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ract  

id machine learning-assisted modelling techniques have gained increasing attention recently in

 engineering fields. This is due to the challenges associated with pure first-principles and data

n models, as the former requires deep phenomenological understanding and might become

sible to describe a complex system with, and the latter needs extensive high-quality data and, more

rtantly, extrapolates poorly compared to its first principles counterparts. The integration of the two

iques in a framework will result in an integrated approach that benefits from the two realms by

gthening extrapolation capabilities, higher prediction accuracy, and less data demanding and more

efficient. In this study, a systematic hybrid modelling framework is developed, allowing for the

ration of mechanistic models and machine learning algorithms in parallel and series for modelling

transfer systems to predict a desired target variable, as long as the system is not of a dynamic

e. The framework is developed according to a previous study that enabled the use of machine

ing models for such systems. The application of the hybrid modelling framework in this study is

nstrated on the prediction of the condensation heat transfer coefficient in a microfin tube. A

atory-scale dataset of 5,708 datapoints is used for the validation of the developed framework. The

ation of the model has been carried out in two different scenarios, both assessing the genera

ction and extrapolation capabilities of the developed models in comparison with pure mechanistic

ure machine learning models. The hybrid models, series and parallel, outperform the mechanistic

l by approximately 60% more accurate predictions and the machine learning model by 25%, while

olating. More importantly, while extrapolating, the hybrid models showed approximately 50%

 accurate predictions compared to pure machine learning and 27% more accurate compared to the

anistic model. 
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itionally, first-principles and mechanistic models have been broadly developed to describe complex

ms, processes, and phenomena mathematically. These models are most often developed by a

inatorial formal analysis, including experimentation, data observation, and theoretical analysis

principles and mechanistic models are data-efficient tools that allow for reliable predictions within

earch space of the systems, as long as they are based on accurate databases. However, developing

models requires a deep fundamental understanding of the system and, in most cases, becomes a

consuming task. More importantly, in more complex systems, it is rather impossible to develop

models due to their complex nature. Accordingly, in such situations, data-driven approaches have

 explored as a counterpart to provide more effective solutions for a variety of problems. 

-driven models have recently received significant attention considering the challenges associated

first-principles and mechanistic models, and more importantly, due to rapid technologica

ncements in computer science, data acquisition, and data availability. These models heavily rely

ta to reveal underlying correlations among different components in a system, necessitating large

quality datasets that in most engineering applications are challenging to collect. For instance, the

ss industry typically operates with low variation in operating conditions around specific setpoints

to production targets, safety constraints, and regulatory compliance. This poses a significan

enge when employing data-driven approaches for such conditions, as the variations in the data are

al. Hence, data-driven models will face a challenge in exploring correlations within a prope

h space. Consequently, the reliability of these models beyond the operational envelope can be

ionable. On the other hand, laboratory-scale experiments offer more flexibility, allowing

olled variations of process variables. However, generating sufficiently large datasets under such

itions remains time-consuming and resource-intensive. Additionally, most data-driven models do

llow for physical interpretation of the predictions, and they are typically associated with poore

polation capabilities compared to their first-principles counterparts. Nonetheless, their requiremen

ss domain knowledge and fewer assumptions, and high prediction accuracy make these models an

tive candidate for complex systems. One of the most popular classes of data-driven models is

ine learning, which allows for the construction of algorithms capable of learning underlying

res of a dataset. Another class of models has been introduced more recently by integrating data

n and mechanistic approaches, called hybrid models, which inherit the advantages of both

aches and are increasingly gaining attention due to their applicability in various subjects.  

e following, an introduction to hybrid modelling and mechanistic modelling challenges in hea

fer systems is provided, justifying the application of such a modelling approach in the field of hea

fer. This study focuses on developing a hybrid machine learning-assisted modelling framework to

t the mechanistic models in heat transfer systems for a more accurate prediction of the desired

t variable. The application of such a framework is agnostic to the mechanistic model combined as
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long as the system of study does not have dynamic characteristics. The application of such modelling 

frameworks is validated against laboratory-scale experimental data of condensation in microfin tubes 
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he estimation of the heat transfer coefficient. The paper demonstrates that the hybrid mode

gurations show more accurate interpolation and extrapolation compared to pure mechanistic and

ine learning models. 

ybrid Modelling in Process Systems Engineering 

lenges associated with first-principles and data-driven models led to the development of a relatively

t modelling technique called hybrid modelling. This technique integrates data-driven approaches

mechanistic models for problems for which neither of the techniques is sufficient to model a

lex system [1]. The integration of the two methods allows one to benefit from the features of both

lling realms. Therefore, in principle, a hybrid model offers accurate predictions both inside and

de of the search space, while it does not require as extensive data as data-driven models, and mos

inly does not need a deep understanding of the system and its underlying phenomena compared to

y first-principles/mechanistic model. In other words, these models provide a trade-off between a

i knowledge and data requirement, prediction accuracy, interpretability, and model scalability.  

 the recent advancements in machine learning techniques and their computational efficiency

d machine learning-assisted modelling techniques are becoming an attractive choice over others

owever, one must note that selecting the appropriate modelling approach for a complex system

nds on several factors, such as 1) availability of first-principles models, 2) reliability of those

ls, 3) choice of the machine learning model, and 4) complexity level of the integration for the

ine learning and mechanistic components. Figure 1 represents various modelling techniques tha

e employed from a systems engineering perspective. Since machine learning (Model A) and first

iples models (Model E), the two ends of the spectrum, have already been discussed in detail, in

ollowing, we focus on summarising the features of each hybrid model configuration and their

nt application examples in the literature, with a focus on Process Systems Engineering (PSE), as

arised in Table 1.  
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igure 1: Schematic representation of modelling approaches: (A) Machine learning, (B) Hybrid series with machine 

rning as the main predictor, (C) Hybrid series with first principles as the main predictor, (D) Hybrid parallel, and (E) 

first-principles model. 

pared to a pure machine learning model, Model B offers to incorporate a priori knowledge into the

ine learning component in the form of soft sensors, while the main predictor remains the machine

ing model. Soft sensors are model-based information that is not measurable by instrumentation

configuration has been used in several applications in the field of Chemical and Process

neering. A hybrid model using artificial neural networks was employed in 1999 for the industria

n-6,6 polymerisation process in a twin-screw extruder reactor, predicting the relative viscosity o

roduct as a key physical property. The prediction accuracy improved by approximately 50% using

ybrid configuration compared to the empirical-based mechanistic model, resulting in optimising

rocess condition to increase production by 20% [3]. In 2001, this model configuration was applied

edict pulp delignification of an industrial pulp mill, resulting in a more accurate model compared

ure neural network model [4]. A few years later, Model B was applied to an industrial reactive

lation column for Epichlorohydrin and resulted in lowering the dissolved organic carbon in the

m product of the column, which was achieved by reducing the alkalinity of the bottom product by

st 33% [5].  

her hybrid model configuration that has attracted great attention in several applications is Mode

is configuration allows the machine learning model to be trained for predicting certain inputs o

echanistic model that are not directly measurable (e.g., parameters) or difficult to determine with

in knowledge. Thereafter, the first-principles/mechanistic model performs the main prediction o

rget variable by using the measured input variables and the output of the machine learning model

raining can be carried out with two different approaches: 1) A pre-trained machine learning mode

) end-to-end training of the ML model, directly predicting the outputs of the combined model [6]

limitation of this hybrid model is that the end-to-end training usually requires the mechanistic
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model to be differentiable. Only under such conditions can both models be optimised together; 
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5

isation [6].  

06, the application of such a configuration was successfully demonstrated by integrating an

cial neural network or ANN (estimating kinetic parameters) with mass balances of the Acetobacte

um cultivation in a stirred tank reactor, resulting in an excellent agreement with cultivation

rimental data [7]. This configuration was also applied for on-line monitoring of Lipase production

andida rugosa, which outperformed a fully mechanistic model [8]. More recently, the application

odel C has found its way into particulate processes with a focus on crystallisation and flocculation

. In these studies, an end-to-end training of the model was developed to predict the dynamics o

article size distribution (PSD). The developed models accurately predicted the particle size

butions using an ANN combined with population balance equations. Moreover, in a further study

utational chemistry calculations were integrated with the developed hybrid model for flocculation

h allowed for simpler ANN model components (less complex architecture) compared to the

ously developed hybrid model [10].  

el D (parallel configuration) is employed when first principles are capable of describing the

m’s behaviour; however, they are prone to errors. Hence, the machine learning component can

 to correct the predictions by an additive/corrective error term. In 1994, the parallel configuration

pplied to model the fermentation of Penicillin in a fed-batch bioreactor [11] by integrating a Radia

 Function Network (RBFN) with the fermentation dynamics, which resulted in accurate dynamic

ction of the process states compared to a pure data-driven and pure mechanistic approach. Anothe

 in 2012 applied a parallel configuration for controlling the Cobalt Oxalate synthesis process

ining mass balances (i.e. population balance equations) with partial least squares (PLS) models

llustrated a successful control loop for regulating end-point particle size distribution. The study

ompared the prediction of the PSD with the first principles and PLS only, where the hybrid mode

ctions showed more stability and higher accuracy by harnessing the extrapolating capabilities o

opulation balance equations [12].  

