNNNNNNNNNRERRRRRRRER
ORWMWNPRPOOONONPRONRPOOOVNOURWNROOONONRARONROOONOUIAWONRPOO®O®NOUNAWNRO

in heat exchangers, adaptation must be carried out on the proposed framework in this study. As fouling

persists as a challenge in heat transfer systems, a hybrid modelling approach can offer a strategic

solution by exploiting both the potential of mechanistic and data-driven models.
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