Table 1: Summary of the studies on hybrid modelling approaches in the field of Process Systems Engineering 

Study Application 
Data-driven 

model 

No. 

layers 
Mechanistic model Model 

ascimento, Guidici, 

cherbakoff, 1999 [3] 
Nylon-6,6 extruder process ANN 1 Mass balances B 

uiar and Filho, 2001 [4] Pulp delignification ANN 1 Mass balances B 

Chen et al. 2003 [5] 
Reactive distillation for 

Epichlorohydrin 
ANN 1 Mass balances B 

Zuo et al.,  2006 [7] 
Airlift reactor of Acetobacter 

xylinum 
ANN 1 Mass balances C 

oareto et al., 2007 [8] 
Lipase production by 

Candida rugosa 
ANN 1 Mass balances C 

ielsen et al. 2021 [2] 

Lactose and pharmaceutical 

crystallisation, Silica 
particles flocculation 

ANN 4 PBE C 

emzadeh et al., 2021 [9] Silica particle flocculation ANN 4 PBE C 



Journal Pre-proof

 

 

Nazemzadeh, 2022 [10] Silica particle flocculation ANN (2, 3, 4) 
PBE and nano-scale 
interactions between 

particles 

C 

Th

Z

 

1.2 M

Desig  

up to  

mode  

desig r 

syste  

bible . 

Hew  

is stil

Thes  

mode l 

datab ] 

corre  

durin  

heat a  

of th f 

one o  

in the

The  

expe  

unde  

two m  

of the

How  

after  

and b  

accur

In an  

been . 

(2016  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

6

ompson and Kramer, 

1994 [11] 
Fed-batch bioreactor for 

Penicillin 
RBFN 1 Mass balances D 

hang et al.,  2012 [12] 
Cobalt oxalate synthesis 

process 
PLS N/A PBE D 

echanistic Modelling Challenges in Heat Transfer Systems 

ning efficient, compact, and cost-effective heat exchangers is a must in process engineering, and

 today, it has always relied on the accuracy and predictive capabilities of traditional mechanistic

ls developed since the 1960s. In fact, after World War II, a huge effort was put into developing

n methods for simple (single-phase) and complex (two-phase and multi-phase) heat transfe

ms. Kern [13] was one of the pioneers in the field, and his handbook is still considered one of the

s for heat exchanger design in the process industry. More recently, the work done by Prof. G

itt culminated in one of the most comprehensive handbooks on heat exchanger design [14] which

l integrating and updating novel designs and methods. 

e traditional methods are based on the estimation of heat transfer coefficients through mechanistic

ls, which commonly use specific dimensionless numbers and are regressed on experimenta

ases. A classic example of these models is the famous and still widely used Dittus-Boelter [15

lation. This correlation is based on a large database comprising hundreds of experiments collected

g single-phase turbulent heat transfer inside several tubes. The model takes full advantage of the

nd mass analogy, which allows theoretically correlating the Nusselt number to be a power function

e Reynolds number and Prandtl number. Then, a simple regression permitted the development o

f the most accurate, widely used, and long-lived heat transfer correlations. The typical accuracy

 prediction of the heat transfer coefficient is in the range of 10-30% [16,17]. 

predictive capabilities of such traditional mechanistic methods depend upon the accuracy of the

rimental database, but also rely on the understanding of the heat and mass transfer mechanisms

rpinning the phenomenon. Thus, the success of the Dittus-Boelter correlation can be attributed to

ain factors: the large and accurate database of experimental data points and the deep knowledge

 theoretical mechanisms governing heat transfer. 

ever, in two-phase systems, the complexity of the phenomena increases exponentially, and even

decades of excellent research activities, the theoretical knowledge on, for example, condensation

oiling, is still incomplete. For this reason, semi-empirical approaches most of the time fail to

ately predict the heat transfer performance of such systems. 

y case, several successful attempts to develop accurate and robust semi-empirical correlations have

 proposed in the open literature. Considering condensation heat transfer inside tubes, Righetti et al

) [18] reviewed several models proposed either for boiling or condensation heat transfer inside
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smooth and microfin tubes. The ones proposed by Kim and Mudawar, (2014) [19] exhibited the best 

performance in both condensation and boiling inside smooth pipes. Regarding microfin tubes, the model 
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sed by Cavallini et al. (2009) [20] for condensation showed the best agreement with the

rimental database. This model is based on more than 40 years of research done by the Cavallin

 and took advantage of the experimental activities carried out and of the previous models

loped and validated on thousands of datapoints. In any case, the absolute average deviation of these

ls always ranges between 15%-30%. 

ready described by Loyola-Fuentes et al. (2024) [21], the complexity of these phenomena and the

ora of parameters that play a role in determining the final two-phase behaviour imply an incredible

ulty in identifying the correlations among those variables. This paper aims to provide a nove

ework for heat transfer modelling, trying to combine mechanistic and machine learning

odologies to maximise the accuracy given by machine learning tools while maintaining the

ctability guaranteed by mechanistic methods. 

Machine Learning and Hybrid Approaches in Heat Transfer Systems 

hallenges in mechanistic modelling of heat transfer systems described in the previous section have

veral researchers to rely on data-driven and, more precisely, machine learning-assisted modelling

mplex heat transfer systems. One must note that the application of hybrid modelling approaches

rated in Figure 1 in the field of heat transfer has not been as widely recognised as generally seen

 PSE community. Most of the efforts have focused thus far on developing purely machine learning

ls or Physics-Informed Machine Learning (PIML). Although PIML models can be categorised as

m of hybrid model, but the ML component is dominating the overall model performance, as the

anistic model only imposes some constraints on the ML model in the loss function. The table

 summarises some of the ML-assisted modelling applications in the field of heat transfer. 

Table 2: Summary of the studies on ML-assisted modelling approaches in the field of Heat Transfer 

Study Application 
Data-driven 

model 
Mechanistic model 

Model 

Configuration 

Khosravi et al. 2018 [22] 
Modelling pressure drop 

during evaporation of R407C 
ANN and SVR N/A A 

bold and da Silva 2019 [23] 

Visualisation-based 
quantification of nucleate 

boiling heat flux 

PCA, CNN, and 

MLP 
N/A A 

Kwon et al. 2020 [24] 
Modelling local convective 
HTC of a cooling channel 

RF regressor N/A A 

Peng et al. 2020 [25] 
Modelling heat conduction in 

complex geometries 
CNN N/A A 

Souayeh et al. 2021 [26] 

Modelling friction factor and 

Nusselt number of flow in 

circular tube 

ANN N/A A 

yoal-Fuentes et al. 2022 [27] 
Flow pattern classification in 

heat pipes 

KNN, RF, and 

MLP 
N/A A 

Jayaweera et al. 2022 [28] 
Thermal performance of 

direct contact cooling towers 
ANN Restrep Reyes model C 

yoal-Fuentes et al. 2024 [21] 

Modelling condensation heat 

transfer coefficient in 
microfin tubes 

ANN and RF 
N/A / Dimensionless 

numbers 
A / B 

Lee et al. 2025 [29] 
Prediction of condensation 

heat transfer coefficient 
XGBoost 

Degradation Nusselt 

model 

Physics-

Informed 
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Furlong et al. 2025 [30] 
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flux for boiling systems 
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xample of ML modelling in heat transfer is the study by Khosravi et al. (2018) [22], in which they

oped models using ANN and SVM to predict the pressure drop of R407C. Their analysis showed

NN outperforms the SVM by having a 𝑅2 = 0.998. Hobold and da Silva (2019) [23] applied

us models, including PCA, CNN, and MLP, to infer the heat flux of nucleate boiling in pool boiling

ems, using visualisation data. Another example is the study by Kwon et al. (2020) [24], which

ared the RF performance with finite volume modelling of local heat transfer coefficient across 243

ng channels with different geometries. The study showed similar prediction accuracies between

F and the CFD simulation using finite volume methods. Peng et al. (2020) [25] applied

olutional Neural Network (CNN) for predicting steady-state heat conduction, resulting in accurate

ction of the temperature distribution across a random geometry in 2D space and being 3-4 folds

utationally more efficient compared to numerical models offered by OpenFOAM. Anothe

ple is the application of an ANN model to predict the thermal energy transport coefficient and the

o-hydraulic efficiency of a circular channel by Souayeh et al. (2021) [26], which resulted in 97%

ction accuracy. Moreover, Loyola-Fuentes et al. (2022) [27] applied multiple ML models to

ify the two-phase flow patterns across pulsating heat pipes with an accuracy of higher than 75%

 image data.  

e other hand, hybrid and PIML modelling have received little attention in this field, and the

rch on these frameworks is not as widespread as one might expect compared to purely mechanistic

achine learning modelling. For instance, Jayaweera et al. (2022) [28] applied Model C in this

 to predict the thermal performance of the direct contact countercurrent cooling tower, using an

 combined with Restrep Reyes model, predicting cooling water outlet temperature. An ANN was

to predict the volumetric mass transfer coefficient to be used in the mechanistic model in an end

d training loop, resulting in predictions with an 𝑅2 = 0.99. In another study, Loyola-Fuentes et al

) [21] developed an ML modelling framework for non-dynamic heat transfer data. In that study

ent machine learning-based models were used to predict the condensation heat transfer coefficient

e in one case,  dimensionless numbers were used instead of measured variables as inputs fo

cting the condensation heat transfer coefficient (HTC) in microfin tubes, creating a framework

ar to Model B in Figure 1. The model showed comparable results against the model with measured

bles as inputs (Model A). The best model candidate of Model B in that study had a prediction erro

5 𝑊 𝑚2𝐾⁄ , while the pure machine learning model had a prediction error of 511 𝑊 𝑚2𝐾⁄ . The

ence in the accuracy is only 2.8% of the average HTC of the testing set (𝐻𝑇𝐶𝑎𝑣𝑒 = 6,132

2𝐾). The study also showed that Model B has higher accuracy extrapolating beyond the range o

ng data. Using a hybrid model compared to the pure machine learning one resulted in predictions

an error of 1,819 𝑊 𝑚2𝐾⁄ , while this metric for the pure ML model was 12,426 𝑊 𝑚2𝐾⁄ . 
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 model is associated with stronger extrapolation capabilities compared to the pure XGBoos

l. In another example, Furlong et al. (2025) [30] developed a parallel hybrid model (Model D) to

ct the critical heat flux in a boiling system. However, the model training in that study did not use

d-to-end training loop, meaning that an ANN model was trained to predict the deviation between

imental critical heat flux and the predictions from a mechanistic model. Then, the pre-trained

l was used on an unseen dataset to adjust the mechanistic model in seuqnce. One must note tha

terature review above is by no means a comprehensive review of the ML/hybrid modelling works

at transfer, but it provides recent examples of such modelling approaches in this field. As can be

 the application of hybrid modelling is rather limited in this field compared to the PSE community

study aims to further develop upon the framework developed by Loyola-Fuentes et al. (2024) [21

commodate choosing various hybrid modelling approaches for non-dynamic heat transfer data.  

Model Training Algorithms 

neral, while training a model, including machine learning, mechanistic or hybrid, the problem is

ulated as an optimisation, to minimise the loss function (𝓛) by training model parameters:  

𝑡 = arg 𝑚𝑖𝑛
𝝑

ℒ(𝝑) (1) 

ally used loss functions for regression problems are ℒ𝑛 norm functions, where ℒ1 and ℒ2 are the

 commonly used functions (equivalent to absolute error and squared error, respectively). 

||𝑒||
𝑛

= [|∑ 𝑒𝑖

𝑖

|

𝑛

]

1
𝑛

 (2) 

re 𝑒, in a regression problem, is the error of the predictions of the target variable (𝑦). 

rdless of the modelling approaches employed, in optimisation problems, the training algorithms

e categorised into two: 1) gradient-based and 2) gradient-free methods. One must note that the use

ach algorithm heavily depends on the problem type, computational time constraints and

rentiation properties of the model.  

majority of hybrid model studies have been employing gradient-based methods, including 1

den-Fletcher-Goldfarb-Shanno (BFGS) [31–34] used by Qi et al. (1999) [35] in modelling a fixed

eactor, 2) Levenberg-Marquardt (LM) [36] used by Lauret, Boyer, and Gatina, (2001) [37] fo

lling the Sucrose crystal growth rate, and 3) Adaptive Moment Estimation (Adam), which has

d great attention due to its efficiency in training neural networks and fast convergence in severa
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complex problems. Moreover, it has been employed by several researchers in different applications 
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amming in a model-based optimisation of biosurfactant production in a fed-batch culture [40] and

le swarm optimisation for modelling a sugar crystallisation process [41]. 

n applying gradient-based methods, three approaches are normally utilised to determine the

ents of the loss function: 1) Symbolic Differentiation (SD), 2) Numerical Differentiation (ND)

) Automatic Differentiation (AD). Traditionally, the first two approaches have been employed in

al gradient-based optimisation problems. In many complex problems, the use of symbolic

rentiation becomes rather impossible as formulating the differentiation analytically is not feasible

oblems where deriving the differentiation analytically is possible, the approach offers precise

ions. On the other hand, numerical differentiation provides an approximate solution by applying

 difference methods, which are prone to numerical errors and require high computational time

 The challenges associated with the first two methods led to the development of the AD method

omplex and large models, addressing computational costs, implementation challenges, and

acy of the derivative evaluations [42,43]. 

tomatic differentiation, the complex functions of interest are degraded into small arithmetic

tions, including addition, subtraction, multiplication, division, etc., for which the derivatives are

r easy to calculate. Thereafter, a computational graph is built upon those arithmetic operations

bling the actual function of interest, as shown in Figure 2. The derivatives of the error are then

lated using the chain rule through a forward pass, followed by a back-propagation. Coupling AD

back-propagation gives a significant advantage over the ND methods as the number of parameters

ases in the model [42,43]. In the past decade, several packages have been developed for this

cation, including Autodiff for PyTorch [44] by Facebook AI Research Lab, GradientTape in

orflow [45] by Google Brain Team, and more recently Grad in for JAX [46] developed by Google

 and DeepMind. In this study, all the models are built using the Tensorflow AD package. 
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Figure 2: Schematic representation of (A) forward pass of the model, followed by (B) back-propagation calculating the 

gradients of the parameters with respect to the predicted error (𝑒) in a computational graph using automatic differentiation. 
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stematic Hybrid Modelling Framework 

hybrid modelling framework developed in this study is founded on a framework previously

loped by Loyola-Fuentes et al. (2024) [21], with changes applied in model training/testing data

and training loop, depending on the hybridisation strategy. The modelling framework allows the

to select the desired hybrid model configuration illustrated in Figure 1, agnostic to the first

iples or mechanistic model, as long as the mechanistic model is differentiable and not dynamic

current modelling framework requires major adaptations to the data pre-processing and data

ing steps to be applicable to dynamic systems. Figure 3 represents the overview of the framework

the flow of data for each step, showing the adaptations taken from the framework developed by

la-Fuentes et al. (2024) [21]. Most of the steps are identical to the aforementioned framework, and

etails of such steps can be found in that study. The changes applied to Step 3: Selection o

ing/Validation and Testing Data provide the opportunity to split the data more effectively, leading

more efficient training of the developed models. Moreover, changes in Step 4: Mode

iguration, Training/Validation and Testing offer the user the opportunity to train different mode

gurations (i.e. pure machine learning or hybrid) for exploring potential model structures, predicting

esired target variables. 

 
Figure 3: Modelling framework overview, adapted from [21], with main changes in Step 3 and Step 4 

ep 1, the data is pre-processed according to a priori knowledge of the system, data collection

cols, and any data analysis pipeline that the user finds suitable. It is essential at this stage to identify

rs, the range of the data for each variable that aligns with the physics of the problem, and to remove

ting datapoints from the dataset to avoid introducing biases to the model training/validation, and
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ination with Cross-Validation (RFECV)). Steps 3 and 4 are described in the following with more

ls, as they are quite different from the original modelling framework: 

 3: Selection of Training, Validation, and Test Data 

 that the features and the target variables are identified and selected, the data shall be split in Step

the workflow. The performance of the developed model highly depends on the data splitting

gy [47]. The common practice in machine learning modelling suggests splitting datasets into

y splits of training and testing sets. However, in this study, the data is split into three sets o

ng, validation, and test sets. During training of the model, in each iteration (epoch), the optimised

l parameters are validated against a set of unseen data (validation) to assess the model's

ralisation after each step. This would normally avoid overfitting and memorising patterns in the

 The following algorithm should be followed to prepare the ternary splits. 

rithm 3. Data split into training, validation, and test sets: 

. Split the data first into total training (including validation) and test data using common practices

in the literature. A random split of 70/30% or 80/20% is usually recommended using the Pareto

principle [48]: 

𝒟̅𝑡𝑜𝑡𝑎𝑙
𝑡𝑟𝑎𝑖𝑛: (𝒟̅𝑋,𝑡𝑜𝑡𝑎𝑙

𝑡𝑟𝑎𝑖𝑛 , 𝒟̅𝑦,𝑡𝑜𝑡𝑎𝑙
𝑡𝑟𝑎𝑖𝑛 )  

𝒟̅𝑡𝑒𝑠𝑡: (𝒟̅𝑋
𝑡𝑒𝑠𝑡 , 𝒟̅𝑦

𝑡𝑒𝑠𝑡)  

Note: One may choose a non-random data splitting strategy to assess the model performance

similar to the approach used in [21], where a systematic splitting method was employed to assess

the extrapolability of the developed model. In this study, in addition to a random split, a simila

systematic approach is used to analyse the extrapolation capabilities of the hybrid models.  

. Within the total training set obtained, split the data randomly by using 90/10%, 80/20% into

training and validation sets. It is essential to split the data randomly in this step to preven

introducing biases in the training step. 

𝒟̅𝑡𝑟𝑎𝑖𝑛: (𝒟̅𝑋
𝑡𝑟𝑎𝑖𝑛 , 𝒟̅𝑦

𝑡𝑟𝑎𝑖𝑛)  

𝒟̅𝑣𝑎𝑙: (𝒟̅𝑋
𝑣𝑎𝑙, 𝒟̅𝑦

𝑣𝑎𝑙)  

 4: Model Configuration, Training/Validation and Testing 

s step, the model configuration should be selected according to the availability of high-quality data

he mechanistic model. The user can employ different hybrid model configurations to compare thei

rmance assessment and select the one associated with the best performance. In most applications

p understanding of the mechanistic model is required to decide the appropriate configuration
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Hence, it is highly recommended to apply all configurations and choose the one with more accurate 

predictions and generalisation capabilities.  
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ure 4: Conceptual illustration of training loop for model configurations shown in Figure 1: (A) Pure ML – Model A, 

(B) Hybrid Series – Model B, (C) Hybrid Series – Model C, and (D) Hybrid Model – Model D 
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. Choose the desired ML model ℎ(𝑋, 𝜗). Examples are Random Forest (RF), Artificial Neura

Networks (ANN), Support Vector Machine (SVM), etc. 

Where ℎ represents the ML model, 𝑋 the input data, and 𝜗 model parameters. 

. Select the training and validation method from the following approaches, described in detail in

[21]: 

a. Holdout 

b. K-fold cross-validation 

c. Ensemble 

. Select the model configuration from Figure 1, based on the following guidelines: 

a. If Model A(pure ML model) is to be used, model training is formulated as follows: 

𝒚̂ = ℎ(𝑋, 𝜗) 

𝝑𝑜𝑝𝑡 = arg 𝑚𝑖𝑛
𝝑

𝓛(𝒚̂, 𝒚𝒕𝒓𝒖𝒆)  

b. Else, if Model B is selected for predicting the target variable, the mechanistic mode

and domain knowledge are used to generate soft sensors (𝒁) to be used instead/with

actual input variables to train the ML model: 

𝑍 = 𝑓(𝑿, 𝑷) 

𝒚̂ = ℎ(𝑿, 𝒁, 𝝑) 

𝝑𝒐𝒑𝒕 = arg 𝑚𝑖𝑛
𝝑

𝓛(𝒚̂, 𝒚𝒕𝒓𝒖𝒆)  

c. Else, if Model C is chosen, the machine learning model is trained to predict the set o

parameters (𝑃) of the mechanistic model, responsible for predicting the target variable

𝑷 = ℎ(𝑿, 𝝑) 

𝒚̂ = 𝑓(𝑿, 𝑷) 

𝝑𝒐𝒑𝒕 = arg 𝑚𝑖𝑛
𝝑

𝓛(𝒚̂, 𝒚𝒕𝒓𝒖𝒆)  

 

d. Else, if Model D, predict the target variable with the mechanistic model, while training

the ML model to predict an additive correction term (𝜀) to adjust the predictions agains

the actual measured target variables:   

𝜺 = ℎ(𝑿, 𝝑) 

𝒚̂ = 𝑓(𝑿, 𝑷) + 𝜺 

𝝑𝒐𝒑𝒕 = arg 𝑚𝑖𝑛
𝝑

𝓛(𝒚̂, 𝒚𝒕𝒓𝒖𝒆)  

Where ℎ represents the ML model with 𝝑 as its hyperparameters, while 𝑓 is the

mechanistic model with 𝑷 as its parameters.  
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4. Carry out a prediction on the test dataset for the trained models in the previous steps for 

performance assessment in Step 6. 
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study focuses on a hybrid modelling framework that integrates mechanistic and machine learning

l components for predicting the desired target variable, using various model configurations. To

are the results of the models, the same neural network architecture (i.e., number of hidden layers

er of neurons per hidden layer, and hidden layer activation functions) can be used to provide a fai

 of comparison across different configurations, or the hyperparameters of each neural network can

ned in every model configuration and select the best model across the tuned ones. In this case, the

option was chosen, as the purpose of this study is to highlight the importance of the mode

guration (interactions between first principles and machine learning models), rather than the use

 best possible ML model architecture. The changes in other hyperparameters, such as the numbe

urons in the outlet layer, depend on the model configuration itself, which further leads to changes

e output layer activation function. Finally, different learning rates are needed because of the

rent model configurations and their corresponding vanishing/exploding gradient rates during the

ng stage. As stated in the preceding study of the current paper, Step 5 is rather optional to tune the

rparameters of the developed model, but it helps to avoid unnecessarily complex models for the

m under study. Thereafter, in Step 6, the developed models in Step 3 are compared against each

 in terms of their prediction and learning curves using the error metrics such as Mean Absolute

 (MAE), Mean Squared Error (MSE), and other similar metrics. In addition to these metrics, the

ntage of points outside of a fixed threshold (e.g., 20%) of the experimental values (𝒚̂). More details

 framework can be found in the study by Loyola-Fuentes et al. (2024) [21]. 

main advantage of the framework developed in this study over other existing models in the

ture lies in the integration of the state-of-the-art ML and differentiable mechanistic models fo

lling non-dynamic heat transfer data, agnostic to the system. The framework provides the

bility of training various model configurations, and the user is required to select the model tha

ins the variation of the data the most. Moreover, the framework is designed as such to provide the

rtunity for an end-to-end training of the hybrid models, which is more efficient compared to using

-trained ML model.  

pplication Example: Condensation Heat Transfer Coefficient in Microfin Tubes 

Background in Microfin Tubes 

 the past four decades, the utilisation of enhanced surfaces to boost condensation heat transfe

n horizontal channels has become standard practice. Consequently, microfin tubes, as an

eering innovation that enhances thermal exchange, are extensively employed in heat transfe

es for various HVAC and cooling systems. Indeed, since their conception by Fujie et al. (1975

microgrooved tubes have garnered considerable interest due to their capacity to deliver substantia
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improvements in heat transfer (80-180%) with only a modest rise in pressure loss (20-80%) when 

compared to a comparable smooth tube under identical operating parameters. They achieve enhanced 
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al exchange through (i) expanding the effective heat transfer surface; (ii) generating heightened

lence within the liquid layer; and (iii) leveraging surface tension phenomena to promote

ensate removal [20]. Common microfin tubes are characterised by fin tip diameter (𝑑𝑓), number o

𝑛𝑓), helix angle (𝛽), apex angle (𝛼) and fin height (ℎ𝑓). 

e characteristics are illustrated in Figure 5, which presents a fundamental configuration of a

fin tube. Typically, they have an internal diameter ranging from 3 to 15 mm, featuring a single

 of 40-70 fins with a helical inclination (𝛽) varying from 0° to 30°, fin depth (ℎ𝑓) between 0.1 and

mm, and triangular or trapezoidal fin profiles with an apex angle (γ) spanning from 25° to 90°. The

transfer coefficient during condensation within microfin tubes is dependent on the complex

ctions among the tube’s parameters (e.g., geometry, operational parameters, flow regime, etc.

eat transfer mechanisms (e.g., forced convection, temperature gradients, etc.). 

 
Figure 5: Basic design of a microfin tube reprinted with permission from [20]. © 2009 Elsevier. 

ugh the Cavallini et al. (2009) [20] model offers good predictive capabilities, but the new

rements of the refrigeration and air conditioning sector in terms of controls and energy cos

isation call for a novel class of models that could increase the accuracy of prediction while

taining the reliability and stability of traditional ones. Loyola-Fuentes et al. (2024) [21] explored

ain capabilities of machine learning tools in estimating condensation heat transfer coefficients

ing their limitations in terms of predictability. This work aims to take a step forward by attempting

monstrate that the hybridisation of machine learning tools can improve the overall accuracy and

ctability of mechanistic models, enabling advanced features in the design of smart heat exchangers
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3.2 Mechanistic Model 
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Cavallini et al. (2009) [20] model was developed by regressing the empirical constants on 558

rimental data points selected among more than 4000 available in the whole database. These

rimental datapoints were those presenting low experimental uncertainty, available temperature

rence, different tube geometries and operative fluids. The selected data points were: 1) 186

oints by Cavallini et al. [49–51] for R22 and R407C inside a horizontal microfin tube and fo

a and R410A, 2) 96 points by Haraguchi (1994) [52] for R134a and R123, 3) 106 datapoints by

ierski and Gonclaves (1997) [53] for R32, 4) 52 datapoints by Miyara et al. (2002) [54] for R410A

 by Kim et al. (2002) [54] for R22 and R410A, 6) 20 by Zilly et al. (2003) [55] for CO2, 7) 32 by

mbo et al. (2006) [56] for R134a, and 8) 17 by Uchida et al. (1997) for R22 [57]. 

condensation heat transfer coefficient is defined with reference to the heat transfer area of the

th tube with tube diameter (𝐷) equal to the fin tip diameter of the microfin tube according to the

wing equation: 

=
𝑞

𝜋𝐷𝐿

1

Δ𝑇
 (3) 

ondensation HTC is estimated by combining the heat transfer coefficient for the Δ𝑇 independen

 (𝐻𝑇𝐶𝐴) and the one for Δ𝑇 dependent zone (𝐻𝑇𝐶𝐷) using the following equation: 

= [𝐻𝑇𝐶𝐴
3 + 𝐻𝑇𝐶𝐷

3]
1
3 (4) 

first term in Eq. (4) corresponds to the forced convective heat transfer coefficient and can be

mined as the product of the HTC for a smooth tube (𝐻𝑇𝐶𝐴𝑆) by a function (𝐴) of the geometry

ncement factor (𝑅𝑥) and the Froude number (𝐹𝑟) [58] using Eqs. (5)-(11). The term 𝐶 acts to lowe

eat transfer coefficient when the fin number (𝑛𝑔) is greater than the optimal value (𝑛𝑜𝑝𝑡) for the

 diameter. 

𝐴 = 𝐴 ∙ 𝐶 ∙ 𝐻𝑇𝐶𝐴𝑆 
 

(5) 

𝐴𝑆 = 𝐻𝑇𝐶𝐿𝑂 [1 + 1.128𝑥0.817 (
𝜌𝐿

𝜌𝑉
)

0.3685

(
𝜇𝐿

𝜇𝑉
)

0.2363

(1 −
𝜇𝑉

𝜇𝐿
) 𝑃𝑟𝐿

−0.1] 

 

(6) 

𝐿𝑂 = 0.023
𝜆𝐿

𝑑𝑓
(

𝐺𝑑𝑓

𝜇𝐿
)

0.8

𝑃𝑟𝐿
0.4 

 

(7) 

1 + 𝑎𝐹𝑟𝑏(𝑅𝑥 − 1)𝑐 
 

(8) 

=
𝐺2

𝑔𝑑𝑓(𝜌𝐿 − 𝜌𝑉)2
 

(9) 
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=
𝜋𝑑𝑓 cos (2)

cos(𝛽)
 

(10) 

1 if (
𝑛𝑜𝑝𝑡

𝑛𝑔
) ≥ 0.8 

(
𝑛𝑜𝑝𝑡

𝑛𝑔
)

𝑑

 if (
𝑛𝑜𝑝𝑡

𝑛𝑔
) < 0.8 

𝑡 = 𝑒𝑑𝑓 + 𝑓 

(11) 

HTC of the Δ𝑇 dependent zone (𝐻𝑇𝐶𝐷) can be determined from Eqs. (12-(17(17) by using the

eter 𝐶 in Eq. (11), the geometry enhancement factor (𝑅𝑥) and calculating the HTC of the Δ𝑇

ndent zone for smooth tube (𝐻𝑇𝐶𝐷𝑆) [58].  

𝐷 = 𝐶[𝑔𝑥ℎ(𝑅𝑥 − 1)𝑘𝐶1
𝑚 + 1]𝐻𝑇𝐶𝐷𝑆 + 𝐶(1 − 𝑥𝑛)𝑅𝑥𝐻𝑇𝐶𝐿𝑂 

 
(12) 

𝐷𝑆 =
0.725

1 + 0.741 (
1 − 𝑥

𝑥 )
0.3321 [

𝜆𝐿
3𝜌𝐿(𝜌𝐿 − 𝜌𝑉)𝑔ℎ𝐿𝑉

𝜇𝐿𝑑𝑓Δ𝑇
]

0.25

 

 

(13) 

1 if 𝐽𝑉 ≥ 𝐽𝑉
∗  

𝐽𝑉/𝐽𝑉
∗  if 𝐽𝑉 < 𝐽𝑉

∗  (14) 

𝑥𝐺

[𝑔𝑑𝑓𝜌𝑉(𝜌𝐿 − 𝜌𝑉)]
0.5 

(15) 

0.6 [(
7.5

4.3𝑋𝑡𝑡
1.111 + 1

)

−3

+ 2.5−3]

−
1
3

 (16) 

= (
𝜇𝐿

𝜇𝑉
)

0.1

(
𝜌𝑉

𝜌𝐿
)

0.5

(
1 − 𝑥

𝑥
)

0.9

 (17) 

re 𝐽𝑉 is the dimensionless vapour velocity, 𝐽𝑉
∗  represents the transition vapour velocity, and 𝑋𝑡𝑡 is

artinelli parameter. The empirical parameters in Eqs. (8), (11), and (12) have to be estimated by

ng the model over the collected experimental dataset. The model is valid for tubes with helical fins

g a fin height to diameter ratio ℎ𝑓/𝐷 less than 0.04. This model should be applied to halogenated

erants and carbon dioxide with reduced pressure 0.1 < 𝑃𝑟𝑒𝑑 < 0.67, vapour quality 0 < x < 1 and

 velocity ranging between 90 < G < 900 kg m-2 s-1. 

Dataset 

ata set for condensation in microfin tubes used in this paper is a larger data set in addition to the

used by Loyola-Fuentes et al. 2024 [21] consisting of 4,122 data points used in the preceding
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studies [20] (Batch 1) and an additional 1,586 datapoints (Batch 2) from other studies in this area [59–

72], resulting in 5,708 datapoints in total. The added experimental data points include: new refrigerants, 
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g those: low GWP fluids R1234yf and R1234ze, R513, R1123/R32 mixture, additional microfin

 with smaller diameters, from 2.17 mm up to 5.21, and add more data for traditiona

ofluorocarbon (HFC) fluids. Table 3 shows the experimental input variables and their ranges.  

Table 3: Experimental input data to the models 

iable Symbol  Units Range  Variable Symbol  Units Range 

pour 

ality 
𝑥  − [0.02 - 1] 

Heat of 

vaporisation 
ℎ𝐿𝑉  𝐽 𝑘𝑔−1 [8.5E4 – 2.93E5] 

igeran

ss flux 
𝐺 𝑘𝑔 𝑚−2𝑠−1 [54.97 – 1529.46] 

Reduced 

pressure 
𝑃𝑟𝑒𝑑 − [0.01 – 0.63] 

quid 

nsity 
𝜌𝐿  𝑘𝑔 𝑚−3 [867.26 – 1480.84] 

Surface 

temperature 
𝑇𝑠  °𝐶 [-25.0 – 74.11] 

quid 

rmal 

nd. 

𝜆𝐿  𝑊 𝑚−1𝐾−1 [0.05 – 0.14] 

Surface to 

wall temp. 

difference 

𝑇𝑠 − 𝑇𝑤  °𝐶 [0.23 – 18.07] 

quid 

eat 

acity 

𝐶𝑝𝐿  𝐽 𝑘𝑔−1𝐾−1 [881.02 – 2280.9] 
Fin tip 

diameter 
𝑑𝑓  𝑚 [1.98E-3 – 1.6E-2] 

quid 

osity 
𝜇𝐿  𝑃𝑎 𝑠 [8.18E-5 – 4.33E-4] Fin height ℎ𝑓  𝑚 [1.00E-4 – 6.35E-4] 

quid 

face 

sion 

𝜎𝐿 𝑁 𝑚−1 [1.45E-3 – 1.7E-2] Helix angle 𝛽  ° [0 – 40.0] 

pour 

nsity 
𝜌𝑉  𝑘𝑔 𝑚−3 [6.99 – 166.95] Apex angle 𝛾  ° [0 – 90.0] 

pour 

rmal 

nd. 

𝜆𝑉  𝑊 𝑚−1𝐾−1 [8.6E-3 – 2.6E-2] 
Number of 

fins per tube 
𝑛𝑓  − [10 - 82] 

pour 

eat 

acity 

𝐶𝑝𝑉  𝐽 𝑘𝑔−1𝐾−1 [615.61 – 2587.86] Tube length 𝐿𝑓  𝑚 [0.15 – 6.4] 

pour 

osity 
𝜇𝑉  𝑃𝑎 𝑠 [1.03E-5 – 1.81E-5]     

Approach 

is study, a thorough approach is used to analyse the performance of the various modelling

gurations introduced in two different scenarios and subsequent sub-scenarios, listed in Table 4: 1

ario I: Testing interpolation capabilities, and 2) Scenario II: Testing extrapolation capabilities

ario I allows for splitting the data randomly using common practices of ML models using the Pareto

iple, as suggested in Step 3 of the framework. By randomly splitting data into training/validation

esting sets, the test set will contain datapoints that are within the range of the training data

ever, in Scenario II, the data is split systematically by considering a certain range of mass flux (𝐺

e training and validation, while holding out the rest for the test set. Details of such a splitting

gy can be found in Table 5. Mass flux is selected as the variable for splitting the data since 1) it is

ly a manipulated variable in experimental analysis, and 2) it is an important feature based on the

V results, shown later in this study. In this scenario, the extrapolation capabilities of the developed

ls are evaluated. Moreover, in each scenario, different model configurations, shown in Figure 1

eveloped to predict the condensation HTC in microfin tubes.  
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IA Random data split, pure machine learning (Model A) 

IC Random data split, hybrid-series model (Model C) 

ID Random data split, hybrid-parallel model (Model D) 

IE Random data split, pure mechanistic model (Model E) 

IIA Systematic data split, pure machine learning (Model A) 

IIC Systematic data split, hybrid-series model (Model C) 

IID Systematic data split, hybrid-parallel model (Model D) 

IIE Systematic data split, pure mechanistic model (Model E) 

 4 provides a summary of the scenarios analysed in this study, with their description, while i

ld be mentioned that for a pure mechanistic approach (Model E), the parameters of the model are

ated over the dataset under study, using the original parameters as the initial guess. The trained

anistic model is then used in parallel with the ML model to configure Model D (hybrid-parallel)

odel C, the ML component assists in estimating the mechanistic model parameters within an

rated training loop. 

Table 5: Scenario I and II data splitting strategy and details 

ario Training/Validation Split 

[%] 

Testing Split 

[%] 

Strategy Variable Training/Validation 

Range 

I 90/10 20 Random - - 

I 90/10 18 Systematic 𝐺 𝐺 ∈ [50, 600]𝑘𝑔𝑚−2𝑠−1 

odel E – Mechanistic Model 

s section, the parameters in the mechanistic model described above are optimally estimated using

ew dataset to have a fair basis of comparison across all proposed models. Moreover, as discussed

e previous section, Model E provides the mechanistic component in Model D, which uses the

ction term to adjust the prediction from the mechanistic model, aiming for a more accurate

ction. To estimate the parameters of the mechanistic model, the built-in TensorFlow’s optimisation

ithm is employed and is carried out in a computer with Intel® Core™ Ultra 7 155H, 1400 MHz

 using Python.  

 6 provides the details of the optimisation algorithm utilised for the estimation of parameters o

echanistic model, which are later used in scenarios IE and IIE. In both scenarios, the Adam

isation algorithm is employed with 0.01 as the learning rate. For training the model, a batch size

alent of 10 datapoints is selected as the sample size in each iteration (epoch) for a total number o

pochs (i.e. iterations).  

Table 6: Parameter estimation settings for the mechanistic model 

Parameter Values 

Batch size 10 

Epochs 200 

Optimisation Algorithm Adam 

Learning Rate 0.01 

Number of Parameters 11 



Journal Pre-proof

 

 

Table 7 shows that for both scenarios IE and IIE, new parameters have been estimated that are, in most 
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eters are used as an initial guess, it helped the algorithm to optimise the parameters in a reasonable

 resulting in 102 s for Scenario IE and 144 s for Scenario IIE. More details of the results are

ded in the Performance Assessment section, together with the machine learning and hybrid mode

gurations. 

able 7: Parameters of the mechanistic model in 1) Cavallini et al. (2009) [20], 2) Scenario IE, and 3) Scenario IIE. 

del a b c d e f g h k m n 
llini 

al. 

09) 

0] 

1.119 -0.3821 0.3586 1.904 4064.4 23.257 2.4 0.1206 1.466 0.6875 0.087 

 1.175 -0.2228 0.5267 3.08 4064.22 28.287 2.4072 0.3791 0.8256 0.68 0.0869 

E 1.0709 -0.3029 0.3236 2.9839 4064.54 28.404 2.52 0.349 0.999 0.68 0.0869 

pplication of the Regression Framework to the Case Study 

is section, a step-by-step application of the framework, detailed in Section 2 is followed by the

ts of the model predictions and the assessment of their performance. It must be noted that, in

ion to the ML and hybrid ML models, the mechanistic model performance is also analysed and

ared to the other model configurations. 

Data Pre-processing 

scribed in the framework, the data set must be screened, and proper filtering functions have to be

oyed to prepare the data set for modelling purposes, including outliers, data violating the physics

e problem, etc. In this case study, the only filtering procedure taken is to keep the data

sponding to an HTC of less than 24,000 𝑊/𝑚2𝐾, to maintain consistency with the results o

llini et al. (2009) [20]. As a result of this filtering procedure, the number of datapoints reduces

 5,708 to 5,646, equivalent to 99% of the total data. According to the quality of the collected data

rther filtering function was used. 

Features and Target Variables Selection 

ss all models, the same input variables described in Table 3 are used to predict the condensation

 in both scenarios. Following the selection of input and target variables, a feature importance

sis is carried out using recursive feature elimination (RFECV) with 5-fold cross-validation. This

ne via the Random Forest regressor from the Scikit-learn library in Python. Figure 6 demonstrates

sults of such analysis over the filtered data, showing vapour quality (𝑥), mass flux (𝐺), and fin tip

eter (𝑑𝑓) as the most important variables with approximately 0.4, 0.22, and 0.14 as their score

ctively, followed by liquid thermal conductivity (𝜆𝐿), wall temperature (𝑇𝑆 − 𝑇𝑊), and the
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remaining input variables with an importance of smaller than 0.05, showing that they are irrelevant for 

the prediction of HTC. The results of the dataset used in this study are rather comparable with the study 
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oyola-Fuentes et al. (2024) [21], in which the first two important variables remain the same

ever, the third important variable in that study was liquid thermal conductivity, and the fin tip

eter appeared as a rather irrelevant variable. It is expected that the liquid and vapour-related

ical properties have different importance scores. For instance, the thermal conductivity of the liquid

 is far more important than the vapour phase. This is expected and can be explained as in film

condensation of a vapour phase on a cold surface, the liquid phase imposes a larger therma

ance compared to the vapour phase. This is also seen in the mechanistic model used in this study

 is not used in the determination of the condensation heat transfer coefficient, while 𝜆𝐿 is used in

tions (7) and (13). Moreover, considering the fin tip diameter, the results confirm what had already

 proposed by Cavallini et al (2009) [20] when developing the mechanistic model. In fact, it is wel

n that the heat transfer performance increases as the inner diameter of the pipe decreases. 

 
Figure 6: Feature importance analysis on the input variables for the prediction of HTC. 

ave a deeper understanding of the results in comparison with the study of Loyola-Fuentes et al

) [21], the distribution of the most important variables for the prediction of HTC (i.e., 𝑥, 𝐺, 𝑑𝑓

nalysed for the two batches of data: 1) Batch 1, including data from [21] and 2) Batch 2: new data

d in this study. Figure 7 illustrates the distribution of the three most important variables across the

atches of data, showing rather similar vapour quality across the two batches, which is expected as

xperiments shall cover the entire range of the variable between 0 and 1, ensuring that severa

ble condensation mechanisms and flow characteristics are covered. For mass flux, in Batch 2, a

r distribution is observed, while having an average 𝐺 ≈ 350 𝑘𝑔/𝑚2𝑠 in Batch 1 and 𝐺 ≈

𝑘𝑔/𝑚2𝑠 in Batch 2. The major change lies in the fin tip diameter, as Batch 2 contains a distribution
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of fin tip diameters with an average of 𝑑𝑓 ≈ 0.0035 𝑚, while this variable shows a rather narrow 

distribution in Batch 1 with 𝑑𝑓 ≈ 0.0085 𝑚 as the average value. It is reasonable to assume that, due 
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 very narrow distribution in Batch 1, this variable was not identified as relevant in [21] using the

V method, while it is determined as the third important variable for the prediction of HTC in the

ined dataset used in this study. This shows the importance of having a wide range of data pe

re when dealing with data-driven models. 

 

 

 
ure 7: Distribution of A) Vapour quality (𝑥), B) Mass flux (𝐺), and C) Fin tip diameter (𝑑𝑓) for Batch 1 and Batch 2 

of the condensation in microfin tubes data. 
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Selection of Training, Validation and Testing Data 

idering the two scenarios discussed above, two different splitting strategies have been taken into

nt to assess both interpolation and extrapolation capabilities of the developed models. In Scenario

shown in Table 5, the dataset is randomly split into a total training (including training and

ation) and testing sets by 80/20%, while the total training data is split by 90/10% into training and

ation sets afterwards. However, in Scenario II, the data is split into total training and testing sets

ving a similar ratio to the first scenario (82/18%), using 𝐺 as the dividing variable, comprising the

training data with 50 ≤ 𝐺 ≤ 600 𝑘𝑔/𝑚2𝑠 and 𝐺 > 600 𝑘𝑔/𝑚2𝑠 as the test set, see Figure 8 fo

l illustration of the data split. Thereafter, the total training data is randomly split by a ratio o

% into training and validation sets. 

 
Figure 8: Distribution of mass flux (𝐺) considering the data split for Scenario II 

Model Configuration, Training/Validation, and Testing 

is stage, the models are trained, validated and tested for the scenarios listed in Table 4, using the

ng loops described in Step 4 of the modelling framework. The machine learning selected for this

cation is an Artificial Neural Network (ANN) with the hyperparameters listed in Table 8. The

 models all have two hidden layers, apart from the input and the output layer, each having 32

ns with ReLU as the activation function. The output layer activation function needs to be decided

ding to the model configuration. It must be noted that only the input features are normalised fo

aining/validation stage, and the target variable is predicted without scaling. 
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Table 8: List of hyperparameters for the ANN model, shared in all model configurations 

 

 Sc

In Sc  

traini  

funct  

neura  

the p  

the o  

and v  

funct  

outpu . 

Henc  

outpu t 

layer r 

mode  

mode  

archi  

terms l 

C, as , 

while  

total r 

the m

 

Trai

Num

Lear

Last

Trai

Vali

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

25

Hyperparameter Values 

Number of hidden layers 2 

Number of neurons per hidden layer [32, 32] 

Activation function per hidden layer [ReLU, ReLU] 

Batch size 10 

Epochs 200 

Loss MAE 

Optimiser Adam 

enario I 

enario I (random data splitting strategy), the models are trained and validated according to the

ng loops described in the framework and illustrated in Figure 4. The output layer activation

ion and learning rate depend on the selected model configuration and the inherent nature of the

l network outputs. In other words, the behaviour of the activation function shall be consistent with

redicted variable by the neural network. In case of vanishing/exploding gradients, learning rate and

utput layer activation function can be adjusted. For model C, these are adjusted to avoid exploding

anishing gradients in the training stage and for Model A and Model D, the output layer activation

ion to ensure that the output of the ANN model fits the purpose of prediction. For instance, the

t of the ANN in model D is an additive error (𝜀), which can take negative or positive values

e, a linear activation function is selected for the output layer that allows for both values as the

t of the ANN model. For Model C, 0.001 is used as the learning rate and Softplus as the outpu

 activation function to avoid vanishing gradients in the training loop. The learning rate for the othe

ls (A, C, and D) is 0.01, as this relatively high rate showed a reasonable learning curve for these

ls. An important difference among the models is the number of parameters, as this depends on the

tecture of the ANN component for Models A, C, and D. All models share the same architecture in

 of the number of hidden layers and their neurons. However, the output layer is different for Mode

 its output layer has 11 neurons (equal to the number of parameters of the mechanistic model)

 Models A and D have a single output for predicting the HTC and 𝜀, respectively. In doing so, the

number of parameters for the models is 1,921 for Model A and D, 2,251 for Model C, and 11 fo

echanistic model. The summary of the parameters described above is provided in Table 9. 

Table 9: Hyperparameters, computational time, number of parameters, and losses for models in Scenario I. 

Model A Model C Model D  Model E 

ning Computational Time [s] 135 180 130 102 

ber of parameters 1,921 2,251 1,921 11 

ning rate 0.01 0.001 0.01 0.01 

 layer activation function ReLU Softplus Linear - 

ning loss [𝑾/𝒎𝟐𝑲] 559 400 504 1,297 

dation loss [𝑾/𝒎𝟐𝑲] 719 565 659 1,414 
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l epochs (up to epoch 25), but the model does not learn much afterwards, as both training and

ation losses flatten around 1,297 and 1,414 𝑊/𝑚2𝐾, respectively. This suggests that the origina

eters as the initial guess for Model E are rather close to the optimised values. Details can be found

ble 7. On the other hand, the other models' learning curves provide evidence that the training has

 more effective. Model A's learning curve is quite steep, with an initial loss value starting at 6,000

2𝐾 and reaching 1,000 𝑊/𝑚2𝐾 already in the first 20 iterations, showing that the pure ML mode

ite far from a trained model when starting the training loop, and it reaches 559 and 719 𝑊/𝑚2𝐾

e end of training for the training and validation sets, respectively. However, it can be clearly seen

he hybrid models (Models C and D) start from much lower loss values compared to Model A. This

s that the mechanistic model integrated with the ANN assists the model to initialise more

nably, while facilitating more efficient training and validation of the models. Model D fina

ng and validation losses are 504 and 659 𝑊/𝑚2𝐾, slightly more accurate than Model A. The fina

ng and validation losses of Model C are 400 and 565 𝑊/𝑚2𝐾 respectively, the lowest among al

d models.  

 
ure 9: Training and validation curves of Scenario I for models A) Pure ML model, C) Hybrid – series, D) Hybrid – 

parallel, and E) Pure mechanistic. 

ysing the training/validation curve of Model D, reveals that the training curve has not yet reached

teau after 200 epochs, which may indicate that the training has not been sufficient, and the mode

require more iterations to be fully trained. However, the validation curve shows otherwise, as i

eached a plateau. This means that by further training the model, the two curves deviate further
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from each other, and it can be an indication of overfitting. Hence, 200 epochs appear to have been 
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enario II 

e second scenario, the same model architecture as in Scenario I has been implemented. Similarly

el C in this scenario has a lower learning rate compared to the other models and employs Softplus

e output activation function to avoid vanishing gradients in the training loop. Table 9 shows these

rparameters together with the computational time required for training, and the corresponding

ng and validation losses. 

Table 10: Hyperparameters, computational time, number of parameters, and losses for models in Scenario II. 

Model A Model C Model D  Model E 

putational Time [s] 141 150 112 144 

ber of parameters 1,921 2,251 1,921 11 

ning rate 0.01 0.001 0.01 0.01 

 layer activation function ReLU Softplus Linear - 

ning loss [𝑾/𝒎𝟐𝑲] 518 359 465 1301 

dation loss [𝑾/𝒎𝟐𝑲] 555 467 517 1288 

earning curves illustrated in Figure 10 are relatively similar to the one presented for Scenario I

ever, in Model E it can be seen that the validation loss is approximately 1,288 𝑊/𝑚2𝐾, while the

ng loss is slightly higher 1,301 𝑊/𝑚2𝐾. Although this difference is not significant, it shows tha

echanistic model is prone to underfitting. On the contrary, the other models' behaviour is rathe

ar to their counterparts in Scenario I. This behaviour would indicate that a similar performance can

pected from all models in both scenarios. Nevertheless, the training and validation data across the

cenarios are different. To draw a proper conclusion on the models’ performance in both scenarios

ecessary to assess the model prediction on a completely unseen data set (i.e. testing set). 
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re 10: Training and validation curves of Scenario II for models A) Pure ML model, C) Hybrid – series, D) Hybrid – 

parallel, and E) Pure mechanistic. 

Performance Assessment 

erformance of the developed models is assessed by analysing the prediction errors over training

ation, and test data sets together with their out-of-range data points for both scenarios. These values

ported for pure ML, hybrid, and pure mechanistic models. The evaluation of the results is carried

eparately for each scenario in the following. 

enario I 

rediction error of the models in this scenario on the test set, presented in Table 11, clearly indicates

the ML model and both hybrid configurations outperform the mechanistic model by having

ximately 55% more accurate predictions and significantly reducing the out-of-range datapoints by

st 28%. The main reason behind this improvement is the strong interpolation capabilities of the

omponent used in models A, C, and D. Figure 11 illustrates the parity plot of the models in this

rio for the test set, in which the superiority of these models over Model E, the mechanistic model

st be noted that a similar observation was made by Loyola-Fuentes et al. (2024) [21], that showed

ure ML model with grid search has approximately 50% more accurate predictions, while the

er of data points out of a 20% error range was reduced by 25%.  

Table 11: Model performance results for Scenario I, including MAE and out-of-range data 
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odel A 
563.6 

(719.5) 

8.3 

(11.5) 
693.5 12.5 

odel C 
394.6 

(565) 

5 

(8.3) 
516.6 8.3 

odel D 
494.8 

(658.8) 

7.4 

(12.4) 
595.3 10.1 

odel E 
1293.7 

(1414.3) 

35.2 

(36.3) 
1357.3 38.2 

etrics on the test set in Model C and Model D, and their corresponding parity plots in Figure 11

 that Model C outperforms Model D, which is expected as the hybrid series configuration allows

odel to map the mechanistic model parameters to the input variables efficiently. Hence, these

eters will become dependent upon those variables, maintaining the main functional form in the

anistic mode. While in the hybrid parallel configuration, those parameters are fixed for the entire

et, and an error term corrects the prediction of the mechanistic model. The hybrid mode

gurations (Models C and D) demonstrate slightly more accurate predictions on the test se

ared to Model A. However, one might argue that the difference is less than 180 𝑊/𝑚2𝐾 (2.5% o

verage HTC, 7,094.8 𝑊/𝑚2𝐾) in the test set, and such a small improvement cannot be justified

dering the implementation challenges of a hybrid model. Hence, Model A (pure ML) might be

ient for predicting the HTC if a systematic data split is not to be used. 

 
igure 11: Parity plots of the HTC for A) Pure ML, C) Hybrid-series, D) Hybrid-parallel, and E) Pure mechanistic 

models in Scenario I. 
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34a. As illustrated in Figure 12, all models show that with increasing vapour quality and mass

 the predicted HTC increases, a behaviour that is expected from the physics of the system and the

rimental data.  

 
re 12: Estimation of the HTC for a single tube using A) Pure ML, C) Hybrid-series, D) Hybrid-parallel, and E) Pure 

mechanistic models in Scenario I. 

 that the sensitivity of all the developed models in this scenario is aligned with the system's

cted behaviour, it is essential to understand which model resembles the actual behaviour more

ly. To this aim, the heat transfer enhancement factor (EF) is analysed for the experimental data

cted for R134a. The EF is defined as the ratio between the measured HTC for the microfin tube

he equivalent HTC of the smooth tube predicted by the mechanistic model. The mechanistic mode

ders the geometry enhancement factor (𝑅𝑥), and it sets a transition between the gravity-controlled

he forced convective-controlled condensation with a criterion defined on the basis of the refrigeran

hase flow pattern observations. Thus, the EF can also reveal the significance of the transition

een flow patterns across different mass fluxes.  The heat transfer enhancement factor for R134a in

icrofin tubes is illustrated in Figure 13 using the collected experimental data, showing that this

eter is relatively constant for 𝐺 = 400 kg/m2s and 𝐺 = 800 kg/m2s. Thus, considering that the

etry enhancement factor is approximately 1.63, it can be stated that for 𝐺 = 400 kg/m2s, the hea

fer EF is merely due to the geometry of microfin tubes, while the EF lies below the geometrica

ncement factor for 𝐺 = 800 kg/m2s, which can be an indication of a sub-optimal geometry tha
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ible explanation for this particular behaviour can be the two-phase flow patterns as discussed by

llini et al. (2006) [73] and Doretti et al. (2013) [74]. In fact, the microfin tubes promote an earlie

ition from stratified flow (i.e. gravity-dominated heat transfer) to the more effective annular flow

forced convective condensation). As described by Cavallini et al. (2006) [73] and Doretti et al

) [74], this transition occurs at around 200 kg /m2 s and, at these operating conditions, the microfin

 present the maximum heat transfer enhancement. This is confirmed by the EF profiles reported in

e 13, in which it can be clearly seen that at 𝐺 = 200 kg/m2s there is a steep increase in the EF

≥ 0.5, with a maximum value of 𝐸𝐹 ≈ 2.6. This should translate into a steeper increase of the

 for 𝑥 ≥ 0.6, while increasing the mass flux from 100 to 200 kg/m2s, compared to other mass flux

s.  

 
ure 13: Heat transfer enhancement factor versus vapour quality for 100, 200, 400, and 800 kg/m2s mass flux with 

R134a as the refrigerant. 

an be seen in Figure 12, Model E (Mechanistic model) shows that the HTC increases with a

vely similar rate, while increasing 𝐺. Model D illustrates that for 𝐺 = 200 kg/m2s, the hea

fer coefficient reaches plateau when 𝑥 ≥ 0.6, close to the values predicted for 𝐺 = 100 kg/m2s

is not expected due to the much higher EF observed for 𝐺 = 200 kg/m2s. On the other hand, in

onfiguration, the HTC sensitivity result for 𝐺 ≥ 300 kg/m2s is as expected, considering that a

ther linear behaviour is observed. Although Model A captures the effect of flow pattern transition

w mass flux, the HTC for larger mass fluxes do not show a consistent behaviour. Among the

l candidates presented in Figure 12 only Model C has properly resembled the expected behaviou

e phenomenon, including the impact of the two-phase flow pattern transition. It can be stated tha
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machine learning improved the capability of the mechanistic model to adhere to the non-linear 

behaviour of the two-phase heat transfer phenomenon.  
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enario II 

s scenario, comparing the performance metrics of the test set with training and validation indicates

as expected, the mechanistic model (Model E) extrapolates quite. However, this is not the case fo

els A, C, and D, which have an ML component. In these models, the error on the training and

ation is much lower than the error on the test, especially for Model A. This is an indication o

itting the training datapoint, as it only enables the model to learn the variations in the data for 𝐺 ≤

kg/m2𝑠 during the training loop. The parity plot of Model A in Figure 14 also shows that the mode

 to systematically underestimate 𝐻𝑇𝐶 > 8,000 W/m2K, leaving almost 43% of the data outside

ange of ±20% error in total. Moreover, by using a pure ML model, the error increases by

ximately 55% and the out-of-range data by almost 23%. Hence, the mechanistic model is superio

 pure ML model. The main advantage of the hybrid configurations lies in this scenario, as they

ly improve the extrapolation capabilities of the pure ML, while maintaining the prediction

acy. Among the models developed in this scenario, Model C remains the best candidate as it offers

west testing error of 1,092.1 W/m2K and 12.9% out-of-range data. However, one must note tha

ifference between Model D and Model C is not significant at all. Their parity plots in Figure 14

heir metrics are shown in Table 12 are evidence to this observation. In the following, the sensitivity

sis assists in selecting the best model candidate more effectively. 

Table 12: Model performance results for Scenario II, including MAE and out-of-range data 

Model 

MAE Training 

(Validation) 

[W/m2K] 

%Out-of-Range 

Training 

(Validation) 

MAE Testing 

[W/m2K] 

%Out-of-Range 

Testing 

odel A 
502.4 

(555.6) 

8.9 

(10.7) 
2,346 42.9 

odel C 
353.6 

(466.9) 

4.2 

(6.8) 
1,092.1 12.9 

odel D 
454.6 

(516.9) 

7.4 

(8.3) 
1,269.8 14.5 

odel E 
1296.5 

(1288.3) 

37.9 

(37.5) 
1,508.7 20.1 
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igure 14: Parity plots of the HTC for A) Pure ML, C) Hybrid-series, D) Hybrid-parallel, and E) Pure mechanistic 

models in Scenario 2. 

e 15 represents the sensitivity analysis results for Scenario II. Although a different set of data is

for training and validation in this scenario, Model E shows similar behaviour to Scenario I, by

cting the effect of the two-phase flow pattern transition. Moreover, it is clear from the analysis

odel A systematically underestimates the HTC, since the profiles at high mass flow rates almos

ap, exhibiting similar condensation heat transfer coefficients. The sensitivity results of these two

ls are additional evidence that neither of them is a proper model candidate for this scenario. On

ther hand, Models C and D can capture the effect of EF for 𝐺 = 200 kg/m2s, with Model D as a

 reasonable candidate. In our opinion, since Model C is more flexible, the effect of EF for low

 fluxes is propagated into larger mass fluxes as well. The effect is due to the selection of training

 which is dominated by low mass fluxes. However, Model D has a harder constraint that prevents

ropagation, as represented in Figure 15, as it uses the mechanistic model with its optimised

eters in parallel with the ML component. 
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re 15: Estimation of the HTC for a single tube using A) Pure ML, C) Hybrid-series, D) Hybrid-parallel, and E) Pure 

mechanistic models in Scenario 2. 

onclusions 

is study, a systematic hybrid modelling framework has been developed, complementing the

loped ML framework for regression of heat transfer data by Loyola-Fuentes et al. (2024) [21]

ing for the selection of various model configurations based on the availability of a mechanistic

l and data. The framework has been validated against experimental data of condensation hea

fer coefficient in microfin tubes, by analysing the prediction accuracy and behaviour of the

loped models, both for interpolation and extrapolation purposes. It has been demonstrated that in

scenarios, the hybrid models outperformed the mechanistic and pure ML counterparts. However

roper hybrid configuration depended upon the splitting strategy. In Scenario I, when interpolating

el C (hybrid series) showed slightly higher accuracy by 2.5% of the average HTC compared to

el D (hybrid parallel). However, the sensitivity analysis showed that Model C captured the physics

e system (i.e. EF effect for 𝐺 ≤ 200 kg/m2s) much more effectively than the other candidate

rtheless, in Scenario II, this effect was captured more robustly in Model D, although this mode

 slightly larger error compared to the hybrid series one. Such behaviour was justified considering

he hybrid series is more flexible compared to the hybrid parallel configuration, as the latter used

ptimised mechanistic model in parallel with the ML model. It must be concluded that the hybrid

ls, in general, outperformed the mechanistic and machine learning models. However, selecting the

 configuration is subject to implementation and analysis of the results. As future work, to expand

pplicability of the developed modelling framework to dynamic systems such as fouling deposition
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in heat exchangers, adaptation must be carried out on the proposed framework in this study. As fouling 

persists as a challenge in heat transfer systems, a hybrid modelling approach can offer a strategic 
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enclature 

reviations  𝑅𝑥 Geometrical enhancement factor [−] 

Automatic differentiation   

 Artificial neural network T Temperature [K] 

m Adaptive moment estimation 

method 
𝛥𝑇𝑑𝑖𝑚𝑙𝑒𝑠𝑠 Dimensionless temperature [−] 

S Broyden-Fletcher-Goldfarb-Shanno 𝑿 Independent variables 

Cross-validation 𝑥 Vapour quality [−] 

Enhancement factor 𝒚 Target variables 

P Global warming potential 𝒚̂ Estimated target variables 

 Hydrofluorocarbon   

 Heat transfer coefficient Greeks  

Levenberg-Marquardt 𝛽 Helix angle [°] 

 Mean absolute error 𝛾 Apex angle [°] 

Machine learning 𝝑 ML model parameters 

 Mean squared error 𝜆 Thermal conductivity [W m−1K−1] 

Numerical differentiation 𝜇 Viscosity [Pa s] 

 Population balance equation 𝜌 Density [kg m−3] 

 Partial least squares 𝜎 Liquid surface tension [N m−1] 

 Particle size distribution 𝜏𝑐 Critical threshold [−] 

N Radial basis function network   

Random forest Subscripts  

CV Recursive feature elimination with 

cross-validation 
L Liquid 

Symbolic differentiation S Surface 

 Support vector machine V Vapour 

 W Wall 

bols  Superscripts  

Bond number [−] opt optimised 

Heat capacity [J kg−1 K−1] test Testing data set 

Experimental data train Training data set 

Pre-processed data true True value measured 

Fin tip diameter [m] val Validation dataset 

Mechanistic model   

Vapour velocity [−]   

 Machine learning loss function   

Refrigerant mass flux [kg m−2s−1]   

Machine learning model   

Fin height [𝑚]   

Heat of vaporisation [J kg−1]   

Tube length [m]   

Number of fins per tube [−]   

 Vector of pre-processing functions   

 Reduced pressure [−]   

Prandtl number [−]   



Journal Pre-proof

 

Dec

☒ T r 
pers  in
this
 
☒ T
Edit  or
the 

☒ T
whic

No
Jo
ur

na
l P

re
-p

ro
oflaration of Interest Statement

he authors declare that they have no known competing financial interests o
onal relationships that could have appeared to influence the work reported

 paper.

he author is an Editorial Board Member/Editor-in-Chief/Associate 
or/Guest Editor for this journal and was not involved in the editorial review
decision to publish this article.

he authors declare the following financial interests/personal relationships 
h may be considered as potential competing interests: 

ne


	Hybrid modelling of heat transfer systems: Combining physics-based and data-driven approaches for improved prediction and extrapolation
	CRediT authorship contribution statement
	Data availability


